201
|
Zheng Y, Liu Q, Li L, Qin W, Yang J, Zhang H, Jiang X, Cheng T, Liu W, Xu X, Xian M. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:57. [PMID: 23618128 PMCID: PMC3654967 DOI: 10.1186/1754-6834-6-57] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/12/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND The isopentenols, including isoprenol and prenol, are excellent alternative fuels. However, they are not compounds largely accumulated in natural organism. The need for the next generation of biofuels with better physical and chemical properties impels us to develop biosynthetic routes for the production of isoprenol and prenol from renewable sugar. In this study, we use the heterogenous mevalonate-dependent (MVA) isoprenoid pathway for the synthesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) intermediates, and then convert IPP and DMAPP to isoprenol and prenol, respectively. RESULTS A mevalonate titer of 1.7 g/L was obtained by constructing an efficient MVA upper pathway in engineered E. coli. Different phosphatases and pyrophosphatases were investigated for their abilities in hydrolyzing the IPP and DMAPP. Consequently, ADP-ribose pyrophosphatase was found to be an efficient IPP and DMAPP hydrolase. Moreover, ADP-ribose pyrophosphatase from Bacillus subtilis (BsNudF) exhibited a equivalent substrate specificity towards IPP and DMAPP, while ADP-ribose pyrophosphatase from E. coli (EcNudF) presented a high substrate preference for DMAPP. Without the expression of any phosphatases or pyrophosphatases, a background level of isopentenols was synthesized. When the endogenous pyrophosphatase genes (EcNudF and yggV) that were capable of enhancing the hydrolyzation of the IPP and DMAPP were knocked out, the background level of isopentenols was still obtained. Maybe the synthesized IPP and DMAPP were hydrolyzed by some unknown hydrolases of E. coli. Finally, 1.3 g/L single isoprenol was obtained by blocking the conversion of IPP to DMAPP and employing the BsNudF, and 0.2 g/L ~80% prenol was produced by employing the EcNudF. A maximal yield of 12% was achieved in both isoprenol and prenol producing strains. CONCLUSIONS To the best of our knowledge, this is the first successful report on high-specificity production of isoprenol and prenol by microbial fermentation. Over 1.3 g/L isoprenol achieved in shake-flask experiments represents a quite encouraging titer of higher alcohols. In addition, the substrate specificities of ADP-ribose pyrophosphatases were determined and successfully applied for the high-specificity synthesis of isoprenol and prenol. Altogether, this work presents a promising strategy for high-specificity production of two excellent biofuels, isoprenol and prenol.
Collapse
Affiliation(s)
- Yanning Zheng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Lingling Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Jianming Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Xinglin Jiang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Cheng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Xin Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, China
| |
Collapse
|
202
|
Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 2013. [DOI: 10.1016/j.tibtech.2012.10.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
203
|
Bankar SB, Survase SA, Ojamo H, Granström T. Biobutanol: the outlook of an academic and industrialist. RSC Adv 2013. [DOI: 10.1039/c3ra43011a] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
204
|
Bhandiwad A, Guseva A, Lynd L. Metabolic Engineering of <i>Thermoanaerobacterium thermosaccharolyticum</i> for Increased n-Butanol Production. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.31007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
205
|
Yuan Y, Du J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Methods Mol Biol 2013; 985:177-209. [PMID: 23417805 DOI: 10.1007/978-1-62703-299-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Introduction of a heterologous metabolic pathway into a platform microorganism for applications in metabolic engineering and synthetic biology is often technically straightforward. However, the major challenge is to balance the flux in the pathway to obtain high yield and productivity in a target microorganism. To address this limitation, we recently developed a simple, efficient, and programmable approach named "customized optimization of metabolic pathways by combinatorial transcriptional engineering" (COMPACTER) for balancing the flux in a pathway under distinct metabolic backgrounds. Here we use two examples including a cellobiose-utilizing pathway and a xylose-utilizing pathway to illustrate the key steps in the COMPACTER method.
Collapse
Affiliation(s)
- Yongbo Yuan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
206
|
Chiang CJ, Saini M, Lee HM, Wang ZW, Lin LJ, Chao YP. Genomic engineering of Escherichia coli by the phage attachment site-based integration system with mutant loxP sites. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
207
|
Xiao Y, Feng X, Varman AM, He L, Yu H, Tang YJ. Kinetic Modeling and Isotopic Investigation of Isobutanol Fermentation by Two Engineered Escherichia coli Strains. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202936t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Xiao
- Department
of Energy, Environmental and Chemical Engineering, Washington University, One Brookings Drive, St. Louis,
Missouri 63130, United States
| | - Xueyang Feng
- Department
of Energy, Environmental and Chemical Engineering, Washington University, One Brookings Drive, St. Louis,
Missouri 63130, United States
| | - Arul M. Varman
- Department
of Energy, Environmental and Chemical Engineering, Washington University, One Brookings Drive, St. Louis,
Missouri 63130, United States
| | - Lian He
- Department
of Energy, Environmental and Chemical Engineering, Washington University, One Brookings Drive, St. Louis,
Missouri 63130, United States
| | - Huifeng Yu
- Department
of Energy, Environmental and Chemical Engineering, Washington University, One Brookings Drive, St. Louis,
Missouri 63130, United States
| | - Yinjie J. Tang
- Department
of Energy, Environmental and Chemical Engineering, Washington University, One Brookings Drive, St. Louis,
Missouri 63130, United States
| |
Collapse
|
208
|
Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl Environ Microbiol 2012. [PMID: 23183979 DOI: 10.1128/aem.02827-12] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Global warming and decreasing fossil fuel reserves have prompted great interest in the synthesis of advanced biofuels from renewable resources. In an effort to address these concerns, we performed metabolic engineering of the cyanobacterium Synechocystis sp. strain PCC 6803 to develop a strain that can synthesize isobutanol under both autotrophic and mixotrophic conditions. With the expression of two heterologous genes from the Ehrlich pathway, the engineered strain can accumulate 90 mg/liter of isobutanol from 50 mM bicarbonate in a gas-tight shaking flask. The strain does not require any inducer (i.e., isopropyl β-d-1-thiogalactopyranoside [IPTG]) or antibiotics to maintain its isobutanol production. In the presence of glucose, isobutanol synthesis is only moderately promoted (titer = 114 mg/liter). Based on isotopomer analysis, we found that, compared to the wild-type strain, the mutant significantly reduced its glucose utilization and mainly employed autotrophic metabolism for biomass growth and isobutanol production. Since isobutanol is toxic to the cells and may also be degraded photochemically by hydroxyl radicals during the cultivation process, we employed in situ removal of the isobutanol using oleyl alcohol as a solvent trap. This resulted in a final net concentration of 298 mg/liter of isobutanol under mixotrophic culture conditions.
Collapse
|
209
|
Liu CG, Xue C, Lin YH, Bai FW. Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 2012. [PMID: 23178703 DOI: 10.1016/j.biotechadv.2012.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many fermentation products are produced under microaerobic or anaerobic conditions, in which oxygen is undetectable by dissolved oxygen probe, presenting a challenge for process monitoring and control. Extracellular redox potentials that can be detected conveniently affect intracellular redox homeostasis and metabolism, and consequently control profiles of fermentation products, which provide an alternative for monitoring and control of these fermentation processes. This article reviews updated progress in the impact of redox potentials on gene expression, protein biosynthesis and metabolism as well as redox potential control strategies for more efficient production of fermentation products, taking ethanol fermentation by the yeast Saccharomyces under microaerobic conditions and butanol production by the bacterium Clostridium under anaerobic conditions as examples.
Collapse
Affiliation(s)
- Chen-Guang Liu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116023, China
| | | | | | | |
Collapse
|
210
|
Kung Y, Runguphan W, Keasling JD. From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 2012; 1:498-513. [PMID: 23656227 DOI: 10.1021/sb300074k] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.
Collapse
Affiliation(s)
- Yan Kung
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Weerawat Runguphan
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Chemical and Biomolecular Engineering and Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
211
|
Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá M, Gonzalez R. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 2012; 1:541-54. [PMID: 23656231 DOI: 10.1021/sb3000782] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While we have recently constructed a functional reversal of the β-oxidation cycle as a platform for the production of fuels and chemicals by engineering global regulators and eliminating native fermentative pathways, the system-level approach used makes it difficult to determine which of the many deregulated enzymes are responsible for product synthesis. This, in turn, limits efforts to fine-tune the synthesis of specific products and prevents the transfer of the engineered pathway to other organisms. In the work reported here, we overcome the aforementioned limitations by using a synthetic biology approach to construct and functionally characterize a reversal of the β-oxidation cycle. This was achieved through the in vitro kinetic characterization of each functional unit of the core and termination pathways, followed by their in vivo assembly and functional characterization. With this approach, the four functional units of the core pathway, thiolase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydratase, and acyl-CoA dehydrogenase/trans-enoyl-CoA reductase, were purified and kinetically characterized in vitro. When these four functional units were assembled in vivo in combination with thioesterases as the termination pathway, the synthesis of a variety of 4-C carboxylic acids from a one-turn functional reversal of the β-oxidation cycle was realized. The individual expression and modular construction of these well-defined core components exerted the majority of control over product formation, with only highly selective termination pathways resulting in shifts in product formation. Further control over product synthesis was demonstrated by overexpressing a long-chain thiolase that enables the operation of multiple turns of the reversal of the β-oxidation cycle and hence the synthesis of longer-chain carboxylic acids. The well-defined and self-contained nature of each functional unit makes the engineered reversal of the β-oxidation cycle "chassis neutral" and hence transferrable to the host of choice for efficient fuel or chemical production.
Collapse
Affiliation(s)
- James M. Clomburg
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Jacob E. Vick
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Matthew D. Blankschien
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - María Rodríguez-Moyá
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| |
Collapse
|
212
|
Machado IM, Atsumi S. Cyanobacterial biofuel production. J Biotechnol 2012; 162:50-6. [DOI: 10.1016/j.jbiotec.2012.03.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/28/2012] [Accepted: 03/08/2012] [Indexed: 12/31/2022]
|
213
|
|
214
|
Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc Natl Acad Sci U S A 2012; 109:17925-30. [PMID: 23071297 DOI: 10.1073/pnas.1209002109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microbial systems are being increasingly developed as production hosts for a wide variety of chemical compounds. Broader adoption of microbial synthesis is hampered by a limited number of high-yielding natural pathways for molecules with the desired physical properties, as well as the difficulty in functionally assembling complex biosynthetic pathways in heterologous hosts. Here, we address both of these challenges by reporting the adaptation of the butanol biosynthetic pathway for the synthesis of odd-chain molecules and the development of a complementary modular toolkit to facilitate pathway construction, characterization, and optimization in engineered Escherichia coli. The modular feature of our pathway enables multientry and multiexit biosynthesis of various odd-chain compounds at high efficiency. By varying combinations of the pathway and toolkit enzymes, we demonstrate controlled production of propionate, trans-2-pentenoate, valerate, and pentanol, compounds with applications that include biofuels, antibiotics, biopolymers, and aroma chemicals. Importantly, and in contrast to a previously used method to identify limitations in heterologous amorphadiene production, our bypass strategy was effective even without the presence of freely membrane-diffusible substrates. This approach should prove useful for optimization of other pathways that use CoA-derivatized intermediates, including fatty acid β-oxidation and the mevalonate pathway for isoprenoid synthesis.
Collapse
|
215
|
Zha J, Hu ML, Shen MH, Li BZ, Wang JY, Yuan YJ. Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Front Microbiol 2012; 3:355. [PMID: 23060871 PMCID: PMC3464680 DOI: 10.3389/fmicb.2012.00355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/19/2012] [Indexed: 01/04/2023] Open
Abstract
Reducing xylitol formation is necessary in engineering xylose utilization in recombinant Saccharomyces cerevisiae for ethanol production through xylose reductase/xylitol dehydrogenase pathway. To balance the expression of XYL1 and mutant XYL2 encoding xylose reductase (XR) and NADP+-dependent xylitol dehydrogenase (XDH), respectively, we utilized a strategy combining chassis selection and direct fine-tuning of XYL1 and XYL2 expression in this study. A XYL1 gene under the control of various promoters of ADH1, truncated ADH1 and PGK1, and a mutated XYL2 with different copy numbers were constructed into different xylose-utilizing modules, which were then expressed in two yeast chassises W303a and L2612. The strategy enabled an improved L2612-derived recombinant strain with XYL1 controlled by promoter PGK1 and with two copies of XYL2. The strain exhibited a 21.3% lower xylitol yield and a 40.0% higher ethanol yield. The results demonstrate the feasibility of the combinatorial strategy for construction of an efficient xylose-fermenting S. cerevisiae.
Collapse
Affiliation(s)
- Jian Zha
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin, P. R. China
| | | | | | | | | | | |
Collapse
|
216
|
McEwen JT, Atsumi S. Alternative biofuel production in non-natural hosts. Curr Opin Biotechnol 2012; 23:744-50. [DOI: 10.1016/j.copbio.2011.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/16/2022]
|
217
|
Huffer S, Roche CM, Blanch HW, Clark DS. Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol 2012; 30:538-45. [DOI: 10.1016/j.tibtech.2012.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 02/04/2023]
|
218
|
Abstract
Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.
Collapse
|
219
|
Bond-Watts BB, Weeks AM, Chang MCY. Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola. Biochemistry 2012; 51:6827-37. [PMID: 22906002 DOI: 10.1021/bi300879n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The production of fatty acids is an important cellular pathway for both cellular function and the development of engineered pathways for the synthesis of advanced biofuels. Despite the conserved reaction chemistry of various fatty acid synthase systems, the individual isozymes that catalyze these steps are quite diverse in their structural and biochemical features and are important for controlling differences at the cellular level. One of the key steps in the fatty acid elongation cycle is the enoyl-ACP (CoA) reductase function that drives the equilibrium forward toward chain extension. In this work, we report the structural and biochemical characterization of the trans-enoyl-CoA reductase from Treponema denticola (tdTer), which has been utilized for the engineering of synthetic biofuel pathways with an order of magnitude increase in product titers compared to those of pathways constructed with other enoyl-CoA reductase components. The crystal structure of tdTer was determined to 2.00 Å resolution and shows that the Ter enzymes are distinct from members of the FabI, FabK, and FabL families but are highly similar to members of the FabV family. Further biochemical studies show that tdTer uses an ordered bi-bi mechanism initiated by binding of the NADH redox cofactor, which is consistent with the behavior of other enoyl-ACP (CoA) reductases. Mutagenesis of the substrate binding loop, characterization of enzyme activity with respect to crotonyl-CoA, hexenoyl-CoA, and dodecenoyl-CoA substrates, and product inhibition by lauroyl-CoA suggest that this region is important for controlling chain length specificity, with the major portal playing a more important role for longer chain length substrates.
Collapse
Affiliation(s)
- Brooks B Bond-Watts
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | |
Collapse
|
220
|
Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 2012; 14:233-41. [PMID: 22629571 DOI: 10.1016/j.ymben.2012.02.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering.
Collapse
Affiliation(s)
- Vikramaditya G Yadav
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
221
|
Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 2012; 23:624-30. [DOI: 10.1016/j.copbio.2011.11.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 01/22/2023]
|
222
|
Machado HB, Dekishima Y, Luo H, Lan EI, Liao JC. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 2012; 14:504-11. [PMID: 22819734 DOI: 10.1016/j.ymben.2012.07.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/01/2012] [Accepted: 07/09/2012] [Indexed: 01/16/2023]
Abstract
Production of green chemicals and fuels using metabolically engineered organisms has been a promising alternative to petroleum-based production. Higher chain alcohols (C4-C8) are of interest because they can be used as chemical feedstock as well as fuels. Recently, the feasibility of n-hexanol synthesis using Escherichia coli has been demonstrated by extending the modified Clostridium CoA-dependent n-butanol synthesis pathway, thereby elongating carbon chain length via reactions in reversed β-oxidation, (or β-reduction). Here, we developed an anaerobic growth selection platform that allows selection or enrichment of enzymes for increased synthesis of C6 and C8 linear alcohols. Using this selection, we were able to improve the carbon flux towards the synthesis of C6 and C8 acyl-CoA intermediates. Replacement of the original enzyme Clostridium acetobutylicum Hbd with Ralstonia eutropha homologue PaaH1 increased production of n-hexanol by 10-fold. Further directed evolution by random mutagenesis of PaaH1 improved n-hexanol and n-octanol production. This anaerobic growth selection platform may be useful for selecting enzymes for production of long-chain alcohols and acids using this CoA-dependent pathway.
Collapse
Affiliation(s)
- Hidevaldo B Machado
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
223
|
Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 2012; 40:e142. [PMID: 22718979 PMCID: PMC3467037 DOI: 10.1093/nar/gks549] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.
Collapse
Affiliation(s)
- Jing Du
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
224
|
McKee AE, Rutherford BJ, Chivian DC, Baidoo EK, Juminaga D, Kuo D, Benke PI, Dietrich JA, Ma SM, Arkin AP, Petzold CJ, Adams PD, Keasling JD, Chhabra SR. Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microb Cell Fact 2012; 11:79. [PMID: 22694848 PMCID: PMC3460784 DOI: 10.1186/1475-2859-11-79] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/24/2012] [Indexed: 12/17/2022] Open
Abstract
Background Microbial engineering strategies that elicit global metabolic perturbations have the capacity to increase organism robustness for targeted metabolite production. In particular, perturbations to regulators of cellular systems that impact glycolysis and amino acid production while simultaneously decreasing fermentation by-products such as acetate and CO2 make ideal targets. Intriguingly, perturbation of the Carbon Storage Regulator (Csr) system has been previously implicated in large changes in central carbon metabolism in E. coli. Therefore, we hypothesized that perturbation of the Csr system through the CsrA-CsrB ribonucleoprotein complex might increase production of biofuels and their intermediates from heterologous pathways. Results We engaged the CsrA-CsrB ribonucleoprotein complex of E. coli via overexpression of CsrB. CsrB is a 350-nucleotide non-coding RNA that antagonizes CsrA, an RNA-binding protein that regulates translation of specific mRNA targets. By using shotgun proteomics and targeted metabolomics we established that elevation of CsrB levels leads to alterations in metabolite and protein levels in glycolysis, the TCA cycle and amino acid levels. Consequently, we show that such changes can be suitably applied to improve the production of desired compounds through the native fatty acid and heterologous n-butanol and isoprenoid pathways by up to two-fold. We also observed concomitant decreases in undesirable fermentation by-products such as acetate and CO2. Conclusions We have demonstrated that simple engineering of the RNA-based Csr global regulatory system constitutes a novel approach to obtaining pathway-independent improvements within engineered hosts. Additionally, since Csr is conserved across most prokaryotic species, this approach may also be amenable to a wide variety of production hosts.
Collapse
|
225
|
Trinh CT. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Appl Microbiol Biotechnol 2012; 95:1083-94. [PMID: 22678028 DOI: 10.1007/s00253-012-4197-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/16/2012] [Accepted: 05/20/2012] [Indexed: 11/30/2022]
Abstract
Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these "defective" metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (~8-9 genes), addition (~6-7 genes), up- and downexpression (~6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in "core" metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.
Collapse
Affiliation(s)
- Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
226
|
Lamsen EN, Atsumi S. Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 2012; 3:196. [PMID: 22701113 PMCID: PMC3370425 DOI: 10.3389/fmicb.2012.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/14/2012] [Indexed: 01/17/2023] Open
Abstract
The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher-chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol) are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.
Collapse
Affiliation(s)
- Edna N Lamsen
- Department of Chemistry, University of California, Davis, CA, USA
| | | |
Collapse
|
227
|
Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 2012; 14:569-78. [PMID: 22677452 DOI: 10.1016/j.ymben.2012.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/29/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022]
Abstract
Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing D-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve D-xylose consumption by C. beijerinckii. Gene cbei2385, encoding a putative D-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in D-xylose consumption. A D-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize D-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in D-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91 g/L) and a 38% higher yield (0.29 g/g) over those of the wild-type strain. The strategy used in this study enables C. beijerinckii more suitable for butanol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Han Xiao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
228
|
|
229
|
Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 2012; 34:1643-9. [PMID: 22618238 DOI: 10.1007/s10529-012-0951-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
The toxicity of n-butanol in microbial fermentations limits its formation. The stress response of Clostridium acetobutylicum involves various stress proteins and therefore, over-expression of genes encoding stress proteins constitutes an option to improve solvent tolerance. Over-expression of groESL, grpE and htpG, significantly improved butanol tolerance of C. acetobutylicum. Whereas the wild type and vector control strain did not survive 2 % (v/v) butanol for 2 h, the recombinant strains showed 45 % (groESL), 25 % (grpE) and 56 % (htpG), respectively, of the initial c.f.u. after 2 h of butanol exposure. As previously, over-expression of groESL led to higher butanol production rates, but the novel strains over-expressing grpE or htpG produced only 51 and 68 %, respectively, of the wild type butanol concentrations after 72 h clearly differentiating butanol tolerance and production. Not only butanol tolerance but also the adaptation to butanol in successive stress experiments was significantly facilitated by increased levels of GroESL, GrpE and HtpG. Re-transformation and sequence analyses of the plasmids confirmed that not the plasmids, but the host cells evolved to a more robust phenotype.
Collapse
|
230
|
Bar-Even A, Flamholz A, Noor E, Milo R. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 2012; 8:509-17. [PMID: 22596202 DOI: 10.1038/nchembio.971] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic pathways may seem arbitrary and unnecessarily complex. In many cases, a chemist might devise a simpler route for the biochemical transformation, so why has nature chosen such complex solutions? In this review, we distill lessons from a century of metabolic research and introduce new observations suggesting that the intricate structure of metabolic pathways can be explained by a small set of biochemical principles. Using glycolysis as an example, we demonstrate how three key biochemical constraints--thermodynamic favorability, availability of enzymatic mechanisms and the physicochemical properties of pathway intermediates--eliminate otherwise plausible metabolic strategies. Considering these constraints, glycolysis contains no unnecessary steps and represents one of the very few pathway structures that meet cellular demands. The analysis presented here can be applied to metabolic engineering efforts for the rational design of pathways that produce a desired product while satisfying biochemical constraints.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
231
|
Proteomic phenotyping of Novosphingobium nitrogenifigens reveals a robust capacity for simultaneous nitrogen fixation, polyhydroxyalkanoate production, and resistance to reactive oxygen species. Appl Environ Microbiol 2012; 78:4802-15. [PMID: 22582058 DOI: 10.1128/aem.00274-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novosphingobium nitrogenifigens Y88(T) (Y88) is a free-living, diazotrophic Alphaproteobacterium, capable of producing 80% of its biomass as the biopolymer polyhydroxybutyrate (PHB). We explored the potential utility of this species as a polyhydroxybutyrate production strain, correlating the effects of glucose, nitrogen availability, dissolved oxygen concentration, and extracellular pH with polyhydroxybutyrate production and changes in the Y88 proteomic profile. Using two-dimensional differential in-gel electrophoresis and tandem mass spectrometry, we identified 217 unique proteins from six growth conditions. We observed reproducible, characteristic proteomic signatures for each of the physiological states we examined. We identified proteins that changed in abundance in correlation with either nitrogen fixation, dissolved oxygen concentration, or acidification of the growth medium. The proteins that correlated with nitrogen fixation were identified either as known nitrogen fixation proteins or as novel proteins that we predict play roles in aspects of nitrogen fixation based on their proteomic profiles. In contrast, the proteins involved in central carbon and polyhydroxybutyrate metabolism were constitutively abundant, consistent with the constitutive polyhydroxybutyrate production that we observed in this species. Three proteins with roles in detoxification of reactive oxygen species were identified in this obligate aerobe. The most abundant protein in all experiments was a polyhydroxyalkanoate granule-associated protein, phasin. The full-length isoform of this protein has a long, intrinsically disordered Ala/Pro/Lys-rich N-terminal segment, a feature that appears to be unique to sphingomonad phasins. The data suggest that Y88 has potential as a PHB production strain due to its aerobic tolerance and metabolic orientation toward polyhydroxybutyrate accumulation, even in low-nitrogen growth medium.
Collapse
|
232
|
Basler G, Grimbs S, Nikoloski Z. Optimizing metabolic pathways by screening for feasible synthetic reactions. Biosystems 2012; 109:186-91. [PMID: 22575307 DOI: 10.1016/j.biosystems.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/23/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Reconstruction of genome-scale metabolic networks has resulted in models capable of reproducing experimentally observed biomass yield/growth rates and predicting the effect of alterations in metabolism for biotechnological applications. The existing studies rely on modifying the metabolic network of an investigated organism by removing or inserting reactions taken either from evolutionary similar organisms or from databases of biochemical reactions (e.g., KEGG). A potential disadvantage of these knowledge-driven approaches is that the result is biased towards known reactions, as such approaches do not account for the possibility of including novel enzymes, together with the reactions they catalyze. RESULTS Here, we explore the alternative of increasing biomass yield in three model organisms, namely Bacillus subtilis, Escherichia coli, and Hordeum vulgare, by applying small, chemically feasible network modifications. We use the predicted and experimentally confirmed growth rates of the wild-type networks as reference values and determine the effect of inserting mass-balanced, thermodynamically feasible reactions on predictions of growth rate by using flux balance analysis. CONCLUSIONS While many replacements of existing reactions naturally lead to a decrease or complete loss of biomass production ability, in all three investigated organisms we find feasible modifications which facilitate a significant increase in this biological function. We focus on modifications with feasible chemical properties and a significant increase in biomass yield. The results demonstrate that small modifications are sufficient to substantially alter biomass yield in the three organisms. The method can be used to predict the effect of targeted modifications on the yield of any set of metabolites (e.g., ethanol), thus providing a computational framework for synthetic metabolic engineering.
Collapse
Affiliation(s)
- Georg Basler
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
233
|
Seregina TA, Osipov GA, Shakulov RS, Mironov AS. Isolation and phenotypic characteristics of the Escherichia coli butanol-tolerant mutants. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
234
|
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 2012; 109:6018-23. [PMID: 22474341 DOI: 10.1073/pnas.1200074109] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While conservation of ATP is often a desirable trait for microbial production of chemicals, we demonstrate that additional consumption of ATP may be beneficial to drive product formation in a nonnatural pathway. Although production of 1-butanol by the fermentative coenzyme A (CoA)-dependent pathway using the reversal of β-oxidation exists in nature and has been demonstrated in various organisms, the first step of the pathway, condensation of two molecules of acetyl-CoA to acetoacetyl-CoA, is thermodynamically unfavorable. Here, we show that artificially engineered ATP consumption through a pathway modification can drive this reaction forward and enables for the first time the direct photosynthetic production of 1-butanol from cyanobacteria Synechococcus elongatus PCC 7942. We further demonstrated that substitution of bifunctional aldehyde/alcohol dehydrogenase (AdhE2) with separate butyraldehyde dehydrogenase (Bldh) and NADPH-dependent alcohol dehydrogenase (YqhD) increased 1-butanol production by 4-fold. These results demonstrated the importance of ATP and cofactor driving forces as a design principle to alter metabolic flux.
Collapse
|
235
|
Zhang H, Chong H, Ching CB, Song H, Jiang R. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 2012; 94:1107-17. [DOI: 10.1007/s00253-012-4012-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 11/28/2022]
|
236
|
Zhu L, Zhu Y, Zhang Y, Li Y. Engineering the robustness of industrial microbes through synthetic biology. Trends Microbiol 2012; 20:94-101. [DOI: 10.1016/j.tim.2011.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/30/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
|
237
|
Abstract
As the field of synthetic biology is developing, the prospects for de novo design of biosynthetic pathways are becoming more and more realistic. Hence, there is an increasing need for computational tools that can support these efforts. A range of algorithms has been developed that can be used to identify all possible metabolic pathways and their corresponding enzymatic parts. These can then be ranked according to various properties and modelled in an organism-specific context. Finally, design software can aid the biologist in the integration of a selected pathway into smartly regulated transcriptional units. Here, we review key existing tools and offer suggestions for how informatics can help to shape the future of synthetic microbiology.
Collapse
|
238
|
Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 2012; 335:308-13. [PMID: 22267807 DOI: 10.1126/science.1214547] [Citation(s) in RCA: 410] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).
Collapse
Affiliation(s)
- Adam J Wargacki
- Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Lehmann D, Hönicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lütke-Eversloh T. Modifying the product pattern of Clostridium acetobutylicum. Appl Microbiol Biotechnol 2012; 94:743-54. [DOI: 10.1007/s00253-011-3852-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/20/2023]
|
240
|
Abstract
Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression levels using libraries of synthetic promoters now exist.
Collapse
Affiliation(s)
- Tore Dehli
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301/242, 2800, Lyngby, Denmark,
| | | | | |
Collapse
|
241
|
Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol J 2011; 7:34-46. [DOI: 10.1002/biot.201100053] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 12/22/2022]
|
242
|
Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl Microbiol Biotechnol 2011; 93:881-9. [DOI: 10.1007/s00253-011-3736-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 10/29/2011] [Accepted: 11/15/2011] [Indexed: 11/30/2022]
|
243
|
Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 2011; 22:775-83. [DOI: 10.1016/j.copbio.2011.04.024] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
|
244
|
Gao X, Chen JC, Wu Q, Chen GQ. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 2011; 22:768-74. [DOI: 10.1016/j.copbio.2011.06.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
|
245
|
Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnol Lett 2011; 34:463-9. [PMID: 22105550 DOI: 10.1007/s10529-011-0797-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/09/2011] [Indexed: 11/30/2022]
Abstract
The basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis. The constructed markerless and plasmidless Escherichia coli strain BOX-3 (MG1655 lacI(Q) attB-P(trc-ideal-4)-SD(φ10)-adhE(Glu568Lys) attB-P(trc-ideal-4)-SD(φ10)-atoB attB-P(trc-ideal-4)-SD(φ10)-fadB attB-P(trc-ideal-4)-SD(φ10)-fadE) synthesises 0.3-1 mg 1-butanol/l in the presence of the specific inducer. No 1-butanol production was detected in the absence of the inducer.
Collapse
Affiliation(s)
- Andrey Yu Gulevich
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy Pr., 1, Moscow, Russia 117545.
| | | | | | | | | |
Collapse
|
246
|
FU AS, LIU R, ZHU J, LIU TG. Genetic engineering of microbial metabolic pathway for production of advanced biodiesel. YI CHUAN = HEREDITAS 2011; 33:1121-33. [DOI: 10.3724/sp.j.1005.2011.01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
247
|
Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnol J 2011; 6:1348-57. [DOI: 10.1002/biot.201100046] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
248
|
Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2011; 30:989-1000. [PMID: 21889585 DOI: 10.1016/j.biotechadv.2011.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 08/06/2011] [Accepted: 08/17/2011] [Indexed: 12/30/2022]
Abstract
The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
249
|
Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC SYSTEMS BIOLOGY 2011; 5:130. [PMID: 21846360 PMCID: PMC3212993 DOI: 10.1186/1752-0509-5-130] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/16/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. RESULTS We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the hydrogenase reaction was found to have a strong effect on butanol formation--as experimentally observed. CONCLUSIONS Microbial production of butanol by C. beijerinckii offers a promising, sustainable, method for generation of this important chemical and potential biofuel. iCM925 is a predictive model that can accurately reproduce physiological behavior and provide insight into the underlying mechanisms of microbial butanol production. As such, the model will be instrumental in efforts to better understand, and metabolically engineer, this microorganism for improved butanol production.
Collapse
Affiliation(s)
- Caroline B Milne
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011; 476:355-9. [PMID: 21832992 DOI: 10.1038/nature10333] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/23/2011] [Indexed: 01/19/2023]
Abstract
Advanced (long-chain) fuels and chemicals are generated from short-chain metabolic intermediates through pathways that require carbon-chain elongation. The condensation reactions mediating this carbon-carbon bond formation can be catalysed by enzymes from the thiolase superfamily, including β-ketoacyl-acyl-carrier protein (ACP) synthases, polyketide synthases, 3-hydroxy-3-methylglutaryl-CoA synthases, and biosynthetic thiolases. Pathways involving these enzymes have been exploited for fuel and chemical production, with fatty-acid biosynthesis (β-ketoacyl-ACP synthases) attracting the most attention in recent years. Degradative thiolases, which are part of the thiolase superfamily and naturally function in the β-oxidation of fatty acids, can also operate in the synthetic direction and thus enable carbon-chain elongation. Here we demonstrate that a functional reversal of the β-oxidation cycle can be used as a metabolic platform for the synthesis of alcohols and carboxylic acids with various chain lengths and functionalities. This pathway operates with coenzyme A (CoA) thioester intermediates and directly uses acetyl-CoA for acyl-chain elongation (rather than first requiring ATP-dependent activation to malonyl-CoA), characteristics that enable product synthesis at maximum carbon and energy efficiency. The reversal of the β-oxidation cycle was engineered in Escherichia coli and used in combination with endogenous dehydrogenases and thioesterases to synthesize n-alcohols, fatty acids and 3-hydroxy-, 3-keto- and trans-Δ(2)-carboxylic acids. The superior nature of the engineered pathway was demonstrated by producing higher-chain linear n-alcohols (C ≥ 4) and extracellular long-chain fatty acids (C > 10) at higher efficiency than previously reported. The ubiquitous nature of β-oxidation, aldehyde/alcohol dehydrogenase and thioesterase enzymes has the potential to enable the efficient synthesis of these products in other industrial organisms.
Collapse
|