201
|
Floudas A, Saunders SP, Moran T, Schwartz C, Hams E, Fitzgerald DC, Johnston JA, Ogg GS, McKenzie AN, Walsh PT, Fallon PG. IL-17 Receptor A Maintains and Protects the Skin Barrier To Prevent Allergic Skin Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:707-717. [PMID: 28615416 PMCID: PMC5509014 DOI: 10.4049/jimmunol.1602185] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/15/2017] [Indexed: 01/12/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease affecting up to 20% of children and 3% of adults worldwide and is associated with dysregulation of the skin barrier. Although type 2 responses are implicated in AD, emerging evidence indicates a potential role for the IL-17A signaling axis in AD pathogenesis. In this study we show that in the filaggrin mutant mouse model of spontaneous AD, IL-17RA deficiency (Il17ra-/- ) resulted in severe exacerbation of skin inflammation. Interestingly, Il17ra-/- mice without the filaggrin mutation also developed spontaneous progressive skin inflammation with eosinophilia, as well as increased levels of thymic stromal lymphopoietin (TSLP) and IL-5 in the skin. Il17ra-/- mice have a defective skin barrier with altered filaggrin expression. The barrier dysregulation and spontaneous skin inflammation in Il17ra-/- mice was dependent on TSLP, but not the other alarmins IL-25 and IL-33. The associated skin inflammation was mediated by IL-5-expressing pathogenic effector Th2 cells and was independent of TCRγδ T cells and IL-22. An absence of IL-17RA in nonhematopoietic cells, but not in the hematopoietic cells, was required for the development of spontaneous skin inflammation. Skin microbiome dysbiosis developed in the absence of IL-17RA, with antibiotic intervention resulting in significant amelioration of skin inflammation and reductions in skin-infiltrating pathogenic effector Th2 cells and TSLP. This study describes a previously unappreciated protective role for IL-17RA signaling in regulation of the skin barrier and maintenance of skin immune homeostasis.
Collapse
MESH Headings
- Animals
- Cytokines/immunology
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Disease Models, Animal
- Dysbiosis
- Eosinophilia/immunology
- Filaggrin Proteins
- Gene Expression Regulation
- Homeostasis
- Interleukin-33/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Interleukins/genetics
- Interleukins/immunology
- Intermediate Filament Proteins/deficiency
- Intermediate Filament Proteins/genetics
- Mice
- Microbiota
- Mutation
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin-17/deficiency
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/immunology
- Receptors, Interleukin-17/metabolism
- Signal Transduction
- Skin/growth & development
- Skin/immunology
- Skin/microbiology
- Skin/pathology
- Th2 Cells/immunology
- Thymic Stromal Lymphopoietin
- Interleukin-22
Collapse
Affiliation(s)
- Achilleas Floudas
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Sean P Saunders
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Tara Moran
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Denise C Fitzgerald
- School of Medicine, Centre of Infection and Immunity, Queens University Belfast, Belfast BT9 7AE, United Kingdom
| | - James A Johnston
- School of Medicine, Centre of Infection and Immunity, Queens University Belfast, Belfast BT9 7AE, United Kingdom
- Inflammation Research, Amgen Inc., Thousand Oaks, CA 91320
| | - Graham S Ogg
- Medical Research Council Human Immunology Unit, National Institute for Health Research Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; and
| | - Andrew N McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Patrick T Walsh
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| |
Collapse
|
202
|
The strength of BCR signaling shapes terminal development of follicular helper T cells in mice. Eur J Immunol 2017; 47:1295-1304. [DOI: 10.1002/eji.201746952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
|
203
|
Xu L, Liu X, Liu H, Zhu L, Zhu H, Zhang J, Ren L, Wang P, Hu F, Su Y. Impairment of Granzyme B-Producing Regulatory B Cells Correlates with Exacerbated Rheumatoid Arthritis. Front Immunol 2017; 8:768. [PMID: 28713386 PMCID: PMC5491972 DOI: 10.3389/fimmu.2017.00768] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Hyperactivated B cells have been demonstrated the contribution to the development of rheumatoid arthritis (RA). While the recognition of the negative regulatory function of B cells further promoted our understanding of their pathogenic role in RA. Recently, a new population of granzyme B (GrB)-producing B cells was identified, which was proved to be involved in cancer and infectious diseases. However, their characteristics and roles in RA remain to be elucidated. In the present study, we aim to further characterize whether B cells could produce GrB and reveal their potential role in the pathogenesis of RA. Here, we further demonstrated peripheral blood B cells from healthy individuals could produce and secrete GrB, which could be enhanced by IL-21 and/or anti-B-cell receptor stimulation. These cells could negatively regulate Th1 and Th17 cells partly via downregulating TCR zeta chain and inducing T cell apoptosis, which might be termed as GrB-producing regulatory B cells (Bregs). These GrB-producing Bregs were significantly decreased under RA circumstance concomitant of lower levels of IL-21 receptor, with impaired regulatory functions on Th1 and Th17 cells. Moreover, the frequencies of these cells were negatively correlated with RA patient disease activity and clinical features. After effective therapy with disease remission in RA, these GrB-producing Bregs could be recovered. Therefore, our data revealed that B cells could produce GrB with immunosuppressive functions, and the impairment of this Breg subset was correlated with RA pathogenesis.
Collapse
Affiliation(s)
- Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jian Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Limin Ren
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
204
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
205
|
Hirose T, Tanaka Y, Tanaka A, Sakai H, Sasaki Y, Shinohara N, Ohdan H. PD-L1/PD-L2-expressing B-1 cells inhibit alloreactive T cells in mice. PLoS One 2017; 12:e0178765. [PMID: 28570665 PMCID: PMC5453578 DOI: 10.1371/journal.pone.0178765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 05/18/2017] [Indexed: 11/19/2022] Open
Abstract
B cells constitute a complex system of antigen-presenting cells (APCs) and exist as distinct subsets that differ in their lineage affiliation, surface molecule expression, and biological function, thus potentially regulating the immune response. In this study, we investigated the immune-regulatory roles of murine B cell subsets as regulatory APCs targeting alloreactive T cells. Either splenic B cells, peritoneal cavity (PerC) B cells, or non-B cells from Balb/c mice were intravenously injected into B6 mice. Serum levels of anti-Balb/c antibodies in the recipients of PerC B cells were significantly lower than those in the recipients of splenic B cells and PerC non-B cells, as determined over a 4-week period after the injection. Mixed-lymphocyte reaction (MLR) assays using splenocytes from the B6 mice at 2 weeks after the injection revealed the significantly reduced anti-Balb/c T cell-responses in the recipients of PerC B cells, as compared to those in the recipients of splenic B cells or untreated control mice. Since PerC B cells contained MHC class II+ CD80+ CD86+ PD-L1+ PD-L2+ cells among the CD5+ B-1a cell subset, PerC B cells from Balb/c mice were pre-incubated with anti-PD-L1/PD-L2 mAbs prior to injection. This treatment abrogated their immune-regulatory effects on anti-Balb/c T cells in the MLR assays. In addition, the inoculation with Balb/c PerC B cells significantly prolonged the survival of subsequently grafted Balb/c hearts in B6 mouse recipients, whereas that with SPL B cells did not. These findings indicate that the PerC B cells, including PD-L1/PD-L2 B-1a cells, may suppress T cells responding to allostimulation, and thus may be optimal for donor lymphocyte injection.
Collapse
Affiliation(s)
- Takayuki Hirose
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Sakai
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yu Sasaki
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
206
|
Comarmond C, Garrido M, Pol S, Desbois AC, Costopoulos M, Le Garff-Tavernier M, Si Ahmed SN, Alric L, Fontaine H, Bellier B, Maciejewski A, Rosenzwajg M, Klatzmann D, Musset L, Poynard T, Cacoub P, Saadoun D. Direct-Acting Antiviral Therapy Restores Immune Tolerance to Patients With Hepatitis C Virus-Induced Cryoglobulinemia Vasculitis. Gastroenterology 2017; 152:2052-2062.e2. [PMID: 28274850 DOI: 10.1053/j.gastro.2017.02.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Interferon-free direct-acting antiviral (DAA) therapies are effective in patients with hepatitis C virus-induced cryoglobulinemia vasculitis (HCV-CV). We analyzed blood samples from patients with HCV-CV before and after DAA therapy to determine mechanisms of these drugs and their effects on cellular immunity. METHODS We performed a prospective study of 27 consecutive patients with HCV-CV (median age, 59 y) treated with DAA therapy (21 patients received sofosbuvir plus ribavirin for 24 weeks, 4 patients received sofosbuvir plus daclatasvir for 12 weeks, and 2 patients received sofosbuvir plus simeprevir for 12 weeks) in Paris, France. Blood samples were collected from these patients before and after DAA therapy, and also from 12 healthy donors and 12 individuals with HCV infection without CV. HCV load, cryoglobulins, and cytokines were quantified by flow cytometry, cytokine multiplex assays, and enzyme-linked immunosorbent assay. RESULTS Twenty-four patients (88.9%) had a complete clinical response of CV to DAA therapy at week 24, defined by improvement of all the affected organs and the absence of relapse. Compared with healthy donors and patients with HCV infection without CV, patients with HCV-CV, before DAA therapy, had a lower percentage of CD4+CD25hiFoxP3+ regulatory T cells (P < .01), but higher proportions of IgM+CD21-/low memory B cells (P < .05), CD4+IFNγ+ cells (P < .01), CD4+IL17A+ cells (P < .01), and CD4+CXCR5+interleukin 21+ follicular T-helper (Tfh) cells (P < .01). In patients with HCV-CV, there was a negative correlation between numbers of IgM+CD21-/low memory B cells and T-regulatory cells (P = .03), and positive correlations with numbers of Tfh cells (P = .03) and serum levels of cryoglobulin (P = .01). DAA therapy increased patients' numbers of T-regulatory cells (1.5% ± 0.18% before therapy vs 2.1% ± 0.18% after therapy), decreased percentages of IgM+CD21-/low memory B cells (35.7% ± 6.1% before therapy vs 14.9% ± 3.8% after therapy), and decreased numbers of Tfh cells (12% ± 1.3% before therapy vs 8% ± 0.9% after therapy). Expression levels of B lymphocyte stimulator receptor 3 and programmed cell death 1 on B cells increased in patients with HCV-CV after DAA-based therapy (mean fluorescence units, 37 ± 2.4 before therapy vs 47 ± 2.6 after therapy, P < .01; and 29 ± 7.3 before therapy vs 48 ± 9.3 after therapy, P < .05, respectively). CONCLUSIONS In a prospective clinical trial of patients with HCV-CV, DAA-based therapy restored disturbances in peripheral B- and T-cell homeostasis.
Collapse
Affiliation(s)
- Cloé Comarmond
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France; Département de Médecine Interne et Immunologie Clinique, Paris, France
| | - Marlène Garrido
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France
| | - Stanislas Pol
- Department of Hepatology, assistance publique des hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Anne-Claire Desbois
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France; Département de Médecine Interne et Immunologie Clinique, Paris, France
| | - Myrto Costopoulos
- Biological Hematology, Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | | | | | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Centre Hospitalier Universitaire Purpan, unité mixte de recherche 152, institut de recherche pour le développement Toulouse 3 University, Toulouse, France
| | - Hélène Fontaine
- Department of Hepatology, assistance publique des hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Bertrand Bellier
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France
| | - Anna Maciejewski
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France
| | - Michelle Rosenzwajg
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France
| | - David Klatzmann
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France
| | - Lucile Musset
- Department of Immunology, unité fonctionnelle d'Immunochimie et d'Autoimmunité, Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - Thierry Poynard
- Department of Hepatology, unité mixte de recherche_S 938, Institute of Cardiometabolism and Nutrition, assistance publique des hôpitaux de Paris, Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - Patrice Cacoub
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France; Département de Médecine Interne et Immunologie Clinique, Paris, France
| | - David Saadoun
- Département Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie (département hospitalo-unniversitaire i2B), Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, unité mixte de recherche 7211, Paris, France; INSERM, unité mixte de recherche_S 959, Paris, France; centre national de recherche et de santé, FRE3632, Paris, France; Département de Médecine Interne et Immunologie Clinique, Paris, France.
| |
Collapse
|
207
|
Staun-Ram E, Miller A. Effector and regulatory B cells in Multiple Sclerosis. Clin Immunol 2017; 184:11-25. [PMID: 28461106 DOI: 10.1016/j.clim.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
The role of B cells in the pathogenesis of Multiple Sclerosis (MS), an autoimmune neurodegenerative disease, is becoming eminent in recent years, but the specific contribution of the distinct B cell subsets remains to be elucidated. Several B cell subsets have shown regulatory, anti-inflammatory capacities in response to stimuli in vitro, as well as in the animal model of MS: Experimental Autoimmune Encephalomyelitis (EAE). However, the functional role of the B regulatory cells (Bregs) in vivo and specifically in the human disease is yet to be clarified. In the present review, we have summarized the updated information on the roles of effector and regulatory B cells in MS and the immune-modulatory effects of MS therapeutic agents on their phenotype and function.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|
208
|
Nus M, Sage AP, Lu Y, Masters L, Lam BYH, Newland S, Weller S, Tsiantoulas D, Raffort J, Marcus D, Finigan A, Kitt L, Figg N, Schirmbeck R, Kneilling M, Yeo GSH, Binder CJ, de la Pompa JL, Mallat Z. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat Med 2017; 23:601-610. [DOI: 10.1038/nm.4315] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
|
209
|
Rinaldi S, Pallikkuth S, George VK, de Armas LR, Pahwa R, Sanchez CM, Pallin MF, Pan L, Cotugno N, Dickinson G, Rodriguez A, Fischl M, Alcaide M, Gonzalez L, Palma P, Pahwa S. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age. Aging (Albany NY) 2017; 9:1307-1325. [PMID: 28448963 PMCID: PMC5425129 DOI: 10.18632/aging.101229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapies (cART)can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative "healthy controls" (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old (>60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction.
Collapse
Affiliation(s)
- Stefano Rinaldi
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Varghese K. George
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lesley R. de Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rajendra Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Celeste M. Sanchez
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Fernanda Pallin
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Pan
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO) Research Unit in Congenital and Perinatal Infections, Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Gordon Dickinson
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allan Rodriguez
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Margaret Fischl
- AIDS Clinical Research Unit, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Alcaide
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Louis Gonzalez
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO) Research Unit in Congenital and Perinatal Infections, Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
210
|
Bosisio FM, van den Oord JJ. Immunoplasticity in cutaneous melanoma: beyond pure morphology. Virchows Arch 2017; 470:357-369. [PMID: 28054151 DOI: 10.1007/s00428-016-2058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/03/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Francesca Maria Bosisio
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium.
- Università degli studi di Milano-Bicocca, Milan, Italy.
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium
| |
Collapse
|
211
|
Chiaruttini G, Mele S, Opzoomer J, Crescioli S, Ilieva KM, Lacy KE, Karagiannis SN. B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment. Oncoimmunology 2017; 6:e1294296. [PMID: 28507802 PMCID: PMC5414880 DOI: 10.1080/2162402x.2017.1294296] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
Evidence of tumor-resident mature B cell and antibody compartments and reports of associations with favorable prognosis in malignant melanoma suggest that humoral immunity could participate in antitumor defense. Likely striving to confer immunological protection while being subjected to tumor-promoting immune tolerance, B cells may engender multiple functions, including antigen processing and presentation, cytokine-mediated signaling, antibody class switching, expression and secretion. We review key evidence in support of multifaceted immunological mechanisms by which B cells may counter or contribute to malignant melanoma, and we discuss their potential translational implications. Dissecting the contributions of tumor-associated humoral responses can inform future treatment avenues.
Collapse
Affiliation(s)
- Giulia Chiaruttini
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Silvia Mele
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - James Opzoomer
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK
| |
Collapse
|
212
|
Guzman-Genuino RM, Diener KR. Regulatory B Cells in Pregnancy: Lessons from Autoimmunity, Graft Tolerance, and Cancer. Front Immunol 2017; 8:172. [PMID: 28261223 PMCID: PMC5313489 DOI: 10.3389/fimmu.2017.00172] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/26/2022] Open
Abstract
The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields-mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg-Treg-tolerogenic DC interface essential for the induction of maternal immune tolerance.
Collapse
Affiliation(s)
- Ruth Marian Guzman-Genuino
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia , Adelaide, SA , Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
213
|
Schlößer HA, Thelen M, Dieplinger G, von Bergwelt-Baildon A, Garcia-Marquez M, Reuter S, Shimabukuro-Vornhagen A, Wennhold K, Haustein N, Buchner D, Heiermann N, Kleinert R, Wahba R, Ditt V, Kurschat C, Cingöz T, Becker J, Stippel DL, von Bergwelt-Baildon M. Prospective Analyses of Circulating B Cell Subsets in ABO-Compatible and ABO-Incompatible Kidney Transplant Recipients. Am J Transplant 2017; 17:542-550. [PMID: 27529836 DOI: 10.1111/ajt.14013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/09/2016] [Indexed: 01/25/2023]
Abstract
Immunosuppressive strategies applied in renal transplantation traditionally focus on T cell inhibition. B cells were mainly examined in the context of antibody-mediated rejection, whereas the impact of antibody-independent B cell functions has only recently entered the field of transplantation. Similar to T cells, distinct B cell subsets can enhance or inhibit immune responses. In this study, we prospectively analyzed the evolution of B cell subsets in the peripheral blood of AB0-compatible (n = 27) and AB0-incompatible (n = 10) renal transplant recipients. Activated B cells were transiently decreased and plasmablasts were permanently decreased in patients without signs of rejection throughout the first year. In patients with histologically confirmed renal allograft rejection, activated B cells and plasmablasts were significantly elevated on day 365. Rituximab treatment in AB0-incompatible patients resulted in long-lasting B cell depletion and in a naïve phenotype of repopulating B cells 1 year following transplantation. Acute allograft rejection was correlated with an increase of activated B cells and plasmablasts and with a significant reduction of regulatory B cell subsets. Our study demonstrates the remarkable effects of standard immunosuppression on circulating B cell subsets. Furthermore, the B cell compartment was significantly altered in rejecting patients. A specific targeting of deleterious B cell subsets could be of clinical benefit in renal transplantation.
Collapse
Affiliation(s)
- H A Schlößer
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Interventional Immunology, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - M Thelen
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - G Dieplinger
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - A von Bergwelt-Baildon
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Department of Internal Medicine II, University of Cologne, Köln, Germany
| | - M Garcia-Marquez
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - S Reuter
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - A Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - K Wennhold
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - N Haustein
- Cologne Interventional Immunology, University of Cologne, Köln, Germany
| | - D Buchner
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - N Heiermann
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - R Kleinert
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - R Wahba
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - V Ditt
- Institute for Clinical Transfusion Medicine, Merheim Medical Center Cologne, Köln, Germany
| | - C Kurschat
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Department of Internal Medicine II, University of Cologne, Köln, Germany
| | - T Cingöz
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Department of Internal Medicine II, University of Cologne, Köln, Germany
| | - J Becker
- Cologne Transplant Center, University of Cologne, Köln, Germany.,Institute of Pathology, University of Cologne, Köln, Germany
| | - D L Stippel
- Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany.,Cologne Transplant Center, University of Cologne, Köln, Germany
| | - M von Bergwelt-Baildon
- Cologne Interventional Immunology, University of Cologne, Köln, Germany.,Department of Internal Medicine I, University of Cologne, Köln, Germany
| |
Collapse
|
214
|
Ray A, Dittel BN. Mechanisms of Regulatory B cell Function in Autoimmune and Inflammatory Diseases beyond IL-10. J Clin Med 2017; 6:jcm6010012. [PMID: 28124981 PMCID: PMC5294965 DOI: 10.3390/jcm6010012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/06/2023] Open
Abstract
In the past two decades it has become clear that in addition to antigen presentation and antibody production B cells play prominent roles in immune regulation. While B cell-derived IL-10 has garnered much attention, B cells also effectively regulate inflammation by a variety of IL-10-independent mechanisms. B cell regulation has been studied in both autoimmune and inflammatory diseases. While collectively called regulatory B cells (Breg), no definitive phenotype has emerged for B cells with regulatory potential. This has made their study challenging and thus unique B cell regulatory mechanisms have emerged in a disease-dependent manner. Thus to harness the therapeutic potential of Breg, further studies are needed to understand how they emerge and are induced to evoke their regulatory activities.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
- Oncology Discovery, AbbVie Inc., North Chicago, IL 60064, USA.
| | - Bonnie N Dittel
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
215
|
Xue D, Kaufman GN, Dembele M, Beland M, Massoud AH, Mindt BC, Fiter R, Fixman ED, Martin JG, Friedel RH, Divangahi M, Fritz JH, Mazer BD. Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:71-81. [PMID: 27881703 DOI: 10.4049/jimmunol.1600831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022]
Abstract
The regulatory properties of B cells have been studied in autoimmune diseases; however, their role in allergic diseases is poorly understood. We demonstrate that Semaphorin 4C (Sema4C), an axonal guidance molecule, plays a crucial role in B cell regulatory function. Mice deficient in Sema4C exhibited increased airway inflammation after allergen exposure, with massive eosinophilic lung infiltrates and increased Th2 cytokines. This phenotype was reproduced by mixed bone marrow chimeric mice with Sema4C deficient only in B cells, indicating that B lymphocytes were the key cells affected by the absence of Sema4C expression in allergic inflammation. We determined that Sema4C-deficient CD19+CD138+ cells exhibited decreased IL-10 and increased IL-4 expression in vivo and in vitro. Adoptive transfer of Sema4c-/- CD19+CD138+ cells induced marked pulmonary inflammation, eosinophilia, and increased bronchoalveolar lavage fluid IL-4 and IL-5, whereas adoptive transfer of wild-type CD19+CD138+IL-10+ cells dramatically decreased allergic airway inflammation in wild-type and Sema4c-/- mice. This study identifies a novel pathway by which Th2-mediated immune responses are regulated. It highlights the importance of plasma cells as regulatory cells in allergic inflammation and suggests that CD138+ B cells contribute to cytokine balance and are important for maintenance of immune homeostasis in allergic airways disease. Furthermore, we demonstrate that Sema4C is critical for optimal regulatory cytokine production in CD138+ B cells.
Collapse
Affiliation(s)
- Di Xue
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Gabriel N Kaufman
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Marieme Dembele
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Marianne Beland
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada
| | - Amir H Massoud
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Ryan Fiter
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada
| | - Elizabeth D Fixman
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada
| | - James G Martin
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada
| | - Roland H Friedel
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY 10029; and
| | - Maziar Divangahi
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bruce D Mazer
- The Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Meakins Christie Laboratories, Montreal, Quebec H4A 3J1, Canada; .,Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
216
|
Ouyang FZ, Wu RQ, Wei Y, Liu RX, Yang D, Xiao X, Zheng L, Li B, Lao XM, Kuang DM. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat Commun 2016; 7:13453. [PMID: 27853178 PMCID: PMC5118541 DOI: 10.1038/ncomms13453] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/05/2016] [Indexed: 01/04/2023] Open
Abstract
B cells are prominent components of human solid tumours, but activation status and functions of these cells in human cancers remain elusive. Here we establish that over 50% B cells in hepatocellular carcinoma (HCC) exhibit an FcγRIIlow/− activated phenotype, and high infiltration of these cells positively correlates with cancer progression. Environmental semimature dendritic cells, but not macrophages, can operate in a CD95L-dependent pathway to generate FcγRIIlow/− activated B cells. Early activation of monocytes in cancer environments is critical for the generation of semimature dendritic cells and subsequent FcγRIIlow/− activated B cells. More importantly, the activated FcγRIIlow/− B cells from HCC tumours, but not the resting FcγRIIhigh B cells, without external stimulation suppress autologous tumour-specific cytotoxic T-cell immunity via IL-10 signals. Collectively, generation of FcγRIIlow/− activated B cells may represent a mechanism by which the immune activation is linked to immune tolerance in the tumour milieu. Activation and biological function of B cells in cancer are still unclear. Here, the authors show that hepatocarcinoma cells drive the formation of semimature dendritic cells that in turn activate FcγRIIlow/− tumour B cells through the CD95L/CD95 axis, leading to the production of IL-10 and suppression of CD8 T cells.
Collapse
Affiliation(s)
- Fang-Zhu Ouyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Qi Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Wei
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui-Xian Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Limin Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong-Ming Kuang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
217
|
PD-L1 is a critical mediator of regulatory B cells and T cells in invasive breast cancer. Sci Rep 2016; 6:35651. [PMID: 27762298 PMCID: PMC5071845 DOI: 10.1038/srep35651] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Tregs), a key mediator in regulating anti-tumor immune suppression, tumor immune escape, metastasis and relapse, are considered an important therapeutic target in immunotherapy of human cancers. In the present investigation, elevated CD19+ CD24+ CD38+ regulatory B cells (Bregs) were observed in PBMCs of invasive carcinoma of breast (IBCa) patients compared with that in patients with fibroadenoma (FIBma) or healthy individuals, and the positive correlation existed between Bregs and CD4+ CD25+ CD127− Tregs (r = 0.316, P = 0.001). We found that PD-L1 expression was higher on Bregs in IBCa patients compared with patients with FIBma or healthy individuals (P < 0.05, respectively), and that a tight correlation exists between CD19+ CD24+ CD38+ PD-L1+ Bregs and CD19+ CD24+ CD38+ Bregs (r = 0.267, P = 0.007), poor TNM phases and up-regulated expression of PD-L1 on Bregs. The pattern of PD-1 expression on CD4+ T cells indicated that high level of PD-1hi expressed on CD4+ CD25+ CD127+ effector T cells (P < 0.001). More importantly, the presence of PD-L1 on Bregs was positively correlated with Tregs (r = 0.299, P = 0.003), but negatively correlated with PD-1hi effector T cells (r = −0.22, P = 0.031). Together, results of the present study indicated that PD-L1 is an important molecule on Bregs, mediated the generation of Tregs in IBCa.
Collapse
|
218
|
van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 2016; 138:654-665. [DOI: 10.1016/j.jaci.2016.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
|
219
|
Novel immunotherapeutic strategies to target alloantibody-producing B and plasma cells in transplantation. Curr Opin Organ Transplant 2016; 21:419-26. [DOI: 10.1097/mot.0000000000000338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
220
|
Korniotis S, Gras C, Letscher H, Montandon R, Mégret J, Siegert S, Ezine S, Fallon PG, Luther SA, Fillatreau S, Zavala F. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells. Nat Commun 2016; 7:12134. [PMID: 27396388 PMCID: PMC4942579 DOI: 10.1038/ncomms12134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/02/2016] [Indexed: 12/24/2022] Open
Abstract
The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases. Evidence of how functional Bregs develop in vivo has been lacking. Here the authors show that proB cells exposed in vivo to CpG differentiate into distinct Breg subsets that inhibit autoimmunity by arresting T cells in the lymph nodes via CCL19 and by producing IL-10 at the site of immunopathology.
Collapse
Affiliation(s)
- Sarantis Korniotis
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France
| | - Christophe Gras
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France
| | - Hélène Letscher
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France
| | - Ruddy Montandon
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France
| | - Jérôme Mégret
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Structure Fédérative de Recherche Necker, INSERM US 24, CNRS UMS 3633, Paris 75014, France
| | - Stefanie Siegert
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Sophie Ezine
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France
| | - Padraic G Fallon
- Department of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Simon Fillatreau
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Assistance Publique-Hopitaux de Paris (AP-HP), Hopital Necker Enfants Malades, Paris 75015, France.,Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, Berlin 10117, Germany
| | - Flora Zavala
- Institut Necker Enfants Malades, Immunology, Infectiology and Haematology Department, Inserm U1151, CNRS UMR 8253, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Site Necker, 14 rue Maria Helena Vieira da Silva, CS 61431, Paris 75014, France
| |
Collapse
|
221
|
MESH Headings
- Antigen Presentation
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- Colitis/genetics
- Colitis/immunology
- Colitis/pathology
- Cytokines/genetics
- Cytokines/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/immunology
- Humans
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immune Tolerance
- Immunity, Humoral
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Signal Transduction
Collapse
|
222
|
New insights into B cell biology in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2016; 27:461-7. [PMID: 26164595 DOI: 10.1097/bor.0000000000000201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the physiological and pathogenic functions of B cells in systemic lupus erythematosus (SLE) and Primary Sjögren's syndrome (pSS) continues to expand. In this review, we discuss novel insights published in the last 18 months into the roles of B cells in systemic autoimmunity. RECENT FINDINGS Data have continued to expand regarding the diverse mechanisms by which innate immune signals including Toll-like receptors (TLRs) regulate the B cell compartment. Localized B cells and long-lived plasma cells have been identified as playing an important role in target tissue including the development of ectopic lymphoid structures in kidney and salivary gland. In addition to pathogenic roles for B cells, there is mounting evidence for regulatory B cell subsets that play a protective role and new insights into the signals that regulate their development. SUMMARY The past few years have provided insights into the multiple paths by which innate immune signals can lead to B cell activation in SLE and pSS and the increasingly diverse ways in which B cells contribute to disease expression. Further understanding the imbalance between protective and pathogenic functions for B cells in disease including in understudied target tissue should yield new treatment approaches.
Collapse
|
223
|
Kok LF, Marsh-Wakefield F, Marshall JE, Gillis C, Halliday GM, Byrne SN. B cells are required for sunlight protection of mice from a CNS-targeted autoimmune attack. J Autoimmun 2016; 73:10-23. [PMID: 27289166 DOI: 10.1016/j.jaut.2016.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is associated with protection from the development of autoimmune diseases, particularly multiple sclerosis, the precise mechanism by which UV achieves this protection is not currently well understood. Regulatory B cells play an important role in preventing autoimmunity and activation of B cells is a major way in which UV suppresses adaptive immune responses. Whether UV-protection from autoimmunity is mediated by the activation of regulatory B cells has never been considered before. When C57BL/6 mice were exposed to low, physiologically relevant doses of UV, a unique population of B cells was activated in the skin draining lymph nodes. As determined by flow cytometry, CD1d(low)CD5(-)MHC-II(hi)B220(hi) UV-activated B cells expressed significantly higher levels of CD19, CD21/35, CD25, CD210 and CD268 as well as the co-stimulatory molecules CD80, CD86, CD274 and CD275. Experimental autoimmune encephalomyelitis (EAE) in mice immunized with MOG/CFA was reduced by exposure to UV. UV significantly inhibited demyelination and infiltration of inflammatory cells into the spinal cord. Consequently, UV-exposed groups showed elevated IL-10 levels in secondary lymphoid organs, delayed EAE onset, reduced peak EAE score and significantly suppressed overall disease incidence and burden. Importantly, protection from EAE could be adoptively transferred using B cells isolated from UV-exposed, but not unirradiated hosts. Indeed, UV-protection from EAE was dependent on UV activation of lymph node B cells because UV could not protect mice from EAE who were pharmacologically depleted of B cells using antibodies. Thus, UV maintenance of a pool of unique regulatory B cells in peripheral lymph nodes appears to be essential to prevent an autoimmune attack on the central nervous system.
Collapse
Affiliation(s)
- Lai Fong Kok
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Jacqueline E Marshall
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Caitlin Gillis
- Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Gary M Halliday
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
224
|
Huarte E, Jun S, Rynda-Apple A, Golden S, Jackiw L, Hoffman C, Maddaloni M, Pascual DW. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent to Oral Intervention in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:5036-46. [PMID: 27194787 DOI: 10.4049/jimmunol.1501973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. Although inflammatory B cells contribute to EAE's pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220(+)CD5(+) B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220(+)CD5(-) B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease, whereas the adoptive transfer of MOG-pσ1-induced B220(+)CD5(+) Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of B and T lymphocyte attenuator (BTLA) relative to CD5(-) B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA(-/-) mice showed more pronounced EAE with fewer Tregs, but upon adoptive transfer of MOG-pσ1-induced BTLA(+) Bregs, BTLA(-/-) mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE.
Collapse
Affiliation(s)
- Eduardo Huarte
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - SangMu Jun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Sara Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Larissa Jackiw
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Carol Hoffman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - Massimo Maddaloni
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - David W Pascual
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| |
Collapse
|
225
|
Tang A, Dadaglio G, Oberkampf M, Di Carlo S, Peduto L, Laubreton D, Desrues B, Sun CM, Montagutelli X, Leclerc C. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer 2016; 139:1358-71. [DOI: 10.1002/ijc.30169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Alexandre Tang
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur; Paris France
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Selene Di Carlo
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Lucie Peduto
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Daphné Laubreton
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Belinda Desrues
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Cheng-Ming Sun
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Xavier Montagutelli
- Institut Pasteur, Unité de Génétique fonctionnelle de la souris; Paris France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| |
Collapse
|
226
|
Floudas A, Amu S, Fallon PG. New Insights into IL-10 Dependent and IL-10 Independent Mechanisms of Regulatory B Cell Immune Suppression. J Clin Immunol 2016; 36 Suppl 1:25-33. [DOI: 10.1007/s10875-016-0263-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
|
227
|
Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 293:45-53. [PMID: 27049561 DOI: 10.1016/j.jneuroim.2016.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
Sex hormones promote immunoregulatory effects on multiple sclerosis. The current study evaluated estrogen effects on regulatory B cells and resident CNS microglia during experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of multiple regulatory B cell markers indicative of IL-10 dependent as well as IFN-γ dependent pathways. Moreover, although estrogen pretreatment of EAE mice inhibited the infiltration of pro-inflammatory cells into the CNS, it enhanced the frequency of regulatory B cells and M2 microglia. Our study suggests that estrogen has a broad effect on the development of regulatory B cells during EAE, which in turn could promote neuroprotection.
Collapse
|
228
|
Aloulou M, Carr EJ, Gador M, Bignon A, Liblau RS, Fazilleau N, Linterman MA. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun 2016; 7:10579. [PMID: 26818004 PMCID: PMC4738360 DOI: 10.1038/ncomms10579] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
T follicular regulatory (Tfr) cells are a subset of Foxp3(+) regulatory T (Treg) cells that form in response to immunization or infection, which localize to the germinal centre where they control the magnitude of the response. Despite an increased interest in the role of Tfr cells in humoral immunity, many fundamental aspects of their biology remain unknown, including whether they recognize self- or foreign antigen. Here we show that Tfr cells can be specific for the immunizing antigen, irrespective of whether it is a self- or foreign antigen. We show that, in addition to developing from thymic derived Treg cells, Tfr cells can also arise from Foxp3(-) precursors in a PD-L1-dependent manner, if the adjuvant used is one that supports T-cell plasticity. These findings have important implications for Tfr cell biology and for improving vaccine efficacy by formulating vaccines that modify the Tfr:Tfh cell ratio.
Collapse
Affiliation(s)
- Meryem Aloulou
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Edward J Carr
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mylène Gador
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Alexandre Bignon
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Roland S Liblau
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France.,Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France.,Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
229
|
Xia Y, Jeffrey Medeiros L, Young KH. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2015; 1865:58-71. [PMID: 26432723 DOI: 10.1016/j.bbcan.2015.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/12/2022]
Abstract
Tumor cells evade immune destruction, at least partially, by upregulating inhibitory signals to limit effector T cell activation. Programmed death 1 (PD-1) is one of the most critical co-inhibitory molecules limiting the T-cell antitumor response. PD-1 and its ligands, PD-L1 and PD-L2, are overexpressed by various types of tumors as well as reactive cells in the tumor microenvironment. A growing body of evidence has shown the clinical efficiency and minimal toxicity of PD-1 pathway inhibitors in patients with solid tumors, but the role of these inhibitors in lymphoid malignancies is much less well studied. In this review, we analyze the pathologic role of the PD-1 pathway in most common lymphoid malignancies and we organize the clinical data from clinical trials of PD-1 pathway inhibitors. Several anti-PD-1 regimens have shown encouraging therapeutic effects in patients with relapsed or refractory Hodgkin lymphoma, follicular lymphoma, and diffuse large B-cell lymphoma. Additional progress is needed to foster an improved understanding of the role of anti-PD-1 therapy in reconstituting antitumor immunity in patients with lymphoid malignancies. Upcoming trials will explore the clinical efficiency of combining PD-1 pathway inhibitors and various agents with diverse mechanisms of action and create more therapeutic possibilities for afflicted patients.
Collapse
Affiliation(s)
- Yi Xia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
230
|
Ray A, Wang L, Dittel BN. IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol 2015; 27:531-6. [PMID: 25999596 PMCID: PMC11513724 DOI: 10.1093/intimm/dxv033] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Although classically B cells are known to play important roles in immune protection via humoral immunity, recently their regulatory mechanisms have been best appreciated in the context of autoimmunity. Several studies have identified different subsets of regulatory B cells that vary not only in their phenotype but also in their mechanism of action. Although the best-studied mechanism of B-cell immune regulation is IL-10 production, other IL-10-independent mechanisms have been proposed. These include maintenance of CD4(+)Foxp3(+) regulatory T cells; production of transforming growth factor-β, IL-35, IgM or adenosine or expression of PD-L1 (programmed death 1 ligand 1) or FasL (Fas ligand). Given that B-cell-targeted therapy is being increasingly used in the clinic, a complete understanding of the mechanisms whereby B cells regulate inflammation associated with specific diseases is required for designing safe and effective immunotherapies targeting B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Cell Lineage/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fas Ligand Protein/genetics
- Fas Ligand Protein/immunology
- Gene Expression Regulation/immunology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Humans
- Interleukin-10
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Avijit Ray
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53201, USA
| | - Luman Wang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Biotherapy Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Bonnie N Dittel
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53201, USA
| |
Collapse
|
231
|
Abstract
Over the last decade it has become evident that in addition to producing antibody, B cells activate the immune system by producing cytokines and via antigen presentation. In addition, B cells also exhibit immunosuppressive functions via diverse regulatory mechanisms. This subset of B cells, known as regulatory B cells (Bregs), contributes to the maintenance of tolerance, primarily via the production of IL-10. Studies in experimental animal models, as well as in patients with autoimmune diseases, have identified multiple Breg subsets exhibiting diverse mechanisms of immune suppression. In this review, we describe the different Breg subsets identified in mice and humans, and their diverse mechanisms of suppression in different disease settings.
Collapse
Affiliation(s)
- Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
232
|
Gorosito Serrán M, Fiocca Vernengo F, Beccaria CG, Acosta Rodriguez EV, Montes CL, Gruppi A. The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production. FEBS Lett 2015; 589:3362-9. [PMID: 26424657 DOI: 10.1016/j.febslet.2015.08.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 12/23/2022]
Abstract
The term regulatory B cells (B regs) is ascribed to a heterogeneous population of B cells with the function of suppressing inflammatory responses. They have been described mainly during the last decade in the context of different immune-mediated diseases. Most of the work on B regs has been focused on IL-10-producing B cells. However, B cells can exert regulatory functions independently of IL-10 production. Here we discuss the phenotypes, development and effector mechanisms of B regs and advances in their role in autoimmunity, infections and cancer.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
233
|
Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, Bustamante J, Okada S, Stoddard JL, Deenick EK, Pelham SJ, Payne K, Boisson-Dupuis S, Puel A, Kobayashi M, Arkwright PD, Kilic SS, El Baghdadi J, Nonoyama S, Minegishi Y, Mahdaviani SA, Mansouri D, Bousfiha A, Blincoe AK, French MA, Hsu P, Campbell DE, Stormon MO, Wong M, Adelstein S, Smart JM, Fulcher DA, Cook MC, Phan TG, Stepensky P, Boztug K, Kansu A, İkincioğullari A, Baumann U, Beier R, Roscioli T, Ziegler JB, Gray P, Picard C, Grimbacher B, Warnatz K, Holland SM, Casanova JL, Uzel G, Tangye SG. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol 2015; 136:993-1006.e1. [PMID: 26162572 DOI: 10.1016/j.jaci.2015.05.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Follicular helper T (TFH) cells underpin T cell-dependent humoral immunity and the success of most vaccines. TFH cells also contribute to human immune disorders, such as autoimmunity, immunodeficiency, and malignancy. Understanding the molecular requirements for the generation and function of TFH cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunologic abnormalities. OBJECTIVE We sought to determine the signaling pathways and cellular interactions required for the development and function of TFH cells in human subjects. METHODS Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating follicular helper T (cTFH) cell subsets, memory B cells, and serum immunoglobulin levels were quantified and functionally assessed in healthy control subjects, as well as in patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS, or BTK. RESULTS Loss-of-function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS, or BTK reduced cTFH cell frequencies. STAT3 and IL21/R LOF and STAT1 gain-of-function mutations skewed cTFH cell differentiation toward a phenotype characterized by overexpression of IFN-γ and programmed death 1. IFN-γ inhibited cTFH cell function in vitro and in vivo, as corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1, and IL12RB1 LOF mutations. CONCLUSION Specific mutations affect the quantity and quality of cTFH cells, highlighting the need to assess TFH cells in patients by using multiple criteria, including phenotype and function. Furthermore, IFN-γ functions in vivo to restrain TFH cell-induced B-cell differentiation. These findings shed new light on TFH cell biology and the integrated signaling pathways required for their generation, maintenance, and effector function and explain the compromised humoral immunity seen in patients with some PIDs.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Australia, Melbourne, Australia.
| | - Natalie Wong
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Geetha Rao
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Danielle T Avery
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - James Torpy
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Thomas Hambridge
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes, Paris, France; Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | | | - Elissa K Deenick
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Australia, Melbourne, Australia
| | - Simon J Pelham
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Australia, Melbourne, Australia
| | - Kathryn Payne
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Peter D Arkwright
- University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology, Uludag University Medical Faculty, Görükle, Bursa, Turkey
| | | | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Bousfiha
- Clinical Immunology Unit, Pediatric Infectious Diseases Department, Averroes University Hospital, King Hasan II University, Casablanca, Morocco
| | | | - Martyn A French
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Peter Hsu
- Children's Hospital at Westmead, Westmead, Australia
| | | | | | - Melanie Wong
- Children's Hospital at Westmead, Westmead, Australia
| | - Stephen Adelstein
- Clinical Immunology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joanne M Smart
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - David A Fulcher
- Department of Immunology, Westmead Hospital, University of Sydney, Westmead, Australia
| | - Matthew C Cook
- Australian National University Medical School, Australian National University, Acton, Australia; John Curtin School of Medical Research, Australian National University, Acton, Australia; Department of Immunology, Canberra Hospital, Canberra, Australia
| | - Tri Giang Phan
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Australia, Melbourne, Australia
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Aydan Kansu
- Department of Pediatric Gastroenterology, Ankara University Medical School, Ankara, Turkey
| | - Aydan İkincioğullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Ulrich Baumann
- Paediatric Pulmonology, Allergy and Neonatology, Hanover Medical School, Hannover, Germany
| | - Rita Beier
- Pediatric Haematology and Oncology, University Hospital Essen, Essen, Germany
| | - Tony Roscioli
- St Vincent's Clinical School, UNSW Australia, Melbourne, Australia; Kinghorn Centre for Clinical Genomics, Victoria St Darlinghurst, Darlinghurst, Australia; Department of Medical Genetics, Sydney Children's Hospital, Randwick, Australia
| | - John B Ziegler
- Sydney Children's Hospital, Randwick, and School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Paul Gray
- Sydney Children's Hospital, Randwick, and School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes, Paris, France; Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Stuart G Tangye
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Australia, Melbourne, Australia.
| |
Collapse
|
234
|
Perturbation of the normal immune system in patients with CLL. Blood 2015; 126:573-81. [PMID: 26084672 DOI: 10.1182/blood-2015-03-567388] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Immune dysregulation is a cardinal feature of chronic lymphocytic leukemia (CLL) from its early stage and worsens during clinical observation, even in absence of disease progression. Although the mechanisms remain unclear, new insights are emerging into the complex relationship between the CLL clone and its immune environment. T cells are increased in early-stage disease and show progressive accumulation and exhaustion. The mechanisms that drive this expansion may include auto-antigens involved in the original clonal expansion. In addition, chronic viral infections such as cytomegalovirus generate huge virus-specific immune responses, which are further expanded in CLL. Attention is now focused largely on the direct immunosuppressive properties of the tumor. Remarkably, CLL clones often have features of the recently described regulatory B cells producing immunosuppressive IL-10. Better knowledge of the regulatory properties intrinsic to CLL cells may soon become more important with the switch from chemotherapy-based treatments, which trade control of CLL with further impairment of immune function, to the new agents targeting CLL B-cell receptor-associated signaling. Treatment with these new agents is associated with evidence of immune recovery and reduced infectious complications. As such, they offer the prospect of immunologic rehabilitation and a platform from which to ultimately replace chemotherapy.
Collapse
|
235
|
Khan AR, Amu S, Saunders SP, Hams E, Blackshields G, Leonard MO, Weaver CT, Sparwasser T, Sheils O, Fallon PG. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur J Immunol 2015; 45:1842-54. [PMID: 25763771 DOI: 10.1002/eji.201445211] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.
Collapse
Affiliation(s)
- Adnan R Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sylvie Amu
- Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sean P Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Martin O Leonard
- School of Medicine and Medical Sciences, The Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Casey T Weaver
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | - Orla Sheils
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|