201
|
Mandal S. Epidemiological aspects of vivax and falciparum malaria: global spectrum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60410-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
202
|
Sutton PL. A call to arms: on refining Plasmodium vivax microsatellite marker panels for comparing global diversity. Malar J 2013; 12:447. [PMID: 24330329 PMCID: PMC3878832 DOI: 10.1186/1475-2875-12-447] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsatellite (MS) markers have become an important tool for studying the population diversity, evolutionary history and multiplicity of infection (MOI) of malaria parasite infections. MS are typically selected on the basis of being highly polymorphic. However, it is known that the polymorphic potential (mutability) of each marker can vary as much as two orders of magnitude, which radically changes how diversity is represented in the genome from one marker to the next. Over the past decade, approximately 240 Plasmodium vivax MS have been published, comprising nine major panels of markers. Inconsistent usage of each panel has resulted in a surfeit of descriptive genetic diversity data that are largely incomparable between populations. The objective of this study was to statistically evaluate the quality of individual MS markers in order to validate a refined panel of markers that will provide a balanced picture of P. vivax population diversity. METHODS All previously published data, including genetic diversity indices, MS parameters, and population parameters, were assembled from 18 different global studies into a flat file to facilitate statistical analysis and modelling using JMP® Genomics 6.0 (SAS Institute Inc, Cary, NC, USA). Statistical modeling was employed to down-select markers with extreme variation among the mean number of alleles, expected heterozygosity, maximum repeat length and/or chromosomal location of the repeat. Individual MS were analysed by step-down whole model linear regression and standard least squares fit models, both stratified by annual parasite incidence to identify MS markers with values significantly different from the mean. RESULTS Of the 42 MS under evaluation in this study, 18 (nine high priority) were identified as ideal candidates for measuring population diversity between global regions, while five (two high priority) additional markers were identified as candidates for MOI studies. CONCLUSIONS MS diversity was found to be a function of endemicity and motif structure. Evaluation of individual MS permitted the assembly of a refined panel of markers that can be reliably utilized in the field to compare population structures between global regions.
Collapse
Affiliation(s)
- Patrick L Sutton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
203
|
Hester J, Chan ER, Menard D, Mercereau-Puijalon O, Barnwell J, Zimmerman PA, Serre D. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl Trop Dis 2013; 7:e2569. [PMID: 24340114 PMCID: PMC3854868 DOI: 10.1371/journal.pntd.0002569] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/21/2013] [Indexed: 01/26/2023] Open
Abstract
Recent sequencing of Plasmodium vivax field isolates and monkey-adapted strains enabled characterization of SNPs throughout the genome. These analyses relied on mapping short reads onto the P. vivax reference genome that was generated using DNA from the monkey-adapted strain Salvador I. Any genomic locus deleted in this strain would be lacking in the reference genome sequence and missed in previous analyses. Here, we report de novo assembly of a P. vivax field isolate genome. Out of 2,857 assembled contigs, we identify 362 contigs, each containing more than 5 kb of contiguous DNA sequences absent from the reference genome sequence. These novel P. vivax DNA sequences account for 3.8 million nucleotides and contain 792 predicted genes. Most of these contigs contain members of multigene families and likely originate from telomeric regions. Interestingly, we identify two contigs containing predicted protein coding genes similar to known Plasmodium red blood cell invasion proteins. One gene encodes the reticulocyte-binding protein gene orthologous to P. cynomolgi RBP2e and P. knowlesi NBPXb. The second gene harbors all the hallmarks of a Plasmodium erythrocyte-binding protein, including conserved Duffy-binding like and C-terminus cysteine-rich domains. Phylogenetic analysis shows that this novel gene clusters separately from all known Plasmodium Duffy-binding protein genes. Additional analyses showing that this gene is present in most P. vivax genomes and transcribed in blood-stage parasites suggest that P. vivax red blood cell invasion mechanisms may be more complex than currently understood. The strategy employed here complements previous genomic analyses and takes full advantage of next-generation sequencing data to provide a comprehensive characterization of genetic variations in this important malaria parasite. Further analyses of the novel protein coding genes discovered through de novo assembly have the potential to identify genes that influence key aspects of P. vivax biology, including alternative mechanisms of human erythrocyte invasion. Plasmodium vivax is responsible for most malaria cases outside Africa, but is poorly understood, as the parasite is difficult to study in vitro. Genome sequencing studies offer a novel and exciting opportunity to better understand this parasite but, so far, have directly mapped reads onto the reference genome sequence generated from a single P. vivax strain. Here, we use sequence data generated from a field isolate to reconstruct long DNA sequences without relying on the reference genome. Our analyses reveal many P. vivax DNA sequences that are absent from the reference genome and contain 792 predicted genes. One of these novel genes encodes a predicted protein similar to known Plasmodium proteins involved in red blood cell invasion. This new gene is present in all P. vivax strains sequenced so far, except for the strain used to generate the reference genome, and is transcribed in blood-stage parasites. Overall, our analyses show that the catalogue of P. vivax genes was incomplete and that potentially important genes have been missed. We notably identified one putative invasion gene that seems functional and could dramatically change our understanding of the mechanisms determining red blood cell invasion by this important malaria parasite.
Collapse
Affiliation(s)
- James Hester
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ernest R. Chan
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - John Barnwell
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (PAZ); (DS)
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail: (PAZ); (DS)
| |
Collapse
|
204
|
Menard D, Chan ER, Benedet C, Ratsimbasoa A, Kim S, Chim P, Do C, Witkowski B, Durand R, Thellier M, Severini C, Legrand E, Musset L, Nour BYM, Mercereau-Puijalon O, Serre D, Zimmerman PA. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl Trop Dis 2013; 7:e2489. [PMID: 24278487 PMCID: PMC3836732 DOI: 10.1371/journal.pntd.0002489] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/07/2013] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes. Methods/Principal Findings Through recent whole genome sequencing we obtained ≥70× coverage of the P. vivax genome from five field-isolates, resulting in ≥93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP) gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported. Conclusions/Significance The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by erythrocyte Duffy negativity in some human populations. Malaria results from infection of human red blood cells (RBC) by Plasmodium parasite's merozoite. For Plasmodium vivax the process of RBC invasion has been hypothesized to depend on interactions between the parasite's Duffy binding protein (PvDBP) and human Duffy blood group antigen because Duffy-negative people (most often people of African descent) were shown to be highly resistant to RBC infection and disease. Over the past five years, researchers are reporting with increasing frequency that Duffy-negative individuals are infected with P. vivax. This raises new questions as to how P. vivax infects the RBC when the Duffy blood group antigen is not available. Here we show that the parasite's Duffy binding protein gene has been duplicated in multiple P. vivax strains, especially at high prevalence in Madagascar. The specificity and prevalence of this polymorphism suggest that the parasite genome has responded to the barrier of Duffy negativity through the duplication of the PvDBP gene. Our results indicate that the PvDBP duplication is a recent event and provide novel research avenues to understand alternative pathways for P. vivax RBC invasion.
Collapse
Affiliation(s)
- Didier Menard
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- * E-mail: (DM); (OMP); (DS); (PAZ)
| | - Ernest R. Chan
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Christophe Benedet
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Arsène Ratsimbasoa
- Direction de la lutte contre les maladies infectieuses, Ministère de la santé, du planning familial et de la protection sociale du Madagascar, Antananarivo, Madagascar
| | - Saorin Kim
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Pheaktra Chim
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Catherine Do
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Remy Durand
- Laboratoire de Parasitologie-Mycologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Marc Thellier
- National Center for Malaria Research, AP-HP, CHU Pitie Salpêtrière, Paris, France
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Eric Legrand
- Laboratoire de parasitologie, National Reference Centre of Malaria Resistance in French Guiana and West Indies, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Lise Musset
- Laboratoire de parasitologie, National Reference Centre of Malaria Resistance in French Guiana and West Indies, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Bakri Y. M. Nour
- Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Odile Mercereau-Puijalon
- Unité d'lmmunologie Moléculaire des Parasites, Institut Pasteur, Paris, France
- * E-mail: (DM); (OMP); (DS); (PAZ)
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail: (DM); (OMP); (DS); (PAZ)
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (DM); (OMP); (DS); (PAZ)
| |
Collapse
|
205
|
Malaria life cycle intensifies both natural selection and random genetic drift. Proc Natl Acad Sci U S A 2013; 110:20129-34. [PMID: 24259712 DOI: 10.1073/pnas.1319857110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.
Collapse
|
206
|
Arnott A, Mueller I, Ramsland PA, Siba PM, Reeder JC, Barry AE. Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1). PLoS Negl Trop Dis 2013; 7:e2506. [PMID: 24205419 PMCID: PMC3814406 DOI: 10.1371/journal.pntd.0002506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022] Open
Abstract
Background The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. Methodology and Principal Findings New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. Conclusions It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule. Traditionally misclassified as benign and neglected as a research priority, it is now understood that P. vivax is an increasingly important cause of human malaria. This important human pathogen poses an enormous obstacle to malaria control and elimination efforts due its broad geographic distribution, ability to cause recurring episodes of malaria after long periods of inactivity and extreme biodiversity. Vaccines are an essential component of global malaria control and elimination campaigns but the diversity of malaria antigens is thought to be a major cause of vaccine failure. Furthermore, at present the majority of current vaccine research is directed toward P. falciparum. The aims of this study were to investigate the global diversity of the P. vivax vaccine candidate, Apical Membrane Antigen 1 (PvAMA1), to determine the feasibility of designing a globally effective PvAMA1 vaccine and to determine which region of PvAMA1 is targeted by host immune responses, in order to identify the most promising vaccine candidates. We report that PvAMA1 diversity is extremely high, and that PvAMA1 domain I is a dominant target of host immune responses. These analyses of PvAMA1 diversity from several geographic regions provide a framework to guide development of a broadly efficacious P. vivax vaccine.
Collapse
Affiliation(s)
- Alicia Arnott
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Ivo Mueller
- Barcelona Centre for International Health Research, Barcelona, Spain
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Paul A. Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, Australia
- School of Biomedical Sciences, CHIRI Biosciences, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Peter M. Siba
- Papua New Guinea Institute for Medical Research, Goroka, Papua New Guinea
| | - John C. Reeder
- Centre for Population Health, Burnet Institute, Melbourne, Australia
- Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| | - Alyssa E. Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
207
|
Bright AT, Alenazi T, Shokoples S, Tarning J, Paganotti GM, White NJ, Houston S, Winzeler EA, Yanow SK. Genetic analysis of primaquine tolerance in a patient with relapsing vivax malaria. Emerg Infect Dis 2013; 19:802-5. [PMID: 23648098 PMCID: PMC3647516 DOI: 10.3201/eid1905.121852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with Plasmodium vivax malaria are treated with primaquine to prevent relapse infections. We report primaquine failure in a patient with 3 relapses without any possibility of re-infection. Using whole genome sequencing of the relapsing parasite isolates, we identified single nucleotide variants as candidate molecular markers of resistance.
Collapse
|
208
|
Arévalo-Pinzón G, Curtidor H, Abril J, Patarroyo MA. Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malar J 2013; 12:356. [PMID: 24093777 PMCID: PMC3851475 DOI: 10.1186/1475-2875-12-356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023] Open
Abstract
Background The tight junction (TJ) is one of the most important structures established during merozoite invasion of host cells and a large amount of proteins stored in Toxoplasma and Plasmodium parasites’ apical organelles are involved in forming the TJ. Plasmodium falciparum and Toxoplasma gondii apical membrane antigen 1 (AMA-1) and rhoptry neck proteins (RONs) are the two main TJ components. It has been shown that RON4 plays an essential role during merozoite and sporozoite invasion to target cells. This study has focused on characterizing a novel Plasmodium vivax rhoptry protein, RON4, which is homologous to PfRON4 and PkRON4. Methods The ron4 gene was re-annotated in the P. vivax genome using various bioinformatics tools and taking PfRON4 and PkRON4 amino acid sequences as templates. Gene synteny, as well as identity and similarity values between open reading frames (ORFs) belonging to the three species were assessed. The gene transcription of pvron4, and the expression and localization of the encoded protein were also determined in the VCG-1 strain by molecular and immunological studies. Nucleotide and amino acid sequences obtained for pvron4 in VCG-1 were compared to those from strains coming from different geographical areas. Results PvRON4 is a 733 amino acid long protein, which is encoded by three exons, having similar transcription and translation patterns to those reported for its homologue, PfRON4. Sequencing PvRON4 from the VCG-1 strain and comparing it to P. vivax strains from different geographical locations has shown two conserved regions separated by a low complexity variable region, possibly acting as a “smokescreen”. PvRON4 contains a predicted signal sequence, a coiled-coil α-helical motif, two tandem repeats and six conserved cysteines towards the carboxy-terminus and is a soluble protein lacking predicted transmembranal domains or a GPI anchor. Indirect immunofluorescence assays have shown that PvRON4 is expressed at the apical end of schizonts and co-localizes at the rhoptry neck with PvRON2. Conclusions Genomic, transcriptional and expression data reported for PvRON4, as well as its primary structure characteristics suggest that this protein participates in reticulocyte invasion, as has been shown for its homologue PfRON4.
Collapse
|
209
|
“Omics” in the study of the major parasitic diseases malaria and schistosomiasis. INFECTION GENETICS AND EVOLUTION 2013; 19:258-73. [DOI: 10.1016/j.meegid.2013.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 01/21/2023]
|
210
|
Jiang PP, Corbett-Detig RB, Hartl DL, Lozovsky ER. Accessible mutational trajectories for the evolution of pyrimethamine resistance in the malaria parasite Plasmodium vivax. J Mol Evol 2013; 77:81-91. [PMID: 24071997 DOI: 10.1007/s00239-013-9582-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
Abstract
Antifolate antimalarials, such as pyrimethamine, have experienced a dramatic reduction in therapeutic efficacy as resistance has evolved in multiple malaria species. We present evidence from one such species, Plasmodium vivax, which has experienced sustained selection for pyrimethamine resistance at the dihydrofolate reductase (DHFR) locus since the 1970s. Using a transgenic Saccharomyces cerevisiae model expressing the P. vivax DHFR enzyme, we assayed growth rate and resistance of all 16 combinations of four DHFR amino acid substitutions. These substitutions were selected based on their known association with drug resistance, both in natural isolates and in laboratory settings, in the related malaria species P. falciparum. We observed a strong correlation between the resistance phenotypes for these 16 P. vivax alleles and previously observed resistance data for P. falciparum, which was surprising since nucleotide diversity levels and common polymorphic variants of DHFR differ between the two species. Similar results were observed when we expressed the P. vivax alleles in a transgenic bacterial system. This suggests common constraints on enzyme evolution in the orthologous DHFR proteins. The interplay of negative trade-offs between the evolution of novel resistance and compromised endogenous function varies at different drug dosages, and so too do the major trajectories for DHFR evolution. In simulations, it is only at very high drug dosages that the most resistant quadruple mutant DHFR allele is favored by selection. This is in agreement with common polymorphic DHFR data in P. vivax, from which this quadruple mutant is missing. We propose that clinical dosages of pyrimethamine may have historically been too low to select for the most resistant allele, or that the fitness cost of the most resistant allele was untenable without a compensatory mutation elsewhere in the genome.
Collapse
Affiliation(s)
- Pan-Pan Jiang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA,
| | | | | | | |
Collapse
|
211
|
Prajapati SK, Joshi H, Carlton JM, Rizvi MA. Neutral polymorphisms in putative housekeeping genes and tandem repeats unravels the population genetics and evolutionary history of Plasmodium vivax in India. PLoS Negl Trop Dis 2013; 7:e2425. [PMID: 24069480 PMCID: PMC3777877 DOI: 10.1371/journal.pntd.0002425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Molecular Biology Division, National Institute of Malaria Research, New Delhi, India
| | | | | | | |
Collapse
|
212
|
McCarthy JS, Griffin PM, Sekuloski S, Bright AT, Rockett R, Looke D, Elliott S, Whiley D, Sloots T, Winzeler EA, Trenholme KR. Experimentally induced blood-stage Plasmodium vivax infection in healthy volunteers. J Infect Dis 2013; 208:1688-94. [PMID: 23908484 DOI: 10.1093/infdis/jit394] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Major impediments to development of vaccines and drugs for Plasmodium vivax malaria are the inability to culture this species and the extreme difficulty in undertaking clinical research by experimental infection. METHODS A parasite bank was collected from a 49-year-old woman with P. vivax infection, characterized, and used in an experimental infection study. RESULTS The donor made a full recovery from malaria after collection of a parasite bank, which tested negative for agents screened for in blood donations. DNA sequence analysis of the isolate indicated that it was clonal. Two subjects inoculated with the isolate became polymerase chain reaction positive on days 8 and 9, with onset of symptoms and positive blood smears on day 14, when they were treated with artemether-lumefantrine, with rapid clinical and parasitologic response. Transcripts of the parasite gene pvs25 that is expressed in gametocytes, the life cycle stage infectious to mosquitoes, were first detected on days 11 and 12. CONCLUSIONS This experimental system results in in vivo parasite growth, probably infectious to mosquitoes. It offers the opportunity to undertake studies previously impossible in P. vivax that will facilitate a better understanding of the pathology of vivax malaria and development of antimalarial drugs and vaccines. Trial Registration. ANZCTR: 12612001096842.
Collapse
|
213
|
Goldberg JM, Griggs AD, Smith JL, Haas BJ, Wortman JR, Zeng Q. Kinannote, a computer program to identify and classify members of the eukaryotic protein kinase superfamily. ACTA ACUST UNITED AC 2013; 29:2387-94. [PMID: 23904509 PMCID: PMC3777111 DOI: 10.1093/bioinformatics/btt419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motivation: Kinases of the eukaryotic protein kinase superfamily are key regulators of most aspects eukaryotic cellular behavior and have provided several drug targets including kinases dysregulated in cancers. The rapid increase in the number of genomic sequences has created an acute need to identify and classify members of this important class of enzymes efficiently and accurately. Results: Kinannote produces a draft kinome and comparative analyses for a predicted proteome using a single line command, and it is currently the only tool that automatically classifies protein kinases using the controlled vocabulary of Hanks and Hunter [Hanks and Hunter (1995)]. A hidden Markov model in combination with a position-specific scoring matrix is used by Kinannote to identify kinases, which are subsequently classified using a BLAST comparison with a local version of KinBase, the curated protein kinase dataset from www.kinase.com. Kinannote was tested on the predicted proteomes from four divergent species. The average sensitivity and precision for kinome retrieval from the test species are 94.4 and 96.8%. The ability of Kinannote to classify identified kinases was also evaluated, and the average sensitivity and precision for full classification of conserved kinases are 71.5 and 82.5%, respectively. Kinannote has had a significant impact on eukaryotic genome annotation, providing protein kinase annotations for 36 genomes made public by the Broad Institute in the period spanning 2009 to the present. Availability: Kinannote is freely available at http://sourceforge.net/projects/kinannote. Contact:jmgold@broadinstitute.org Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jonathan M Goldberg
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
214
|
González-Cerón L, Martinez-Barnetche J, Montero-Solís C, Santillán F, Soto AM, Rodríguez MH, Espinosa BJ, Chávez OA. Molecular epidemiology of Plasmodium vivax in Latin America: polymorphism and evolutionary relationships of the circumsporozoite gene. Malar J 2013; 12:243. [PMID: 23855807 PMCID: PMC3729580 DOI: 10.1186/1475-2875-12-243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023] Open
Abstract
Background The origins and dispersal of Plasmodium vivax to its current worldwide distribution remains controversial. Although progress on P. vivax genetics and genomics has been achieved worldwide, information concerning New World parasites remains fragmented and largely incomplete. More information on the genetic diversity in Latin America (LA) is needed to better explain current patterns of parasite dispersion and evolution. Methods Plasmodium vivax circumsporozoite protein gene polymorphism was investigated using polymerase chain reaction amplification and restriction fragment length polymorphism (PCR-RFLP), and Sanger sequencing in isolates from the Pacific Ocean coast of Mexico, Nicaragua, and Peru. In conjunction with worldwide sequences retrieved from the Genbank, mismatch distribution analysis of central repeat region (CRR), frequency estimation of unique repeat types and phylogenetic analysis of the 3′ terminal region, were performed to obtain an integrative view of the genetic relationships between regional and worldwide isolates. Results Four RFLP subtypes, vk210a, b, c and d were identified in Southern Mexico and three subtypes vk210a, e and f in Nicaragua. The nucleotide sequences showed that Mexican vk210a and all Nicaraguan isolates were similar to other American parasites. In contrast, vk210b, c and d were less frequent, had a domain ANKKAEDA in their carboxyl end and clustered with Asian isolates. All vk247 isolates from Mexico and Peru had identical RFLP pattern. Their nucleotide sequences showed two copies of GGQAAGGNAANKKAGDAGA at the carboxyl end. Differences in mismatch distribution parameters of the CRR separate vk247 from most vk210 isolates. While vk247 isolates display a homogeneous pattern with no geographical clustering, vk210 isolates display a heterogeneous geographically clustered pattern which clearly separates LA from non-American isolates, except vk210b, c and d from Southern Mexico. Conclusions The presence of vk210a in Mexico and vk210e, f and g in Nicaragua are consistent with other previously reported LA isolates and reflect their circulation throughout the continent. The vk210b, c and d are novel genotypes in LA. Their genetic relationships and low variability within these vk210 and/or within the vk247 parasites in Southern Mexico suggest its recent introduction and/or recent expansion to this region. The global analysis of P. vivax csp suggests this parasite introduction to the region and likely LA by different independent events.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Lover AA, Coker RJ. Quantifying effect of geographic location on epidemiology of Plasmodium vivax malaria. Emerg Infect Dis 2013; 19:1058-65. [PMID: 23763820 PMCID: PMC3713979 DOI: 10.3201/eid1907.121674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent autochthonous transmission of Plasmodium vivax malaria in previously malaria-free temperate regions has generated renewed interest in the epidemiology of this disease. Accurate estimates of the incubation period and time to relapse are required for effective malaria surveillance; however, this information is currently lacking. By using historical data from experimental human infections with diverse P. vivax strains, survival analysis models were used to obtain quantitative estimates of the incubation period and time to first relapse for P. vivax malaria in broad geographic regions. Results show that Eurasian strains from temperate regions have longer incubation periods, and Western Hemisphere strains from tropical and temperate regions have longer times to relapse compared with Eastern Hemisphere strains. The diversity in these estimates of key epidemiologic parameters for P. vivax supports the need for elucidating local epidemiology to inform clinical follow-up and to build an evidence base toward global elimination of malaria.
Collapse
Affiliation(s)
- Andrew A Lover
- Saw Swee Hock School of Public Health, NationalUniversity of Singapore, Singapore.
| | | |
Collapse
|
216
|
Frech C, Chen N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics 2013; 14:427. [PMID: 23805789 PMCID: PMC3747859 DOI: 10.1186/1471-2164-14-427] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium parasites, the causative agents of malaria, express many variant antigens on cell surfaces. Variant surface antigens (VSAs) are typically organized into large subtelomeric gene families that play critical roles in virulence and immune evasion. Many important aspects of VSA function and evolution remain obscure, impeding our understanding of virulence mechanisms and vaccine development. To gain further insights into VSA function and evolution, we comparatively classified and examined known VSA gene families across seven Plasmodium species. Results We identified a set of ultra-conserved orthologs within the largest Plasmodium gene family pir, which should be considered as high-priority targets for experimental functional characterization and vaccine development. Furthermore, we predict a lipid-binding domain in erythrocyte surface-expressed PYST-A proteins, suggesting a role of this second largest rodent parasite gene family in host cholesterol salvage. Additionally, it was found that PfMC-2TM proteins carry a novel and putative functional domain named MC-TYR, which is conserved in other P. falciparum gene families and rodent parasites. Finally, we present new conclusive evidence that the major Plasmodium VSAs PfEMP1, SICAvar, and SURFIN are evolutionarily linked through a modular and structurally conserved intracellular domain. Conclusion Our comparative analysis of Plasmodium VSA gene families revealed important functional and evolutionary insights, which can now serve as starting points for further experimental studies.
Collapse
Affiliation(s)
- Christian Frech
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
217
|
Koepfli C, Timinao L, Antao T, Barry AE, Siba P, Mueller I, Felger I. A Large Plasmodium vivax Reservoir and Little Population Structure in the South Pacific. PLoS One 2013; 8:e66041. [PMID: 23823758 PMCID: PMC3688846 DOI: 10.1371/journal.pone.0066041] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/01/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction The importance of Plasmodium vivax in malaria elimination is increasingly being recognized, yet little is known about its population size and population genetic structure in the South Pacific, an area that is the focus of intensified malaria control. Methods We have genotyped 13 microsatellite markers in 295 P. vivax isolates from four geographically distinct sites in Papua New Guinea (PNG) and one site from Solomon Islands, representing different transmission intensities. Results Diversity was very high with expected heterozygosity values ranging from 0.62 to 0.98 for the different markers. Effective population size was high (12′872 to 19′533 per site). In PNG population structuring was limited with moderate levels of genetic differentiation. FST values (adjusted for high diversity of markers) were 0.14–0.15. Slightly higher levels were observed between PNG populations and Solomon Islands (FST = 0.16). Conclusions Low levels of population structure despite geographical barriers to transmission are in sharp contrast to results from regions of low P. vivax endemicity. Prior to intensification of malaria control programs in the study area, parasite diversity and effective population size remained high.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
| | - Lincoln Timinao
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Tiago Antao
- Department of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa E. Barry
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Siba
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
218
|
Taylor JE, Pacheco MA, Bacon DJ, Beg MA, Machado RL, Fairhurst RM, Herrera S, Kim JY, Menard D, Póvoa MM, Villegas L, Mulyanto, Snounou G, Cui L, Zeyrek FY, Escalante AA. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol Biol Evol 2013; 30:2050-64. [PMID: 23733143 PMCID: PMC3748350 DOI: 10.1093/molbev/mst104] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.
Collapse
Affiliation(s)
- Jesse E Taylor
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Orjuela-Sánchez P, Sá JM, Brandi MCC, Rodrigues PT, Bastos MS, Amaratunga C, Duong S, Fairhurst RM, Ferreira MU. Higher microsatellite diversity in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, Western Cambodia. Exp Parasitol 2013; 134:318-26. [PMID: 23562882 DOI: 10.1016/j.exppara.2013.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 11/25/2022]
Abstract
Previous microsatellite analyses of sympatric populations of Plasmodium vivax and Plasmodium falciparum in Brazil revealed higher diversity in the former species. However, it remains unclear whether regional species-specific differences in prevalence and transmission levels might account for these findings. Here, we examine sympatric populations of P. vivax (n=87) and P. falciparum (n=164) parasites from Pursat province, Western Cambodia, where both species are similarly prevalent. Using 10 genome-wide microsatellites for P. falciparum and 13 for P. vivax, we found that the P. vivax population was more diverse than the sympatric P. falciparum population (average virtual heterozygosity [HE], 0.87 vs. 0.66, P=0.003), with more multiple-clone infections (89.6% vs. 47.6%) and larger mean number of alleles per marker (16.2 vs. 11.1, P=0.07). Both populations showed significant multi-locus linkage disequilibrium suggestive of a predominantly clonal mode of parasite reproduction. The higher microsatellite diversity found in P. vivax isolates, compared to sympatric P. falciparum isolates, does not necessarily result from local differences in transmission level and may reflect differences in population history between species or increased mutation rates in P. vivax.
Collapse
Affiliation(s)
- Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Carlton JM, Das A, Escalante AA. Genomics, population genetics and evolutionary history of Plasmodium vivax. ADVANCES IN PARASITOLOGY 2013; 81:203-22. [PMID: 23384624 DOI: 10.1016/b978-0-12-407826-0.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax is part of a highly diverse clade that includes several Plasmodium species found in nonhuman primates from Southeast Asia. The diversity of primate malarias in Asia is staggering; nevertheless, their origin was relatively recent in the evolution of Plasmodium. We discuss how humans acquired the lineage leading to P. vivax from a nonhuman primate determined by the complex geological processes that took place in Southeast Asia during the last few million years. We conclude that widespread population genomic investigations are needed in order to understand the demographic processes involved in the expansion of P. vivax in the human populations. India represents one of the few countries with widespread vivax malaria. Earlier studies have indicated high genetic polymorphism at antigenic loci and no evidence for geographic structuring. However, new studies using genetic markers in selectively neutral genetic regions indicate that Indian P. vivax presents complex evolutionary history but possesses features consistent with being part of the ancestral distribution range of this species. Such studies are possible due to the availability of the first P. vivax genome sequences. Next generation sequencing technologies are now paving the way for the sequencing of more P. vivax genomes that will dramatically increase our understanding of the unique biology of this species.
Collapse
Affiliation(s)
- Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | | | | |
Collapse
|
221
|
Complete genome sequences from three genetically distinct strains reveal high intraspecies genetic diversity in the microsporidian Encephalitozoon cuniculi. EUKARYOTIC CELL 2013; 12:503-11. [PMID: 23291622 DOI: 10.1128/ec.00312-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microsporidia from the Encephalitozoonidae are obligate intracellular parasites with highly conserved and compacted nuclear genomes: they have few introns, short intergenic regions, and almost identical gene complements and chromosome arrangements. Comparative genomics of Encephalitozoon and microsporidia in general have focused largely on the genomic diversity between different species, and we know very little about the levels of genetic diversity within species. Polymorphism studies with Encephalitozoon are so far restricted to a small number of genes, and a few genetically distinct strains have been identified; most notably, three genotypes (ECI, ECII, and ECIII) of the model species E. cuniculi have been identified based on variable repeats in the rRNA internal transcribed spacer (ITS). To determine if E. cuniculi genotypes are genetically distinct lineages across the entire genome and at the same time to examine the question of intraspecies genetic diversity in microsporidia in general, we sequenced de novo genomes from each of the three genotypes and analyzed patterns of single nucleotide polymorphisms (SNPs) and insertions/deletions across the genomes. Although the strains have almost identical gene contents, they harbor large numbers of SNPs, including numerous nonsynonymous changes, indicating massive intraspecies variation within the Encephalitozoonidae. Based on this diversity, we conclude that the recognized genotypes are genetically distinct and propose new molecular markers for microsporidian genotyping.
Collapse
|
222
|
Abstract
Plasmodium vivax has received less attention and study than Plasmodium falciparum, due in part to difficulties in culturing this pathogen. Whole-genome sequencing of both P. vivax and Plasmodium cynomolgi and characterization of genetic variation in these species provide a genetic toolbox for tertian malaria and new insights into the monkey malaria clade.
Collapse
|
223
|
Price RN, Auburn S, Marfurt J, Cheng Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol 2012; 28:522-9. [PMID: 23044287 PMCID: PMC4627502 DOI: 10.1016/j.pt.2012.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 01/23/2023]
Abstract
In this review we present recent developments in the analysis of Plasmodium vivax clinical trials and ex vivo drug-susceptibility assays, as well approaches currently being used to identify molecular markers of drug resistance. Clinical trials incorporating the measurement of in vivo drug concentrations and parasite clearance times are needed to detect early signs of resistance. Analysis of P. vivax growth dynamics ex vivo have defined the criteria for acceptable assay thresholds for drug susceptibility testing, and their subsequent interpretation. Genotyping and next-generation sequencing studies in P. vivax field isolates are set to transform our understanding of the molecular mechanisms of drug resistance.
Collapse
Affiliation(s)
- Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| | | | | | | |
Collapse
|
224
|
Hwang J, Jaroensuk J, Leimanis ML, Russell B, McGready R, Day N, Snounou G, Nosten F, Imwong M. Long-term storage limits PCR-based analyses of malaria parasites in archival dried blood spots. Malar J 2012; 11:339. [PMID: 23043522 PMCID: PMC3507721 DOI: 10.1186/1475-2875-11-339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/03/2012] [Indexed: 11/15/2022] Open
Abstract
Background Blood samples collected in epidemiological and clinical investigations and then stored, often at room temperature, as blood spots dried on a filter paper have become one of the most popular source of material for further molecular analyses of malaria parasites. The dried blood spots are often archived so that they can be used for further retrospective investigations of parasite prevalence, or as new genetic markers come to the fore. However, the suitability of the template obtained from dried blood spots that have been stored for long periods for DNA amplification is not known. Methods DNA from 267 archived blood spots collected over a period of 12 years from persons with microscopically confirmed Plasmodium falciparum infection was purified by one of two methods, Chelex and Qiagen columns. These templates were subjected to highly sensitive nested PCR amplification targeting three parasite loci that differ in length and/or copy number. Results When a 1.6 kb fragment of the parasites’ small subunit ribosomal RNA was targeted (primary amplification), the efficiency of P. falciparum detection decreased in samples archived for more than six years, reaching very low levels for those stored for more than 10 years. Positive amplification was generally obtained more often with Qiagen-extracted templates. P. falciparum could be detected in 32 of the 40 negative Qiagen-extracted templates when a microsatellite of about 180 bp was targeted. The remaining eight samples gave a positive amplification when a small region of 238 bp of the higher copy number (20 to 200) mitochondrial genome was targeted. Conclusions The average length of DNA fragments that can be recovered from dried blood spots decreases with storage time. Recovery of the DNA is somewhat improved, especially in older samples, by the use of a commercial DNA purification column, but targets larger than 1.5 kb are unlikely to be present 10 years after the initial blood collection, when the average length of the DNA fragments present is likely to be around a few hundred bp. In conclusion, the utility of archived dried blood spots for molecular analyses decreases with storage time.
Collapse
Affiliation(s)
- Joyce Hwang
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|