201
|
The intronic GABRG2 mutation, IVS6+2T->G, associated with childhood absence epilepsy altered subunit mRNA intron splicing, activated nonsense-mediated decay, and produced a stable truncated γ2 subunit. J Neurosci 2012; 32:5937-52. [PMID: 22539854 DOI: 10.1523/jneurosci.5332-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intronic GABRG2 mutation, IVS6+2T→G, was identified in an Australian family with childhood absence epilepsy and febrile seizures (Kananura et al., 2002). The GABRG2 intron 6 splice donor site was found to be mutated from GT to GG. We generated wild-type and mutant γ2 subunit bacterial artificial chromosomes (BACs) driven by a CMV promoter and expressed them in HEK293T cells and expressed wild-type and mutant γ2 subunit BACs containing the endogenous hGABRG2 promoter in transgenic mice. Wild-type and mutant GABRG2 mRNA splicing patterns were determined in both BAC-transfected HEK293T cells and transgenic mouse brain, and in both, the mutation abolished intron 6 splicing at the donor site, activated a cryptic splice site, generated partial intron 6 retention, and produced a frameshift in exon 7 that created a premature translation termination codon (PTC). The resultant mutant mRNA was either degraded partially by nonsense-mediated mRNA decay or translated to a stable, truncated subunit (the γ2-PTC subunit) containing the first six GABRG2 exons and a novel frameshifted 29 aa C-terminal tail. The γ2-PTC subunit was homologous to the mollusk AChBP (acetylcholine binding protein) but was not secreted from cells. It was retained in the ER and not expressed on the surface membrane, but it did oligomerize with α1 and β2 subunits. These results suggested that the GABRG2 mutation, IVS6+2T→G, reduced surface αβγ2 receptor levels, thus reducing GABAergic inhibition, by reducing GABRG2 transcript level and producing a stable, nonfunctional truncated subunit that had a dominant-negative effect on αβγ2 receptor assembly.
Collapse
|
202
|
The epilepsies. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
203
|
Channelopathies. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
204
|
PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012; 90:152-60. [PMID: 22243967 DOI: 10.1016/j.ajhg.2011.12.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/23/2011] [Accepted: 12/08/2011] [Indexed: 11/21/2022] Open
Abstract
Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).
Collapse
|
205
|
Motamedi GK, Gonzalez-Sulser A, Dzakpasu R, Vicini S. Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model. Neurotherapeutics 2012; 9:199-209. [PMID: 21913006 PMCID: PMC3271159 DOI: 10.1007/s13311-011-0078-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hypothermia can terminate epileptiform discharges in vitro and in vivo epilepsy models. Hypothermia is becoming a standard treatment for brain injury in infants with perinatal hypoxic ischemic encephalopathy, and it is gaining ground as a potential treatment in patients with drug resistant epilepsy. However, the exact mechanism of action of cooling the brain tissue is unclear. We have studied the 4-aminopyridine model of epilepsy in mice using single- and dual-patch clamp and perforated multi-electrode array recordings from the hippocampus and cortex. Cooling consistently terminated 4-aminopyridine induced epileptiform-like discharges in hippocampal neurons and increased input resistance that was not mimicked by transient receptor potential channel antagonists. Dual-patch clamp recordings showed significant synchrony between distant CA1 and CA3 pyramidal neurons, but less so between the pyramidal neurons and interneurons. In CA1 and CA3 neurons, hypothermia blocked rhythmic action potential discharges and disrupted their synchrony; however, in interneurons, hypothermia blocked rhythmic discharges without abolishing action potentials. In parallel, multi-electrode array recordings showed that synchronized discharges were disrupted by hypothermia, whereas multi-unit activity was unaffected. The differential effect of cooling on transmitting or secreting γ-aminobutyric acid interneurons might disrupt normal network synchrony, aborting the epileptiform discharges. Moreover, the persistence of action potential firing in interneurons would have additional antiepileptic effects through tonic γ-aminobutyric acid release.
Collapse
Affiliation(s)
- Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
206
|
Yalçın O. Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies. Seizure 2011; 21:79-86. [PMID: 22206818 DOI: 10.1016/j.seizure.2011.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/16/2022] Open
Abstract
Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents, are complex disorders mainly caused by genetic factors. Childhood absence epilepsy and juvenile absence epilepsy are among the most common subtypes of IAEs. While the role of ion channels has been the primary focus of epilepsy research, the analysis of mutation and association in both patients with absence epilepsies and animal models revealed the involvement of GABA receptors and calcium channels, but also of novel non-ion channel proteins in inducing spike wave discharges (SWD). Functional studies on a mutated variant of these proteins also support their role in the epileptogenesis of absence seizures. Studies in animal models point to both the thalamus and cortex as the origin of SWDs: the abnormalities in the components of these circuits leading to seizure activity. This review examines the current research on mutations and susceptibility alleles determined in the genes that code for the subunits of GABA receptors (GABRG2, GABRA1, GABRB3, GABRA5, GABA(B1) and GABA(B2)), calcium channels (CACNA1A, CACNA1G, CACNA1H, CACNA1I, CACNAB4, CACNAG2 and CACNG3), and novel non-ion channel proteins, taking into account the results of functional studies on these variants.
Collapse
Affiliation(s)
- Ozlem Yalçın
- Department of Molecular Biology and Genetics, T.C. Istanbul Arel University, Tepekent-Buyukcekmece, Istanbul, Turkey.
| |
Collapse
|
207
|
Parisi P, Verrotti A, Paolino MC, Castaldo R, Ianniello F, Ferretti A, Chiarelli F, Villa MP. "Electro-clinical syndromes" with onset in paediatric age: the highlights of the clinical-EEG, genetic and therapeutic advances. Ital J Pediatr 2011; 37:58. [PMID: 22182677 PMCID: PMC3267655 DOI: 10.1186/1824-7288-37-58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022] Open
Abstract
The genetic causes underlying epilepsy remain largely unknown, and the impact of available genetic data on the nosology of epilepsy is still limited. Thus, at present, classification of epileptic disorders should be mainly based on electroclinical features. Electro-clinical syndrome is a term used to identify a group of clinical entities showing a cluster of electro-clinical characteristics, with signs and symptoms that together define a distinctive, recognizable, clinical disorder. These often become the focus of treatment trials as well as of genetic, neuropsychological, and neuroimaging investigations. They are distinctive disorders identifiable on the basis of a typical age onset, specific EEG characteristics, seizure types, and often other features which, when taken together, permit a specific diagnosis which, in turn, often has implications for treatment, management, and prognosis. Each electro-clinical syndrome can be classified according to age at onset, cognitive and developmental antecedents and consequences, motor and sensory examinations, EEG features, provoking or triggering factors, and patterns of seizure occurrence with respect to sleep. Therefore, according to the age at onset, here we review the more frequently observed paediatric electro-clinical syndrome from their clinical-EEG, genetic and therapeutic point of views.
Collapse
Affiliation(s)
- Pasquale Parisi
- NESMOS Department, Chair of Pediatrics, Child Neurology, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa, 1035-1039, Rome,00189, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM, Eeg-Olofsson O, Sadleir LG, Gill D, Ben-Zeev B, Lerman-Sagie T, Mackay M, Freeman JL, Andermann E, Pelakanos JT, Andrews I, Wallace G, Eichler EE, Berkovic SF, Scheffer IE. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 2011; 70:974-85. [PMID: 22190369 PMCID: PMC3245646 DOI: 10.1002/ana.22645] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Rare copy number variants (CNVs)--deletions and duplications--have recently been established as important risk factors for both generalized and focal epilepsies. A systematic assessment of the role of CNVs in epileptic encephalopathies, the most devastating and often etiologically obscure group of epilepsies, has not been performed. METHODS We evaluated 315 patients with epileptic encephalopathies characterized by epilepsy and progressive cognitive impairment for rare CNVs using a high-density, exon-focused, whole-genome oligonucleotide array. RESULTS We found that 25 of 315 (7.9%) of our patients carried rare CNVs that may contribute to their phenotype, with at least one-half being clearly or likely pathogenic. We identified 2 patients with overlapping deletions at 7q21 and 2 patients with identical duplications of 16p11.2. In our cohort, large deletions were enriched in affected individuals compared to controls, and 4 patients harbored 2 rare CNVs. We screened 2 novel candidate genes found within the rare CNVs in our cohort but found no mutations in our patients with epileptic encephalopathies. We highlight several additional novel candidate genes located in CNV regions. INTERPRETATION Our data highlight the significance of rare CNVs in the epileptic encephalopathies, and we suggest that CNV analysis should be considered in the genetic evaluation of these patients. Our findings also highlight novel candidate genes for further study.
Collapse
Affiliation(s)
- Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Jull P, Risio LD, Horton C, Volk HA. Effect of prolonged status epilepticus as a result of intoxication on epileptogenesis in a UK canine population. Vet Rec 2011; 169:361. [DOI: 10.1136/vr.d4750] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- P. Jull
- Department of Veterinary Clinical Sciences; Royal Veterinary College; Hawkshead lane, North Mymms Hatfield Herts AL9 7TA UK
| | - L. D. Risio
- The Animal Health Trust; Lanwades Park, Kentford Newmarket Suffolk CB8 7UU UK
| | - C. Horton
- Department of Veterinary Clinical Sciences; Royal Veterinary College; Hawkshead lane, North Mymms Hatfield Herts AL9 7TA UK
| | - H. A. Volk
- Department of Veterinary Clinical Sciences; Royal Veterinary College; Hawkshead lane, North Mymms Hatfield Herts AL9 7TA UK
| |
Collapse
|
210
|
Plummer PN, Colson NJ, Lewohl JM, MacKay RK, Fernandez F, Haupt LM, Griffiths LR. Significant differences in gene expression of GABA receptors in peripheral blood leukocytes of migraineurs. Gene 2011; 490:32-6. [PMID: 21971078 DOI: 10.1016/j.gene.2011.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/19/2011] [Accepted: 08/25/2011] [Indexed: 01/29/2023]
Abstract
Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.
Collapse
Affiliation(s)
- Prue N Plummer
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
211
|
Hernandez CC, Gurba KN, Hu N, Macdonald RL. The GABRA6 mutation, R46W, associated with childhood absence epilepsy, alters 6β22 and 6β2 GABA(A) receptor channel gating and expression. J Physiol 2011; 589:5857-78. [PMID: 21930603 DOI: 10.1113/jphysiol.2011.218883] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A GABA(A) receptor α6 subunit mutation, R46W, was identified as a susceptibility gene that may contribute to the pathogenesis of childhood absence epilepsy (CAE), but the molecular basis for alteration of GABA(A) receptor function is unclear. The R46W mutation is located in a region homologous to a GABA(A) receptor γ2 subunit missense mutation, R82Q, that is associated with CAE and febrile seizures in humans. To determine how this mutation reduces GABAergic inhibition, we expressed wild-type (α6β2γ2L and α6β2δ) and mutant (α6(R46W)β2γ2L and α6(R46W)β2δ) receptors in HEK 293T cells and characterize their whole-cell and single-channel currents, and surface and total levels. We demonstrated that gating and assembly of both α6(R46W)β2γ2L and α6(R46W)β2δ receptors were impaired. Compared to wild-type currents, α6(R46W)β2γ2L and α6(R46W)β2δ receptors had a reduced current density, α6(R46W)β2γ2L currents desensitized to a greater extent and deactivated at a slower rate, α6(R46W)β2δ receptors did not desensitize but deactivated faster and both α6(R46W)β2γ2L and α6(R46W)β2δ single-channel current mean open times and burst durations were reduced. Surface levels of coexpressed α6(R46W), β2 and δ, but not γ2L, subunits were decreased. 'Heterozygous' coexpression of α6(R46W) and α6 subunits with β2 and γ2L subunits produced intermediate macroscopic current amplitudes by increasing incorporation of wild-type and decreasing incorporation of mutant subunits into receptors trafficked to the surface. Finally, these findings suggest that similar to the γ2(R82Q) mutation, the CAE-associated α6(R46W) mutation could cause neuronal disinhibition and thus increase susceptibility to generalized seizures through a reduction of αβγ and αβδ receptor function and expression.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
212
|
The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies. Seizure 2011; 21:3-11. [PMID: 21917483 DOI: 10.1016/j.seizure.2011.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022] Open
Abstract
The group of idiopathic epilepsies encompasses numerous syndromes without known organic substrate. Genetic anomalies are thought to be responsible for pathogenesis, with a monogenic or polygenic model of inheritance. Over the last two decades, a number of genetic anomalies and encoded proteins have been related to particular idiopathic epilepsies and epileptic encephalopathies. Most of these mutations involve subunits of neuronal ion channels (e.g. potassium, sodium, and chloride channels), and may result in abnormal neuronal hyperexcitability manifesting with seizures. However non-ion channel proteins may also be affected. Correlations between genotype and phenotype are not easy to establish, since genetic and non-genetic factors are likely to play a role in determining the severity of clinical features. The growing number of discoveries on this topic are improving classification, prognosis and counseling of patients and families with these forms of epilepsy, and may lead to targeted therapeutic approaches in the near future. In this article the authors have reviewed the main genetic discoveries in the field of the monogenic idiopathic epilepsies and epileptic encephalopathies, in order to provide epileptologists with a concise and comprehensive summary of clinical and genetic features of these seizure disorders.
Collapse
|
213
|
Leppä E, Linden AM, Vekovischeva OY, Swinny JD, Rantanen V, Toppila E, Höger H, Sieghart W, Wulff P, Wisden W, Korpi ER. Removal of GABA(A) receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations. PLoS One 2011; 6:e24159. [PMID: 21912668 PMCID: PMC3166293 DOI: 10.1371/journal.pone.0024159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022] Open
Abstract
We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception.
Collapse
Affiliation(s)
- Elli Leppä
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid? Pflugers Arch 2011; 463:201-12. [PMID: 21861061 PMCID: PMC3256322 DOI: 10.1007/s00424-011-1009-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/15/2022]
Abstract
The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent ‘perverted’ sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep.
Collapse
|
215
|
Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast 2011; 2011:649325. [PMID: 21876820 PMCID: PMC3159129 DOI: 10.1155/2011/649325] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/04/2011] [Indexed: 12/04/2022] Open
Abstract
A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders.
Collapse
|
216
|
Piro RM, Molineris I, Ala U, Di Cunto F. Evaluation of candidate genes from orphan FEB and GEFS+ loci by analysis of human brain gene expression atlases. PLoS One 2011; 6:e23149. [PMID: 21858011 PMCID: PMC3157479 DOI: 10.1371/journal.pone.0023149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022] Open
Abstract
Febrile seizures, or febrile convulsions (FEB), represent the most common form of childhood seizures and are believed to be influenced by variations in several susceptibility genes. Most of the associated loci, however, remain ‘orphan’, i.e. the susceptibility genes they contain still remain to be identified. Further orphan loci have been mapped for a related disorder, genetic (generalized) epilepsy with febrile seizures plus (GEFS+). We show that both spatially mapped and ‘traditional’ gene expression data from the human brain can be successfully employed to predict the most promising candidate genes for FEB and GEFS+, apply our prediction method to the remaining orphan loci and discuss the validity of the predictions. For several of the orphan FEB/GEFS+ loci we propose excellent, and not always obvious, candidates for mutation screening in order to aid in gaining a better understanding of the genetic origin of the susceptibility to seizures.
Collapse
Affiliation(s)
- Rosario M Piro
- Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
| | | | | | | |
Collapse
|
217
|
Mulley JC, Dibbens LM. Genetic variations and associated pathophysiology in the management of epilepsy. Appl Clin Genet 2011; 4:113-125. [PMID: 23776372 PMCID: PMC3681183 DOI: 10.2147/tacg.s7407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The genomic era has enabled the application of molecular tools to the solution of many of the genetic epilepsies, with and without comorbidities. Massively parallel sequencing has recently reinvigorated gene discovery for the monogenic epilepsies. Recurrent and novel copy number variants have given much-needed impetus to the advancement of our understanding of epilepsies with complex inheritance. Superimposed upon that is the phenotypic blurring by presumed genetic modifiers scattering the effects of the primary mutation. The genotype-first approach has uncovered associated syndrome constellations, of which epilepsy is only one of the syndromes. As the molecular genetic basis for the epilepsies unravels, it will increasingly influence the classification and diagnosis of the epilepsies. The ultimate goal of the molecular revolution has to be the design of treatment protocols based on genetic profiles, and cracking the 30% of epilepsies refractory to current medications, but that still lies well into the future. The current focus is on the scientific basis for epilepsy. Understanding its genetic causes and biophysical mechanisms is where we are currently positioned: prizing the causes of epilepsy "out of the shadows" and exposing its underlying mechanisms beyond even the ion-channels.
Collapse
Affiliation(s)
- John C Mulley
- Department of Genetic Medicine, Directorate of Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, Australia
- School of Paediatrics and Reproductive Health, and School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, Australia
| | - Leanne M Dibbens
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
218
|
Reid CA, Kullmann DM. GABAA receptor mutations in epilepsy (commentary on Lachance-Touchette et al.). Eur J Neurosci 2011; 34:235-6. [PMID: 21762463 DOI: 10.1111/j.1460-9568.2011.07792.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
219
|
Lachance-Touchette P, Brown P, Meloche C, Kinirons P, Lapointe L, Lacasse H, Lortie A, Carmant L, Bedford F, Bowie D, Cossette P. Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci 2011; 34:237-49. [PMID: 21714819 DOI: 10.1111/j.1460-9568.2011.07767.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epilepsy is a heterogeneous neurological disease affecting approximately 50 million people worldwide. Genetic factors play an important role in both the onset and severity of the condition, with mutations in several ion-channel genes being implicated, including those encoding the GABA(A) receptor. Here, we evaluated the frequency of additional mutations in the GABA(A) receptor by direct sequencing of the complete open reading frame of the GABRA1 and GABRG2 genes from a cohort of French Canadian families with idiopathic generalized epilepsy (IGE). Using this approach, we have identified three novel mutations that were absent in over 400 control chromosomes. In GABRA1, two mutations were found, with the first being a 25-bp insertion that was associated with intron retention (i.e. K353delins18X) and the second corresponding to a single point mutation that replaced the aspartate 219 residue with an asparagine (i.e. D219N). Electrophysiological analysis revealed that K353delins18X and D219N altered GABA(A) receptor function by reducing the total surface expression of mature protein and/or by curtailing neurotransmitter effectiveness. Both defects would be expected to have a detrimental effect on inhibitory control of neuronal circuits. In contrast, the single point mutation identified in the GABRG2 gene, namely P83S, was indistinguishable from the wildtype subunit in terms of surface expression and functionality. This finding was all the more intriguing as the mutation exhibited a high degree of penetrance in three generations of one French Canadian family. Further experimentation will be required to understand how this mutation contributes to the occurrence of IGE in these individuals.
Collapse
Affiliation(s)
- Pamela Lachance-Touchette
- Centre for Excellence in Neuromics of University of Montreal, CHUM Research Center, 1560 Sherbrooke est, Montreal, QC, Canada H2L 4M1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
González MI, Brooks-Kayal A. Altered GABA(A) receptor expression during epileptogenesis. Neurosci Lett 2011; 497:218-22. [PMID: 21376781 PMCID: PMC3134403 DOI: 10.1016/j.neulet.2011.02.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. GABA(A) receptors are heteropentamers formed by assembly of multiple subunits that generate a wide array of receptors with particular distribution and pharmacological profiles. Malfunction of these receptors has been associated with the pathophysiology of epilepsy and contribute to an imbalance of excitatory and inhibitory neurotransmission. The process of epilepsy development (epileptogenesis) is associated with changes in the expression and function of a large number of gene products. One of the major challenges is to effectively determine which changes directly contribute to epilepsy development versus those that are compensatory or not involved in the pathology. Substantial evidence suggests that changes in the expression and function of GABA(A) receptors are involved in the pathogenesis of epilepsy. Identification of the mechanisms involved in GABA(A) receptor malfunction during epileptogenesis and the ability to reverse this malfunction are crucial steps towards definitively answering this question and developing specific and effective therapies.
Collapse
Affiliation(s)
- Marco I González
- Department of Pediatrics, Division of Neurology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, United States.
| | | |
Collapse
|
221
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 PMCID: PMC3093971 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
222
|
Verrotti A, Agostinelli S, Olivieri C, Chiarelli F, Curatolo P. Early-onset pure absence epilepsy: a distinct epileptic syndrome. Acta Paediatr 2011; 100:647-650. [PMID: 21352361 DOI: 10.1111/j.1651-2227.2011.02213.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Early-onset pure absence epilepsy has not yet considered in the International League Against Epilepsy classification, but several reports have supported its existence as a distinct epileptic syndrome primarily manifesting with typical absences in early childhood. This review summarizes the current understanding on this epilepsy. CONCLUSIONS Early-onset pure absence epilepsy is a distinct epilepsy characterized by absences starting from a few months to 4 years of age, normal early psychomotor development, good antiepileptic drug seizure control and normal intellectual outcome.
Collapse
|
223
|
Errington AC, Gibson KM, Crunelli V, Cope DW. Aberrant GABA(A) receptor-mediated inhibition in cortico-thalamic networks of succinic semialdehyde dehydrogenase deficient mice. PLoS One 2011; 6:e19021. [PMID: 21526163 PMCID: PMC3079762 DOI: 10.1371/journal.pone.0019021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 01/19/2023] Open
Abstract
Aberrant γ-aminobutyric acid type A (GABAA) receptor-mediated inhibition in cortico-thalamic networks remains an attractive mechanism for typical absence seizure genesis. Using the whole-cell patch clamp technique we examined ‘phasic’ and ‘tonic’ GABAA inhibition in thalamocortical neurons of somatosensory (ventrobasal, VB) thalamus, nucleus reticularis thalami (NRT) neurons, and layer 5/6 pyramidal neurons of the somatosensory (barrel) cortex of succinic semialdehyde dehydrogenase (SSADH) knock-out (SSADH−/−) mice that replicate human SSADH deficiency and exhibit typical absence seizures. We found increased sIPSC frequency in both VB and NRT neurons and larger sIPSC amplitude in VB neurons of SSADH−/− mice compared to wild-type animals, demonstrating an increase in total phasic inhibition in thalamus of SSADH−/− mice. mIPSCs in both VB and NRT neurons were no different between genotypes, although there remained a trend toward more events in SSADH−/− mice. In cortical layer 5/6 pyramidal neurons, sIPSCs were fewer but larger in SSADH−/− mice, a feature retained by mIPSCs. Tonic currents were larger in both thalamocortical neurons and layer 5/6 pyramidal neurons from SSADH−/− mice compared to WTs. These data show that enhanced, rather than compromised, GABAA receptor-mediated inhibition occurs in cortico-thalamic networks of SSADH−/− mice. In agreement with previous studies, GABAA receptor-mediated inhibitory gain-of-function may be a common feature in models of typical absence seizures, and could be of pathological importance in patients with SSADH deficiency.
Collapse
Affiliation(s)
- Adam C Errington
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | | | | | |
Collapse
|
224
|
Yalçin O, Baykan B, Ağan K, Yapici Z, Yalçin D, Dizdarer G, Türkdoğan D, Ozkara C, Unalp A, Uludüz D, Gül G, Kuşcu D, Ayta S, Tutkavul K, Comu S, Tatli B, Meral C, Bebek N, Cağlayan SH. An association analysis at 2q36 reveals a new candidate susceptibility gene for juvenile absence epilepsy and/or absence seizures associated with generalized tonic-clonic seizures. Epilepsia 2011; 52:975-83. [PMID: 21320115 DOI: 10.1111/j.1528-1167.2010.02970.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To further evaluate the previously shown linkage of absence epilepsy (AE) to 2q36, both in human and WAG/Rij absence rat models, a 160-kb region at 2q36 containing eight genes with expressions in the brain was targeted in a case-control association study involving 205 Turkish patients with AE and 219 controls. METHODS Haplotype block and case-control association analysis was carried out using HAPLOVIEW 4.0 and inhibin alpha subunit (INHA) gene analysis by DNA sequencing. KEY FINDINGS An association was found between the G allele of rs7588807 located in the INHA gene and juvenile absence epilepsy (JAE) syndrome and patients having generalized tonic-clonic seizures (GTCS) with p-values of 0.003 and 0.0002, respectively (uncorrected for multiple comparisons). DNA sequence analysis of the INHA gene in 110 JAE/GTCS patients revealed three point mutations with possible damaging effects on inhibin function in three patients and the presence of a common ACTC haplotype (H1) with a possible dominant protective role conferred by the T allele of rs7588807 with respective p-values of 0.0005 and 0.0014. SIGNIFICANCE The preceding findings suggest that INHA could be a novel candidate susceptibility gene involved in the pathogenesis of JAE or AE associated with GTCS.
Collapse
Affiliation(s)
- Ozlem Yalçin
- Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Lewis RW, Hess GP, Ganem B. Use of multicomponent reactions in developing small-molecule tools to study GABAA receptor mechanism and function. Future Med Chem 2011; 3:243-50. [PMID: 21428818 PMCID: PMC3152297 DOI: 10.4155/fmc.10.302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We discuss the potential use of multicomponent reactions in developing small-molecule probes of GABA(A) receptor function. Two examples that illustrate this approach are presented: the synthesis of a class of compounds that specifically modulate the function of GABA(A) receptors containing the δ-subunit, and also 'caged' GABA derivatives. A caged GABA is a photolabile precursor of GABA that releases GABA upon photolysis.
Collapse
Affiliation(s)
- Ryan W Lewis
- Department of Molecular Biology & Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853–2703, USA
| | - George P Hess
- Department of Molecular Biology & Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853–2703, USA
| | - Bruce Ganem
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853–1301, USA
| |
Collapse
|
226
|
Striano P, Zara F. Genetic epilepsies. Eur J Paediatr Neurol 2011; 15:88-9. [PMID: 20570192 DOI: 10.1016/j.ejpn.2010.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 01/17/2023]
Affiliation(s)
- Pasquale Striano
- Muscular and Neurodegenerative Diseases Unit, G. Gaslini Institute, University of Genova, Genova, Italy.
| | | |
Collapse
|
227
|
Różycka A, Dorszewska J, Jagodziński PP. Zaburzenia czynności kanałów jonowych w patogenezie padaczek idiopatycznych. Neurol Neurochir Pol 2011; 45:42-56. [PMID: 21384293 DOI: 10.1016/s0028-3843(14)60059-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
228
|
Hill EL, Hosie S, Mulligan RS, Richards KL, Davies PJ, Dubé CM, Baram TZ, Reid CA, Jones MV, Petrou S. Temperature elevation increases GABA(A) -mediated cortical inhibition in a mouse model of genetic epilepsy. Epilepsia 2010; 52:179-84. [PMID: 21219304 DOI: 10.1111/j.1528-1167.2010.02914.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A missense mutation (R43Q) in the γ2 subunit of the γ-aminobutyric acid (GABA)(A) receptor is associated with generalized (genetic) epilepsy with febrile seizures plus (GEFS+). Heterozygous GABA(A) γ2(R43Q) mice displayed a lower temperature threshold for thermal seizures as compared to wild-type littermates. Temperature-dependent internalization of GABA(A) γ2(R43Q)-containing receptors has been proposed as a mechanism underlying febrile seizure genesis in patients with this mutation. We tested this idea using the GABA(A) γ2(R43Q) knockin mouse model and analyzed GABAergic miniature postsynaptic inhibitory currents (mIPSCs) in acute brain slices after exposure to varying temperatures. Incubation of slices at an elevated temperature increased mIPSC amplitude in neurons from heterozygous mice, with no change seen in wild-type controls. [³H]Flumazenil binding measured in whole-brain homogenates from mutant and control mice following elevation of body temperature showed no temperature-dependent differences in γ2-containing receptor density. Therefore, in vivo mouse data do not support earlier in vitro observations that proposed temperature-dependent internalization of γ2 R43Q containing GABA(A) receptors as the cellular mechanism underlying febrile seizure genesis in patients with the GABA(A) γ2(R43Q) mutation.
Collapse
Affiliation(s)
- Elisa L Hill
- Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
A BRIEF HISTORY OF HUMAN GENETICS: Sixty years is an appropriate yardstick for many reasons, not least for the remarkable advances in medicine, public health, psychology and biological disciplines. Particularly relevant is the approaching 60th anniversary of the discovery of the structure of DNA, which unlocked the driving force of nature and spawned a plethora of scientific discoveries and economic development through the Bitoech industry. Prior to 1953, and before Watson and Crick burst into the Cambridge pub with their eureka moment, it was known that chromosomes were important, the first principles of clinical cytogenetics were emerging and the rules of heritable traits were well-advanced, but without the basic framework or mechanism. Human Molecular Genetics arrived when the first mutations were linked to human disorders reflecting the advances in understanding the genetic code, assembly of protein building blocks and methodological advances in reading the physical code (all be it very difficult process at the time). Accelerated by the introduction of recombinant gene technology in the 1980s, and in conjunction with the development of linked genetic marker maps, the catalogue of genes associated with disease has risen exponentially with classical examples such as sickle cell disease, cystic fibrosis and Huntington's disease. The advances approached super-sonic dimensions when genes were found in Mendelian families, and mapping strategies were adopted using the variation map of the human genome (SNP's, di-nucleotide repeats), in addition to targeted candidate gene approaches aided by the significant database resources available to investigators. Super-sonic gave way to light-speed with the publication of the 3 billion letters of the genetic code which constitutes the human genome, followed quickly by genomes in plants, bacteria, pathogens, fruits and vegetables, and a menagerie of eukaryotic and prokaryotic animals, often representing model systems for genomic and pathophysiological research. In short don't blink or you'll miss the next revolution - too late, it's just happened!
Collapse
Affiliation(s)
- Mark I Rees
- Neurology Research Group, Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
230
|
|
231
|
Brockhaus J, Pape HC. Abnormalities in GABAergic synaptic transmission of intralaminar thalamic neurons in a genetic rat model of absence epilepsy. Mol Cell Neurosci 2010; 46:444-51. [PMID: 21112396 DOI: 10.1016/j.mcn.2010.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 10/29/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022] Open
Abstract
Synaptic activity mediated via GABA receptors in thalamic circuits is critically involved in the generation of hypersynchrony associated with absence epilepsy. Neurons of "unspecific" intralaminar thalamic nuclei display characteristic burst patterns during seizure activity, although their synaptic properties remain largely unknown. Here, we used in vitro patch-clamp techniques in neurons of the paracentral (PC) thalamic nucleus, derived from a genetic model of absence epilepsy (WAG-Rij) and a non-epileptic control strain (ACI) to elucidate intrinsic and synaptic properties. PC neurons displayed voltage-dependent low threshold spike bursts or tonic spike firing, typical of thalamic neurons. These parameters, and electrotonic properties, were similar in PC neurons of the two strains. Analyses of miniature inhibitory post synaptic currents (mIPSCs) mediated via GABA(A) receptors revealed no difference in decay time constant and inter-event interval between strains, but a significantly larger amplitude and higher single channel conductance (as assessed by non-stationary variance analysis) in WAG-Rij compared to ACI. By comparison, thalamocortical neurons from the ventrobasal complex of the thalamus showed no difference in mIPSC kinetics and unitary conductance between the two rat strains. In view of the critical role of GABAergic inhibition for synchronous activity in thalamocortical circuits, it is concluded that the increase in unitary conductance of IPSCs in PC neurons contributes to hypersynchrony characterizing seizure activity.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | |
Collapse
|
232
|
Fendri-Kriaa N, Louhichi N, Mkaouar-Rebai E, Chabchoub G, Kammoun F, Salem IH, Rebai A, Triki C, Fakhfakh F. The first genome-wide scan in a tunisian family with generalized epilepsy with febrile seizure plus (GEFS+). J Child Neurol 2010; 25:1362-8. [PMID: 20382841 DOI: 10.1177/0883073810365739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Generalized epilepsy with febrile seizure plus (GEFS+) is an autosomal dominant disorder. In the literature, 5 responsible genes were identified and 2 novel susceptibility loci for GEFS+ at 2p24 and 8p23-p21 were reported, indicating the genetic heterogeneity of this disorder. The aim of this report is to identify the responsible loci in a large affected Tunisian family by performing a 10cM density genome-wide scan. The highest multipoint logarithm of odds (LOD) score (1.04) was found for D5S407 in the absence of recombination. Two other interesting regions were found around marker D19S210 (LOD=0.799) and D7S484 (LOD=0.61) markers. To fine map these loci, additional markers in 2 regions on 5q13.3 and 7p14.2 were analyzed and positive LOD scores for both loci were obtained. Sequencing of the Sodium channel subunit beta-1 gene (SCN1B) (19q13.1) showed the absence of any causal mutation. Our findings emphasized the genetic heterogeneity of febrile seizures.
Collapse
|
233
|
Mantegazza M, Rusconi R, Scalmani P, Avanzini G, Franceschetti S. Epileptogenic ion channel mutations: from bedside to bench and, hopefully, back again. Epilepsy Res 2010; 92:1-29. [PMID: 20828990 DOI: 10.1016/j.eplepsyres.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 07/30/2010] [Accepted: 08/08/2010] [Indexed: 01/21/2023]
Abstract
Mutations of genes coding for ion channels cause several genetically determined human epileptic syndromes. The identification of a gene variant linked to a particular disease gives important information, but it is usually necessary to perform functional studies in order to completely disclose the pathogenic mechanisms. The functional consequences of epileptogenic mutations have been studied both in vitro and in vivo with several experimental systems, studies that have provided significant knowledge on the pathogenic mechanisms that leads to inherited human epilepsies, and possibly also on the pathogenic mechanisms of non-genetic human epilepsies due to "acquired channelopathies". However, several open issues remain and difficulties in the interpretation of the experimental data have arisen that limit translational applications. We will highlight the value and the limits of different approaches to the study of epileptogenic channelopathies, focussing on the importance of the experimental systems in the assessment of the functional effects of the mutations and on the possible applications of the obtained results to the clinical practice.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097 and University of Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | |
Collapse
|
234
|
Lachance-Touchette P, Martin C, Poulin C, Gravel M, Carmant L, Cossette P. Screening of GABRB3 in French-Canadian families with idiopathic generalized epilepsy. Epilepsia 2010; 51:1894-7. [PMID: 20550555 DOI: 10.1111/j.1528-1167.2010.02642.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the GABRB3 have been recently associated with childhood absence epilepsy (CAE) in families from Honduras and Mexico. In this study, we aimed to determine the frequency of mutation in this gene in our cohort of families with CAE and other related idiopathic generalized epilepsy (IGE) syndromes. We screened the open reading frame of GABRB3 in 183 French-Canadian individuals with IGE, including 88 with CAE. A total of nine single nucleotide polymorphisms (SNPs) have been identified,five of which are novel. The previously described P11S missense mutation was found in three affected and one unaffected individuals from a French-Canadian family. However, the P11S variant was also found in one of our 190 control individuals of French-Canadian origin, suggesting that this variant is rather a rare polymorphism in this population. Further screening of other IGE cohorts from various ethnic origins would help to confirm the association between this rare functional variant and epilepsy.
Collapse
Affiliation(s)
- Pamela Lachance-Touchette
- CHUM Research Center, Hôpital Notre-Dame, Centre d'Excellence en Neuromique de l'Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
235
|
Abouda H, Hizem Y, Gargouri A, Depienne C, Bouteiller D, Riant F, Tournier-Lasserve E, Gourfinkel-An I, LeGuern E, Gouider R. Familial form of typical childhood absence epilepsy in a consanguineous context. Epilepsia 2010; 51:1889-93. [PMID: 20561025 DOI: 10.1111/j.1528-1167.2010.02649.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Causative genes for childhood absence epilepsy (CAE) are unknown partly because families are small or phenotypically heterogeneous. In five consanguineous Tunisian families with at least two sibs with CAE, 14 patients fulfilled the diagnostic criteria for CAE (Epilepsia 1989; 30:389-399). Linkage analyses or direct sequencing excluded CACNG2, CACNA1A, CACNB4, and CACNA2D2, orthologs of genes responsible for autosomal recessive (AR) absence seizures in mice. These families will help identify (a) gene(s) responsible for CAE.
Collapse
Affiliation(s)
- Hanen Abouda
- Service de Neurologie, CHU Razi, La Manouba, Tunisie
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Kang JQ, Shen W, Lee M, Gallagher MJ, Macdonald RL. Slow degradation and aggregation in vitro of mutant GABAA receptor gamma2(Q351X) subunits associated with epilepsy. J Neurosci 2010; 30:13895-905. [PMID: 20943930 PMCID: PMC2976503 DOI: 10.1523/jneurosci.2320-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 12/29/2022] Open
Abstract
The GABA(A) receptor γ2 subunit nonsense mutation Q351X has been associated with the genetic epilepsy syndrome generalized epilepsy with febrile seizures plus, which includes a spectrum of seizures types from febrile seizures to Dravet syndrome. Although most genetic epilepsy syndromes are mild and remit with age, Dravet syndrome has a more severe clinical course with refractory seizures associated with developmental delay and cognitive impairment. The basis for the broad spectrum of seizure phenotypes is uncertain. We demonstrated previously that the GABA(A) receptor γ2 subunit gene Q351X mutation suppressed biogenesis of wild-type partnering α1 and β2 subunits in addition to its loss of function. Here we show that γ2S(Q351X) subunits have an additional impairment of biogenesis. Mutant γ2(Q351X) subunits were degraded more slowly than wild-type γ2 subunits and formed SDS-resistant, high-molecular-mass complexes or aggregates in multiple cell types, including neurons. The half-life of γ2S(Q351X) subunits was ∼4 h, whereas that of γ2S subunits was ∼2 h. Mutant subunits formed complexes rapidly after synthesis onset. Using multiple truncated subunits, we demonstrated that aggregate formation was a general phenomenon for truncated γ2S subunits and that their Cys-loop cysteines were involved in aggregate formation. Protein aggregation is a hallmark of neurodegenerative diseases, but the effects of the mutant γ2S(Q351X) subunit aggregates on neuronal function and survival are unclear. Additional validation of the mutant subunit aggregation in vivo and determination of the involved signaling pathways will help reveal the pathological effects of these mutant subunit aggregates in the pathogenesis of genetic epilepsy syndromes.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37212-8552, USA.
| | | | | | | | | |
Collapse
|
237
|
Muhle H, Steinich I, von Spiczak S, Franke A, Weber Y, Lerche H, Wittig M, Heidemann S, Suls A, de Jonghe P, Marini C, Guerrini R, Scheffer IE, Berkovic SF, Stephani U, Siebert R, Sander T, Helbig I, Tönnies H. A duplication in 1q21.3 in a family with early onset and childhood absence epilepsy. Epilepsia 2010; 51:2453-6. [PMID: 21204805 DOI: 10.1111/j.1528-1167.2010.02712.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early onset absence epilepsy (EOAE) starting before the age of 4 years constitutes a rare subgroup of the idiopathic generalized epilepsies (IGEs). A strong genetic component in IGE has been suggested by twin and family studies. We describe a boy with absence seizures starting at the age of 9 months whose parents both had childhood absence epilepsy. A 192-kb duplication in 1q21.3 was identified in the proband and his father, encompassing the gene CHRNB2 coding for the β-2 subunit of the nicotinic acetylcholine receptor and the gene ADAR coding for adenosine deaminase, an enzyme responsible for RNA editing. Both are candidate genes for seizure disorders. The duplication was not identified in 191 independent IGE patients (93 EOAE; 98 classical IGE) or in 1,157 population controls.
Collapse
Affiliation(s)
- Hiltrud Muhle
- Department of Neuropediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Mathew J, Gangadharan G, Kuruvilla KP, Paulose CS. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri. Neurochem Res 2010; 36:7-16. [PMID: 20821261 DOI: 10.1007/s11064-010-0253-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 11/30/2022]
Abstract
In the present study, alterations of the General GABA and GABA(A) receptors in the hippocampus of pilocarpine-induced temporal lobe epileptic rats and the therapeutic application of Bacopa monnieri and its active component Bacoside-A were investigated. Bacopa monnieri (Linn.) is a herbaceous plant belonging to the family Scrophulariaceae. Hippocampus is the major region of the brain belonging to the limbic system and plays an important role in epileptogenesis, memory and learning. Scatchard analysis of [³H]GABA and [³H]bicuculline in the hippocampus of the epileptic rat showed significant decrease in B(max) (P < 0.001) compared to control. Real Time PCR amplification of GABA(A) receptor sub-units such as GABA(Aά₁), GABA(Aά₅) GABA(Aδ), and GAD were down regulated (P < 0.001) in the hippocampus of the epileptic rats compared to control. GABA(Aγ) subunit was up regulated. Epileptic rats have deficit in the radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses all these changes near to control. Our results suggest that decreased GABA receptors in the hippocampus have an important role in epilepsy associated behavioral deficit, Bacopa monnieri and Bacoside-A have clinical significance in the management of epilepsy.
Collapse
Affiliation(s)
- Jobin Mathew
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | | | |
Collapse
|
239
|
Abstract
Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A-GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.
Collapse
Affiliation(s)
- Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322
| | - Alan L. Goldin
- Departments of Microbiology & Molecular Genetics and Anatomy & Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
240
|
Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 2010; 460:505-23. [PMID: 20352446 PMCID: PMC2885462 DOI: 10.1007/s00424-010-0816-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 02/02/2023]
Abstract
The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Room 306, Bronx, NY 10461, USA.
| |
Collapse
|
241
|
Macdonald RL, Kang JQ. Molecular pathology of genetic epilepsies associated with GABAA receptor subunit mutations. Epilepsy Curr 2010; 9:18-23. [PMID: 19396344 DOI: 10.1111/j.1535-7511.2008.01278.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in ligand-gated ion channel genes associated with idiopathic generalized epilepsies have been reported in excitatory acetylcholine receptor alpha4 and beta2 subunit genes linked to autosomal dominant nocturnal frontal lobe epilepsy and in inhibitory GABA(A) receptor alpha1, beta3, gamma2, and delta subunit genes associated with childhood absence epilepsy, juvenile myoclonic epilepsy, pure febrile seizures, generalized epilepsy with febrile seizures plus, and generalized epilepsy with tonic-clonic seizures. Recent studies suggest that these mutations alter receptor function or biogenesis, including impaired receptor subunit messenger RNA stability, receptor subunit protein folding and stability, receptor assembly, and receptor trafficking.
Collapse
Affiliation(s)
- Robert L Macdonald
- Departments of Neurology, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|
242
|
Ding L, Feng HJ, Macdonald RL, Botzolakis EJ, Hu N, Gallagher MJ. GABA(A) receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABA(A) receptors. J Biol Chem 2010; 285:26390-405. [PMID: 20551311 DOI: 10.1074/jbc.m110.142299] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A GABA(A) receptor (GABA(A)R) alpha1 subunit mutation, A322D (AD), causes an autosomal dominant form of juvenile myoclonic epilepsy (ADJME). Previous studies demonstrated that the mutation caused alpha1(AD) subunit misfolding and rapid degradation, reducing its total and surface expression substantially. Here, we determined the effects of the residual alpha1(AD) subunit expression on wild type GABA(A)R expression to determine whether the AD mutation conferred a dominant negative effect. We found that although the alpha1(AD) subunit did not substitute for wild type alpha1 subunits on the cell surface, it reduced the surface expression of alpha1beta2gamma2 and alpha3beta2gamma2 receptors by associating with the wild type subunits within the endoplasmic reticulum and preventing them from trafficking to the cell surface. The alpha1(AD) subunit reduced surface expression of alpha3beta2gamma2 receptors by a greater amount than alpha1beta2gamma2 receptors, thus altering cell surface GABA(A)R composition. When transfected into cultured cortical neurons, the alpha1(AD) subunit altered the time course of miniature inhibitory postsynaptic current kinetics and reduced miniature inhibitory postsynaptic current amplitudes. These findings demonstrated that, in addition to causing a heterozygous loss of function of alpha1(AD) subunits, this epilepsy mutation also elicited a modest dominant negative effect that likely shapes the epilepsy phenotype.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
243
|
Abstract
The GABAA-receptor γ2 Subunit R43Q Mutation Linked to Childhood Absence Epilepsy and Febrile Seizures Causes Retention of α1 β2γ2S Receptors in the Endoplasmic Reticulum Kang J, Macdonald RL J Neurosci 2004;24:8672–8677 The GABAA-receptor γ2 subunit mutation R43Q is an autosomal dominant mutation associated with childhood absence epilepsy and febrile seizures. Previously, we demonstrated that homozygous α1 β3 γ2L(R43Q)-receptor whole-cell currents had reduced amplitude with unaltered time course, suggesting reduced cell-surface expression of functional receptors. In human embryonic kidney 293-T cells, we demonstrate that both heterozygous and homozygous α1 β2 γ2S(R43Q) GABAA-receptor current amplitudes were reduced when receptors were assembled from coexpressed α1, β2, and γ2S subunits and from β2- α1 tandem subunits coexpressed with the γ2L subunit. By using fluorescence confocal microscopy, we demonstrated that mutant receptors containing enhanced yellow fluorescent protein-tagged γ2S subunits had reduced surface expression and were retained in the endoplasmic reticulum. In addition, by using biotinylation of surface receptors and immunoblotting, we confirmed that α1 β2 γ2S(R43Q)-receptors had reduced surface expression. These results provide evidence that the γ2S(R43Q) mutation impaired GABAA-receptor function by compromising receptor trafficking and reducing surface expression. Altered Expression of the δ Subunit of the GABAA Receptor in a Mouse Model of Temporal Lobe Epilepsy Peng Z, Huang CS, Stell BM, Mody I, Houser CR J Neurosci 2004;24:8629–8639 δ Subunit–containing GABAA receptors are located predominantly at nonsynaptic sites in the dentate gyrus, where they may play important roles in controlling neuronal excitability through tonic inhibition and responses to GABA spillover. Immunohistochemical methods were used to determine whether δ subunit expression was altered after pilocarpine-induced status epilepticus in C57BL/6 mice in ways that could increase excitability of the dentate gyrus. In pilocarpine-treated animals, the normal diffuse labeling of the δ subunit in the dentate molecular layer was decreased by 4 days after status epilepticus (latent period) and remained low throughout the period of chronic seizures. In contrast, diffuse labeling of α4 and γ2 subunits, potentially interrelated GABAA-receptor subunits, was increased during the chronic period. Interestingly, δ subunit labeling of many interneurons progressively increased after pilocarpine treatment. Consistent with the observed changes in δ subunit labeling, physiological studies revealed increased excitability in the dentate gyrus of slices obtained from the pilocarpine-treated mice and demonstrated that physiologic concentrations of the neurosteroid tetrahydrodeoxycorticosterone were less effective in reducing excitability in the pilocarpine-treated animals than in controls. The findings support the idea that alterations in nonsynaptic δ subunit–containing GABAA receptors in both principal cells and interneurons could contribute to increased seizure susceptibility in the hippocampal formation in a temporal lobe epilepsy model.
Collapse
|
244
|
Kamata R, Shiraishi F, Takahashi S, Shimizu A, Shiraishi H. Reevaluation of the developmental toxicity of dieldrin by the use of fertilized Japanese quail eggs. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:84-90. [PMID: 20211759 DOI: 10.1016/j.cbpc.2010.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
To reevaluate the toxicity of the organochlorine insecticide and persistent organic pollutant dieldrin and confirm its impact on development, an exposure trial using bird eggs was performed. Dieldrin at concentrations of 10-100 microg/g of egg was injected into the yolks of Japanese quail (Coturnix japonica) eggs. Hatchlings from the eggs were raised to sexual maturity and multiple tests to detect the harmful effects of dieldrin were conducted. Dieldrin at 100 microg/g decreased egg hatchability by 50.0% (vehicle control, 86.7%), although embryogenesis even in unhatched eggs treated with high doses of dieldrin was normal. In safely hatched chicks, dose-dependent early death with tonic seizure was observed and all birds exposed to 100 microg/g died within 3 days. Other significant alterations in hatchlings were enlargement of the whole brain, decreases in mRNA expressions of tryptophan hydroxylase in the brainstem and cholesterol side-chain cleavage in the male gonad, and increases in mRNA expressions of cytochrome P450 1A and 2C18 in the liver. For mature birds (males at 5 weeks and females at 10 weeks of age), impairment of eggshell formation such as reduced eggshell mass and eggshell thinning, increases in the body mass of males and the liver mass of females and increases in serum total cholesterol and triglyceride concentrations were observed. The results indicated that not only does the neurotoxicity of dieldrin bring early death, but its effects on reproductive and hepatic functions (detected as gene transcriptional changes in hatchlings) persist harmfully after maturity.
Collapse
Affiliation(s)
- Ryo Kamata
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | |
Collapse
|
245
|
Scheffer IE, Zhang YH, Gecz J, Dibbens L. Genetics of the epilepsies: genetic twists in the channels and other tales. Epilepsia 2010; 51 Suppl 1:33-6. [PMID: 20331710 DOI: 10.1111/j.1528-1167.2009.02440.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ingrid E Scheffer
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
246
|
Heinzen EL, Radtke RA, Urban TJ, Cavalleri GL, Depondt C, Need AC, Walley NM, Nicoletti P, Ge D, Catarino CB, Duncan JS, Kasperavičiūtė D, Tate SK, Caboclo LO, Sander JW, Clayton L, Linney KN, Shianna KV, Gumbs CE, Smith J, Cronin KD, Maia JM, Doherty CP, Pandolfo M, Leppert D, Middleton LT, Gibson RA, Johnson MR, Matthews PM, Hosford D, Kälviäinen R, Eriksson K, Kantanen AM, Dorn T, Hansen J, Krämer G, Steinhoff BJ, Wieser HG, Zumsteg D, Ortega M, Wood NW, Huxley-Jones J, Mikati M, Gallentine WB, Husain AM, Buckley PG, Stallings RL, Podgoreanu MV, Delanty N, Sisodiya SM, Goldstein DB. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet 2010; 86:707-18. [PMID: 20398883 PMCID: PMC2869004 DOI: 10.1016/j.ajhg.2010.03.018] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 12/13/2022] Open
Abstract
Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions.
Collapse
Affiliation(s)
- Erin L. Heinzen
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Rodney A. Radtke
- Department of Medicine (Neurology), Duke University Medical School, Durham, NC 27710, USA
| | - Thomas J. Urban
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Gianpiero L. Cavalleri
- The Department of Clinical Neurological Sciences and Molecular and Cellular Therapeutics, RCSI Research Institute Royal College of Surgeons in Ireland, and Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Anna C. Need
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Nicole M. Walley
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Paola Nicoletti
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Dongliang Ge
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Claudia B. Catarino
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Society for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Society for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Dalia Kasperavičiūtė
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah K. Tate
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Luis O. Caboclo
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Josemir W. Sander
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Society for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
- SEIN - Epilepsy Institutes in the Netherlands Foundation, Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - Lisa Clayton
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Kristen N. Linney
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Kevin V. Shianna
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Curtis E. Gumbs
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Jason Smith
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Kenneth D. Cronin
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Jessica M. Maia
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Colin P. Doherty
- The Department of Neurology, St James' Hospital Dublin 8, Ireland
| | - Massimo Pandolfo
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - David Leppert
- Genetics Division, Drug Discovery, GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
- Department of Neurology, University Hospital Basel CH-4031, Switzerland
| | - Lefkos T. Middleton
- School of Public Health, Imperial College London, St Mary's Hospital, Norfolk Place W2 1PG, UK
| | - Rachel A. Gibson
- Genetics Division, Drug Discovery, GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
| | - Michael R. Johnson
- Genetics Division, Drug Discovery, GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
- Department of Clinical Neurosciences, Hammersmith Hospital, Imperial College, London W12 ONN, UK
| | - Paul M. Matthews
- Genetics Division, Drug Discovery, GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
- Department of Clinical Neurosciences, Hammersmith Hospital, Imperial College, London W12 ONN, UK
| | - David Hosford
- Department of Medicine (Neurology), Duke University Medical School, Durham, NC 27710, USA
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Kuopio University Hospital, Kuopio 70211, Finland
| | - Kai Eriksson
- Pediatric Neurology Unit, Tampere University Hospital, Tampere FIN-33521, Finland
| | - Anne-Mari Kantanen
- Kuopio Epilepsy Center, Kuopio University Hospital, Kuopio 70211, Finland
| | - Thomas Dorn
- Swiss Epilepsy Centre, Bleulerstrasse 60, 8008 Zurich, Switzerland
| | - Jörg Hansen
- Swiss Epilepsy Centre, Bleulerstrasse 60, 8008 Zurich, Switzerland
| | - Günter Krämer
- Swiss Epilepsy Centre, Bleulerstrasse 60, 8008 Zurich, Switzerland
| | | | - Heinz-Gregor Wieser
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dominik Zumsteg
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Marcos Ortega
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julie Huxley-Jones
- Computational Biology, Quantitative Sciences, Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 5AW, UK
| | - Mohamad Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - William B. Gallentine
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aatif M. Husain
- Department of Medicine (Neurology), Duke University Medical School, Durham, NC 27710, USA
| | - Patrick G. Buckley
- Cancer Genetics, Royal College of Surgeons in Ireland and Children's Research Centre, Our Lady Hospital for Sick Children, Dublin 12, Ireland
| | - Ray L. Stallings
- Cancer Genetics, Royal College of Surgeons in Ireland and Children's Research Centre, Our Lady Hospital for Sick Children, Dublin 12, Ireland
| | - Mihai V. Podgoreanu
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care, Duke University Medical Center, Durham, NC 27710, USA
| | - Norman Delanty
- The Department of Clinical Neurological Sciences and Molecular and Cellular Therapeutics, RCSI Research Institute Royal College of Surgeons in Ireland, and Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- National Society for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - David B. Goldstein
- Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27708, USA
| |
Collapse
|
247
|
Wimmer VC, Reid CA, So EYW, Berkovic SF, Petrou S. Axon initial segment dysfunction in epilepsy. J Physiol 2010; 588:1829-40. [PMID: 20375142 DOI: 10.1113/jphysiol.2010.188417] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The axon initial segment (AIS) contains the site of action potential initiation and plays a major role in neuronal excitability. AIS function relies on high concentrations of different ion channels and complex regulatory mechanisms that orchestrate molecular microarchitecture. We review recent evidence that a large number of ion channels associated with epilepsy are enriched at the AIS, making it a 'hotspot' for epileptogenesis. Furthermore, we present novel data on the clustering of GABRgamma2 receptors in the AIS of cortical and hippocampal neurons in a knock in mouse model of a human genetic epilepsy. This article highlights the molecular coincidence of epilepsy mutations at the AIS and reviews pathogenic mechanisms converging at the AIS.
Collapse
Affiliation(s)
- Verena C Wimmer
- Florey Neuroscience Institutes, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | |
Collapse
|
248
|
Macdonald RL, Kang JQ, Gallagher MJ. Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 2010; 588:1861-9. [PMID: 20308251 DOI: 10.1113/jphysiol.2010.186999] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations in inhibitory GABAA receptor subunit genes (GABRA1, GABRB3, GABRG2 and GABRD) have been associated with genetic epilepsy syndromes including childhood absence epilepsy (CAE), juvenile myoclonic epilepsy (JME), pure febrile seizures (FS), generalized epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome (DS)/severe myoclonic epilepsy in infancy (SMEI). These mutations are found in both translated and untranslated gene regions and have been shown to affect the GABAA receptors by altering receptor function and/or by impairing receptor biogenesis by multiple mechanisms including reducing subunit mRNA transcription or stability, impairing subunit folding, stability, or oligomerization and by inhibiting receptor trafficking.
Collapse
Affiliation(s)
- Robert L Macdonald
- Department of Neurology, Vanderbilt University, 6140 Medical Research Building III, 465 21st Avenue, Nashville, TN 37232-8552, USA.
| | | | | |
Collapse
|
249
|
Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 2010; 38:464-75. [PMID: 20304069 DOI: 10.1016/j.nbd.2010.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) can result in altered inhibitory neurotransmission, hippocampal dysfunction, and cognitive impairments. GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) and tonic (extrasynaptic) whole cell currents were recorded in control rat hippocampal dentate granule cells (DGCs) and at 90days after controlled cortical impact (CCI). At 34 degrees C, in CCI DGCs, sIPSC frequency and amplitude were unchanged, whereas mIPSC frequency was decreased (3.10+/-0.84Hz, n=16, and 2.44+/-0.67Hz, n=7, p<0.05). At 23 degrees C, 300nM diazepam increased peak amplitude of mIPSCs in control and CCI DGCs, but the increase was 20% higher in control (26.81+/-2.2pA and 42.60+/-1.22pA, n=9, p=0.031) compared to CCI DGCs (33.46+/-2.98pA and 46.13+/-1.09pA, n=10, p=0.047). At 34 degrees C, diazepam did not prolong decay time constants (6.59+/-0.12ms and 6.62+/-0.98ms, n=9, p=0.12), the latter suggesting that CCI resulted in benzodiazepine-insensitive pharmacology in synaptic GABA(A) receptors (GABA(A)Rs). In CCI DGCs, peak amplitude of mIPSCs was inhibited by 100microM furosemide (51.30+/-0.80pA at baseline and 43.50+/-5.30pA after furosemide, n=5, p<0.001), a noncompetitive antagonist of GABA(A)Rs with an enhanced affinity to alpha4 subunit-containing receptors. Potentiation of tonic current by the GABA(A)R delta subunit-preferring competitive agonist THIP (1 and 3microM) was increased in CCI DGCs (47% and 198%) compared to control DGCs (13% and 162%), suggesting the presence of larger tonic current in CCI DGCs; THIP (1microM) had no effect on mIPSCs. Taken together, these results demonstrate alterations in synaptic and extrasynaptic GABA(A)Rs in DGCs following CCI.
Collapse
|
250
|
Affiliation(s)
- Patrick Cossette
- Department of Medicine, Neurology Division, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|