201
|
Zorro MM, Aguirre-Gamboa R, Mayassi T, Ciszewski C, Barisani D, Hu S, Weersma RK, Withoff S, Li Y, Wijmenga C, Jabri B, Jonkers IH. Tissue alarmins and adaptive cytokine induce dynamic and distinct transcriptional responses in tissue-resident intraepithelial cytotoxic T lymphocytes. J Autoimmun 2020; 108:102422. [PMID: 32033836 PMCID: PMC7049906 DOI: 10.1016/j.jaut.2020.102422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
The respective effects of tissue alarmins interleukin (IL)-15 and interferon beta (IFNβ), and IL-21 produced by T cells on the reprogramming of cytotoxic T lymphocytes (CTLs) that cause tissue destruction in celiac disease is poorly understood. Transcriptomic and epigenetic profiling of primary intestinal CTLs showed massive and distinct temporal transcriptional changes in response to tissue alarmins, while the impact of IL-21 was limited. Only anti-viral pathways were induced in response to all the three stimuli, albeit with differences in dynamics and strength. Moreover, changes in gene expression were primarily independent of changes in H3K27ac, suggesting that other regulatory mechanisms drive the robust transcriptional response. Finally, we found that IL-15/IFNβ/IL-21 transcriptional signatures could be linked to transcriptional alterations in risk loci for complex immune diseases. Together these results provide new insights into molecular mechanisms that fuel the activation of CTLs under conditions that emulate the inflammatory environment in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Maria Magdalena Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raul Aguirre-Gamboa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, USA; Committee on Immunology, University of Chicago, Chicago, USA
| | | | | | - Shixian Hu
- Department of Gastroenterology and Hepatology, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School. Hannover, Germany
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, USA; Committee on Immunology, University of Chicago, Chicago, USA.
| | - Iris H Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.
| |
Collapse
|
202
|
Ricaño-Ponce I, Gutierrez-Achury J, Costa AF, Deelen P, Kurilshikov A, Zorro MM, Platteel M, van der Graaf A, Sanna S, Daffra O, Zhernakova A, Fu J, Trynka G, Smecuol E, Niveloni SI, Bai JC, Kumar V, Wijmenga C. Immunochip meta-analysis in European and Argentinian populations identifies two novel genetic loci associated with celiac disease. Eur J Hum Genet 2020; 28:313-323. [PMID: 31591516 PMCID: PMC7028987 DOI: 10.1038/s41431-019-0520-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Celiac disease (CeD) is a common immune-mediated disease of the small intestine that is triggered by exposure to dietary gluten. While the HLA locus plays a major role in disease susceptibility, 39 non-HLA loci were also identified in a study of 24,269 individuals. We now build on this earlier study by adding 4125 additional Caucasian samples including an Argentinian cohort. In doing so, we not only confirm the previous associations, we also identify two novel independent genome-wide significant associations at loci: 12p13.31 and 22q13.1. By applying a genomics approach and differential expression analysis in CeD intestinal biopsies, we prioritize potential causal genes at these novel loci, including LTBR, CYTH4, and RAC2. Nineteen prioritized causal genes are overlapping known drug targets. Pathway enrichment analysis and expression of these genes in CeD biopsies suggest that they have roles in regulating multiple pathways such as the tumor necrosis factor (TNF) mediated signaling pathway and positive regulation of I-κB kinase/NF-κB signaling.
Collapse
Affiliation(s)
- Isis Ricaño-Ponce
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Javier Gutierrez-Achury
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Ana Florencia Costa
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Maria Magdalena Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Mathieu Platteel
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Adriaan van der Graaf
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Serena Sanna
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Oscar Daffra
- Gastroenterology Service, OSEP Mendoza, Mendoza, Argentina
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Gosia Trynka
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Edgardo Smecuol
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Sonia Isabel Niveloni
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Julio Cesar Bai
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA, Nijmegen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands.
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.
| |
Collapse
|
203
|
McAllister BP, Williams E, Clarke K. A Comprehensive Review of Celiac Disease/Gluten-Sensitive Enteropathies. Clin Rev Allergy Immunol 2020; 57:226-243. [PMID: 29858750 DOI: 10.1007/s12016-018-8691-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Celiac disease is a complex immune-mediated gluten-sensitive enteropathy with protean clinical manifestations. It is manifest in genetically predisposed individuals who ingest gluten in varying amounts. In broad terms, it is thought to affect 1% of the population in the USA. More specifically, the prevalence increases drastically from 1:133 in patients not-at-risk, to 1:56 in symptomatic patients, to 1:39 in patients with a second-degree relative with the diagnosis, and to 1:22 in patients with a first-degree relative with the diagnosis. It may be associated with several immune-mediated phenomena, autoimmune diseases, and complicated by vitamin and other trace element deficiencies, bone disease, and malignancy. Our understanding of celiac disease has evolved rapidly over the past two decades. This has led to several lines of enquiry on the condition and potential treatment options. More recently, several entities including gluten intolerance, non-celiac gluten sensitivity, and seronegative celiac disease have been described. These conditions are distinct from allergies or intolerance to wheat or wheat products. There are challenges in defining some of these entities since a large number of patients self-report these conditions. The absence of confirmatory diagnostic tests poses an added dilemma in distinguishing these entities. The differences in spectrum of symptoms and highlights of the variability between the pediatric and adult populations have been studied in some detail. The role of screening for celiac disease is examined in both the general population and "at risk" populations. Diagnostic strategies including the best available serologic testing, utility of HLA haplotypes DQ2 and DQ8 which are seen in over 90% of patients with celiac disease as compared with approximately 40% of the general population, and endoscopic evaluation are also reviewed. Comprehensive nutritional management after diagnosis is key to sustained health in patients with celiac disease. Simple algorithms for care based on a comprehensive multidisciplinary approach are proposed. Refractory and non-responsive celiac diseases in the setting of a gluten-free diet are examined as are novel non-dietary therapies. Finally, the association of other disease states including psychiatric illness, infertility, lymphoproliferative malignancy, and mortality is explored with special attention paid to autoimmune and atopic disease.
Collapse
Affiliation(s)
- Brian P McAllister
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Mail Code HU33, 500 University Drive, UPC Suite 2400, Hershey, PA, 17033-0850, USA
| | - Emmanuelle Williams
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Mail Code HU33, 500 University Drive, UPC Suite 2400, Hershey, PA, 17033-0850, USA
| | - Kofi Clarke
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Mail Code HU33, 500 University Drive, UPC Suite 2400, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
204
|
Zwiers A, van Wanrooij RL, Dieckman T, Nijeboer P, Kraal G, Bouma G. Celiac disease associated SNP rs17810546 is located in a gene silencing region. Gene 2020; 726:144165. [DOI: 10.1016/j.gene.2019.144165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
|
205
|
Analysis of the genetic variants associated with circulating levels of sgp130. Results from the IMPROVE study. Genes Immun 2020; 21:100-108. [PMID: 31932740 PMCID: PMC7182533 DOI: 10.1038/s41435-019-0090-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/12/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023]
Abstract
The genes regulating circulating levels of soluble gp130 (sgp130), the antagonist of the inflammatory response in atherosclerosis driven by interleukin 6, are largely unknown. Aims of the present study were to identify genetic loci associated with circulating sgp130 and to explore the potential association between variants associated with sgp130 and markers of subclinical atherosclerosis. The study is based on IMPROVE (n = 3703), a cardiovascular multicentre study designed to investigate the determinants of carotid intima media thickness, a measure of subclinical atherosclerosis. Genomic DNA was genotyped by the CardioMetaboChip and ImmunoChip. About 360,842 SNPs were tested for association with log-transformed sgp130, using linear regression adjusted for age, gender, and population stratification using PLINK v1.07. A p value of 1 × 10−5 was chosen as threshold for significance value. In an exploratory analysis, SNPs associated with sgp130 were tested for association with c-IMT measures. We identified two SNPs significantly associated with sgp130 levels and 24 showing suggestive association with sgp130 levels. One SNP (rs17688225) on chromosome 14 was positively associated with sgp130 serum levels (β = 0.03 SE = 0.007, p = 4.77 × 10−5) and inversely associated with c-IMT (c-IMTmean–maxβ = −0.001 SE = 0.005, p = 0.0342). Our data indicate that multiple loci regulate sgp130 levels and suggest a possible common pathway between sgp130 and c-IMT measures.
Collapse
|
206
|
Inshaw JRJ, Cutler AJ, Crouch DJM, Wicker LS, Todd JA. Genetic Variants Predisposing Most Strongly to Type 1 Diabetes Diagnosed Under Age 7 Years Lie Near Candidate Genes That Function in the Immune System and in Pancreatic β-Cells. Diabetes Care 2020; 43:169-177. [PMID: 31558544 PMCID: PMC6925581 DOI: 10.2337/dc19-0803] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Immunohistological analyses of pancreata from patients with type 1 diabetes suggest distinct autoimmune islet β-cell pathology between those diagnosed at <7 years (<7 group) and those diagnosed at age ≥13 years (≥13 group), with both B- and T-lymphocyte islet inflammation common in children in the <7 group, whereas B cells are rare in the ≥13 group. Based on these observations, we sought to identify differences in genetic susceptibility between these prespecified age-at-diagnosis groups to inform on the etiology of the most aggressive form of type 1 diabetes that initiates in the first years of life. RESEARCH DESIGN AND METHODS Using multinomial logistic regression models, we tested if known type 1 diabetes loci (17 within the HLA and 55 non-HLA loci) had significantly stronger effect sizes in the <7 group compared with the ≥13 group, using genotype data from 27,071 individuals (18,485 control subjects and 3,121 case subjects diagnosed at <7 years, 3,757 at 7-13 years, and 1,708 at ≥13 years). RESULTS Six HLA haplotypes/classical alleles and six non-HLA regions, one of which functions specifically in β-cells (GLIS3) and the other five likely affecting key T-cell (IL2RA, IL10, IKZF3, and THEMIS), thymus (THEMIS), and B-cell development/functions (IKZF3 and IL10) or in both immune and β-cells (CTSH), showed evidence for stronger effects in the <7 group. CONCLUSIONS A subset of type 1 diabetes-associated variants are more prevalent in children diagnosed under the age of 7 years and are near candidate genes that act in both pancreatic β- and immune cells.
Collapse
Affiliation(s)
- Jamie R J Inshaw
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K.
| | - Antony J Cutler
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Daniel J M Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|
207
|
Broekema RV, Bakker OB, Jonkers IH. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biol 2020; 10:190221. [PMID: 31937202 PMCID: PMC7014684 DOI: 10.1098/rsob.190221] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Over the past 15 years, genome-wide association studies (GWASs) have enabled the systematic identification of genetic loci associated with traits and diseases. However, due to resolution issues and methodological limitations, the true causal variants and genes associated with traits remain difficult to identify. In this post-GWAS era, many biological and computational fine-mapping approaches now aim to solve these issues. Here, we review fine-mapping and gene prioritization approaches that, when combined, will improve the understanding of the underlying mechanisms of complex traits and diseases. Fine-mapping of genetic variants has become increasingly sophisticated: initially, variants were simply overlapped with functional elements, but now the impact of variants on regulatory activity and direct variant-gene 3D interactions can be identified. Moreover, gene manipulation by CRISPR/Cas9, the identification of expression quantitative trait loci and the use of co-expression networks have all increased our understanding of the genes and pathways affected by GWAS loci. However, despite this progress, limitations including the lack of cell-type- and disease-specific data and the ever-increasing complexity of polygenic models of traits pose serious challenges. Indeed, the combination of fine-mapping and gene prioritization by statistical, functional and population-based strategies will be necessary to truly understand how GWAS loci contribute to complex traits and diseases.
Collapse
Affiliation(s)
| | | | - I. H. Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
208
|
Cleynen I, Halfvarsson J. How to approach understanding complex trait genetics - inflammatory bowel disease as a model complex trait. United European Gastroenterol J 2019; 7:1426-1430. [PMID: 31839967 DOI: 10.1177/2050640619891120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
209
|
Janeczko-Czarnecka M, Kałwak K, Ussowicz M. Familial Celiac Disease Remission as a Result of a Full Donor Immunologic Recovery After Sibling Cord Blood Transplantation for Chronic Granulomatous Disease: A Case Report. Transplant Proc 2019; 51:3155-3158. [PMID: 31611125 DOI: 10.1016/j.transproceed.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 10/25/2022]
Abstract
We present a case report of a boy diagnosed with both chronic granulomatous disease (CGD) and familial celiac disease (CD) who underwent cord blood transplantation from a partially matched sibling donor. The presentation of CD resembled Crohn-like enteropathy, which is a canonical manifestation of CGD. Nearly 1 year post-hematopoietic stem cell transplantation (HSCT), a gluten-containing diet was reintroduced, and no reappearance of clinical, serologic, or histologic markers of CD was observed. The relatively high incidence of rare genetic diseases in pediatric patients suggests the need for additional caution in the interpretation of symptoms mimicking already known hallmarks of more common conditions. In addition, the presented data confirm the previous rare observations that allogeneic HSCT leads to durable induction of gluten tolerance in patients with CD, which can warrant its use in patients with refractory subtypes of CD.
Collapse
Affiliation(s)
| | - Krzysztof Kałwak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Poland
| | - Marek Ussowicz
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Poland
| |
Collapse
|
210
|
Intestinal Barrier Function in Gluten-Related Disorders. Nutrients 2019; 11:nu11102325. [PMID: 31581491 PMCID: PMC6835310 DOI: 10.3390/nu11102325] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gluten-related disorders include distinct disease entities, namely celiac disease, wheat-associated allergy and non-celiac gluten/wheat sensitivity. Despite having in common the contact of the gastrointestinal mucosa with components of wheat and other cereals as a causative factor, these clinical entities have distinct pathophysiological pathways. In celiac disease, a T-cell mediate immune reaction triggered by gluten ingestion is central in the pathogenesis of the enteropathy, while wheat allergy develops as a rapid immunoglobulin E- or non-immunoglobulin E-mediated immune response. In non-celiac wheat sensitivity, classical adaptive immune responses are not involved. Instead, recent research has revealed that an innate immune response to a yet-to-be-defined antigen, as well as the gut microbiota, are pivotal in the development in this disorder. Although impairment of the epithelial barrier has been described in all three clinical conditions, its role as a potential pathogenetic co-factor, specifically in celiac disease and non-celiac wheat sensitivity, is still a matter of investigation. This article gives a short overview of the mucosal barrier of the small intestine, summarizes the aspects of barrier dysfunction observed in all three gluten-related disorders and reviews literature data in favor of a primary involvement of the epithelial barrier in the development of celiac disease and non-celiac wheat sensitivity.
Collapse
|
211
|
Soskic B, Cano-Gamez E, Smyth DJ, Rowan WC, Nakic N, Esparza-Gordillo J, Bossini-Castillo L, Tough DF, Larminie CGC, Bronson PG, Willé D, Trynka G. Chromatin activity at GWAS loci identifies T cell states driving complex immune diseases. Nat Genet 2019; 51:1486-1493. [PMID: 31548716 PMCID: PMC6872452 DOI: 10.1038/s41588-019-0493-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
Immune-disease-associated variants are enriched in active chromatin regions of T cells and macrophages. However, whether these variants function in specific cell states is unknown. Here we stimulated T cells and macrophages in the presence of 13 cytokines and profiled active and open chromatin regions. T cell activation induced major chromatin remodeling, while the presence of cytokines fine-tuned the magnitude of changes. We developed a statistical method that accounts for subtle changes in the chromatin landscape to identify SNP enrichment across cell states. Our results point towards the role of immune-disease-associated variants in early rather than late activation of memory CD4+ T cells, with modest differences across cytokines. Furthermore, variants associated with inflammatory bowel disease are enriched in type 1 T helper (TH1) cells, whereas variants associated with Alzheimer's disease are enriched in different macrophage cell states. Our results represent an in-depth analysis of immune-disease-associated variants across a comprehensive panel of activation states of T cells and macrophages.
Collapse
Affiliation(s)
- Blagoje Soskic
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Eddie Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Deborah J Smyth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Wendy C Rowan
- Novel Human Genetics, GSK Research, GSK Medicines Research Centre, Stevenage, UK
| | - Nikolina Nakic
- Functional Genomics, Molecular Science and Technology R&D, GSK Medicines Research Centre, Stevenage, UK
| | | | | | - David F Tough
- Epigenetics RU, Oncology R&D, GSK Medicines Research Centre, Stevenage, UK
| | | | - Paola G Bronson
- Human Target Validation Core, RED Translational Biology, Biogen, Cambridge, MA, USA
| | - David Willé
- Biostatistics, GSK Research, GSK Medicines Research Centre, Stevenage, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
212
|
Banerjee P, Bhagavatula S, Sood A, Midha V, Thelma BK, Senapati S. Association study identified biologically relevant receptor genes with synergistic functions in celiac disease. Sci Rep 2019; 9:13811. [PMID: 31554915 PMCID: PMC6761106 DOI: 10.1038/s41598-019-50120-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 11/10/2022] Open
Abstract
Receptors are essential mediators of cellular physiology, which facilitate molecular and cellular cross-talk with the environment. Nearly 20% of the all known celiac disease (CD) genes are receptors by function. We hypothesized that novel biologically relevant susceptibility receptor genes act in synergy in CD pathogenesis. We attempted to identify novel receptor genes in CD by re-analyzing published Illumina Immunochip dense genotype data for a north Indian and a European (Dutch) cohort. North Indian dataset was screened for 269 known receptor genes. Association statistics for SNPs were considered with minor allele frequency >15% and association P ≤ 0.005 to attend desired study power. Identified markers were tested for cross-ethnic replication in a European CD dataset. Markers were analyzed in-silico to explain their functional significance in CD. Six novel SNPs from MOG (rs29231, p = 1.21e-11), GABBR1 (rs3025643, p = 1.60e-7), OR2H2 (rs1233388, p = 0.0002), ABCF1 (rs9262119, p = 0.0005), ADRA1A (rs10102024, p = 0.003), and ACVR2A (rs7560426, p = 0.004) were identified in north Indians, of which three genes namely, GABBR1 (rs3025643, p = 5.38e-8), OR2H2 (rs1233388, p = 3.29e-5) and ABCF1 (rs9262119, p = 0.0002) were replicated in Dutch. Tissue specific functional annotation, potential epigenetic regulation, co-expression, protein-protein interaction and pathway enrichment analyses indicated differential expression and synergistic function of key genes that could alter cellular homeostasis, ubiquitination mediated phagosome pathway and cellular protein processing to contribute for CD. At present multiple therapeutic compounds/drugs are available targeting GABBR1 and ADRA1A, which could be tested for their effectiveness against CD in controlled drug trials.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sandilya Bhagavatula
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - Vandana Midha
- Department of Medicine, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
213
|
Jansson-Knodell CL, Hujoel IA, West CP, Taneja V, Prokop LJ, Rubio-Tapia A, Murray JA. Sex Difference in Celiac Disease in Undiagnosed Populations: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2019; 17:1954-1968.e13. [PMID: 30448593 DOI: 10.1016/j.cgh.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A higher proportion of female vs male patients receive a diagnosis of celiac disease. Little is known about sex-based differences in the prevalence of celiac disease in undiagnosed populations. We aimed to address this knowledge gap with a systematic review and meta-analysis. METHODS We searched MEDLINE, Embase, Cochrane, and Scopus databases through 2017 for studies of screen-detected or undiagnosed celiac disease. Our final analysis included studies that included screening and confirmatory tests (either second serologic analysis or a small intestine biopsy) and provided information on the sex of participants. Studies were excluded if they were performed with specific, high-risk, or referral populations. The primary outcome was the percentage of undetected celiac disease among female and male patients. RESULTS We identified 4070 articles and analyzed data from 87. Our meta-analysis comprised data from 291,969 study participants. The pooled prevalence of undetected celiac disease in female participants was 0.589% (95% CI, 0.549%-0.629%) and in male participants was 0.415% (95% CI, 0.343%-0.487%). The risk of undetected celiac disease was higher among female than male participants (relative risk [RR], 1.42; 95% CI, 1.27-1.57; P < .00001). The I2 was 5% (low heterogeneity among studies). In subgroup analyses, the RR of celiac disease for girls vs boys was 1.79 (95% CI, 1.44-2.22; P < .00001; I2 = 18%), the RR for female vs male blood donors was 1.13 (95% CI, 0.76-1.69; P = .54; I2 = 0), and the RR for women vs men with villous atrophy was 1.38 (95% CI, 1.07-1.79; P = .01; I2 = 0). CONCLUSIONS In a systematic review and meta-analysis, we found a higher risk for celiac disease in women than men in an undiagnosed populations (identified through general population screening). The increased risk for celiac disease among girls and women should be considered for screening, diagnosis, and management strategies.
Collapse
Affiliation(s)
| | - Isabel A Hujoel
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Colin P West
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota; Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | - Alberto Rubio-Tapia
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
214
|
Kahramanoğlu Aksoy E, Akpınar MY, Pirinççi Sapmaz F, Doğan Ö, Uzman M, Nazlıgül Y. Thymic stromal lymphopoietin levels are increased in patients with celiac disease. Bosn J Basic Med Sci 2019; 19:282-287. [PMID: 30821220 DOI: 10.17305/bjbms.2019.4016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine produced by epithelial cells in the lungs, skin, and intestinal mucosa and is involved in several physiological and pathological processes. In this study, we evaluated serum TSLP levels in patients with celiac disease (CD). The prospective study was conducted at a gastroenterology outpatient clinic between March 2018 and August 2018. Eighty-nine participants aged between 18 and 75 years were classified into following groups: 22 patients with newly diagnosed CD; 20 patients with CD who were compliant with a gluten-free diet (GFD); 32 patients with CD who were not compliant with a GFD; and 15 healthy controls. Demographic characteristics, disease duration, and selected biochemical and hematologic parameters were recorded and compared between groups. Median serum TSLP levels were 1193.65 pg/mL (range: 480.1-1547.1) in newly diagnosed CD patients, 110.25 pg/mL (range: 60.3-216.7) in CD patients who were compliant with a GFD, 113.1 pg/mL (range: 76.3-303.4) in CD patients who were not compliant with a GFD, and 57 pg/mL (range: 49-67.8) in healthy controls. Overall, there was a significant difference in serum TSLP levels between groups (p = 0.001). Patients with newly diagnosed CD had the highest serum TSLP levels. There was no significant difference in serum TSLP levels between patients with CD who were and were not compliant with a GFD. TSLP appears to be involved in the pathogenesis of CD. Further studies are required to determine if the TSLP signaling pathway can be used in the treatment of CD.
Collapse
|
215
|
Asimit JL, Rainbow DB, Fortune MD, Grinberg NF, Wicker LS, Wallace C. Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases. Nat Commun 2019; 10:3216. [PMID: 31324808 PMCID: PMC6642100 DOI: 10.1038/s41467-019-11271-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Thousands of genetic variants are associated with human disease risk, but linkage disequilibrium (LD) hinders fine-mapping the causal variants. Both lack of power, and joint tagging of two or more distinct causal variants by a single non-causal SNP, lead to inaccuracies in fine-mapping, with stochastic search more robust than stepwise. We develop a computationally efficient multinomial fine-mapping (MFM) approach that borrows information between diseases in a Bayesian framework. We show that MFM has greater accuracy than single disease analysis when shared causal variants exist, and negligible loss of precision otherwise. MFM analysis of six immune-mediated diseases reveals causal variants undetected in individual disease analysis, including in IL2RA where we confirm functional effects of multiple causal variants using allele-specific expression in sorted CD4+ T cells from genotype-selected individuals. MFM has the potential to increase fine-mapping resolution in related diseases enabling the identification of associated cellular and molecular phenotypes.
Collapse
Affiliation(s)
- Jennifer L Asimit
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.
| | - Daniel B Rainbow
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mary D Fortune
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK
| | - Nastasiya F Grinberg
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Box 157, Level 4, Cambridge, CB2 0QQ, UK
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Box 157, Level 4, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
216
|
Chamani E, Sargolzaei J, Tavakoli T, Rezaei Z. microRNAs: Novel Markers in Diagnostics and Therapeutics of Celiac Disease. DNA Cell Biol 2019; 38:708-717. [DOI: 10.1089/dna.2018.4561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elham Chamani
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Tahmineh Tavakoli
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Gastroenterology Section, Department of Internal Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
217
|
Malamut G, Cording S, Cerf-Bensussan N. Recent advances in celiac disease and refractory celiac disease. F1000Res 2019; 8:F1000 Faculty Rev-969. [PMID: 31297187 PMCID: PMC6600866 DOI: 10.12688/f1000research.18701.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Celiac disease (CeD), defined as gluten-induced enteropathy, is a frequent and largely underdiagnosed disease. Diagnosis relies on the detection of highly specific serum IgA anti-transglutaminase auto-antibodies and on the demonstration of duodenal villous atrophy. Treatment necessitates a strict gluten-free diet, which resolves symptoms and enables histological recovery. However, regular follow-up is necessary to assess mucosal healing, which emerges as an important prognostic factor. Recent work on CeD pathogenesis has highlighted how the cross-talk between gluten-specific CD4 + T cells and interleukin-15 can activate cytotoxic intraepithelial lymphocytes and trigger epithelial lesions. Moreover, acquisition by a subset of intraepithelial lymphocytes of somatic gain-of-function mutations in the JAK-STAT pathway was shown to be a decisive step in the progression toward lymphomas complicating CeD, thus opening new therapeutic perspectives for these rare but life-threatening complications.
Collapse
Affiliation(s)
- Georgia Malamut
- Gastroenterology, Hôpital Cochin APHP, Paris, France
- Université Paris Descartes, Paris, France
- Inserm, UMR1163 and Institut Imagine, Laboratory Intestinal Immunity, Paris, France
| | - Sascha Cording
- Université Paris Descartes, Paris, France
- Inserm, UMR1163 and Institut Imagine, Laboratory Intestinal Immunity, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Descartes, Paris, France
- Inserm, UMR1163 and Institut Imagine, Laboratory Intestinal Immunity, Paris, France
| |
Collapse
|
218
|
Antiga E, Maglie R, Quintarelli L, Verdelli A, Bonciani D, Bonciolini V, Caproni M. Dermatitis Herpetiformis: Novel Perspectives. Front Immunol 2019; 10:1290. [PMID: 31244841 PMCID: PMC6579917 DOI: 10.3389/fimmu.2019.01290] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Dermatitis herpetiformis (DH) is an inflammatory disease of the skin, considered the specific cutaneous manifestation of celiac disease (CD). Both DH and CD occur in gluten-sensitive individuals, share the same Human Leukocyte Antigen (HLA) haplotypes (DQ2 and DQ8), and improve following the administration of a gluten-free diet. Moreover, almost all DH patients show typical CD alterations at the small bowel biopsy, ranging from villous atrophy to augmented presence of intraepithelial lymphocytes, as well as the generation of circulating autoantibodies against tissue transglutaminase (tTG). Clinically, DH presents with polymorphic lesions, including papules, vesicles, and small blisters, symmetrically distributed in typical anatomical sites including the extensor aspects of the limbs, the elbows, the sacral regions, and the buttocks. Intense pruritus is almost the rule. However, many atypical presentations of DH have also been reported. Moreover, recent evidence suggested that DH is changing. Firstly, some studies reported a reduced incidence of DH, probably due to early recognition of CD, so that there is not enough time for DH to develop. Moreover, data from Japanese literature highlighted the absence of intestinal involvement as well as of the typical serological markers of CD (i.e., anti-tTG antibodies) in Japanese patients with DH. Similar cases may also occur in Caucasian patients, complicating DH diagnosis. The latter relies on the combination of clinical, histopathologic, and immunopathologic findings. Detecting granular IgA deposits at the dermal-epidermal junction by direct immunofluorescence (DIF) from perilesional skin represents the most specific diagnostic tool. Further, assessing serum titers of autoantibodies against epidermal transglutaminase (eTG), the supposed autoantigen of DH, may also serve as a clue for the diagnosis. However, a study from our group has recently demonstrated that granular IgA deposits may also occur in celiac patients with non-DH inflammatory skin diseases, raising questions about the effective role of eTG IgA autoantibodies in DH and suggesting the need of revising diagnostic criteria, conceivably emphasizing clinical aspects of the disease along with DIF. DH usually responds to the gluten-free diet. Topical clobetasol ointment or dapsone may be also applied to favor rapid disease control. Our review will focus on novel pathogenic insights, controversies, and management aspects of DH.
Collapse
Affiliation(s)
- Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lavinia Quintarelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Alice Verdelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Diletta Bonciani
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Veronica Bonciolini
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Marzia Caproni
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
219
|
HLA Haplotype Association with Celiac Disease in Albanian Pediatric Patients from Kosovo. Gastroenterol Res Pract 2019; 2019:7369014. [PMID: 31281351 PMCID: PMC6590585 DOI: 10.1155/2019/7369014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic predisposition to celiac disease (CD) is strongly associated with the presence of HLA alleles in the individual genotype encoding HLA-DQ2 and/or HLA-DQ8 heterodimers. The main aim of this study was to analyze the HLA-A, -B, -DRB1, and -DQ allele and five-locus haplotype frequencies in 60 Albanian pediatric CD patients and 124 non-CD children from Kosovo. The most prevalent haplotype in patients was the ancestral AH 8.1 haplotype present in 22.5% of the cases compared to 2.8% of the controls (P < 0.0001). Additionally, two other haplotypes were also overrepresented in patients (HLA-A∗02~B∗50~DRB1∗07~DQA1∗02:01~DQB1∗02:02 and HLA-A∗68~B∗44~DRB1∗07~DQA1∗02:01~DQB1∗02:02). Analysis showed that 95.0% of CD patients and 43.3% of controls were carriers of HLA-DQ2 and/or HLA-DQ8 heterodimers. The most frequent CD-predisposing HLA-DQ haplotypes in patients were HLA-DQ2.5 (46.7%) and HLA-DQ2.2 (11.6%), while the most prevalent genotypes were HLA-DQ2.5/DQX (58.3%) and HLA-DQ2.5/DQ2.2 (20.0%). The frequency of the HLA-DQ8 heterodimer among CD patients (4.2%) compared to the control group (8.1%) was without statistical significance. The given data demonstrate differences in the distribution of HLA haplotypes among Albanian CD patients from Kosovo in comparison to other European and non-European populations, as well as provide additional population data to supplement the thus far undisputed importance of the role of HLA-DQ2 and HLA-DQ8 heterodimers in the development of CD.
Collapse
|
220
|
Lania G, Nanayakkara M, Maglio M, Auricchio R, Porpora M, Conte M, De Matteis MA, Rizzo R, Luini A, Discepolo V, Troncone R, Auricchio S, Barone MV. Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Commun Biol 2019; 2:190. [PMID: 31123714 PMCID: PMC6527696 DOI: 10.1038/s42003-019-0443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides (e.g., A-gliadin P57-68) induce an adaptive Th1 pro-inflammatory response. Other gliadin peptides (e.g., A-gliadin P31-43) induce a stress/innate immune response involving interleukin 15 (IL15) and interferon α (IFN-α). In the present study, we describe a stressed/inflamed celiac cellular phenotype in enterocytes and fibroblasts probably due to an alteration in the early-recycling endosomal system. Celiac cells are more sensitive to the gliadin peptide P31-43 and IL15 than controls. This phenotype is reproduced in control cells by inducing a delay in early vesicular trafficking. This constitutive lesion might mediate the stress/innate immune response to gliadin, which can be one of the triggers of the gliadin-specific T-cell response.
Collapse
Affiliation(s)
- Giuliana Lania
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Antonietta De Matteis
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
221
|
Abstract
Gluten is known to be the main triggering factor for celiac disease (CeD), an immune-mediated disorder. CeD is therefore managed using a strict and lifelong gluten-free diet (GFD), the only effective treatment available currently. However, the GFD is restrictive. Hence, efforts are being made to explore alternative therapies. Based on their mechanisms of action on various molecular targets involved in the pathogenesis of CeD, these therapies may be classified into one of the following five broad approaches. The first approach focuses on decreasing the immunogenic content of gluten, using strategies like genetically modified wheat, intra-intestinal gluten digestion using glutenases, microwave thermal treatment of hydrated wheat kernels, and gluten pretreatment with either bacterial/ fungal derived endopeptidases or microbial transglutaminase. The second approach involves sequestering gluten in the gut lumen before it is digested into immunogenic peptides and absorbed, using binder drugs like polymer p(HEMA-co-SS), single chain fragment variable (scFv), and anti- gluten antibody AGY. The third approach aims to prevent uptake of digested gluten through intestinal epithelial tight junctions, using a zonulin antagonist. The fourth approach involves tissue transglutaminase (tTG) inhibitors to prevent the enhancement of immunogenicity of digested gluten by the intestinal tTG enzyme. The fifth approach seeks to prevent downstream immune activation after uptake of gluten immunogenic peptides through the intestinal mucosal epithelial layer. Examples include HLA-DQ2 blockers that prevent presentation of gluten derived- antigens by dendritic cells to T cells, immune- tolerizing therapies like the vaccine Nexvax2 and TIMP-Glia, cathepsin inhibitors, immunosuppressants like corticosteroids, azathioprine etc., and anti-cytokine agents targeting TNF-α and interleukin-15. Apart from these approaches, research is being done to evaluate the effectiveness of probiotics/prebiotics, helminth therapy using Necator americanus, low FODMAP diet, and pancreatic enzyme supplementation in CeD symptom control; however, the mechanisms by which they play a beneficial role in CeD are yet to be clearly established. Overall, although many therapies being explored are still in the pre-clinical phase, some like the zonulin antagonist, immune tolerizing therapies and glutenases have reached phase II/III clinical trials. While these potential options appear exciting, currently they may at best be used to supplement rather than supplant the GFD.
Collapse
Affiliation(s)
| | - Govind K. Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
222
|
Morris J, Bailey MES, Baldassarre D, Cullen B, de Faire U, Ferguson A, Gigante B, Giral P, Goel A, Graham N, Hamsten A, Humphries SE, Johnston KJA, Lyall DM, Lyall LM, Sennblad B, Silveira A, Smit AJ, Tremoli E, Veglia F, Ward J, Watkins H, Smith DJ, Strawbridge RJ. Genetic variation in CADM2 as a link between psychological traits and obesity. Sci Rep 2019; 9:7339. [PMID: 31089183 PMCID: PMC6517397 DOI: 10.1038/s41598-019-43861-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
CADM2 has been associated with a range of behavioural and metabolic traits, including physical activity, risk-taking, educational attainment, alcohol and cannabis use and obesity. Here, we set out to determine whether CADM2 contributes to mechanisms shared between mental and physical health disorders. We assessed genetic variants in the CADM2 locus for association with phenotypes in the UK Biobank, IMPROVE, PROCARDIS and SCARFSHEEP studies, before performing meta-analyses. A wide range of metabolic phenotypes were meta-analysed. Psychological phenotypes analysed in UK Biobank only were major depressive disorder, generalised anxiety disorder, bipolar disorder, neuroticism, mood instability and risk-taking behaviour. In UK Biobank, four, 88 and 172 genetic variants were significantly (p < 1 × 10-5) associated with neuroticism, mood instability and risk-taking respectively. In meta-analyses of 4 cohorts, we identified 362, 63 and 11 genetic variants significantly (p < 1 × 10-5) associated with BMI, SBP and CRP respectively. Genetic effects on BMI, CRP and risk-taking were all positively correlated, and were consistently inversely correlated with genetic effects on SBP, mood instability and neuroticism. Conditional analyses suggested an overlap in the signals for physical and psychological traits. Many significant variants had genotype-specific effects on CADM2 expression levels in adult brain and adipose tissues. CADM2 variants influence a wide range of both psychological and metabolic traits, suggesting common biological mechanisms across phenotypes via regulation of CADM2 expression levels in adipose tissue. Functional studies of CADM2 are required to fully understand mechanisms connecting mental and physical health conditions.
Collapse
Affiliation(s)
- Julia Morris
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Breda Cullen
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, Sweden
| | - Philippe Giral
- Assistance Publique-Hopitaux de Paris, Service Endocrinologie-Metabolisme, Groupe Hôpitalier Pitie-Salpetriere, Unités de Prévention Cardiovasculaire, Paris, France
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas Graham
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute Cardiovascular Science, University College London, London, UK
| | - Keira J A Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Division of Psychiatry, College of Medicine, University of Edinburgh, Edinburgh, UK
| | - Donald M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Laura M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Bengt Sennblad
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Andries J Smit
- Department of Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
| | | | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
223
|
Mårild K, Tapia G, Midttun Ø, Ueland PM, Magnus MC, Rewers M, Stene LC, Størdal K. Smoking in pregnancy, cord blood cotinine and risk of celiac disease diagnosis in offspring. Eur J Epidemiol 2019; 34:637-649. [PMID: 31037572 PMCID: PMC6548867 DOI: 10.1007/s10654-019-00522-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/20/2019] [Indexed: 12/21/2022]
Abstract
Ecological observations suggest an inverse relationship between smoking in pregnancy and celiac disease (CD) in offspring. While individual-level analyses have been inconsistent, they have mostly lacked statistical power or refined assessments of exposure. To examine the association between pregnancy-related smoking and CD in the offspring, as well as its consistency across data sets, we analyzed: (1) The Norwegian Mother and Child Cohort (MoBa) of 94,019 children, followed from birth (2000–2009) through 2016, with 1035 developing CD; (2) a subsample from MoBa (381 with CD and 529 controls) with biomarkers; and (3) a register-based cohort of 536,861 Norwegian children, followed from birth (2004–2012) through 2014, with 1919 developing CD. Smoking behaviors were obtained from pregnancy questionnaires and antenatal visits, or, in the MoBa-subsample, defined by measurement of cord blood cotinine. CD and potential confounders were identified through nationwide registers and comprehensive parental questionnaires. Sustained smoking during pregnancy, both self-reported and cotinine-determined, was inversely associated with CD in MoBa (multivariable-adjusted [a] OR = 0.61 [95%CI, 0.46–0.82] and aOR = 0.55 [95%CI, 0.31–0.98], respectively); an inverse association was also found with the intensity of smoking. These findings differed from those of our register-based cohort, which revealed no association with sustained smoking during pregnancy (aOR = 0.97 [95%CI, 0.80–1.18]). In MoBa, neither maternal smoking before or after pregnancy, nor maternal or paternal smoking in only early pregnancy predicted CD. In a carefully followed pregnancy cohort, a more-detailed smoking assessment than oft-used register-based data, revealed that sustained smoking during pregnancy, rather than any smoking exposure, predicts decreased likelihood of childhood-diagnosed CD.
Collapse
Affiliation(s)
- Karl Mårild
- Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Pediatrics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Pediatrics, Queen Silvia Children's Hospital, 41678, Gothenburg, Sweden.
| | - German Tapia
- Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Maria C Magnus
- Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Marian Rewers
- Barbara Davis Center, University of Colorado, Aurora, CO, USA
| | - Lars C Stene
- Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ketil Størdal
- Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Pediatrics, Østfold Hospital Trust, Grålum, Norway
| |
Collapse
|
224
|
Tronstad RR, Polushina T, Brattbakk HR, Stansberg C, von Volkmann HL, Hanevik K, Ellinghaus E, Jørgensen SF, Ersland KM, Pham KDC, Gilja OH, Hovdenak N, Hausken T, Vatn MH, Franke A, Knappskog PM, Le Hellard S, Karlsen TH, Fiskerstrand T. Genetic and transcriptional analysis of inflammatory bowel disease-associated pathways in patients with GUCY2C-linked familial diarrhea. Scand J Gastroenterol 2019; 53:1264-1273. [PMID: 30353760 DOI: 10.1080/00365521.2018.1521867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Activating mutations in the GUCY2C gene, which encodes the epithelial receptor guanylate cyclase C, cause diarrhea due to increased loss of sodium chloride to the intestinal lumen. Patients with familial GUCY2C diarrhea syndrome (FGDS) are predisposed to inflammatory bowel disease (IBD). We investigated whether genes in the guanylate cyclase C pathway are enriched for association with IBD and reversely whether genetic or transcriptional changes associated with IBD are found in FGDS patients. METHODS (1) A set of 27 genes from the guanylate cyclase C pathway was tested for enrichment of association with IBD by Gene Set Enrichment Analysis, using genome-wide association summary statistics from 12,882 IBD patients and 21,770 controls. (2) We genotyped 163 known IBD risk loci and sequenced NOD2 in 22 patients with FGDS. Eight of them had concomitant Crohn's disease. (3) Global gene expression analysis was performed in ileal tissue from patients with FGDS, Crohn's disease and healthy individuals. RESULTS The guanylate cyclase C gene set showed a significant enrichment of association in IBD genome-wide association data. Risk variants in NOD2 were found in 7/8 FGDS patients with concomitant Crohn's disease and in 2/14 FDGS patients without Crohn's disease. In ileal tissue, downregulation of metallothioneins characterized FGDS patients compared to healthy controls. CONCLUSIONS Our results support a role of guanylate cyclase C signaling and disturbed electrolyte homeostasis in development of IBD. Furthermore, downregulation of metallothioneins in the ileal mucosa of FGDS patients may contribute to IBD development, possibly alongside effects from NOD2 risk variants.
Collapse
Affiliation(s)
- Rune R Tronstad
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,b Department of Paediatrics , Haukeland University Hospital , Bergen , Norway
| | - Tatiana Polushina
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Hans-Richard Brattbakk
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Christine Stansberg
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Hilde Løland von Volkmann
- e Department of Clinical Medicine , University of Bergen , Bergen , Norway.,f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Kurt Hanevik
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Eva Ellinghaus
- g Institute of Clinical Molecular Biology , Christian Albrechts University of Kiel , Kiel , Germany.,h K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine , University of Oslo , Oslo , Norway
| | - Silje Fjellgård Jørgensen
- h K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine , University of Oslo , Oslo , Norway.,i Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases , Oslo University Hospital , Rikshospitalet , Oslo , Norway
| | - Kari Merete Ersland
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Khanh D-C Pham
- f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Odd Helge Gilja
- e Department of Clinical Medicine , University of Bergen , Bergen , Norway.,j National Centre for Ultrasound in Gastroenterology , Haukeland University Hospital , Bergen , Norway
| | - Nils Hovdenak
- f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Trygve Hausken
- e Department of Clinical Medicine , University of Bergen , Bergen , Norway.,f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Morten H Vatn
- k Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine , Akershus University Hospital and.,l Medical Clinic , Oslo University Hospital Rikshospitalet Oslo , Oslo , Norway
| | - Andre Franke
- g Institute of Clinical Molecular Biology , Christian Albrechts University of Kiel , Kiel , Germany
| | - Per Morten Knappskog
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,m Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Stephanie Le Hellard
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Tom Hemming Karlsen
- h K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine , University of Oslo , Oslo , Norway.,n Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,o Norwegian PSC Research Centre at the Department of Transplantation Medicine, Division of Cancer medicine, Surgery and Transplantation , Oslo University Hospital , Oslo , Norway
| | - Torunn Fiskerstrand
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,m Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
225
|
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 2019; 8:44597. [PMID: 30924770 PMCID: PMC6440744 DOI: 10.7554/elife.44597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine A Young
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Iain M Hay
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Ching Liang
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, United States
| | - WeiYu Lin
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
226
|
Moerkens R, Mooiweer J, Withoff S, Wijmenga C. Celiac disease-on-chip: Modeling a multifactorial disease in vitro. United European Gastroenterol J 2019; 7:467-476. [PMID: 31065364 PMCID: PMC6488795 DOI: 10.1177/2050640619836057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Conventional model systems cannot fully recapitulate the multifactorial character of complex diseases like celiac disease (CeD), a common chronic intestinal disorder in which many different genetic risk factors interact with environmental factors such as dietary gluten. However, by combining recently developed human induced pluripotent stem cell (hiPSC) technology and organ-on-chip technology, in vitro intestine-on-chip systems can now be developed that integrate the genetic background of complex diseases, the different interacting cell types involved in disease pathology, and the modulating environmental factors such as gluten and the gut microbiome. The hiPSCs that are the basis of these systems can be generated from both diseased and healthy individuals, which means they can be stratified based on their load of genetic risk factors. A CeD-on-chip model system has great potential to improve our understanding of disease etiology and accelerate the development of novel treatments and preventive therapies in CeD and other complex diseases.
Collapse
Affiliation(s)
- Renée Moerkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joram Mooiweer
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,K.G. Jebsen Coeliac Disease Research Center, Department of Immunology, University of Oslo, Norway
| |
Collapse
|
227
|
|
228
|
Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell 2019; 176:967-981.e19. [PMID: 30739797 DOI: 10.1016/j.cell.2018.12.039] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/05/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Tissue-resident lymphocytes play a key role in immune surveillance, but it remains unclear how these inherently stable cell populations respond to chronic inflammation. In the setting of celiac disease (CeD), where exposure to dietary antigen can be controlled, gluten-induced inflammation triggered a profound depletion of naturally occurring Vγ4+/Vδ1+ intraepithelial lymphocytes (IELs) with innate cytolytic properties and specificity for the butyrophilin-like (BTNL) molecules BTNL3/BTNL8. Creation of a new niche with reduced expression of BTNL8 and loss of Vγ4+/Vδ1+ IELs was accompanied by the expansion of gluten-sensitive, interferon-γ-producing Vδ1+ IELs bearing T cell receptors (TCRs) with a shared non-germline-encoded motif that failed to recognize BTNL3/BTNL8. Exclusion of dietary gluten restored BTNL8 expression but was insufficient to reconstitute the physiological Vγ4+/Vδ1+ subset among TCRγδ+ IELs. Collectively, these data show that chronic inflammation permanently reconfigures the tissue-resident TCRγδ+ IEL compartment in CeD. VIDEO ABSTRACT.
Collapse
|
229
|
Fernandez-Jimenez N, Garcia-Etxebarria K, Plaza-Izurieta L, Romero-Garmendia I, Jauregi-Miguel A, Legarda M, Ecsedi S, Castellanos-Rubio A, Cahais V, Cuenin C, Degli Esposti D, Irastorza I, Hernandez-Vargas H, Herceg Z, Bilbao JR. The methylome of the celiac intestinal epithelium harbours genotype-independent alterations in the HLA region. Sci Rep 2019; 9:1298. [PMID: 30718669 PMCID: PMC6362130 DOI: 10.1038/s41598-018-37746-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The Human Leucocyte Antigen (HLA) locus and other DNA sequence variants identified in Genome-Wide Association (GWA) studies explain around 50% of the heritability of celiac disease (CD). However, the pathogenesis of CD could be driven by other layers of genomic information independent from sequence variation, such as DNA methylation, and it is possible that allele-specific methylation explains part of the SNP associations. Since the DNA methylation landscape is expected to be different among cell types, we analyzed the methylome of the epithelial and immune cell populations of duodenal biopsies in CD patients and controls separately. We found a cell type-specific methylation signature that includes genes mapping to the HLA region, namely TAP1 and HLA-B. We also performed Immunochip SNP genotyping of the same samples and interrogated the expression of some of the affected genes. Our analysis revealed that the epithelial methylome is characterized by the loss of CpG island (CGI) boundaries, often associated to altered gene expression, and by the increased variability of the methylation across the samples. The overlap between differentially methylated positions (DMPs) and CD-associated SNPs or variants contributing to methylation quantitative trait loci (mQTLs) is minimal. In contrast, there is a notable enrichment of mQTLs among the most significant CD-associated SNPs. Our results support the notion that DNA methylation alterations constitute a genotype-independent event and confirm its role in the HLA region (apart from the well-known, DQ allele-specific effect). Finally, we find that a fraction of the CD-associated variants could exert its phenotypic effect through DNA methylation.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Koldo Garcia-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Donostia, Basque Country, Spain
| | - Leticia Plaza-Izurieta
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Amaia Jauregi-Miguel
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Maria Legarda
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, 48903, Spain
| | - Szilvia Ecsedi
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Universite Côte d'Azur, INSERM, CNRS, iBV, Nice, France
| | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
- Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Irstea - Laboratoire d'écotoxicologie, UR "Milieux aquatiques, écologie et pollutions", Villeurbanne, France
| | - Iñaki Irastorza
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, 48903, Spain
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Department of Immunology, Virology and Inflammation; TGF beta and Immune Evasion Group; Cancer Research Center of Lyon; INSERM, CNRS, Centre Léon Bérard Hospital, Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain.
- Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
230
|
Abstract
Coeliac disease (CD) is an immune-mediated disorder triggered by the ingestion of gluten in genetically susceptible individuals. However, only a small proportion of subjects harbouring CD-related genetic risk develop the disease. Among the environmental factors that may influence CD risk, pre- and perinatal factors, delivery methods, parental lifestyle, infant feeding practices, seasonality, dietary factors, drug use, childhood infections and variability in gut microbiota are those most widely studied regarding the risk to develop CD. Although for many of these external factors the exact mechanism of action is unknown, most of them are thought to act by disrupting the intestinal barrier, facilitating contact between potential antigens and the immune system effector cells. Management of CD is relatively easy in patients with a definite diagnosis and requires a strict, lifelong, gluten-free diet. Better knowledge of environmental exposures apart from gluten can facilitate understanding of the pathogenesis of the disorder and the wide heterogeneity of its clinical spectrum. The purpose of this review is to discuss current knowledge on environmental CD risk factors, as well as possible interaction between them, on the grounds of the reliable scientific evidence available. Key messages The risk of developing CD is influenced not only by gluten ingestion but also by a number of environmental factors including childhood infections and variability in gut microbiota, pre- and perinatal factors, infant feeding practices, delivery methods, parental lifestyle, seasonality, dietary factors and drug use, acting mainly by disrupting intestinal permeability. Better knowledge of exposure to these factors can facilitate their identification, and subsequent elimination, in the individual patient.
Collapse
Affiliation(s)
- Giovanni Mario Pes
- a Department of Medical , Surgical and Experimental Sciences, University of Sassari , Sassari , Italy
| | - Stefano Bibbò
- a Department of Medical , Surgical and Experimental Sciences, University of Sassari , Sassari , Italy
| | - Maria Pina Dore
- a Department of Medical , Surgical and Experimental Sciences, University of Sassari , Sassari , Italy.,b Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
231
|
Hecker M, Boxberger N, Illner N, Fitzner B, Schröder I, Winkelmann A, Dudesek A, Meister S, Koczan D, Lorenz P, Thiesen HJ, Zettl UK. A genetic variant associated with multiple sclerosis inversely affects the expression of CD58 and microRNA-548ac from the same gene. PLoS Genet 2019; 15:e1007961. [PMID: 30730892 PMCID: PMC6382214 DOI: 10.1371/journal.pgen.1007961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/20/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Genome-wide association studies have identified more than 200 genetic variants to be associated with an increased risk of developing multiple sclerosis (MS). Still, little is known about the causal molecular mechanisms that underlie the genetic contribution to disease susceptibility. In this study, we investigated the role of the single-nucleotide polymorphism (SNP) rs1414273, which is located within the microRNA-548ac stem-loop sequence in the first intron of the CD58 gene. We conducted an expression quantitative trait locus (eQTL) analysis based on public RNA-sequencing and microarray data of blood-derived cells of more than 1000 subjects. Additionally, CD58 transcripts and mature hsa-miR-548ac molecules were measured using real-time PCR in peripheral blood samples of 32 MS patients. Cell culture experiments were performed to evaluate the efficiency of Drosha-mediated stem-loop processing dependent on genotype and to determine the target genes of this underexplored microRNA. Across different global populations and data sets, carriers of the MS risk allele showed reduced CD58 mRNA levels but increased hsa-miR-548ac levels. We provide evidence that the SNP rs1414273 might alter Drosha cleavage activity, thereby provoking partial uncoupling of CD58 gene expression and microRNA-548ac production from the shared primary transcript in immune cells. Moreover, the microRNA was found to regulate genes, which participate in inflammatory processes and in controlling the balance of protein folding and degradation. We thus uncovered new regulatory implications of the MS-associated haplotype of the CD58 gene locus, and we remind that paradoxical findings can be encountered in the analysis of eQTLs upon data aggregation. Our study illustrates that a better understanding of RNA processing events might help to establish the functional nature of genetic variants, which predispose to inflammatory and neurological diseases.
Collapse
Affiliation(s)
- Michael Hecker
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
| | - Nina Boxberger
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nicole Illner
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
| | - Ina Schröder
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Alexander Winkelmann
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Ales Dudesek
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Stefanie Meister
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- University of Rostock, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- University of Rostock, Institute of Immunology, Rostock, Germany
| | - Hans-Jürgen Thiesen
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
- University of Rostock, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
232
|
Lindfors K, Ciacci C, Kurppa K, Lundin KEA, Makharia GK, Mearin ML, Murray JA, Verdu EF, Kaukinen K. Coeliac disease. Nat Rev Dis Primers 2019; 5:3. [PMID: 30631077 DOI: 10.1038/s41572-018-0054-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coeliac disease is an immune-mediated enteropathy against dietary gluten present in wheat, rye and barley and is one of the most common lifelong food-related disorders worldwide. Coeliac disease is also considered to be a systemic disorder characterized by a variable combination of gluten-related signs and symptoms and disease-specific antibodies in addition to enteropathy. The ingestion of gluten leads to the generation of harmful gluten peptides, which, in predisposed individuals, can induce adaptive and innate immune responses. The clinical presentation is extremely variable; patients may have severe gastrointestinal symptoms and malabsorption, extraintestinal symptoms or have no symptoms at all. Owing to the multifaceted clinical presentation, diagnosis remains a challenge and coeliac disease is heavily underdiagnosed. The diagnosis of coeliac disease is achieved by combining coeliac disease serology and small intestinal mucosal histology during a gluten-containing diet. Currently, the only effective treatment for coeliac disease is a lifelong strict gluten-free diet; however, the diet is restrictive and gluten is difficult to avoid. Optimizing diagnosis and care in coeliac disease requires continuous research and education of both patients and health-care professionals.
Collapse
Affiliation(s)
- Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Carolina Ciacci
- Coeliac Center at Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Kalle Kurppa
- Tampere Center for Child Health, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Knut E A Lundin
- Institute of Clinical Medicine and K.G. Jebsen Coeliac Disease Research Centre, Faculty of Medicine, University of Oslo, and Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - M Luisa Mearin
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Elena F Verdu
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Katri Kaukinen
- Department of Internal Medicine, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| |
Collapse
|
233
|
Alasoo K, Rodrigues J, Danesh J, Freitag DF, Paul DS, Gaffney DJ. Genetic effects on promoter usage are highly context-specific and contribute to complex traits. eLife 2019; 8:e41673. [PMID: 30618377 PMCID: PMC6349408 DOI: 10.7554/elife.41673] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic variants regulating RNA splicing and transcript usage have been implicated in both common and rare diseases. Although transcript usage quantitative trait loci (tuQTLs) have been mapped across multiple cell types and contexts, it is challenging to distinguish between the main molecular mechanisms controlling transcript usage: promoter choice, splicing and 3' end choice. Here, we analysed RNA-seq data from human macrophages exposed to three inflammatory and one metabolic stimulus. In addition to conventional gene-level and transcript-level analyses, we also directly quantified promoter usage, splicing and 3' end usage. We found that promoters, splicing and 3' ends were predominantly controlled by independent genetic variants enriched in distinct genomic features. Promoter usage QTLs were also 50% more likely to be context-specific than other tuQTLs and constituted 25% of the transcript-level colocalisations with complex traits. Thus, promoter usage might be an underappreciated molecular mechanism mediating complex trait associations in a context-specific manner.
Collapse
Affiliation(s)
- Kaur Alasoo
- Institute of Computer ScienceUniversity of TartuTartuEstonia
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Julia Rodrigues
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
- National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Daniel F Freitag
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Dirk S Paul
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
234
|
Buniello A, MacArthur JA, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA, Cunningham F, Parkinson H. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019; 47:D1005-D1012. [PMID: 30445434 PMCID: PMC6323933 DOI: 10.1093/nar/gky1120] [Citation(s) in RCA: 2656] [Impact Index Per Article: 442.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
The GWAS Catalog delivers a high-quality curated collection of all published genome-wide association studies enabling investigations to identify causal variants, understand disease mechanisms, and establish targets for novel therapies. The scope of the Catalog has also expanded to targeted and exome arrays with 1000 new associations added for these technologies. As of September 2018, the Catalog contains 5687 GWAS comprising 71673 variant-trait associations from 3567 publications. New content includes 284 full P-value summary statistics datasets for genome-wide and new targeted array studies, representing 6 × 109 individual variant-trait statistics. In the last 12 months, the Catalog's user interface was accessed by ∼90000 unique users who viewed >1 million pages. We have improved data access with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database. Summary statistics provision is supported by a new format proposed as a community standard for summary statistics data representation. This format was derived from our experience in standardizing heterogeneous submissions, mapping formats and in harmonizing content. Availability: https://www.ebi.ac.uk/gwas/.
Collapse
Affiliation(s)
- Annalisa Buniello
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jacqueline A L MacArthur
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Maria Cerezo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laura W Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Hayhurst
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cinzia Malangone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Aoife McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Edward Mountjoy
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, Oxford, UK
| | - Elliot Sollis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Suveges
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Olga Vrousgou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Patricia L Whetzel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ridwan Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jose A Guillen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Harpreet S Riat
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen J Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peggy Hall
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather Junkins
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
235
|
Moheb-Alian A, Forouzesh F, Sadeghi A, Rostami K, Aghamohammadi E, Rostami-Nejad M, Rezaei-Tavirani M, Zali MR. Contribution of HLA-DQ2/DQ8 haplotypes in type one diabetes patients with/without celiac disease. J Diabetes Complications 2019; 33:59-62. [PMID: 30415877 DOI: 10.1016/j.jdiacomp.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/04/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Based on lack of data on the distribution of the related alleles in the T1D population in Iranian population, we assessed the frequency of HLA DQ2 and DQ8 haplotypes in patients with T1D with/without CD compared to healthy population. MATERIALS AND METHODS 70 patients with T1D without celiac disease, 60 T1D cases with CD were compared to 150 healthy individuals during 2016. Ten mililiter Gheparinized blood samples were collected, genomic DNA was extracted and alleles were genotyped by Real-time PCR using SYBR Green as a low-resolution method. RESULTS HLA-DQ2 and/or HLA-DQ8 genotypes was presented in 51% and 23% of T1D patients without CD respectively. Twenty one percent of those patients carried both alleles and 5% were negative for both alleles. T1D patients with CD had much higher DQ2 frequency (72%) and lower DQ8 (11.6%), than T1D patients without CD and controls, 14% carried both alleles and 3% were negative for both. The frequencies of DQ2 and DQ8 alleles in Iranian healthy population were 19 and 5% respectively. CONCLUSION According to the same genetic background for CD and T1D we suggest that HLA-typing can be a very useful screening tool for CD in patients with type one diabetes.
Collapse
Affiliation(s)
- Ali Moheb-Alian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Rostami
- Department of Gastroenterology MidCentral District Health Board, Palmerston North Hospital, New Zealand
| | - Elham Aghamohammadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
236
|
Chander U, Leeman-Neill RJ, Bhagat G. Pathogenesis of Enteropathy-Associated T Cell Lymphoma. Curr Hematol Malig Rep 2018; 13:308-317. [PMID: 29943210 DOI: 10.1007/s11899-018-0459-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To provide an update on the pathogenesis of enteropathy-associated T cell lymphoma (EATL) and its relationship with refractory celiac disease (RCD), in light of current knowledge of immune, genetic, and environmental factors that promote neoplastic transformation of intraepithelial lymphocytes (IELs). RECENT FINDINGS EATL frequently evolves from RCD type II (RCD II) but can occur "de novo" in individuals with celiac disease. Recurrent activating mutations in members of the JAK/STAT pathway have been recently described in EATL and RCD II, which suggests deregulation of cytokine signaling to be an early event in lymphomagenesis. Intraepithelial T cells are presumed to be the cell of origin of EATL (and RCD II). Recent in vitro molecular and phenotypic analyses and in vivo murine studies, however, suggest an origin of RCD II from innate IELs (NK/T cell precursors), which could also be the cell of origin of RCD II-derived EATL. The immune microenvironment of the small intestinal mucosa in celiac disease fosters the development of EATL, often in a multistep pathway.
Collapse
Affiliation(s)
- Udit Chander
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
237
|
Fadason T, Schierding W, Lumley T, O'Sullivan JM. Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. Nat Commun 2018; 9:5198. [PMID: 30518762 PMCID: PMC6281603 DOI: 10.1038/s41467-018-07692-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Clinical studies of non-communicable diseases identify multimorbidities that suggest a common set of predisposing factors. Despite the fact that humans have ~24,000 genes, we do not understand the genetic pathways that contribute to the development of multimorbid non-communicable disease. Here we create a multimorbidity atlas of traits based on pleiotropy of spatially regulated genes. Using chromatin interaction and expression Quantitative Trait Loci (eQTL) data, we analyse 20,782 variants (p < 5 × 10-6) associated with 1351 phenotypes to identify 16,248 putative spatial eQTL-eGene pairs that are involved in 76,013 short- and long-range regulatory interactions (FDR < 0.05) in different human tissues. Convex biclustering of spatial eGenes that are shared among phenotypes identifies complex interrelationships between nominally different phenotype-associated SNPs. Our approach enables the simultaneous elucidation of variant interactions with target genes that are drivers of multimorbidity, and those that contribute to unique phenotype associated characteristics.
Collapse
Affiliation(s)
- Tayaza Fadason
- The Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - William Schierding
- The Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - Thomas Lumley
- The Department of Biostatistics, The University of Auckland, Auckland, 1010, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand.
| |
Collapse
|
238
|
Mallon DH, Kling C, Robb M, Ellinghaus E, Bradley JA, Taylor CJ, Kabelitz D, Kosmoliaptsis V. Predicting Humoral Alloimmunity from Differences in Donor and Recipient HLA Surface Electrostatic Potential. THE JOURNAL OF IMMUNOLOGY 2018; 201:3780-3792. [PMID: 30429288 PMCID: PMC6287104 DOI: 10.4049/jimmunol.1800683] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/02/2018] [Indexed: 11/27/2022]
Abstract
In transplantation, development of humoral alloimmunity against donor HLA is a major cause of organ transplant failure, but our ability to assess the immunological risk associated with a potential donor–recipient HLA combination is limited. We hypothesized that the capacity of donor HLA to induce a specific alloantibody response depends on their structural and physicochemical dissimilarity compared with recipient HLA. To test this hypothesis, we first developed a novel computational scoring system that enables quantitative assessment of surface electrostatic potential differences between donor and recipient HLA molecules at the tertiary structure level [three-dimensional electrostatic mismatch score (EMS-3D)]. We then examined humoral alloimmune responses in healthy females subjected to a standardized injection of donor lymphocytes from their male partner. This analysis showed a strong association between the EMS-3D of donor HLA and donor-specific alloantibody development; this relationship was strongest for HLA-DQ alloantigens. In the clinical transplantation setting, the immunogenic potential of HLA-DRB1 and -DQ mismatches expressed on donor kidneys, as assessed by their EMS-3D, was an independent predictor of development of donor-specific alloantibody after graft failure. Collectively, these findings demonstrate the translational potential of our approach to improve immunological risk assessment and to decrease the burden of humoral alloimmunity in organ transplantation.
Collapse
Affiliation(s)
- Dermot H Mallon
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,National Institute for Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.,National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| | - Christiane Kling
- Institute for Immunology, University Medical Centre Schleswig-Holstein, Kiel University, 24105 Kiel, Germany
| | - Matthew Robb
- Statistics and Clinical Studies Unit, National Health Service Blood and Transplant, Bristol BS34 7QH, United Kingdom
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, University Medical Centre Schleswig-Holstein, Kiel University, 24105 Kiel, Germany; and
| | - J Andrew Bradley
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,National Institute for Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.,National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| | - Craig J Taylor
- National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom.,Tissue Typing Laboratory, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Dieter Kabelitz
- Institute for Immunology, University Medical Centre Schleswig-Holstein, Kiel University, 24105 Kiel, Germany
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; .,National Institute for Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.,National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
239
|
Medrano LM, Pascual V, Bodas A, López-Palacios N, Salazar I, Espino-Paisán L, González-Pérez B, Urcelay E, Mendoza JL, Núñez C. Expression patterns common and unique to ulcerative colitis and celiac disease. Ann Hum Genet 2018; 83:86-94. [PMID: 30402962 DOI: 10.1111/ahg.12293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases like celiac disease (CeD) and ulcerative colitis (UC) show a common genetic background defined by the existence of shared susceptibility loci. We aimed to go deeper into this common genetic background through performing a cross-disease study based on gene expression. We measured the expression of 21 genes located in 13 CeD-UC susceptibility regions, and 10 genes in five CeD risk regions. Determinations were carried out in colon/rectum samples from 13 UC patients (inflamed and uninflamed tissue) and four colon samples from controls. Duodenal samples from 19 CeD patients and 12 controls were used for comparisons. Differences were analyzed using the Bayesian method. The shared chromosomal regions containing TNFAIP3, PTPN2, ICOSLG, C1orf106, and IL21 showed similar results in both diseases. FASLG, PLEK, CCR4, and TAGAP, all located in CeD risk loci, were up-regulated in both CeD and UC patients. Finally, ZFP36L1, ZMIZ1, PUS10, UBE2L3, and BACH2 showed opposite results in CeD and UC. A high complexity underlies autoimmune common susceptibility loci, as the expression pattern of the studied genes does not always correlate with the one expected attending to the apparent genetic background. Differentially expressed genes such as ZFP36L1, ZMIZ1, PUS10, and BACH2 deserve further research in autoimmune diseases.
Collapse
Affiliation(s)
- Luz María Medrano
- Servicio de Inmunología Clínica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Virginia Pascual
- Servicio de Inmunología Clínica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Andrés Bodas
- Servicio de Pediatría, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Natalia López-Palacios
- Servicio de Aparato Digestivo, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Isabel Salazar
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Espino-Paisán
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Beatriz González-Pérez
- Departamento de Estadística e Investigación Operativa I, Facultad de Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Urcelay
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Luis Mendoza
- Servicio de Aparato Digestivo, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
240
|
Olazagoitia-Garmendia A, Santin I, Castellanos-Rubio A. Functional implication of celiac disease associated lncRNAs in disease pathogenesis. Comput Biol Med 2018; 102:369-375. [DOI: 10.1016/j.compbiomed.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022]
|
241
|
Wohlers I, Bertram L, Lill CM. Evidence for a potential role of miR-1908-5p and miR-3614-5p in autoimmune disease risk using integrative bioinformatics. J Autoimmun 2018; 94:83-89. [PMID: 30143393 DOI: 10.1016/j.jaut.2018.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
|
242
|
Abstract
Celiac disease is an autoimmune disease affecting the small intestine, triggered by gluten sensitization in genetically susceptible individuals worldwide. Celiac disease development is strongly linked to the presence of HLA-DQ2 and/or DQ8, which present the immunogenic gluten peptides and trigger the immune response leading to pathogenesis. Because of the variability of clinical symptoms, the disease is often underdiagnosed. Intestinal biopsy and the presence of antibodies to deamidated gliadin and tissue transglutaminase are recommended diagnostic tools. Genetic testing for HLA DQ2 and DQ8 can be used to rule out disease in at-risk populations.
Collapse
Affiliation(s)
- Eszter Lázár-Molnár
- ARUP Laboratories, Department of Pathology, University of Utah School of Medicine, 500 Chipeta Way, MS 115, Salt Lake City, UT 84108, USA.
| | - Melissa Snyder
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
243
|
The Psoriasis Risk Allele HLA-C*06:02 Shows Evidence of Association with Chronic or Recurrent Streptococcal Tonsillitis. Infect Immun 2018; 86:IAI.00304-18. [PMID: 30037793 DOI: 10.1128/iai.00304-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Pharyngeal tonsillitis is one of the most common upper respiratory tract infections, and group A streptococcus is the most important bacterial pathogen causing it. While most patients experience tonsillitis only rarely, a subset of patients suffers from recurrent or chronic tonsillitis or pharyngitis. The predisposing factors for recurring or chronic forms of this disease are not yet fully understood, but genetic predisposition has been suggested. A genetic association study using Illumina's Immunochip single-nucleotide polymorphism (SNP) array was performed to search for new genetic biomarkers in pharyngeal tonsillitis. More than 100,000 SNPs relevant to immune-mediated diseases were analyzed in a cohort of 95 patients subjected to tonsillectomy due to recurrent/chronic tonsillitis and 504 controls. Genetic association between the cases and controls showed strongest association with two peaks in the HLA locus (odds ratio [OR], 3.7 to 4.7; P = 4.9 × 10-6 to 5.7 × 10-6). Further analysis with imputed classical HLA alleles suggested the known psoriasis risk allele HLA-C*06:02 as a risk factor for tonsillitis (P = 4.8 × 10-4; OR, 2.3). In addition, the imputed HLA haplotype HLA-C*06:02/HLA-B*57:01, a reported risk haplotype in psoriasis, had the strongest risk for tonsillitis (P = 3.2 × 10-4; OR, 6.5). These findings further support the previously reported link between streptococcal throat infections and psoriasis.
Collapse
|
244
|
Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet 2018; 50:1366-1374. [PMID: 30224649 DOI: 10.1038/s41588-018-0216-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
To define potentially causal variants for autoimmune disease, we fine-mapped1,2 76 rheumatoid arthritis (11,475 cases, 15,870 controls)3 and type 1 diabetes loci (9,334 cases, 11,111 controls)4. After sequencing 799 1-kilobase regulatory (H3K4me3) regions within these loci in 568 individuals, we observed accurate imputation for 89% of common variants. We defined credible sets of ≤5 causal variants at 5 rheumatoid arthritis and 10 type 1 diabetes loci. We identified potentially causal missense variants at DNASE1L3, PTPN22, SH2B3, and TYK2, and noncoding variants at MEG3, CD28-CTLA4, and IL2RA. We also identified potential candidate causal variants at SIRPG and TNFAIP3. Using functional assays, we confirmed allele-specific protein binding and differential enhancer activity for three variants: the CD28-CTLA4 rs117701653 SNP, MEG3 rs34552516 indel, and TNFAIP3 rs35926684 indel.
Collapse
|
245
|
Pai S, Bader GD. Patient Similarity Networks for Precision Medicine. J Mol Biol 2018; 430:2924-2938. [PMID: 29860027 PMCID: PMC6097926 DOI: 10.1016/j.jmb.2018.05.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
Clinical research and practice in the 21st century is poised to be transformed by analysis of computable electronic medical records and population-level genome-scale patient profiles. Genomic data capture genetic and environmental state, providing information on heterogeneity in disease and treatment outcome, but genomic-based clinical risk scores are limited. Achieving the goal of routine precision medicine that takes advantage of these rich genomics data will require computational methods that support heterogeneous data, have excellent predictive performance, and ideally, provide biologically interpretable results. Traditional machine-learning approaches excel at performance, but often have limited interpretability. Patient similarity networks are an emerging paradigm for precision medicine, in which patients are clustered or classified based on their similarities in various features, including genomic profiles. This strategy is analogous to standard medical diagnosis, has excellent performance, is interpretable, and can preserve patient privacy. We review new methods based on patient similarity networks, including Similarity Network Fusion for patient clustering and netDx for patient classification. While these methods are already useful, much work is required to improve their scalability for contemporary genetic cohorts, optimize parameters, and incorporate a wide range of genomics and clinical data. The coming 5 years will provide an opportunity to assess the utility of network-based algorithms for precision medicine.
Collapse
Affiliation(s)
- Shraddha Pai
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
246
|
López Casado MÁ, Lorite P, Ponce de León C, Palomeque T, Torres MI. Celiac Disease Autoimmunity. Arch Immunol Ther Exp (Warsz) 2018; 66:423-430. [PMID: 30167716 DOI: 10.1007/s00005-018-0520-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
Celiac disease is an autoimmune condition triggered by the ingestion of gluten, the protein fraction of wheat, barley and rye. It is not simply an intestinal disease; it is multifactorial caused by many different genetic factors acting together with non-genetic causes. Similar to other autoimmune diseases, celiac disease is a polygenic disorder for which the major histocompatibility complex locus is the most important genetic factor, and is the result of an immune response to self-antigens leading to tissue destruction and the autoantibodies production. Celiac disease exemplifies how an illness can have autoimmune-like features having to be driven by exogenous antigen and how can be reasonably considered as a model of organ-specific autoimmunity.
Collapse
Affiliation(s)
| | - Pedro Lorite
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | - Teresa Palomeque
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | |
Collapse
|
247
|
Abstract
BACKGROUND Approximately 5% of patients with celiac disease (CeD) do not respond to a gluten-free diet and progress to refractory celiac disease (RCD), a severe progression that is characterized by infiltration of intraepithelial T lymphocytes. Patients with RCD type II (RCDII) show clonal expansions of intraepithelial T lymphocytes that result in a poor prognosis and a high mortality rate through development of aggressive enteropathy-associated T-cell lymphoma. It is not known whether genetic variations play a role in severe progression of CeD to RCDII. PATIENTS AND METHODS We performed the first genome-wide association study to identify the causal genes for RCDII and the molecular pathways perturbed in RCDII. The genome-wide association study was performed in 38 Dutch patients with RCDII, and the 15 independent top-associated single nucleotide polymorphism (SNP) variants (P<5×10) were replicated in 56 independent French and Dutch patients with RCDII. RESULTS After replication, SNP rs2041570 on chromosome 7 was significantly associated with progression to RCDII (P=2.37×10, odds ratio=2.36) but not with CeD susceptibility. SNP rs2041570 risk allele A was associated with lower levels of FAM188B expression in blood and small intestinal biopsies. Stratification of RCDII biopsies based on rs2041570 genotype showed differential expression of innate immune and antibacterial genes that are expressed in Paneth cells. CONCLUSION We have identified a novel SNP associated with the severe progression of CeD to RCDII. Our data suggest that genetic susceptibility to CeD might be distinct from the progression to RCDII and suggest a role for Paneth cells in RCDII progression.
Collapse
|
248
|
Aponte JL, Chiano MN, Yerges-Armstrong LM, Hinds DA, Tian C, Gupta A, Guo C, Fraser DJ, Freudenberg JM, Rajpal DK, Ehm MG, Waterworth DM. Assessment of rosacea symptom severity by genome-wide association study and expression analysis highlights immuno-inflammatory and skin pigmentation genes. Hum Mol Genet 2018; 27:2762-2772. [PMID: 29771307 PMCID: PMC6822543 DOI: 10.1093/hmg/ddy184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023] Open
Abstract
Rosacea is a common, chronic skin disease of variable severity with limited treatment options. The cause of rosacea is unknown, but it is believed to be due to a combination of hereditary and environmental factors. Little is known about the genetics of the disease. We performed a genome-wide association study (GWAS) of rosacea symptom severity with data from 73 265 research participants of European ancestry from the 23andMe customer base. Seven loci had variants associated with rosacea at the genome-wide significance level (P < 5 × 10-8). Further analyses highlighted likely gene regions or effector genes including IRF4 (P = 1.5 × 10-17), a human leukocyte antigen (HLA) region flanked by PSMB9 and HLA-DMB (P = 2.2 × 10-15), HERC2-OCA2 (P = 4.2 × 10-12), SLC45A2 (P = 1.7 × 10-10), IL13 (P = 2.8 × 10-9), a region flanked by NRXN3 and DIO2 (P = 4.1 × 10-9), and a region flanked by OVOL1and SNX32 (P = 1.2 × 10-8). All associations with rosacea were novel except for the HLA locus. Two of these loci (HERC-OCA2 and SLC45A2) and another precedented variant (rs1805007 in melanocortin 1 receptor) with an association P value just below the significance threshold (P = 1.3 × 10-7) have been previously associated with skin phenotypes and pigmentation, two of these loci are linked to immuno-inflammation phenotypes (IL13 and PSMB9-HLA-DMA) and one has been associated with both categories (IRF4). Genes within three loci (PSMB9-HLA-DMA, HERC-OCA2 and NRX3-DIO2) were differentially expressed in a previously published clinical rosacea transcriptomics study that compared lesional to non-lesional samples. The identified loci provide specificity of inflammatory mechanisms in rosacea, and identify potential pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer L Aponte
- Genomic Medicine, PAREXEL International, Research Triangle Park, NC, USA
| | | | | | | | - Chao Tian
- 23andMe Inc., Mountain View, CA, USA
| | - Akanksha Gupta
- Translational Science, Dermatology, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Cong Guo
- Target Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Dana J Fraser
- Genomic Medicine, PAREXEL International, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
249
|
Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 2018; 27:R195-R208. [PMID: 29771313 PMCID: PMC6061876 DOI: 10.1093/hmg/ddy163] [Citation(s) in RCA: 959] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy, the phenomenon of a single genetic variant influencing multiple traits, is likely widespread in the human genome. If pleiotropy arises because the single nucleotide polymorphism (SNP) influences one trait, which in turn influences another ('vertical pleiotropy'), then Mendelian randomization (MR) can be used to estimate the causal influence between the traits. Of prime focus among the many limitations to MR is the unprovable assumption that apparent pleiotropic associations are mediated by the exposure (i.e. reflect vertical pleiotropy), and do not arise due to SNPs influencing the two traits through independent pathways ('horizontal pleiotropy'). The burgeoning treasure trove of genetic associations yielded through genome wide association studies makes for a tantalizing prospect of phenome-wide causal inference. Recent years have seen substantial attention devoted to the problem of horizontal pleiotropy, and in this review we outline how newly developed methods can be used together to improve the reliability of MR.
Collapse
Affiliation(s)
- Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol
| | - Jack Bowden
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol
| |
Collapse
|
250
|
Almeida FC, Gandolfi L, Costa KN, Picanço MRA, Almeida LM, Nóbrega YKM, Pratesi R, Pratesi CB, Selleski N. Frequency of HLA-DQ, susceptibility genotypes for celiac disease, in Brazilian newborns. Mol Genet Genomic Med 2018; 6:779-784. [PMID: 30014583 PMCID: PMC6160714 DOI: 10.1002/mgg3.444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background The frequency of HLA‐DQ2 and DQ8 predisposing genotypes for celiac disease (CD) has shown significant variation among different world regions and has not been previously determined among the highly interbred Brazilian population. The aim of this study was to investigate the frequency of these genotypes among Brazilian newborns (NB). Methods We typed DQA1*05 ‐ DQB1*02 (DQ2.5) and DQA1*03 ‐ DQB1*03:02 (DQ8) alleles in 329 NB using qPCR technique. Subsequently we confirmed our results by PCR‐SSP using a reference kit which further identified DQ2.2 (DQA1*02:01 ‐ DQB1*02). Results Among the 329 NB, using qPCR technique: 5 (1.52%) carried both DQ2.5 and DQ8 variants; 58 (17.63%) carried only DQ2.5 (DQA1*05 and DQB1*02) and 47 (14.29%) carried only the DQ8 (DQA1*03 and DQB1*03:02) variant. The use of the PCR‐SSP method yielded further information; among the 329 samples: 34 (10.34%) tested positive for DQ2.2 and among the 47 previously DQ8 positives samples, we found 10 (3.04%) that also tested positives for DQ2.2. Conclusion 43.7% of the analyzed individual tested positive for at least one of the CD predisposing HLA‐DQ genotypes in our group of Brazilian NB. The highest frequency was found for DQ2.5 positive subjects (17.6%) followed by DQ8 (11.3%); DQ2.2 (10.3%); DQ8 and DQ2.2 (3.0%); DQ2.5 and DQ8 (1.5%). We found no positive sample for DQ2.5 associated with DQ2.2.
Collapse
Affiliation(s)
- Fernanda C Almeida
- Graduate Program in Medical Sciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Research Center for Celiac Disease, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Lenora Gandolfi
- Graduate Program in Medical Sciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Research Center for Celiac Disease, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Graduate Program in Health Sciences, School of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.,Department of Pediatrics, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Karina N Costa
- Department of Pediatrics, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Marilucia R A Picanço
- Department of Pediatrics, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Lucas M Almeida
- Graduate Program in Medical Sciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Research Center for Celiac Disease, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Yanna K M Nóbrega
- Graduate Program in Medical Sciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Riccardo Pratesi
- Graduate Program in Medical Sciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Research Center for Celiac Disease, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Graduate Program in Health Sciences, School of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.,Department of Pediatrics, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Claudia B Pratesi
- Research Center for Celiac Disease, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Graduate Program in Health Sciences, School of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Nicole Selleski
- Research Center for Celiac Disease, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.,Graduate Program in Health Sciences, School of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|