201
|
IG- MYC + neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas. Blood 2018; 132:2280-2285. [PMID: 30282799 DOI: 10.1182/blood-2018-03-842088] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
The WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue notes instances of Burkitt lymphoma/leukemia (BL) with IG-MYC rearrangement displaying a B-cell precursor immunophenotype (termed herein "preBLL"). To characterize the molecular pathogenesis of preBLL, we investigated 13 preBLL cases (including 1 cell line), of which 12 were analyzable using genome, exome, and targeted sequencing, imbalance mapping, and DNA methylation profiling. In 5 patients with reads across the IG-MYC breakpoint junctions, we found evidence that the translocation derived from an aberrant VDJ recombination, as is typical for IG translocations arising in B-cell precursors. Genomic changes like biallelic IGH translocations or VDJ rearrangements combined with translocation into the VDJ region on the second allele, potentially preventing expression of a productive immunoglobulin, were detected in 6 of 13 cases. We did not detect mutations in genes frequently altered in BL, but instead found activating NRAS and/or KRAS mutations in 7 of 12 preBLLs. Gains on 1q, recurrent in BL and preB lymphoblastic leukemia/lymphoma (pB-ALL/LBL), were detected in 7 of 12 preBLLs. DNA methylation profiling showed preBLL to cluster with precursor B cells and pB-ALL/LBL, but apart from BL. We conclude that preBLL genetically and epigenetically resembles pB-ALL/LBL rather than BL. Therefore, we propose that preBLL be considered as a pB-ALL/LBL with recurrent genetic abnormalities.
Collapse
|
202
|
Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol 2018; 18:45. [PMID: 28670664 DOI: 10.1007/s11864-017-0483-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OPINION STATEMENT The 2016 revision of the WHO classification of lymphoid neoplasms includes new entities along with a clearer definition of provisional and definitive subtypes based on better understanding of the molecular drivers of lymphomas. These changes impact current treatment paradigms and provide a framework for future clinical trials. Additionally, this update recognizes several premalignant or predominantly indolent entities and underscores the importance of avoiding unnecessarily aggressive treatment in the latter subsets.
Collapse
Affiliation(s)
- Ryan C Lynch
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ranjana H Advani
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford University Medical Center, 875 Blake Wilbur Drive, Suite CC-2338, Stanford, CA, 94305-5821, USA.
| |
Collapse
|
203
|
Scott DW, Rimsza LM. Dissecting aggressive B-cell lymphoma through genomic analysis - What is clinically relevant? Best Pract Res Clin Haematol 2018; 31:187-198. [PMID: 30213388 DOI: 10.1016/j.beha.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
The aggressive B-cell lymphomas are a diverse collection of cancers grouped together based on clinical behavior and derivation from B lymphocytes. Genomic analyses on these tumours are now translating into improved classification systems and identification of underpinning targetable biology. Simple karyotyping revealed key translocations involving MYC, BCL2, and BCL6 that have impacted lymphoma classification in the World Health Organization classification scheme. Subsequently, gene expression profiling identified molecular subgroups within the most common lymphoma, diffuse large B-cell lymphoma (DLBCL): activated B-cell-like and germinal centre B-cell-like. Finally, next generation sequencing has revealed a modest number of frequently mutated genes and a long list of infrequent mutations. The mutational landscapes involve diverse genes associated with dysregulated signalling, epigenetic modification, blockade of cellular differentiation, and immune evasion. These mutational "signatures" are enriched in the different aggressive lymphoma subtypes impacting phenotypes and identifying therapeutic targets. Challenges to implementing genomic assays into clinical practice remain.
Collapse
Affiliation(s)
- David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
204
|
|
205
|
Johnson MJ, Laoharawee K, Lahr WS, Webber BR, Moriarity BS. Engineering of Primary Human B cells with CRISPR/Cas9 Targeted Nuclease. Sci Rep 2018; 8:12144. [PMID: 30108345 PMCID: PMC6092381 DOI: 10.1038/s41598-018-30358-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
B cells offer unique opportunities for gene therapy because of their ability to secrete large amounts of protein in the form of antibody and persist for the life of the organism as plasma cells. Here, we report optimized CRISPR/Cas9 based genome engineering of primary human B cells. Our procedure involves enrichment of CD19+ B cells from PBMCs followed by activation, expansion, and electroporation of CRISPR/Cas9 reagents. We are able expand total B cells in culture 10-fold and outgrow the IgD+ IgM+ CD27- naïve subset from 35% to over 80% of the culture. B cells are receptive to nucleic acid delivery via electroporation 3 days after stimulation, peaking at Day 7 post stimulation. We tested chemically modified sgRNAs and Alt-R gRNAs targeting CD19 with Cas9 mRNA or Cas9 protein. Using this system, we achieved genetic and protein knockout of CD19 at rates over 70%. Finally, we tested sgRNAs targeting the AAVS1 safe harbor site using Cas9 protein in combination with AAV6 to deliver donor template encoding a splice acceptor-EGFP cassette, which yielded site-specific integration frequencies up to 25%. The development of methods for genetically engineered B cells opens the door to a myriad of applications in basic research, antibody production, and cellular therapeutics.
Collapse
Affiliation(s)
- Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
206
|
Drug-based perturbation screen uncovers synergistic drug combinations in Burkitt lymphoma. Sci Rep 2018; 8:12046. [PMID: 30104685 PMCID: PMC6089937 DOI: 10.1038/s41598-018-30509-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Burkitt lymphoma (BL) is a highly aggressive B-cell lymphoma associated with MYC translocation. Here, we describe drug response profiling of 42 blood cancer cell lines including 17 BL to 32 drugs targeting key cancer pathways and provide a systematic study of drug combinations in BL cell lines. Based on drug response, we identified cell line specific sensitivities, i.e. to venetoclax driven by BCL2 overexpression and partitioned subsets of BL driven by response to kinase inhibitors. In the combination screen, including BET, BTK and PI3K inhibitors, we identified synergistic combinations of PI3K and BTK inhibition with drugs targeting Akt, mTOR, BET and doxorubicin. A detailed comparison of PI3K and BTKi combinations identified subtle differences, in line with convergent pathway activity. Most synergistic combinations were identified for the BET inhibitor OTX015, which showed synergistic effects for 41% of combinations including inhibitors of PI3K/AKT/mTOR signalling. The strongest synergy was observed for the combination of the CDK 2/7/9 inhibitor SNS032 and OTX015. Our data provide a landscape of drug combination effects in BL and suggest that targeting CDK and BET could provide a novel vulnerability of BL.
Collapse
|
207
|
|
208
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
209
|
Management of aggressive B-cell NHLs in the AYA population: an adult vs pediatric perspective. Blood 2018; 132:369-375. [PMID: 29895666 DOI: 10.1182/blood-2018-02-778480] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
The adolescents and young adult (AYA) population represent a group wherein mature B-cell lymphomas constitute a significant proportion of the overall malignancies that occur. Among these are aggressive B-cell non-Hodgkin lymphomas (NHLs), which are predominantly diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, and Burkitt lymphoma. For the most part, there is remarkable divide in how pediatric/adolescent patients (under the age of 18 years) with lymphoma are treated vs their young adult counterparts, and molecular data are lacking, especially in pediatric and AYA series. The outcome for AYA patients with cancers has historically been inferior to that of children or older adults, highlighting the necessity to focus on this population. This review discusses the pediatric vs adult perspective in terms of how these diseases are understood and approached and emphasizes the importance of collaborative efforts in both developing consensus for treatment of this population and planning future research endeavors.
Collapse
|
210
|
Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. CHEM REC 2018; 18:1681-1700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| |
Collapse
|
211
|
Jiménez-P R, Martín-Cortázar C, Kourani O, Chiodo Y, Cordoba R, Domínguez-Franjo MP, Redondo JM, Iglesias T, Campanero MR. CDCA7 is a critical mediator of lymphomagenesis that selectively regulates anchorage-independent growth. Haematologica 2018; 103:1669-1678. [PMID: 29880607 PMCID: PMC6165795 DOI: 10.3324/haematol.2018.188961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tumor formation involves the acquisition of numerous capacities along the progression from a normal cell into a malignant cell, including limitless proliferation (immortalization) and anchorage-independent growth, a capacity that correlates extremely well with tumorigenesis. Great efforts have been made to uncover genes involved in tumor formation, but most genes identified participate in processes related to cell proliferation. Accordingly, therapies targeting these genes also affect the proliferation of normal cells. To identify potential targets for therapeutic intervention more specific to tumor cells, we looked for genes implicated in the acquisition of anchorage-independent growth and in vivo tumorigenesis capacity. A transcriptomic analysis identified CDCA7 as a candidate gene. Indeed, CDCA7 protein was upregulated in Burkitt's lymphoma cell lines and human tumor biopsy specimens relative to control cell lines and tissues, respectively. CDCA7 levels were also markedly elevated in numerous T and B-lymphoid tumor cell lines. While CDCA7 was not required for anchorage-dependent growth of normal fibroblasts or non-malignant lymphocytes, it was essential but not sufficient for anchorage-independent growth of lymphoid tumor cells and for lymphomagenesis. These data suggest that therapies aimed at inhibiting CDCA7 expression or function might significantly decrease the growth of lymphoid tumors.
Collapse
Affiliation(s)
- Raúl Jiménez-P
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Raul Cordoba
- Department of Hematology, University Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | - Juan Miguel Redondo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, (CNIC), Madrid, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain .,CIBERCV, Spain
| |
Collapse
|
212
|
Rezk SA, Zhao X, Weiss LM. Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum Pathol 2018; 79:18-41. [PMID: 29885408 DOI: 10.1016/j.humpath.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) has been linked to many human neoplasms including hematopoietic, epithelial, and mesenchymal tumors. Since our original review of EBV-associated lymphoproliferative disorders in 2007, many advances and developments have been reported. In this review, we will examine the recent advances in EBV-associated lymphoid/histiocytic proliferations, dividing them into reactive, B cell, T/NK cell, immunodeficiency-related, and histiocytic/dendritic cell proliferations.
Collapse
Affiliation(s)
- Sherif A Rezk
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA.
| | - Xiaohui Zhao
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA
| | - Lawrence M Weiss
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA; NeoGenomics Laboratories, Aliso Viejo, 92656, CA
| |
Collapse
|
213
|
How I treat Burkitt lymphoma in children, adolescents, and young adults in sub-Saharan Africa. Blood 2018; 132:254-263. [PMID: 29769263 DOI: 10.1182/blood-2018-04-844472] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Burkitt lymphoma (BL) is the most common pediatric cancer in sub-Saharan Africa (SSA), and also occurs frequently among adolescents and young adults (AYAs), often associated with HIV. Treating BL in SSA poses particular challenges. Although highly effective, high-intensity cytotoxic treatments used in resource-rich settings are usually not feasible, and lower-intensity continuous infusion approaches are impractical. In this article, based on evidence from the region, we review management strategies for SSA focused on diagnosis and use of prephase and definitive treatment. Additionally, potentially better approaches for risk stratification and individualized therapy are elaborated. Compared with historical very low-intensity approaches, the relative safety, feasibility, and outcomes of regimens incorporating anthracyclines and/or high-dose systemic methotrexate for this population are discussed, along with requirements to administer such regimens safely. Finally, research priorities for BL in SSA are outlined including novel therapies, to reduce the unacceptable gap in outcomes for patients in SSA vs high-income countries (HICs). Sustained commitment to incremental advances and innovation, as in cooperative pediatric oncology groups in HICs, is required to transform care and outcomes for BL in SSA through international collaboration.
Collapse
|
214
|
Guidry JT, Birdwell CE, Scott RS. Epstein-Barr virus in the pathogenesis of oral cancers. Oral Dis 2018; 24:497-508. [PMID: 28190296 PMCID: PMC5554094 DOI: 10.1111/odi.12656] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus that establishes a lifelong persistent infection in the oral cavity and is intermittently shed in the saliva. EBV exhibits a biphasic life cycle, supported by its dual tropism for B lymphocytes and epithelial cells, which allows the virus to be transmitted within oral lymphoid tissues. While infection is often benign, EBV is associated with a number of lymphomas and carcinomas that arise in the oral cavity and at other anatomical sites. Incomplete association of EBV in cancer has questioned if EBV is merely a passenger or a driver of the tumorigenic process. However, the ability of EBV to immortalize B cells and its prevalence in a subset of cancers has implicated EBV as a carcinogenic cofactor in cellular contexts where the viral life cycle is altered. In many cases, EBV likely acts as an agent of tumor progression rather than tumor initiation, conferring malignant phenotypes observed in EBV-positive cancers. Given that the oral cavity serves as the main site of EBV residence and transmission, here we review the prevalence of EBV in oral malignancies and the mechanisms by which EBV acts as an agent of tumor progression.
Collapse
Affiliation(s)
- Joseph T. Guidry
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| | - Christine E. Birdwell
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| |
Collapse
|
215
|
Abstract
PURPOSE OF REVIEW We review the genetic foundations of different rare lymphomas to examine their shared origins. These data indicate the potential application of genomics to improve the diagnosis and treatment of these rare diseases. RECENT FINDINGS Next generation sequencing technologies have provided an important window into the genetic underpinnings of lymphomas. A growing body of evidence indicates that although some genetic alterations are specific to certain diseases, others are shared across different lymphomas. Many such genetic events have already demonstrated clinical utility, such as BRAF V600E that confers sensitivity to vemurafenib in patients with hairy cell leukemia. SUMMARY The rareness of many lymphoma subtypes makes the conduct of clinical trials and recruitment of significant numbers of patients impractical. However, a knowledge of the shared genetic origins of these rare lymphomas has the potential to inform 'basket' clinical trials in which multiple lymphoma subtypes are included. These trials would include patients based on the presence of alterations in targetable driver genes. Such approaches would be greatly strengthened by a systematic assessment of significant patient numbers from each subtype using next generation sequencing.
Collapse
|
216
|
Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 2018; 131:2454-2465. [PMID: 29650799 DOI: 10.1182/blood-2017-11-814913] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in young adults, remains challenging because of the rarity of tumor cells in involved tissues (usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells. We uncovered several recurrently mutated genes, namely, STAT6 (32% of cases), GNA13 (24%), XPO1 (18%), and ITPKB (16%), and document the functional role of mutant STAT6 in sustaining tumor cell viability. Mutations of STAT6 genetically and functionally cooperated with disruption of SOCS1, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall, 87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in multiple genes (also including STAT3, STAT5B, JAK1, JAK2, and PTPN1), attesting to the pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new therapeutic target in this disease.
Collapse
|
217
|
Ma C, Wang F, Han B, Zhong X, Si F, Ye J, Hsueh EC, Robbins L, Kiefer SM, Zhang Y, Hunborg P, Varvares MA, Rauchman M, Peng G. SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. Mol Cancer 2018; 17:78. [PMID: 29625565 PMCID: PMC5889587 DOI: 10.1186/s12943-018-0824-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/11/2018] [Indexed: 01/19/2023] Open
Abstract
Background SALL1 is a multi-zinc finger transcription factor that regulates organogenesis and stem cell development, but the role of SALL1 in tumor biology and tumorigenesis remains largely unknown. Methods We analyzed SALL1 expression levels in human and murine breast cancer cells as well as cancer tissues from different types of breast cancer patients. Using both in vitro co-culture system and in vivo breast tumor models, we investigated how SALL1 expression in breast cancer cells affects tumor cell growth and proliferation, metastasis, and cell fate. Using the gain-of function and loss-of-function strategies, we dissected the molecular mechanism responsible for SALL1 tumor suppressor functions. Results We demonstrated that SALL1 functions as a tumor suppressor in breast cancer, which is significantly down-regulated in the basal like breast cancer and in estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) triple negative breast cancer patients. SALL1 expression in human and murine breast cancer cells inhibited cancer cell growth and proliferation, metastasis, and promoted cell cycle arrest. Knockdown of SALL1 in breast cancer cells promoted cancer cell growth, proliferation, and colony formation. Our studies revealed that tumor suppression was mediated by recruitment of the Nucleosome Remodeling and Deacetylase (NuRD) complex by SALL1, which promoted cancer cell senescence. We further demonstrated that the mechanism of inhibition of breast cancer cell growth and invasion by SALL1-NuRD depends on the p38 MAPK, ERK1/2, and mTOR signaling pathways. Conclusion Our studies indicate that the developmental control gene SALL1 plays a critical role in tumor suppression by recruiting the NuRD complex and thereby inducing cell senescence in breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12943-018-0824-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, Women & Children's Hospital of Linyi, Shandong Medical College, Linyi, 276000, People's Republic of China
| | - Fang Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Bing Han
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoli Zhong
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Fusheng Si
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jian Ye
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eddy C Hsueh
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Lynn Robbins
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA.,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA
| | - Susan M Kiefer
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Yanping Zhang
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Pamela Hunborg
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Mark A Varvares
- Department of Otolaryngology, Saint Louis University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Michael Rauchman
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA. .,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA.
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
218
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
219
|
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.
Collapse
|
220
|
Chan FC, Lim E, Kridel R, Steidl C. Novel insights into the disease dynamics of B-cell lymphomas in the Genomics Era. J Pathol 2018; 244:598-609. [DOI: 10.1002/path.5043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Fong Chun Chan
- Centre for Lymphoid Cancer; British Columbia Cancer Agency; Vancouver British Columbia Canada
| | - Emilia Lim
- Centre for Lymphoid Cancer; British Columbia Cancer Agency; Vancouver British Columbia Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre; University Health Network; Toronto Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer; British Columbia Cancer Agency; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
221
|
Qin C, Huang Y, Feng Y, Li M, Guo N, Rao H. Clinicopathological features and EBV infection status of lymphoma in children and adolescents in South China: a retrospective study of 662 cases. Diagn Pathol 2018; 13:17. [PMID: 29482573 PMCID: PMC5828429 DOI: 10.1186/s13000-018-0693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The clinicopathological features and Epstein-Barr virus (EBV) infection status of lymphoma in children and adolescents in South China is under-researched. South China is a well-known high-incidence area of EBV-associated nasopharyngeal carcinoma. METHODS A cohort of 662 consecutive children and adolescents' lymphomas was retrospectively analyzed and Epstein-Barr virus encoded RNAs (EBERs) in situ hybridization was performed to detect the EBV infection. RESULTS The majority (501/662, 75.7%) of lymphomas in children and adolescents was Non-Hodgkin lymphoma (NHL). One hundred sixty one cases (24.3%) were Hodgkin lymphoma (HL). Of the NHL, precursor cell lymphoma, mature B-cell lymphoma and peripheral T/NK-cell lymphoma accounted for 32.0%, 41.1% and 26.9% respectively. The five common subtypes were lymphoblastic lymphoma (32.0%), Burkitt lymphoma (BL) (21.0%), anaplastic large-cell lymphoma (ALCL) (14.2%), diffuse large B-cell lymphoma (DLBCL) (13.8%) and extranodal NK/T-cell lymphoma, nasal type (ENKTCL) (6.2%). EBV infection was detected in 58.9% classical Hodgkin lymphomas (CHLs), 21.4% mature B-cell lymphomas and 52.4% peripheral T/NK-cell lymphomas. Moreover, EBV was associated with high grade NHL including ENKTCL (100.0%), BL (30.5%) and DLBCL (17.6%). CONCLUSION The high proportion of peripheral T/NK-cell lymphomas in children and adolescents in South China are presented in this study and compared to western countries due to the high percentage of ENKTCL. ENKTCL is firmly associated with EBV infection, while more than half of HL, a portion of BL and DLBCL are related to EBV infection. This study conclusively demonstrates that EBV infection is more prevalent in children and adolescents with lymphomas in South China compared to western countries.
Collapse
Affiliation(s)
- Changfei Qin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Min Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Na Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Huilan Rao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China. .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
222
|
Alterations in the Rho pathway contribute to Epstein-Barr virus-induced lymphomagenesis in immunosuppressed environments. Blood 2018; 131:1931-1941. [PMID: 29475961 DOI: 10.1182/blood-2017-07-797209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphomas (EBV+-DLBLs) tend to occur in immunocompromised patients, such as the elderly or those undergoing solid organ transplantation. The pathogenesis and genomic characteristics of EBV+-DLBLs are largely unknown because of the limited availability of human samples and lack of experimental animal models. We observed the development of 25 human EBV+-DLBLs during the engraftment of gastric adenocarcinomas into immunodeficient mice. An integrated genomic analysis of the human-derived EBV+-DLBLs revealed enrichment of mutations in Rho pathway genes, including RHPN2, and Rho pathway transcriptomic activation. Targeting the Rho pathway using a Rho-associated protein kinase (ROCK) inhibitor, fasudil, markedly decreased tumor growth in EBV+-DLBL patient-derived xenograft (PDX) models. Thus, alterations in the Rho pathway appear to contribute to EBV-induced lymphomagenesis in immunosuppressed environments.
Collapse
|
223
|
Clonal evolution in relapsed and refractory diffuse large B-cell lymphoma is characterized by high dynamics of subclones. Oncotarget 2018; 7:51494-51502. [PMID: 27285986 PMCID: PMC5239491 DOI: 10.18632/oncotarget.9860] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/22/2016] [Indexed: 11/25/2022] Open
Abstract
Little information is available about the role of certain mutations for clonal evolution and the clinical outcome during relapse in diffuse large B-cell lymphoma (DLBCL). Therefore, we analyzed formalin-fixed-paraffin-embedded tumor samples from first diagnosis, relapsed or refractory disease from 28 patients using next-generation sequencing of the exons of 104 coding genes. Non-synonymous mutations were present in 74 of the 104 genes tested. Primary tumor samples showed a median of 8 non-synonymous mutations (range: 0-24) with the used gene set. Lower numbers of non-synonymous mutations in the primary tumor were associated with a better median OS compared with higher numbers (28 versus 15 months, p=0.031). We observed three patterns of clonal evolution during relapse of disease: large global change, subclonal selection and no or minimal change possibly suggesting preprogrammed resistance. We conclude that targeted re-sequencing is a feasible and informative approach to characterize the molecular pattern of relapse and it creates novel insights into the role of dynamics of individual genes.
Collapse
|
224
|
Guerrero-Martínez JA, Reyes JC. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep 2018; 8:2043. [PMID: 29391527 PMCID: PMC5794756 DOI: 10.1038/s41598-018-20217-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
The gene encoding the ATPase of the chromatin remodeling SWI/SNF complexes SMARCA4 (BRG1) is often mutated or silenced in tumors, suggesting a role as tumor suppressor. Nonetheless, recent reports show requirement of SMARCA4 for tumor cells growth. Here, we performed a computational meta-analysis using gene expression, prognosis, and clinicopathological data to clarify the role of SMARCA4 and the alternative SWI/SNF ATPase SMARCA2 (BRM) in cancer. We show that while the SMARCA4 gene is mostly overexpressed in tumors, SMARCA2 is almost invariably downexpressed in tumors. High SMARCA4 expression was associated with poor prognosis in many types of tumors, including liver hepatocellular carcinoma (LIHC), and kidney renal clear cell carcinoma (KIRC). In contrast, high SMARCA2 expression was associated with good prognosis. We compared tumors with high versus low expression of SMARCA4 or SMARCA2 in LIHC and KIRC cohorts from The Cancer Genome Atlas. While a high expression of SMARCA4 is associated with aggressive tumors, a high expression of SMARCA2 is associated with benign differentiated tumors, suggesting that SMARCA4 and SMARCA2 play opposite roles in cancer. Our results demonstrate that expression of SMARCA4 and SMARCA2 have a high prognostic value and challenge the broadly accepted general role of SMARCA4 as a tumor suppressor.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
225
|
Mauz-Körholz C, Ströter N, Baumann J, Botzen A, Körholz K, Körholz D. Pharmacotherapeutic Management of Pediatric Lymphoma. Paediatr Drugs 2018; 20:43-57. [PMID: 29127674 DOI: 10.1007/s40272-017-0265-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) comprise approximately 15% of all childhood malignancies. Cure rates for both lymphoma entities have evolved tremendously during the last couple of decades, raising the 5-year survival rates to almost 100% for HL and to 85% for NHL. The mainstay therapy for both malignancies is still chemotherapy-with different regimens recommended for different types of disease. In HL, combined modality treatment, i.e., chemotherapy followed by radiotherapy, has long been the standard regimen. In order to reduce long-term side effects, such as second malignancies, most major pediatric HL consortia have studied response-based radiotherapy reduction strategies over the last 3 decades. For recurrent disease, high-dose chemotherapy followed by an autologous or an allogeneic hematopoietic stem-cell transplant is an option. No targeted agents have yet gained regulatory approval for use in pediatric patients with lymphoma. For adult lymphoma patients, the CD20 antibody rituximab and the CD30 antibody-drug conjugate brentuximab vedotin are targeted agents used regularly in first- and second-line treatment regimens. More recently, immune checkpoint inhibitors, phosphatidyl-inositol-3-kinase inhibitors, and Bruton's tyrosine kinase inhibitors appear to be very promising new treatment options in adult lymphoma. Here, we discuss the current experience with these types of agents in pediatric lymphoma patients.
Collapse
Affiliation(s)
- Christine Mauz-Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany. .,Medical Faculty of the Martin-Luther-University of Halle-Wittenberg, Halle, Germany.
| | - Natascha Ströter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Julia Baumann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Ante Botzen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Katharina Körholz
- Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research center (DKFZ), Heidelberg, Germany
| | - Dieter Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| |
Collapse
|
226
|
Arnaud O, Le Loarer F, Tirode F. BAFfling pathologies: Alterations of BAF complexes in cancer. Cancer Lett 2018; 419:266-279. [PMID: 29374542 DOI: 10.1016/j.canlet.2018.01.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
Abstract
To activate or repress specific genes, chromatin is constantly modified by chromatin-remodeling complexes. Among these complexes, the SWItch/Sucrose Non-Fermenting (SWI/SNF) complex, also referred to as BRG1-Associated Factor (BAF) complex, moves the nucleosome along chromatin using energy provided by ATP hydrolysis. In mammalian organisms, the SWI/SNF complex is composed of 10-15 subunits, depending on cell type, and a defect in one of these subunits can have dramatic consequences. In this review we will focus on the alterations identified in the SWI/SNF (BAF) complex subunits that lead to cancerous pathologies. While SMARCB1 was the first mutated subunit to be reported in a majority of malignant rhabdoid tumors, the advent of next-generation sequencing allowed the discovery of mutations in various SWI/SNF subunits within a broad spectrum of cancers. In most cases, the mutation leads to a loss of expression or to a truncated subunit unable to perform its function. Even though it is now commonly acknowledged that approximately 20% of all cancers present a mutation in a SWI/SNF subunit, some cancers are associated to a specific alteration of a SWI/SNF subunit, which acts either as tumor suppressor genes or as oncogenes, and therefore constitute diagnostic or prognostic biomarkers. Consistently, therapeutic strategies targeting SWI/SNF subunits or the genes affected downstream have been revealed to treat cancers.
Collapse
Affiliation(s)
- Ophelie Arnaud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008, Lyon, France
| | | | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008, Lyon, France; Department of Translational Research and Innovation, Centre Léon Bérard, F-69008, Lyon, France.
| |
Collapse
|
227
|
Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A, Benguria A, Torroja C, de Yébenes VG, Ramiro AR. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med 2018; 215:761-771. [PMID: 29374026 PMCID: PMC5839764 DOI: 10.1084/jem.20171738] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Activation-induced deaminase (AID) initiates antibody diversification in germinal center (GC) B cells through the deamination of cytosines on immunoglobulin genes. AID can also target other regions in the genome, triggering mutations or chromosome translocations, with major implications for oncogenic transformation. However, understanding the specificity of AID has proved extremely challenging. We have sequenced at very high depth >1,500 genomic regions from GC B cells and identified 275 genes targeted by AID, including 30 of the previously known 35 AID targets. We have also identified the most highly mutated hotspot for AID activity described to date. Furthermore, integrative analysis of the molecular features of mutated genes coupled to machine learning has produced a powerful predictive tool for AID targets. We also have found that base excision repair and mismatch repair back up each other to faithfully repair AID-induced lesions. Finally, our data establish a novel link between AID mutagenic activity and lymphomagenesis.
Collapse
Affiliation(s)
- Ángel F Álvarez-Prado
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Virginia G de Yébenes
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
228
|
Guo L, Lin P, Xiong H, Tu S, Chen G. Molecular heterogeneity in diffuse large B-cell lymphoma and its implications in clinical diagnosis and treatment. Biochim Biophys Acta Rev Cancer 2018; 1869:85-96. [PMID: 29337112 DOI: 10.1016/j.bbcan.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.
Collapse
Affiliation(s)
- Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China.
| | - Pei Lin
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 72, Houston, TX 77030, USA.
| | - Hui Xiong
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China.
| | - Shichun Tu
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China; Scintillon Institute for Biomedical and Bioenergy Research, 6888 Nancy Ridge Dr., San Diego, CA 92121, USA; Allele Biotechnology & Pharmaceuticals, Inc., 6404 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - Gang Chen
- Department of Pathology of Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China.
| |
Collapse
|
229
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
230
|
|
231
|
Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 2017; 25:61-72. [PMID: 29323272 PMCID: PMC5909405 DOI: 10.1038/s41594-017-0007-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023]
Abstract
Mutation of SMARCA4 (BRG1), the ATPase of BAF (mSWI/SNF) and PBAF complexes, contributes to a range of malignancies and neurologic disorders. Unfortunately, the effects of SMARCA4 missense mutations have remained uncertain. Here we show that SMARCA4 cancer missense mutations target conserved ATPase surfaces and disrupt the mechanochemical cycle of remodeling. We find that heterozygous expression of mutants alters the open chromatin landscape at thousands of sites across the genome. Loss of DNA accessibility does not directly overlap with Polycomb accumulation, but is enriched in 'A compartments' at active enhancers, which lose H3K27ac but not H3K4me1. Affected positions include hundreds of sites identified as superenhancers in many tissues. Dominant-negative mutation induces pro-oncogenic expression changes, including increased expression of Myc and its target genes. Together, our data suggest that disruption of enhancer accessibility represents a key source of altered function in disorders with SMARCA4 mutations in a wide variety of tissues.
Collapse
|
232
|
Campbell KJ, Vandenberg CJ, Anstee NS, Hurlin PJ, Cory S. Mnt modulates Myc-driven lymphomagenesis. Cell Death Differ 2017; 24:2117-2126. [PMID: 28800127 PMCID: PMC5686348 DOI: 10.1038/cdd.2017.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022] Open
Abstract
The transcriptional represser Mnt is a functional antagonist of the proto-oncoprotein Myc. Both Mnt and Myc utilise Max as an obligate partner for DNA binding, and Myc/Max and Mnt/Max complexes compete for occupancy at E-box DNA sequences in promoter regions. We have previously shown in transgenic mouse models that the phenotype and kinetics of onset of haemopoietic tumours varies with the level of Myc expression. We reasoned that a decrease in the level of Mnt would increase the functional level of Myc and accelerate Myc-driven tumorigenesis. We tested the impact of reduced Mnt in three models of myc transgenic mice and in p53+/- mice. To our surprise, mnt heterozygosity actually slowed Myc-driven tumorigenesis in vavP-MYC10 and Eμ-myc mice, suggesting that Mnt facilitates Myc-driven oncogenesis. To explore the underlying cause of the delay in tumour development, we enumerated Myc-driven cell populations in healthy young vavP-MYC10 and Eμ-myc mice, expecting that the reduced rate of leukaemogenesis in mnt heterozygous mice would be reflected in a reduced number of preleukaemic cells, due to increased apoptosis or reduced proliferation or both. However, no differences were apparent. Furthermore, when mnt+/+ and mnt+/- pre-B cells from healthy young Eμ-myc mice were compared in vitro, no differences were seen in their sensitivity to apoptosis or in cell size or cell cycling. Moreover, the frequencies of apoptotic, senescent and proliferating cells were comparable in vivo in mnt+/- and mnt+/+ Eμ-myc lymphomas. Thus, although mnt heterozygosity clearly slowed lymphomagenesis in vavP-MYC10 and Eμ-myc mice, the change(s) in cellular properties responsible for this effect remain to be identified.
Collapse
Affiliation(s)
- Kirsteen J Campbell
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
| | - Cassandra J Vandenberg
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Natasha S Anstee
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Suzanne Cory
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
233
|
Chromatin modifying gene mutations in follicular lymphoma. Blood 2017; 131:595-604. [PMID: 29158360 DOI: 10.1182/blood-2017-08-737361] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent malignancy of germinal center B cells. Although the overall survival of FL patients has recently improved with the introduction of novel therapies, there is significant heterogeneity in patient outcome and a need for rationally designed therapeutic strategies that target disease biology. Next-generation sequencing studies have identified chromatin modifying gene (CMG) mutations as a hallmark of FL, highlighting epigenetic modifiers as an attractive therapeutic target in this disease. Understanding the complex roles of these mutations will be central to identifying and adaptively targeting associated vulnerabilities. Recent studies have provided insight into the functional consequences of the most frequently mutated CMGs (KMT2D, CREBBP, and EZH2) and point to a role for these events in modifying normal B-cell differentiation programs and impeding germinal center exit. However, the majority of FL tumors serially acquire multiple CMG mutations, suggesting that there is a level of cross talk or cooperation between these events that has not yet been defined. Here, I review the current state of knowledge on CMG mutations in FL, discuss their potential as therapeutic targets, and offer my perspective on unexplored areas that should be considered in the future.
Collapse
|
234
|
Oduor CI, Kaymaz Y, Chelimo K, Otieno JA, Ong’echa JM, Moormann AM, Bailey JA. Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer 2017; 17:761. [PMID: 29132323 PMCID: PMC5683570 DOI: 10.1186/s12885-017-3711-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Burkitt lymphoma (BL) is characterized by overexpression of the c-myc oncogene, which in the vast majority of cases is a consequence of an IGH/MYC translocation. While myc is the seminal event, BL is a complex amalgam of genetic and epigenetic changes causing dysregulation of both coding and non-coding transcripts. Emerging evidence suggest that abnormal modulation of mRNA transcription via miRNAs might be a significant factor in lymphomagenesis. However, the alterations in these miRNAs and their correlations to their putative mRNA targets have not been extensively studied relative to normal germinal center (GC) B cells. METHODS Using more sensitive and specific transcriptome deep sequencing, we compared previously published small miRNA and long mRNA of a set of GC B cells and eBL tumors. MiRWalk2.0 was used to identify the validated target genes for the deregulated miRNAs, which would be important for understanding the regulatory networks associated with eBL development. RESULTS We found 211 differentially expressed (DE) genes (79 upregulated and 132 downregulated) and 49 DE miRNAs (22 up-regulated and 27 down-regulated). Gene Set enrichment analysis identified the enrichment of a set of MYC regulated genes. Network propagation-based method and correlated miRNA-mRNA expression analysis identified dysregulated miRNAs, including miR-17~95 cluster members and their target genes, which have diverse oncogenic properties to be critical to eBL lymphomagenesis. Central to all these findings, we observed the downregulation of ATM and NLK genes, which represent important regulators in response to DNA damage in eBL tumor cells. These tumor suppressors were targeted by multiple upregulated miRNAs (miR-19b-3p, miR-26a-5p, miR-30b-5p, miR-92a-5p and miR-27b-3p) which could account for their aberrant expression in eBL. CONCLUSION Combined loss of p53 induction and function due to miRNA-mediated regulation of ATM and NLK, together with the upregulation of TFAP4, may be a central role for human miRNAs in eBL oncogenesis. This facilitates survival of eBL tumor cells with the IGH/MYC chromosomal translocation and promotes MYC-induced cell cycle progression, initiating eBL lymphomagenesis. This characterization of miRNA-mRNA interactions in eBL relative to GC B cells provides new insights on miRNA-mediated transcript regulation in eBL, which are potentially useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Cliff I. Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Yasin Kaymaz
- Department of Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiprotich Chelimo
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Juliana A. Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Health, Kisumu, Kenya
| | | | - Ann M. Moormann
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Jeffrey A. Bailey
- Department of Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, MA USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation St. Albert Sherman Building 41077, Worcester, MA 01605 USA
| |
Collapse
|
235
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
236
|
Inhibitor of DNA binding 2 is a novel therapeutic target for stemness of head and neck squamous cell carcinoma. Br J Cancer 2017; 117:1810-1818. [PMID: 29096401 PMCID: PMC5729481 DOI: 10.1038/bjc.2017.373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCCs) are highly lethal epithelial tumours containing self-renewal cancer stem cells (CSCs). CSCs in HNSCCs are strongly associated with tumour initiation, invasion, and chemoradiation resistance. However, the important factors regulating stemness in HNSCCs remain unclear. Here, we investigated the molecular roles and clinical significance of inhibitor of DNA binding 2 (Id2) protein to determine if it constitutes a novel therapeutic target for ablating HNSCC cells with stemness. Methods: We performed in vitro and in vivo studies of Id2 function and its effects on stemness using HNSCC cells. We also examined whether Id2 expression could be used as a prognostic indicator through immunohistochemical staining of 119 human HNSCC tumours. Results: Expression of Id2 was higher in HNSCC cells with stemness compared with differentiated HNSCC cells. Overexpression of Id2 increased proliferation, self-renewal, and expression of the putative stemness marker CD44 in HNSCC cells in vitro and in vivo. In contrast, silencing of Id2 using short hairpin RNA attenuated the stemness phenotype of HNSCC cells by reducing self-renewal, CD44 expression, cisplatin chemoresistance, and xenograft tumourigenicity. Most importantly, increased expression of Id2 was closely associated with poorer post-treatment survival rates in HNSCC patients. Conclusions: Inhibitor of DNA binding2 represents a novel and promising therapeutic target for treating and improving the clinical outcomes for patients with HNSCC.
Collapse
|
237
|
Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, Leppa S, Pasanen A, Meriranta L, Karjalainen-Lindsberg ML, Nørgaard P, Pedersen M, Gang AO, Høgdall E, Heavican TB, Lone W, Iqbal J, Qin Q, Li G, Kim SY, Healy J, Richards KL, Fedoriw Y, Bernal-Mizrachi L, Koff JL, Staton AD, Flowers CR, Paltiel O, Goldschmidt N, Calaminici M, Clear A, Gribben J, Nguyen E, Czader MB, Ondrejka SL, Collie A, Hsi ED, Tse E, Au-Yeung RKH, Kwong YL, Srivastava G, Choi WWL, Evens AM, Pilichowska M, Sengar M, Reddy N, Li S, Chadburn A, Gordon LI, Jaffe ES, Levy S, Rempel R, Tzeng T, Happ LE, Dave T, Rajagopalan D, Datta J, Dunson DB, Dave SS. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell 2017; 171:481-494.e15. [PMID: 28985567 DOI: 10.1016/j.cell.2017.09.027] [Citation(s) in RCA: 761] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.
Collapse
Affiliation(s)
- Anupama Reddy
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jenny Zhang
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Nicholas S Davis
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Andrea B Moffitt
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Cassandra L Love
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Alexander Waldrop
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Sirpa Leppa
- Helsinki University Hospital Cancer Center and University of Helsinki, Helsinki, Finland
| | - Annika Pasanen
- Helsinki University Hospital Cancer Center and University of Helsinki, Helsinki, Finland
| | - Leo Meriranta
- Helsinki University Hospital Cancer Center and University of Helsinki, Helsinki, Finland
| | | | - Peter Nørgaard
- Herlev and Gentofte Hospital, Copenhagen University, Herlev, Denmark
| | - Mette Pedersen
- Herlev and Gentofte Hospital, Copenhagen University, Herlev, Denmark
| | - Anne O Gang
- Herlev and Gentofte Hospital, Copenhagen University, Herlev, Denmark
| | - Estrid Høgdall
- Herlev and Gentofte Hospital, Copenhagen University, Herlev, Denmark
| | - Tayla B Heavican
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiu Qin
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Guojie Li
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - So Young Kim
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jane Healy
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Kristy L Richards
- Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yuri Fedoriw
- Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jean L Koff
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ashley D Staton
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Ora Paltiel
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Maria Calaminici
- Barts Cancer Institute of Queen Mary University of London, London, UK
| | - Andrew Clear
- Barts Cancer Institute of Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute of Queen Mary University of London, London, UK
| | - Evelyn Nguyen
- Pathology, Indiana University, Indianapolis, IN, USA
| | | | - Sarah L Ondrejka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Angela Collie
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric Tse
- Queen Mary Hospital, University of Hong Kong, Hong Kong
| | | | - Yok-Lam Kwong
- Queen Mary Hospital, University of Hong Kong, Hong Kong
| | | | | | | | | | | | - Nishitha Reddy
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Amy Chadburn
- Columbia-Presbyterian Hospital, New York, NY, USA
| | - Leo I Gordon
- Northwestern University Medical School, Chicago, IL, USA
| | | | - Shawn Levy
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Rachel Rempel
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Tiffany Tzeng
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Lanie E Happ
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Tushar Dave
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Deepthi Rajagopalan
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jyotishka Datta
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - David B Dunson
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Sandeep S Dave
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
238
|
Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160271. [PMID: 28893938 PMCID: PMC5597738 DOI: 10.1098/rstb.2016.0271] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alan B Rickinson
- Institute of Immunology and Immunotherapy, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew I Bell
- Institute for Cancer and Genomic Sciences, The Medical School, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
239
|
Adolescent and young adult lymphoma: collaborative efforts toward optimizing care and improving outcomes. Blood Adv 2017; 1:1945-1958. [PMID: 29296842 DOI: 10.1182/bloodadvances.2017008748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/12/2017] [Indexed: 01/10/2023] Open
Abstract
Lymphomas are responsible for approximately 20% to 25% of annual cancer diagnoses in the adolescent and young adult (AYA) population. In 2006, the National Cancer Institute and the Lance Armstrong Foundation developed a joint Adolescent and Young Adult Oncology Progress Review Group (AYAO-PRG) to formally address the unique cancer burden of patients age 15 to 39 years. As part of their recommendations, the AYAO-PRG identified 5 imperatives for improving outcomes of AYAs with cancer. Broadly, the recommended areas of focus included research, awareness and education, investigational infrastructure, care delivery, and advocacy. In response to the challenges highlighted by the AYAO-PRG, the Lymphoma Research Foundation held the first AYA Lymphoma Research Foundation Symposium on 2 October 2015. At this symposium, clinicians and basic scientists from both pediatric and adult disciplines gave presentations describing the state of the science and proposed a collaborative research agenda built on the imperatives proposed by the AYAO-PRG. The following review presents an in-depth discussion of lymphoma management across pediatric and adult oncologic disciplines, focusing on Hodgkin lymphoma, mature B-cell lymphomas, and anaplastic large cell lymphoma.
Collapse
|
240
|
Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol 2017; 30:1338-1366. [PMID: 28664939 DOI: 10.1038/modpathol.2017.58] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll-like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
Collapse
|
241
|
L'Abbate A, Iacobucci I, Lonoce A, Turchiano A, Ficarra E, Paciello G, Cattina F, Ferrari A, Imbrogno E, Agostinelli C, Zinzani P, Martinelli G, Derenzini E, Storlazzi CT. RALE051: a novel established cell line of sporadic Burkitt lymphoma. Leuk Lymphoma 2017; 59:1252-1255. [PMID: 28893133 DOI: 10.1080/10428194.2017.1372580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
| | - Ilaria Iacobucci
- b Department of Experimental, Diagnostic and Specialty Medicine , Institute of Hematology "Seràgnoli", University of Bologna , Bologna , Italy
| | - Angelo Lonoce
- a Department of Biology , University of Bari , Bari , Italy
| | | | - Elisa Ficarra
- c Department of Computer and Control Engineering , Politecnico di Torino , Torino , Italy
| | - Giulia Paciello
- c Department of Computer and Control Engineering , Politecnico di Torino , Torino , Italy
| | - Federica Cattina
- d Chair of Haematology, Stem Cell Transplantation Unit , University of Brescia , Piazzale Spedali Civili 1, Brescia , Italy
| | - Anna Ferrari
- b Department of Experimental, Diagnostic and Specialty Medicine , Institute of Hematology "Seràgnoli", University of Bologna , Bologna , Italy
| | - Enrica Imbrogno
- b Department of Experimental, Diagnostic and Specialty Medicine , Institute of Hematology "Seràgnoli", University of Bologna , Bologna , Italy
| | - Claudio Agostinelli
- b Department of Experimental, Diagnostic and Specialty Medicine , Institute of Hematology "Seràgnoli", University of Bologna , Bologna , Italy
| | - Pierluigi Zinzani
- b Department of Experimental, Diagnostic and Specialty Medicine , Institute of Hematology "Seràgnoli", University of Bologna , Bologna , Italy
| | - Giovanni Martinelli
- b Department of Experimental, Diagnostic and Specialty Medicine , Institute of Hematology "Seràgnoli", University of Bologna , Bologna , Italy
| | - Enrico Derenzini
- e Haemolymphopathology Unit, Department of Haematology and Oncology "Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy
| | | |
Collapse
|
242
|
Kakushadze Z, Yu W. *K-means and cluster models for cancer signatures. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 13:7-31. [PMID: 29021969 PMCID: PMC5634820 DOI: 10.1016/j.bdq.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/03/2023]
Abstract
We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.
Collapse
Affiliation(s)
- Zura Kakushadze
- Quantigic® Solutions LLC, 1127 High Ridge Road #135, Stamford, CT 06905, United States
- Free University of Tbilisi, Business School & School of Physics, 240, David Agmashenebeli Alley, Tbilisi 0159, Georgia
| | - Willie Yu
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
243
|
Mutation Clusters from Cancer Exome. Genes (Basel) 2017; 8:genes8080201. [PMID: 28809811 PMCID: PMC5575665 DOI: 10.3390/genes8080201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.
Collapse
|
244
|
Adult high-grade B-cell lymphoma with Burkitt lymphoma signature: genomic features and potential therapeutic targets. Blood 2017; 130:1819-1831. [PMID: 28801451 DOI: 10.1182/blood-2017-02-767335] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/22/2017] [Indexed: 12/15/2022] Open
Abstract
The adult high-grade B-cell lymphomas sharing molecular features with Burkitt lymphoma (BL) are highly aggressive lymphomas with poor clinical outcome. High-resolution structural and functional genomic analysis of adult Burkitt lymphoma (BL) and high-grade B-cell lymphoma with BL gene signature (adult-molecularly defined BL [mBL]) revealed the MYC-ARF-p53 axis as the primary deregulated pathway. Adult-mBL had either unique or more frequent genomic aberrations (del13q14, del17p, gain8q24, and gain18q21) compared with pediatric-mBL, but shared commonly mutated genes. Mutations in genes promoting the tonic B-cell receptor (BCR)→PI3K pathway (TCF3 and ID3) did not differ by age, whereas effectors of chronic BCR→NF-κB signaling were associated with adult-mBL. A subset of adult-mBL had BCL2 translocation and mutation and elevated BCL2 mRNA and protein expression, but had a mutation profile similar to mBL. These double-hit lymphomas may have arisen from a tumor precursor that acquired both BCL2 and MYC translocations and/or KMT2D (MLL2) mutation. Gain/amplification of MIR17HG and its paralogue loci was observed in 50% of adult-mBL. In vitro studies suggested miR-17∼92's role in constitutive activation of BCR signaling and sensitivity to ibrutinib. Overall integrative analysis identified an interrelated gene network affected by copy number and mutation, leading to disruption of the p53 pathway and the BCR→PI3K or NF-κB activation, which can be further exploited in vivo by small-molecule inhibitors for effective therapy in adult-mBL.
Collapse
|
245
|
Ryland GL, Jones K, McBean M, Khot A, Seymour JF, Blombery P. Comprehensive genomic characterization dissects the complex biology of a case of synchronous Burkitt lymphoma and myeloid malignancy with shared hematopoietic ancestry. Leuk Lymphoma 2017; 59:992-995. [PMID: 28792266 DOI: 10.1080/10428194.2017.1361029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Georgina L Ryland
- a Department of Pathology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Kate Jones
- a Department of Pathology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Michelle McBean
- a Department of Pathology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Amit Khot
- b Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - John Francis Seymour
- b Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia.,c Faculty of Medicine, Dentistry and Health Science, University of Melbourne , Melbourne , Australia
| | - Piers Blombery
- a Department of Pathology , Peter MacCallum Cancer Centre , Melbourne , Australia.,b Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia
| |
Collapse
|
246
|
Liu B, Ye B, Zhu X, Huang G, Yang L, Zhu P, Du Y, Wu J, Meng S, Tian Y, Fan Z. IL-7Rα glutamylation and activation of transcription factor Sall3 promote group 3 ILC development. Nat Commun 2017; 8:231. [PMID: 28794449 PMCID: PMC5550436 DOI: 10.1038/s41467-017-00235-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3) promote lymphoid organogenesis and potentiate immune responses against bacterial infection. However, how ILC3 cells are developed and maintained is still unclear. Here, we show that carboxypeptidase CCP2 is highly expressed in common helper-like innate lymphoid progenitors, the progenitor of innate lymphoid cells, and CCP2 deficiency increases ILC3 numbers. Interleukin-7 receptor subunit alpha (IL-7Rα) is identified as a substrate of CCP2 for deglutamylation, and IL-7Rα polyglutamylation is catalyzed by polyglutamylases TTLL4 and TTLL13 in common helper-like innate lymphoid progenitors. IL-7Rα polyglutamylation triggers STAT5 activation to initiate transcription factor Sall3 expression in common helper-like innate lymphoid progenitors, which drives ILC3 cell differentiation. Moreover, Ttll4 -/- or Ttll13 -/- mice have reduced IL-7Rα polyglutamylation and Sall3 expression in common helper-like innate lymphoid progenitors. Importantly, mice with IL-7Rα E446A mutation have reduced Sall3 expression and ILC3 population. Thus, polyglutamylation and deglutamylation of IL-7Rα tightly controls the development and effector functions of ILC3s.Innate lymphoid cells (ILC) are important regulators of mucosal immunity, but how their development and homeostasis are modulated is still unclear. Here the authors show that the differentiation of group 3 ILCs is controlled by the glutamylation of IL-7Rα and the induction of transcription factor Sall3.
Collapse
Affiliation(s)
- Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Meng
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
247
|
Hernandez-Vargas H, Gruffat H, Cros MP, Diederichs A, Sirand C, Vargas-Ayala RC, Jay A, Durand G, Le Calvez-Kelm F, Herceg Z, Manet E, Wild CP, Tommasino M, Accardi R. Viral driven epigenetic events alter the expression of cancer-related genes in Epstein-Barr-virus naturally infected Burkitt lymphoma cell lines. Sci Rep 2017; 7:5852. [PMID: 28724958 PMCID: PMC5517637 DOI: 10.1038/s41598-017-05713-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was identified as the first human virus to be associated with a human malignancy, Burkitt's lymphoma (BL), a pediatric cancer endemic in sub-Saharan Africa. The exact mechanism of how EBV contributes to the process of lymphomagenesis is not fully understood. Recent studies have highlighted a genetic difference between endemic (EBV+) and sporadic (EBV-) BL, with the endemic variant showing a lower somatic mutation load, which suggests the involvement of an alternative virally-driven process of transformation in the pathogenesis of endemic BL. We tested the hypothesis that a global change in DNA methylation may be induced by infection with EBV, possibly thereby accounting for the lower mutation load observed in endemic BL. Our comparative analysis of the methylation profiles of a panel of BL derived cell lines, naturally infected or not with EBV, revealed that the presence of the virus is associated with a specific pattern of DNA methylation resulting in altered expression of cellular genes with a known or potential role in lymphomagenesis. These included ID3, a gene often found to be mutated in sporadic BL. In summary this study provides evidence that EBV may contribute to the pathogenesis of BL through an epigenetic mechanism.
Collapse
Affiliation(s)
| | - Henri Gruffat
- CIRI, (Oncogenic Herpesviruses Team), Lyon, France.,Inserm, U1111, Lyon, France.,Université Claude Bernard Lyon 1, CNRS, UMR5308, Lyon, France.,École Normale Supérieure de Lyon, Lyon, France.,Université Lyon, F-69007, Lyon, France
| | - Marie Pierre Cros
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Audrey Diederichs
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Romina C Vargas-Ayala
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Antonin Jay
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Geoffroy Durand
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | | | - Zdenko Herceg
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Evelyne Manet
- CIRI, (Oncogenic Herpesviruses Team), Lyon, France.,Inserm, U1111, Lyon, France.,Université Claude Bernard Lyon 1, CNRS, UMR5308, Lyon, France.,École Normale Supérieure de Lyon, Lyon, France.,Université Lyon, F-69007, Lyon, France
| | - Christopher P Wild
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372, France.
| |
Collapse
|
248
|
Giulino-Roth L, van Besien HJ, Dalton T, Totonchy JE, Rodina A, Taldone T, Bolaender A, Erdjument-Bromage H, Sadek J, Chadburn A, Barth MJ, Dela Cruz FS, Rainey A, Kung AL, Chiosis G, Cesarman E. Inhibition of Hsp90 Suppresses PI3K/AKT/mTOR Signaling and Has Antitumor Activity in Burkitt Lymphoma. Mol Cancer Ther 2017; 16:1779-1790. [PMID: 28619753 DOI: 10.1158/1535-7163.mct-16-0848] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Hsp90 is a molecular chaperone that protects proteins, including oncogenic signaling complexes, from proteolytic degradation. PU-H71 is a next-generation Hsp90 inhibitor that preferentially targets the functionally distinct pool of Hsp90 present in tumor cells. Tumors that are driven by the MYC oncoprotein may be particularly sensitive to PU-H71 due to the essential role of Hsp90 in the epichaperome, which maintains the malignant phenotype in the setting of MYC. Burkitt lymphoma (BL) is an aggressive B-cell lymphoma characterized by MYC dysregulation. In this study, we evaluated Hsp90 as a potential therapeutic target in BL. We found that primary BL tumors overexpress Hsp90 and that Hsp90 inhibition has antitumor activity in vitro and in vivo, including potent activity in a patient-derived xenograft model of BL. To evaluate the targets of PU-H71 in BL, we performed high-affinity capture followed by proteomic analysis using mass spectrometry. We found that Hsp90 inhibition targets multiple components of PI3K/AKT/mTOR signaling, highlighting the importance of this pathway in BL. Finally, we found that the anti-lymphoma activity of PU-H71 is synergistic with dual PI3K/mTOR inhibition in vitro and in vivo Overall, this work provides support for Hsp90 as a therapeutic target in BL and suggests the potential for combination therapy with PU-H71 and inhibitors of PI3K/mTOR. Mol Cancer Ther; 16(9); 1779-90. ©2017 AACR.
Collapse
Affiliation(s)
- Lisa Giulino-Roth
- Department of Pediatrics, Weill Cornell Medical College, New York, New York. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Herman J van Besien
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Tanner Dalton
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Jennifer E Totonchy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Anna Rodina
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tony Taldone
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Bolaender
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jouliana Sadek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Matthew J Barth
- Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, New York
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allison Rainey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
249
|
Trop-Steinberg S, Azar Y. Is Myc an Important Biomarker? Myc Expression in Immune Disorders and Cancer. Am J Med Sci 2017; 355:67-75. [PMID: 29289266 DOI: 10.1016/j.amjms.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023]
Abstract
The proto-oncogene Myc serves as a paradigm for understanding the dynamics of transcriptional regulation. Myc protein has been linked to immune dysfunction, cancer development and neoplastic transformation. We review recent research regarding functions of Myc as an important modulator in immune disorders, postallogeneic hematopoietic stem cell transplantation (HSCT) and several cancers. Myc overexpression has been repeatedly linked to immune disorders and specific cancers, such as myasthenia gravis, psoriasis, pemphigus vulgaris, atherosclerosis, long-term allogeneic survival among HSCT patients, (primary) inflammatory breast cancer, (primary) ovarian carcinoma and hematological malignancies: acute myeloid leukemia, chronic myelogenous leukemia, Hodgkin's lymphoma and diffuse large B-cell lymphoma. However, decreased expression of Myc has been observed in HSCT patients who did not survive. Understanding impaired or inappropriate expression of Myc may present a path for the discovery of new targets for therapeutic applications.
Collapse
Affiliation(s)
- Shivtia Trop-Steinberg
- Faculty of Life and Health Sciences (ST-S), JCT Lev Academic Institute, Jerusalem, Israel.
| | - Yehudit Azar
- Department of Bone Marrow Transplantation (YA), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
250
|
Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130:410-423. [PMID: 28600336 DOI: 10.1182/blood-2017-02-734541] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1- MPNs, which are largely defined by mutations in JAK2, CALR, or MPL In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63 Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells.
Collapse
|