201
|
Kodama Y, Mashima J, Kosuge T, Ogasawara O. DDBJ update: the Genomic Expression Archive (GEA) for functional genomics data. Nucleic Acids Res 2020; 47:D69-D73. [PMID: 30357349 PMCID: PMC6323915 DOI: 10.1093/nar/gky1002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
The Genomic Expression Archive (GEA) for functional genomics data from microarray and high-throughput sequencing experiments has been established at the DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp), which is a member of the International Nucleotide Sequence Database Collaboration (INSDC) with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center collects nucleotide sequence data and associated biological information from researchers and also services the Japanese Genotype–phenotype Archive (JGA) with the National Bioscience Database Center for collecting human data. To automate the submission process, we have implemented the DDBJ BioSample validator which checks submitted records, auto-corrects their format, and issues error messages and warnings if necessary. The DDBJ Center also operates the NIG supercomputer, prepared for analyzing large-scale genome sequences. We now offer a secure platform specifically to handle personal human genomes. This report describes database activities for INSDC and JGA over the past year, the newly launched GEA, submission, retrieval, and analysis services available in our supercomputer system and their recent developments.
Collapse
Affiliation(s)
- Yuichi Kodama
- DDBJ Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Jun Mashima
- DDBJ Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Takehide Kosuge
- DDBJ Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Osamu Ogasawara
- DDBJ Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| |
Collapse
|
202
|
Gonzalez-Beltran AN, Masuzzo P, Ampe C, Bakker GJ, Besson S, Eibl RH, Friedl P, Gunzer M, Kittisopikul M, Dévédec SEL, Leo S, Moore J, Paran Y, Prilusky J, Rocca-Serra P, Roudot P, Schuster M, Sergeant G, Strömblad S, Swedlow JR, van Erp M, Van Troys M, Zaritsky A, Sansone SA, Martens L. Community standards for open cell migration data. Gigascience 2020; 9:giaa041. [PMID: 32396199 PMCID: PMC7317087 DOI: 10.1093/gigascience/giaa041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cell migration research has become a high-content field. However, the quantitative information encapsulated in these complex and high-dimensional datasets is not fully exploited owing to the diversity of experimental protocols and non-standardized output formats. In addition, typically the datasets are not open for reuse. Making the data open and Findable, Accessible, Interoperable, and Reusable (FAIR) will enable meta-analysis, data integration, and data mining. Standardized data formats and controlled vocabularies are essential for building a suitable infrastructure for that purpose but are not available in the cell migration domain. We here present standardization efforts by the Cell Migration Standardisation Organisation (CMSO), an open community-driven organization to facilitate the development of standards for cell migration data. This work will foster the development of improved algorithms and tools and enable secondary analysis of public datasets, ultimately unlocking new knowledge of the complex biological process of cell migration.
Collapse
Affiliation(s)
- Alejandra N Gonzalez-Beltran
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford OX1 3QG, Oxford, UK
| | - Paola Masuzzo
- VIB-UGent Center for Medical Biotechnology, VIB, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
- Institute for Globally Distributed Open Research and Education (IGDORE), Kabupaten Gianyar, Bali 80571, Indonesia
| | - Christophe Ampe
- Department of Biomolecular Medicine, Ghent University, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28 6525 GA Nijmegen, The Netherlands
| | - Sébastien Besson
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, School of Life Sciences, Dow St Dundee DD1 5EH, Scotland, UK
| | - Robert H Eibl
- German Cancer Research Center, DKFZ Alumni Association, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28 6525 GA Nijmegen, The Netherlands
- David H. Koch Center for Applied Genitourinary Medicine, UT MD Anderson Cancer Center, 6767 Bertner Ave, Mitchell Basic Science Research Building, 77030 Houston, TX, USA
- Cancer Genomics Center, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
- Leibniz Institute for Analytical Sciences, ISAS, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Mark Kittisopikul
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, PO box 9502 2300 RA Leiden, The Netherlands
| | - Simone Leo
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, School of Life Sciences, Dow St Dundee DD1 5EH, Scotland, UK
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4), Loc. Piscina Manna, Edificio 1, 09050 Pula (CA) , Italy
| | - Josh Moore
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, School of Life Sciences, Dow St Dundee DD1 5EH, Scotland, UK
| | - Yael Paran
- IDEA Bio-Medical Ltd, 2 Prof. Bergman St., Rehovot 76705, Israel
| | - Jaime Prilusky
- Life Science Core Facilities, Weizmann Institute of Science, P.O. Box 26 Rehovot 76100, Israel
| | - Philippe Rocca-Serra
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford OX1 3QG, Oxford, UK
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390, USA
| | - Marc Schuster
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Gwendolien Sergeant
- Department of Biomolecular Medicine, Ghent University, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, SE-141 83 Huddinge, Sweden
| | - Jason R Swedlow
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, School of Life Sciences, Dow St Dundee DD1 5EH, Scotland, UK
| | - Merijn van Erp
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28 6525 GA Nijmegen, The Netherlands
| | - Marleen Van Troys
- Department of Biomolecular Medicine, Ghent University, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 8410501 Beer-Sheva, Israel
| | - Susanna-Assunta Sansone
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford OX1 3QG, Oxford, UK
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, A. Baertsoenkaai 3, B-9000, Ghent, Belgium
| |
Collapse
|
203
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
204
|
Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clin Transl Oncol 2020; 22:2061-2073. [PMID: 32323148 DOI: 10.1007/s12094-020-02349-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Circulating microRNAs (miRNAs) have been shown to have the potential as noninvasive diagnosis biomarkers in several types of cancers, including prostate cancer (PCa). Urine-based miRNA biomarkers have been researched as an alternative tool in PCa diagnosis. However, few studies have performed miRNA detection in urine samples from PCa patients, as well as low numbers of miRNAs have been assayed, and there is a lack of standard strategies for validation. In this context, we conducted an in-depth literature review focusing on miRNAs isolated from urine samples that may contribute to the diagnosis of PCa. METHODS A systematic review was performed searching the PubMed, Lilacs and Cochrane Library databases for articles focused on the value of significantly deregulated miRNAs as biomarkers in PCa patients. RESULTS Only 18 primary manuscripts were included in this review, according to the search criteria. Our results suggest that miR-21-5p, miR-141-3p, miR-375 and miR-574-3p should be considered as potential urinary biomarkers for the diagnosis of PCa. CONCLUSION These results suggested that large-scale prospective studies are still needed to validate our findings, using standardized protocols for analysis.
Collapse
|
205
|
Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. NANOMATERIALS 2020; 10:nano10040750. [PMID: 32326418 PMCID: PMC7221878 DOI: 10.3390/nano10040750] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms' responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.
Collapse
|
206
|
Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med 2020; 72:100825. [DOI: 10.1016/j.mam.2019.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
207
|
Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Nowak BF, Taylor RG, Rise ML. Transcriptomic Profiling in Fins of Atlantic Salmon Parasitized with Sea Lice: Evidence for an Early Imbalance Between Chalimus-Induced Immunomodulation and the Host's Defense Response. Int J Mol Sci 2020; 21:E2417. [PMID: 32244468 PMCID: PMC7177938 DOI: 10.3390/ijms21072417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Jillian D. Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Zhiyu Chen
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Hanaveien 17, 4327 Sandnes, Norway;
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston 7250, TAS, Australia;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| |
Collapse
|
208
|
Due H, Brøndum RF, Young KH, Bøgsted M, Dybkær K. MicroRNAs associated to single drug components of R-CHOP identifies diffuse large B-cell lymphoma patients with poor outcome and adds prognostic value to the international prognostic index. BMC Cancer 2020; 20:237. [PMID: 32192453 PMCID: PMC7082970 DOI: 10.1186/s12885-020-6643-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Treatment resistance is a major clinical challenge of diffuse large B-cell lymphoma (DLBCL) where approximately 40% of the patients have refractory disease or relapse. Since DLBCL is characterized by great clinical and molecular heterogeneity, the purpose of the present study was to investigate whether miRNAs associated to single drug components of R-CHOP can improve robustness of individual markers and serve as a prognostic classifier. Methods Fifteen DLBCL cell lines were tested for sensitivity towards single drug compounds of the standard treatment R-CHOP: rituximab (R), cyclophosphamide (C), doxorubicin (H), and vincristine (O). For each drug, cell lines were ranked using the area under the dose-response curve and grouped as either sensitive, intermediate or resistant. Baseline miRNA expression data were obtained for each cell line in untreated condition, and differential miRNA expression analysis between sensitive and resistant cell lines identified 43 miRNAs associated to growth response after exposure towards single drugs of R-CHOP. Using the Affymetrix HG-U133 platform, expression levels of miRNA precursors were assessed in 701 diagnostic DLBCL biopsies, and miRNA-panel classifiers predicting disease progression were build using multiple Cox regression or random survival forest. Classifiers were validated and ranked by repeated cross-validation. Results Prognostic accuracies were assessed by Brier Scores and time-varying area under the ROC curves, which revealed better performance of multivariate Cox models compared to random survival forest models. The Cox model including miR-146a, miR-155, miR-21, miR-34a, and miR-23a~miR-27a~miR-24-2 cluster performed the best and successfully stratified GCB-DLBCL patients into high- and low-risk of disease progression. In addition, combination of the Cox miRNA-panel and IPI substantially increased prognostic performance in GCB classified patients. Conclusion As a proof of concept, we found that expression data of drug associated miRNAs display prognostic utility and adding these to IPI improves prognostic stratification of GCB-DLBCL patients treated with R-CHOP.
Collapse
Affiliation(s)
- Hanne Due
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, DK-9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rasmus Froberg Brøndum
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, DK-9000, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Ken H Young
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA
| | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, DK-9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, Sdr. Skovvej 15, DK-9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. .,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
209
|
Minimum Information and Quality Standards for Conducting, Reporting, and Organizing In Vitro Research. Handb Exp Pharmacol 2020; 257:177-196. [PMID: 31628600 DOI: 10.1007/164_2019_284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insufficient description of experimental practices can contribute to difficulties in reproducing research findings. In response to this, "minimum information" guidelines have been developed for different disciplines. These standards help ensure that the complete experiment is described, including both experimental protocols and data processing methods, allowing a critical evaluation of the whole process and the potential recreation of the work. Selected examples of minimum information checklists with relevance for in vitro research are presented here and are collected by and registered at the MIBBI/FAIRsharing Information Resource portal.In addition, to support integrative research and to allow for comparisons and data sharing across studies, ontologies and vocabularies need to be defined and integrated across areas of in vitro research. As examples, this chapter addresses ontologies for cells and bioassays and discusses their importance for in vitro studies.Finally, specific quality requirements for important in vitro research tools (like chemical probes, antibodies, and cell lines) are suggested, and remaining issues are discussed.
Collapse
|
210
|
Eslamloo K, Kumar S, Caballero-Solares A, Gnanagobal H, Santander J, Rise ML. Profiling the transcriptome response of Atlantic salmon head kidney to formalin-killed Renibacterium salmoninarum. FISH & SHELLFISH IMMUNOLOGY 2020; 98:937-949. [PMID: 31770640 DOI: 10.1016/j.fsi.2019.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Hajarooba Gnanagobal
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
211
|
Kumuthini J, Chimenti M, Nahnsen S, Peltzer A, Meraba R, McFadyen R, Wells G, Taylor D, Maienschein-Cline M, Li JL, Thimmapuram J, Murthy-Karuturi R, Zass L. Ten simple rules for providing effective bioinformatics research support. PLoS Comput Biol 2020; 16:e1007531. [PMID: 32214318 PMCID: PMC7098546 DOI: 10.1371/journal.pcbi.1007531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Life scientists are increasingly turning to high-throughput sequencing technologies in their research programs, owing to the enormous potential of these methods. In a parallel manner, the number of core facilities that provide bioinformatics support are also increasing. Notably, the generation of complex large datasets has necessitated the development of bioinformatics support core facilities that aid laboratory scientists with cost-effective and efficient data management, analysis, and interpretation. In this article, we address the challenges-related to communication, good laboratory practice, and data handling-that may be encountered in core support facilities when providing bioinformatics support, drawing on our own experiences working as support bioinformaticians on multidisciplinary research projects. Most importantly, the article proposes a list of guidelines that outline how these challenges can be preemptively avoided and effectively managed to increase the value of outputs to the end user, covering the entire research project lifecycle, including experimental design, data analysis, and management (i.e., sharing and storage). In addition, we highlight the importance of clear and transparent communication, comprehensive preparation, appropriate handling of samples and data using monitoring systems, and the employment of appropriate tools and standard operating procedures to provide effective bioinformatics support.
Collapse
Affiliation(s)
- Judit Kumuthini
- H3ABioNet, Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Michael Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Sven Nahnsen
- Quantitative Biology Centre, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Alexander Peltzer
- Quantitative Biology Centre, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Rebone Meraba
- H3ABioNet, Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Ross McFadyen
- H3ABioNet, Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Gordon Wells
- H3ABioNet, Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark Maienschein-Cline
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Radha Murthy-Karuturi
- Department of Computational Sciences, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
| | - Lyndon Zass
- H3ABioNet, Centre for Proteomic and Genomic Research, Cape Town, South Africa
| |
Collapse
|
212
|
Baryshnikova A. Data libraries - the missing element for modeling biological systems. FEBS J 2020; 287:4594-4601. [PMID: 32100391 PMCID: PMC7687078 DOI: 10.1111/febs.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
The primary bottleneck in understanding and modeling biological systems is shifting from data collection to data analysis and integration. This process critically depends on data being available in an organized form, so that they can be accessed, understood, and reused by a broad community of scientists. A proven solution for organizing data is literature curation, which extracts, aggregates, and distributes findings from publications. Here, I describe the benefits of extending curation practices to datasets, especially those that are not deposited in centralized databases. I argue that dataset curation (or ‘data librarianship’ as I suggest we call it) will overcome many barriers in data visibility and reusability and make a unique contribution to integration and modeling.
Collapse
|
213
|
Tejedor G, Laplace-Builhé B, Luz-Crawford P, Assou S, Barthelaix A, Mathieu M, Kissa K, Jorgensen C, Collignon J, Chuchana P, Djouad F. Whole embryo culture, transcriptomics and RNA interference identify TBX1 and FGF11 as novel regulators of limb development in the mouse. Sci Rep 2020; 10:3597. [PMID: 32107392 PMCID: PMC7046665 DOI: 10.1038/s41598-020-60217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Identifying genes involved in vertebrate developmental processes and characterizing this involvement are daunting tasks, especially in the mouse where viviparity complicates investigations. Attempting to devise a streamlined approach for this type of study we focused on limb development. We cultured E10.5 and E12.5 embryos and performed transcriptional profiling to track molecular changes in the forelimb bud over a 6-hour time-window. The expression of certain genes was found to diverge rapidly from its normal path, possibly reflecting the activation of a stress-induced response. Others, however, maintained for up to 3 hours dynamic expression profiles similar to those seen in utero. Some of these resilient genes were known regulators of limb development. The implication of the others in this process was either unsuspected or unsubstantiated. The localized knockdown of two such genes, Fgf11 and Tbx1, hampered forelimb bud development, providing evidence of their implication. These results show that combining embryo culture, transcriptome analysis and RNA interference could speed up the identification of genes involved in a variety of developmental processes, and the validation of their implication.
Collapse
Affiliation(s)
| | | | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, Paris, France
| | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Paris, France.,CHU Montpellier, Montpellier, France
| | - Jérôme Collignon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|
214
|
Wu DTY, Chen AT, Manning JD, Levy-Fix G, Backonja U, Borland D, Caban JJ, Dowding DW, Hochheiser H, Kagan V, Kandaswamy S, Kumar M, Nunez A, Pan E, Gotz D. Evaluating visual analytics for health informatics applications: a systematic review from the American Medical Informatics Association Visual Analytics Working Group Task Force on Evaluation. J Am Med Inform Assoc 2020; 26:314-323. [PMID: 30840080 DOI: 10.1093/jamia/ocy190] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This article reports results from a systematic literature review related to the evaluation of data visualizations and visual analytics technologies within the health informatics domain. The review aims to (1) characterize the variety of evaluation methods used within the health informatics community and (2) identify best practices. METHODS A systematic literature review was conducted following PRISMA guidelines. PubMed searches were conducted in February 2017 using search terms representing key concepts of interest: health care settings, visualization, and evaluation. References were also screened for eligibility. Data were extracted from included studies and analyzed using a PICOS framework: Participants, Interventions, Comparators, Outcomes, and Study Design. RESULTS After screening, 76 publications met the review criteria. Publications varied across all PICOS dimensions. The most common audience was healthcare providers (n = 43), and the most common data gathering methods were direct observation (n = 30) and surveys (n = 27). About half of the publications focused on static, concentrated views of data with visuals (n = 36). Evaluations were heterogeneous regarding setting and measurements used. DISCUSSION When evaluating data visualizations and visual analytics technologies, a variety of approaches have been used. Usability measures were used most often in early (prototype) implementations, whereas clinical outcomes were most common in evaluations of operationally-deployed systems. These findings suggest opportunities for both (1) expanding evaluation practices, and (2) innovation with respect to evaluation methods for data visualizations and visual analytics technologies across health settings. CONCLUSION Evaluation approaches are varied. New studies should adopt commonly reported metrics, context-appropriate study designs, and phased evaluation strategies.
Collapse
Affiliation(s)
- Danny T Y Wu
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Annie T Chen
- Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle, Washington, USA
| | - John D Manning
- Department of Emergency Medicine, Atrium Health's Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Gal Levy-Fix
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Uba Backonja
- Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle, Washington, USA.,Nursing & Healthcare Leadership, University of Washington Tacoma, Tacoma, Washington
| | - David Borland
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jesus J Caban
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dawn W Dowding
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Harry Hochheiser
- Department of Biomedical Informatics and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Swaminathan Kandaswamy
- Department of Mechanical and Industrial Engineering, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
| | - Manish Kumar
- MEASURE Evaluation, Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Eric Pan
- Healthcare Delivery Research and Evaluation, Westat, Rockville, Maryland, USA
| | - David Gotz
- Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
215
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
216
|
Wolf N, Bussmann M, Koch-Koerfges A, Katcharava N, Schulte J, Polen T, Hartl J, Vorholt JA, Baumgart M, Bott M. Molecular Basis of Growth Inhibition by Acetate of an Adenylate Cyclase-Deficient Mutant of Corynebacterium glutamicum. Front Microbiol 2020; 11:87. [PMID: 32117117 PMCID: PMC7026483 DOI: 10.3389/fmicb.2020.00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/15/2020] [Indexed: 01/02/2023] Open
Abstract
In Corynebacterium glutamicum, cyclic adenosine monophosphate (cAMP) serves as an effector of the global transcriptional regulator GlxR. Synthesis of cAMP is catalyzed by the membrane-bound adenylate cyclase CyaB. In this study, we investigated the consequences of decreased intracellular cAMP levels in a ΔcyaB mutant. While no growth defect of the ΔcyaB strain was observed on glucose, fructose, sucrose, or gluconate alone, the addition of acetate to these growth media resulted in a severe growth inhibition, which could be reversed by plasmid-based cyaB expression or by supplementation of the medium with cAMP. The effect was concentration- and pH-dependent, suggesting a link to the uncoupling activity of acetate. In agreement, the ΔcyaB mutant had an increased sensitivity to the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The increased uncoupler sensitivity correlated with a lowered membrane potential of acetate-grown ΔcyaB cells compared to wild-type cells. A reduced membrane potential affects major cellular processes, such as ATP synthesis by F1F O -ATP synthase and numerous transport processes. The impaired membrane potential of the ΔcyaB mutant could be due to a decreased expression of the cytochrome bc 1-aa 3 supercomplex, which is the major contributor of proton-motive force in C. glutamicum. Expression of the supercomplex genes was previously reported to be activated by GlxR-cAMP. A suppressor mutant of the ΔcyaB strain with improved growth on acetate was isolated, which carried a single mutation in the genome leading to an Ala131Thr exchange in GlxR. Introduction of this point mutation into the original ΔcyaB mutant restored the growth defect on acetate. This supported the importance of GlxR for the phenotype of the ΔcyaB mutant and, more generally, of the cAMP-GlxR system for the control of energy metabolism in C. glutamicum.
Collapse
Affiliation(s)
- Natalie Wolf
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bussmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Abigail Koch-Koerfges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Nino Katcharava
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Hartl
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | | | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
217
|
|
218
|
Vihinen M. Guidelines for systematic reporting of sequence alignments. Biol Methods Protoc 2020; 5:bpaa001. [PMID: 32161811 PMCID: PMC6994045 DOI: 10.1093/biomethods/bpaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Bioinformatics methods are increasingly needed and used to analyze and interpret extensive datasets many of which are produced by diverse high-throughput technologies. Unfortunately, it is quite common that published articles do not contain sufficient information to allow the reader to fully comprehend and repeat computational and other studies. Guidelines were developed for reporting studies and results from sequence alignment. Brief and concise checklist of required data items was compiled making it easy to provide necessary details. Implementation of the guidelines requires similar meticulous attitude toward details as other parts of publications. If the journal does not allow reporting full details in the main article, it can be provided in supplementary material. It is important to make the alignments available. Systematic and detailed description of bioinformatics analyses adds to the value of papers and makes it easier for the scientific community to evaluate, understand, verify, and extend the published articles and their results.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
219
|
Bono H. All of gene expression (AOE): An integrated index for public gene expression databases. PLoS One 2020; 15:e0227076. [PMID: 31978081 PMCID: PMC6980531 DOI: 10.1371/journal.pone.0227076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Gene expression data have been archived as microarray and RNA-seq datasets in two public databases, Gene Expression Omnibus (GEO) and ArrayExpress (AE). In 2018, the DNA DataBank of Japan started a similar repository called the Genomic Expression Archive (GEA). These databases are useful resources for the functional interpretation of genes, but have been separately maintained and may lack RNA-seq data, while the original sequence data are available in the Sequence Read Archive (SRA). We constructed an index for those gene expression data repositories, called All Of gene Expression (AOE), to integrate publicly available gene expression data. The web interface of AOE can graphically query data in addition to the application programming interface. By collecting gene expression data from RNA-seq in the SRA, AOE also includes data not included in GEO and AE. AOE is accessible as a search tool from the GEA website and is freely available at https://aoe.dbcls.jp/.
Collapse
Affiliation(s)
- Hidemasa Bono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima,Japan
- * E-mail:
| |
Collapse
|
220
|
Protocol for DNA Microarrays on Glass Slides. Methods Mol Biol 2020; 1986:17-33. [PMID: 31115883 DOI: 10.1007/978-1-4939-9442-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DNA microarray is a powerful, flexible, nonbiased discovery technology. Microarrays can be used to assess processes from gene expression to long noncoding RNAs to specific pathologies, as well as many others. This chapter describes the protocol for DNA microarray analysis of differential gene expression using DNA sequences spotted on microscope slides.
Collapse
|
221
|
Khaliullin TO, Yanamala N, Newman MS, Kisin ER, Fatkhutdinova LM, Shvedova AA. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicol Appl Pharmacol 2020; 390:114898. [PMID: 31978390 DOI: 10.1016/j.taap.2020.114898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers. We asked if the whole blood transcriptome reflects pathology-specific changes in lung gene expression caused by MWCNT. To answer this question, we performed mRNA sequencing analysis of the whole blood and lung in mice administered MWCNT or vehicle solution via pharyngeal aspiration and sacrificed 56 days later. The pattern of lung mRNA expression as determined using Ingenuity Pathway Analysis (IPA) was indicative of continued inflammation, immune cell trafficking, phagocytosis, and adaptive immune responses. Simultaneously, innate immunity-related transcripts (Plunc, Bpifb1, Reg3g) and cancer-related pathways were downregulated. IPA analysis of the differentially expressed genes in the whole blood suggested increased hematopoiesis, predicted activation of cancer/tumor development pathways, and atopy. There were several common upregulated genes between whole blood and lungs, important for adaptive immune responses: Cxcr1, Cd72, Sharpin, and Slc11a1. Trim24, important for TH2 cell effector function, was downregulated in both datasets. Hla-dqa1 mRNA was upregulated in the lungs and downregulated in the blood, as was Lilrb4, which controls the reactivity of immune response. "Cancer" disease category had opposing activation status in the two datasets, while the only commonality was "Hypersensitivity". Transcriptome changes occurring in the lungs did not produce a completely replicable pattern in whole blood; however, specific systemic responses may be shared between transcriptomic profiles.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Mackenzie S Newman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Elena R Kisin
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Liliya M Fatkhutdinova
- Department of Hygiene and Occupational Medicine, Kazan State Medical University, Kazan, Russia
| | - Anna A Shvedova
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| |
Collapse
|
222
|
Galeota E, Kishore K, Pelizzola M. Ontology-driven integrative analysis of omics data through Onassis. Sci Rep 2020; 10:703. [PMID: 31959844 PMCID: PMC6971239 DOI: 10.1038/s41598-020-57716-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
Public repositories of large-scale omics datasets represent a valuable resource for researchers. In fact, data re-analysis can either answer novel questions or provide critical data able to complement in-house experiments. However, despite the development of standards for the compilation of metadata, the identification and organization of samples still constitutes a major bottleneck hampering data reuse. We introduce Onassis, an R package within the Bioconductor environment providing key functionalities of Natural Language Processing (NLP) tools. Leveraging biomedical ontologies, Onassis greatly simplifies the association of samples from large-scale repositories to their representation in terms of ontology-based annotations. Moreover, through the use of semantic similarity measures, Onassis hierarchically organizes the datasets of interest, thus supporting the semantically aware analysis of the corresponding omics data. In conclusion, Onassis leverages NLP techniques, biomedical ontologies, and the R statistical framework, to identify, relate, and analyze datasets from public repositories. The tool was tested on various large-scale datasets, including compendia of gene expression, histone marks, and DNA methylation, illustrating how it can facilitate the integrative analysis of various omics data.
Collapse
Affiliation(s)
- Eugenia Galeota
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Kamal Kishore
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy.
| |
Collapse
|
223
|
Burkard M, Betz A, Schirmer K, Zupanic A. Common Gene Expression Patterns in Environmental Model Organisms Exposed to Engineered Nanomaterials: A Meta-Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:335-344. [PMID: 31752483 PMCID: PMC6950232 DOI: 10.1021/acs.est.9b05170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 05/25/2023]
Abstract
The use of omics is gaining importance in the field of nanoecotoxicology; an increasing number of studies are aiming to investigate the effects and modes of action of engineered nanomaterials (ENMs) in this way. However, a systematic synthesis of the outcome of such studies regarding common responses and toxicity pathways is currently lacking. We developed an R-scripted computational pipeline to perform reanalysis and functional analysis of relevant transcriptomic data sets using a common approach, independent from the ENM type, and across different organisms, including Arabidopsis thaliana, Caenorhabditis elegans, and Danio rerio. Using the pipeline that can semiautomatically process data from different microarray technologies, we were able to determine the most common molecular mechanisms of nanotoxicity across extremely variable data sets. As expected, we found known mechanisms, such as interference with energy generation, oxidative stress, disruption of DNA synthesis, and activation of DNA-repair but also discovered that some less-described molecular responses to ENMs, such as DNA/RNA methylation, protein folding, and interference with neurological functions, are present across the different studies. Results were visualized in radar charts to assess toxicological response patterns allowing the comparison of different organisms and ENM types. This can be helpful to retrieve ENM-related hazard information and thus fill knowledge gaps in a comprehensive way in regard to the molecular underpinnings and mechanistic understanding of nanotoxicity.
Collapse
Affiliation(s)
- Michael Burkard
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Alexander Betz
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- School
of Architecture, Civil and Environmental Engineering, EPFL Lausanne, 1015 Lausanne, Switzerland
| | - Anze Zupanic
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
| |
Collapse
|
224
|
Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. J Neurosci 2020; 40:1453-1482. [PMID: 31896673 PMCID: PMC7044727 DOI: 10.1523/jneurosci.0993-19.2019] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
During adult hippocampal neurogenesis, most newborn cells undergo apoptosis and are rapidly phagocytosed by resident microglia to prevent the spillover of intracellular contents. Here, we propose that phagocytosis is not merely passive corpse removal but has an active role in maintaining neurogenesis. First, we found that neurogenesis was disrupted in male and female mice chronically deficient for two phagocytosis pathways: the purinergic receptor P2Y12, and the tyrosine kinases of the TAM family Mer tyrosine kinase (MerTK)/Axl. In contrast, neurogenesis was transiently increased in mice in which MerTK expression was conditionally downregulated. Next, we performed a transcriptomic analysis of the changes induced by phagocytosis in microglia in vitro and identified genes involved in metabolism, chromatin remodeling, and neurogenesis-related functions. Finally, we discovered that the secretome of phagocytic microglia limits the production of new neurons both in vivo and in vitro Our data suggest that microglia act as a sensor of local cell death, modulating the balance between proliferation and survival in the neurogenic niche through the phagocytosis secretome, thereby supporting the long-term maintenance of adult hippocampal neurogenesis.SIGNIFICANCE STATEMENT Microglia are the brain professional phagocytes and, in the adult hippocampal neurogenic niche, they remove newborn cells naturally undergoing apoptosis. Here we show that phagocytosis of apoptotic cells triggers a coordinated transcriptional program that alters their secretome, limiting neurogenesis both in vivo and in vitro In addition, chronic phagocytosis disruption in mice deficient for receptors P2Y12 and MerTK/Axl reduces adult hippocampal neurogenesis. In contrast, inducible MerTK downregulation transiently increases neurogenesis, suggesting that microglial phagocytosis provides a negative feedback loop that is necessary for the long-term maintenance of adult hippocampal neurogenesis. Therefore, we speculate that the effects of promoting engulfment/degradation of cell debris may go beyond merely removing corpses to actively promoting regeneration in development, aging, and neurodegenerative diseases.
Collapse
|
225
|
McGarrity S, Karvelsson ST, Sigurjónsson ÓE, Rolfsson Ó. Comparative Metabolic Network Flux Analysis to Identify Differences in Cellular Metabolism. Methods Mol Biol 2020; 2088:223-269. [PMID: 31893377 DOI: 10.1007/978-1-0716-0159-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic network flux analysis uses genome-scale metabolic reconstructions to integrate transcriptomics, proteomics, and/or metabolomics data to allow for comprehensive interpretation of genotype to metabolic phenotype relationships. The compilation of many Constraint-based model analysis methods into one MATLAB package, the COBRAtoolbox, has opened the possibility of using these methods to the many biologists with some knowledge of the commonly used statistical program, MATLAB. Here we outline the steps required to take a published genome-scale metabolic reconstruction and interrogate its consistency and biological feasibility. Subsequently, we demonstrate how mRNA expression data and metabolomics data, relating to one or more cell types or biological contexts, can be applied to constrain and generate metabolic models descriptive of metabolic flux phenotypes. Finally, we describe the comparison of the resulting models and model outputs with the aim of identifying metabolic biomarkers and changes in cellular metabolism.
Collapse
Affiliation(s)
- Sarah McGarrity
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigurður T Karvelsson
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Óttar Rolfsson
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
226
|
Park HW, Weiss ST. Understanding the Molecular Mechanisms of Asthma through Transcriptomics. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:399-411. [PMID: 32141255 PMCID: PMC7061151 DOI: 10.4168/aair.2020.12.3.399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/18/2022]
Abstract
The transcriptome represents the complete set of RNA transcripts that are produced by the genome under a specific circumstance or in a specific cell. High-throughput methods, including microarray and bulk RNA sequencing, as well as recent advances in biostatistics based on machine learning approaches provides a quick and effective way of identifying novel genes and pathways related to asthma, which is a heterogeneous disease with diverse pathophysiological mechanisms. In this manuscript, we briefly review how to analyze transcriptome data and then provide a summary of recent transcriptome studies focusing on asthma pathogenesis and asthma drug responses. Studies reviewed here are classified into 2 classes based on the tissues utilized: blood and airway cells.
Collapse
Affiliation(s)
- Heung Woo Park
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Scott T Weiss
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA.,Partners Center for Personalized Medicine, Partners Health Care, Boston, MA, USA.
| |
Collapse
|
227
|
Faria M, Björnmalm M, Crampin EJ, Caruso F. A few clarifications on MIRIBEL. NATURE NANOTECHNOLOGY 2020; 15:2-3. [PMID: 31925392 DOI: 10.1038/s41565-019-0612-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Systems Biology Laboratory, School of Mathematics and Statistics and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Department of Materials, Imperial College London, London, UK
- Institute of Biomedical Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Edmund J Crampin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Systems Biology Laboratory, School of Mathematics and Statistics and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
228
|
Deutschmann C, Roggenbuck D, Schierack P, Rödiger S. Autoantibody testing by enzyme-linked immunosorbent assay-a case in which the solid phase decides on success and failure. Heliyon 2020; 6:e03270. [PMID: 31993528 PMCID: PMC6971389 DOI: 10.1016/j.heliyon.2020.e03270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The enzyme-linked immunosorbent assay (ELISA) is an indispensable tool for clinical diagnostics to identify or differentiate diseases such as autoimmune illnesses, but also to monitor their progression or control the efficacy of drugs. One use case of ELISA is to differentiate between different states (e.g. healthy vs. diseased). Another goal is to quantitatively assess the biomarker in question, like autoantibodies. Thus, the ELISA technology is used for the discovery and verification of new autoantibodies, too. Of key interest, however, is the development of immunoassays for the sensitive and specific detection of such biomarkers at early disease stages. Therefore, users have to deal with many parameters, such as buffer systems or antigen-autoantibody interactions, to successfully establish an ELISA. Often, fine-tuning like testing of several blocking substances is performed to yield high signal-to-noise ratios. METHODS We developed an ELISA to detect IgA and IgG autoantibodies against chitinase-3-like protein 1 (CHI3L1), a newly identified autoantigen in inflammatory bowel disease (IBD), in the serum of control and disease groups (n = 23, respectively). Microwell plates with different surface modifications (PolySorp and MaxiSorp coating) were tested to detect reproducibility problems. RESULTS We found a significant impact of the surface properties of the microwell plates. IgA antibody reactivity was significantly lower, since it was in the range of background noise, when measured on MaxiSorp coated plates (p < 0.0001). The IgG antibody reactivity did not differ on the diverse plates, but the plate surface had a significant influence on the test result (p = 0.0005). CONCLUSION With this report, we want to draw readers' attention to the properties of solid phases and their effects on the detection of autoantibodies by ELISA. We want to sensitize the reader to the fact that the choice of the wrong plate can lead to a false negative test result, which in turn has serious consequences for the discovery of autoantibodies.
Collapse
Affiliation(s)
- Claudia Deutschmann
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Senftenberg, Germany
| |
Collapse
|
229
|
Carvajal-Lopez P, Von Borstel FD, Torres A, Rustici G, Gutierrez J, Romero-Vivas E. Microarray-Based Quality Assessment as a Supporting Criterion for de novo Transcriptome Assembly Selection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:198-206. [PMID: 30059314 DOI: 10.1109/tcbb.2018.2860997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA-Sequencing and de novo assembly have enabled the analysis of species with non-available reference transcriptomes, although intrinsic features (biological and technical) induce errors in the reconstruction. A strategy to resolve these errors consists of varying assembling process parameters to generate multiple reconstructions. However, the best assembly selection remains a challenge. Quantitative metrics for quality assessment have been inconsistent when compared with pertinent references. In this paper, a criterion for supporting assembly selection based on mapping DNA microarray hybridized probes to assembly sets is proposed. Mouse and fruit fly RNA-Seq datasets were assembled with standard de novo procedures. Quality assessment was estimated using quantitative metrics and the proposed criterion. The assembly that best mapped to the available reference transcriptomes of these model species provided the highest quality assembly. The hybridized probes identified the best assemblies, whereas quantitative metrics remained inconsistent. For example, subtle probe mapping difference of 0.25 percent, but statistically significant (ANOVA, p < 0.05), enabled the assembly selection that led to identify 3,719 more contigs and led to 1,049 further mapped contigs to the mouse reference transcriptome. The microarray data availability for non-model species makes the proposed criterion suitable for quality assessment of multiple de novo assembly strategies.
Collapse
|
230
|
Jacobsen A, de Miranda Azevedo R, Juty N, Batista D, Coles S, Cornet R, Courtot M, Crosas M, Dumontier M, Evelo CT, Goble C, Guizzardi G, Hansen KK, Hasnain A, Hettne K, Heringa J, Hooft RW, Imming M, Jeffery KG, Kaliyaperumal R, Kersloot MG, Kirkpatrick CR, Kuhn T, Labastida I, Magagna B, McQuilton P, Meyers N, Montesanti A, van Reisen M, Rocca-Serra P, Pergl R, Sansone SA, da Silva Santos LOB, Schneider J, Strawn G, Thompson M, Waagmeester A, Weigel T, Wilkinson MD, Willighagen EL, Wittenburg P, Roos M, Mons B, Schultes E. FAIR Principles: Interpretations and Implementation Considerations. DATA INTELLIGENCE 2020. [DOI: 10.1162/dint_r_00024] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.
Collapse
Affiliation(s)
- Annika Jacobsen
- Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Ricardo de Miranda Azevedo
- Institute of Data Science, Maastricht University, Universiteitssingel 60, Maastricht 6229 ER, The Netherlands
| | - Nick Juty
- Department of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Dominique Batista
- Oxford e-Research Centre, Department of Engineering Sciences, University of Oxford, Oxford OX13PJ, UK
| | - Simon Coles
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - Ronald Cornet
- Amsterdam UMC, University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Mélanie Courtot
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Mercè Crosas
- Harvard University, Cambridge, Massachusetts 02138, USA
| | - Michel Dumontier
- Institute of Data Science, Maastricht University, Universiteitssingel 60, Maastricht 6229 ER, The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics – BiGCaT, NUTRIM, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Carole Goble
- Department of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giancarlo Guizzardi
- Conceptual and Cognitive Modeling Research Group (CORE), Free University of Bozen-Bolzano, Bolzano 39100, Italy
| | | | - Ali Hasnain
- Insight Centre for Data Analytics, National University of Ireland Galway, H91 TK33, Ireland
| | - Kristina Hettne
- Centre for Digital Scholarship, Leiden University Libraries, Leiden, 2333 ZA, The Netherlands
| | - Jaap Heringa
- Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 11051081 HV Amsterdam, The Netherlands
| | - Rob W.W. Hooft
- Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 11051081 HV Amsterdam, The Netherlands
- Dutch Techcentre for Life Sciences (DTL), Utrecht, The Netherlands
| | | | | | | | - Martijn G. Kersloot
- Amsterdam UMC, University of Amsterdam, Amsterdam 1000 GG, The Netherlands
- Castor EDC, Paasheuvelweg 25, Wing 5D, 1105 BP, Amsterdam, The Netherlands
| | - Christine R. Kirkpatrick
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Tobias Kuhn
- Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 11051081 HV Amsterdam, The Netherlands
| | - Ignasi Labastida
- Learning and Research Resources Centre (CRAI), Universitat de Barcelona, 08007 Barcelona, Spain
| | | | - Peter McQuilton
- Oxford e-Research Centre, Department of Engineering Sciences, University of Oxford, Oxford OX13PJ, UK
| | | | | | - Mirjam van Reisen
- Liacs Institute of Advanced Computer Science, Leiden University, 2311 GJ Leiden, The Netherlands
| | - Philippe Rocca-Serra
- Oxford e-Research Centre, Department of Engineering Sciences, University of Oxford, Oxford OX13PJ, UK
| | - Robert Pergl
- Czech Technical University in Prague, Faculty of Information Technology (FIT CTU), 160 00 Prague 6, Czech Republic
| | - Susanna-Assunta Sansone
- Oxford e-Research Centre, Department of Engineering Sciences, University of Oxford, Oxford OX13PJ, UK
| | | | - Juliane Schneider
- Harvard Catalyst
- Clinical and Translational Science Center, Boston, MA 02115, USA
| | - George Strawn
- US National Academy of Sciences, Washington DC 20418, USA
| | - Mark Thompson
- Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | | | - Tobias Weigel
- Deutsches Klimarechenzentrum, Bundesstrasse 45a, 20146 Hamburg, Germany
| | - Mark D. Wilkinson
- Center for Plant Biotechnology and Genomics UPM-INIA, Madrid 28040, Spain
| | - Egon L. Willighagen
- Department of Bioinformatics – BiGCaT, NUTRIM, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Peter Wittenburg
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748 Garching, Germany
| | - Marco Roos
- Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Barend Mons
- Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- GO FAIR International Support & Coordination Office (GFISCO), Leiden, The Netherlands
| | - Erik Schultes
- GO FAIR International Support & Coordination Office (GFISCO), Leiden, The Netherlands
- Leiden Center for Data Science, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
231
|
Gelman H, Dines JN, Berg J, Berger AH, Brnich S, Hisama FM, James RG, Rubin AF, Shendure J, Shirts B, Fowler DM, Starita LM. Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. Genome Med 2019; 11:85. [PMID: 31862013 PMCID: PMC6925490 DOI: 10.1186/s13073-019-0698-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/20/2019] [Indexed: 01/31/2023] Open
Abstract
Variants of uncertain significance represent a massive challenge to medical genetics. Multiplexed functional assays, in which the functional effects of thousands of genomic variants are assessed simultaneously, are increasingly generating data that can be used as additional evidence for or against variant pathogenicity. Such assays have the potential to resolve variants of uncertain significance, thereby increasing the clinical utility of genomic testing. Existing standards from the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) and new guidelines from the Clinical Genome Resource (ClinGen) establish the role of functional data in variant interpretation, but do not address the specific challenges or advantages of using functional data derived from multiplexed assays. Here, we build on these existing guidelines to provide recommendations to experimentalists for the production and reporting of multiplexed functional data and to clinicians for the evaluation and use of such data. By following these recommendations, experimentalists can produce transparent, complete, and well-validated datasets that are primed for clinical uptake. Our recommendations to clinicians and diagnostic labs on how to evaluate the quality of multiplexed functional datasets, and how different datasets could be incorporated into the ACMG/AMP variant-interpretation framework, will hopefully clarify whether and how such data should be used. The recommendations that we provide are designed to enhance the quality and utility of multiplexed functional data, and to promote their judicious use.
Collapse
Affiliation(s)
- Hannah Gelman
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA
- Current affiliation: Center of Innovation for Veteran-Centered and Value-Driven Care, VA Puget Sound Health Care System, S Columbian Way, Seattle, WA, 98108, USA
| | - Jennifer N Dines
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Current affiliation: Adaptive Biotechnologies, Eastlake Avenue E, Seattle, WA, 98102, USA
| | - Jonathan Berg
- Department of Genetics, University of North Carolina at Chapel Hill,, Mason Farm Road, Chapel Hill, NC, 27514, USA
| | - Alice H Berger
- Human Biology Division, Fred Hutchinson Cancer Research Center, Fairview Avenue, Seattle, WA, 98109, USA
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
| | - Sarah Brnich
- Department of Genetics, University of North Carolina at Chapel Hill,, Mason Farm Road, Chapel Hill, NC, 27514, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
| | - Richard G James
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Center for Immunity and Immunotherapies, Seattle Children, Research Institute, Ninth Avenue, Seattle, WA, 98145, USA
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, VIC, 3000, Australia
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, Pacific Street, Seattle, WA, 98195, USA
| | - Brian Shirts
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Department of Laboratory Medicine, University of Washington School of Medicine, NE Pacific Street, Seattle, WA, 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA.
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, 15th Avenue NE, Seattle, WA, 98195, USA.
| | - Lea M Starita
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA.
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
232
|
Abstract
The emerging field of affective computing focuses on enhancing computers’ ability to understand and appropriately respond to people’s affective states in human-computer interactions, and has revealed significant potential for a wide spectrum of applications. Recently, the electroencephalography (EEG) based affective computing has gained increasing interest for its good balance between mechanistic exploration and real-world practical application. The present work reviewed ten theoretical and operational challenges for the existing affective computing researches from an interdisciplinary perspective of information technology, psychology, and neuroscience. On the theoretical side, we suggest that researchers should be well aware of the limitations of the commonly used emotion models, and be cautious about the widely accepted assumptions on EEG-emotion relationships as well as the transferability of findings based on different research paradigms. On the practical side, we propose several operational recommendations for the challenges about data collection, feature extraction, model implementation, online system design, as well as the potential ethical issues. The present review is expected to contribute to an improved understanding of EEG-based affective computing and promote further applications.
Collapse
Affiliation(s)
- Xin Hu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
- These authors contributed equally to this work
| | - Jingjing Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- These authors contributed equally to this work
| | - Fei Wang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
233
|
Campbell MP, Abrahams JL, Rapp E, Struwe WB, Costello CE, Novotny M, Ranzinger R, York WS, Kolarich D, Rudd PM, Kettner C. The minimum information required for a glycomics experiment (MIRAGE) project: LC guidelines. Glycobiology 2019; 29:349-354. [PMID: 30778580 DOI: 10.1093/glycob/cwz009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/13/2022] Open
Abstract
The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to design guidelines that improve the reporting and reproducibility of glycoanalytical methods. Previously, the MIRAGE Commission has published guidelines for describing sample preparation methods and the reporting of glycan array and mass spectrometry techniques and data collections. Here, we present the first version of guidelines that aim to improve the quality of the reporting of liquid chromatography (LC) glycan data in the scientific literature. These guidelines cover all aspects of instrument setup and modality of data handling and manipulation and is cross-linked with other MIRAGE recommendations. The most recent version of the MIRAGE-LC guidelines is freely available at the MIRAGE project website doi:10.3762/mirage.4.
Collapse
Affiliation(s)
- Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, Germany
| | - Weston B Struwe
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, UK
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA, USA
| | - Milos Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, USA
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,ARC Centre for Nanoscale BioPhotonics, Griffith University, Gold Coast, Queensland, Australia
| | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | - Carsten Kettner
- Beilstein-Institut, Trakehner Str. 7-9, Frankfurt am Main, Germany
| |
Collapse
|
234
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
235
|
Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Sci Rep 2019; 9:19120. [PMID: 31836790 PMCID: PMC6910970 DOI: 10.1038/s41598-019-55645-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The success of Bacillus amyloliquefaciens as a biological control agent relies on its ability to outgrow plant pathogens. It is also thought to interact with its plant host by inducing systemic resistance. In this study, the ability of B. amyloliquefaciens MBI600 to elicit defense (or other) responses in tomato seedlings and plants was assessed upon the expression of marker genes and transcriptomic analysis. Spray application of Serifel, a commercial formulation of MBI600, induced responses in a dose-dependent manner. Low dosage primed plant defense by activation of SA-responsive genes. Suggested dosage induced defense by mediating synergistic cross-talk between JA/ET and SA-signaling. Saturation of tomato roots or leaves with MBI600 elicitors activated JA/ET signaling at the expense of SA-mediated responses. The complex signaling network that is implicated in MBI600-tomato seedling interactions was mapped. MBI600 and flg22 (a bacterial flagellin peptide) elicitors induced, in a similar manner, biotic and abiotic stress responses by the coordinated activation of genes involved in JA/ET biosynthesis as well as hormone and redox signaling. This is the first study to suggest the activation of plant defense following the application of a commercial microbial formulation under conditions of greenhouse crop production.
Collapse
|
236
|
Bravatà V, Cammarata FP, Minafra L, Musso R, Pucci G, Spada M, Fazio I, Russo G, Forte GI. Gene Expression Profiles Induced by High-dose Ionizing Radiation in MDA-MB-231 Triple-negative Breast Cancer Cell Line. Cancer Genomics Proteomics 2019; 16:257-266. [PMID: 31243106 DOI: 10.21873/cgp.20130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Radiation therapy (RT) represents a therapeutic option in breast cancer (BC). Even if a great number of BC patients receive RT, not all of them report benefits, due to radioresistance that gets activated through several factors, such as the hormone receptor status. Herein, we analyzed the gene expression profiles (GEP) induced by RT in triple-negative BC (TNBC) MDA-MB-231, to study signalling networks involved in radioresistance. MATERIALS AND METHODS GEP of MDA-MB-231 BC cells treated with a high dose of radiation, went through cDNA microarray analysis. In addition, to examine the cellular effects induced by RT, analyses of morphology and clonogenic evaluation were also conducted. RESULTS A descriptive report of GEP and pathways induced by IR is reported from our microarray data. Moreover, the MDA-MB-231 Radioresistent Cell Fraction (RCF) selected, included specific molecules able to drive radioresistance. CONCLUSION In summary, our data highlight, the RT response of TNBC MDA-MB-231 cell line at a transcriptional level, in terms of activating radioresistance in these cells, as a model of late-stage BC.
Collapse
Affiliation(s)
- Valentina Bravatà
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| | - Francesco Paolo Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| | - Rosa Musso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| | - Gaia Pucci
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| | | | - Ivan Fazio
- Casa di Cura Macchiarella, Palermo, Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| | - Giusi Irma Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
| |
Collapse
|
237
|
Zhou Y, Li H, Liang X, Du H, Suo Y, Chen H, Liu W, Duan R, Huang X, Li Q. The CCN1 (CYR61) protein promotes skin growth by enhancing epithelial-mesenchymal transition during skin expansion. J Cell Mol Med 2019; 24:1460-1473. [PMID: 31828970 PMCID: PMC6991652 DOI: 10.1111/jcmm.14828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
The skin expansion technique is widely used to induce skin growth for large-scale skin deformity reconstruction. However, the capacity for skin expansion is limited and searching for ways to improve the expansion efficiency is a challenge. In this study, we aimed to explore the possible mechanism of skin expansion and to find a potential therapeutic target on promoting skin growth. We conducted weighted gene coexpression network analysis (WGCNA) of microarray data generated from rat skin expansion and found CCN1 (CYR61) to be the central hub gene related to epithelial-mesenchymal transition (EMT). CCN1 up-regulation was confirmed in human and rat expanded skin and also in mechanically stretched rat keratinocytes, together with acquired mesenchymal phenotype. After CCN1 stimulation on keratinocytes, cell proliferation was promoted and partial EMT was induced by activating β-catenin pathway. Treatment of CCN1 protein could significantly increase the flap thickness, improve the blood supply and restore the structure in a rat model of skin expansion, whereas inhibition of CCN1 through shRNA interference could dramatically reduce the efficiency of skin expansion. Our findings demonstrate that CCN1 plays a crucial role in skin expansion and that CCN1 may serve as a potential therapeutic target to promote skin growth and improve the efficiency of skin expansion.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhou Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengyu Du
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Suo
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Wenhui Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Duan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
238
|
Forero DA. Available Software for Meta-analyses of Genome-wide Expression Studies. Curr Genomics 2019; 20:325-331. [PMID: 32476989 PMCID: PMC7235394 DOI: 10.2174/1389202920666190822113912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 01/24/2023] Open
Abstract
Advances in transcriptomic methods have led to a large number of published Genome-Wide Expression Studies (GWES), in humans and model organisms. For several years, GWES involved the use of microarray platforms to compare genome-expression data for two or more groups of samples of interest. Meta-analysis of GWES is a powerful approach for the identification of differentially expressed genes in biological topics or diseases of interest, combining information from multiple primary studies. In this article, the main features of available software for carrying out meta-analysis of GWES have been reviewed and seven packages from the Bioconductor platform and five packages from the CRAN platform have been described. In addition, nine previously described programs and four online programs are reviewed. Finally, advantages and disadvantages of these available programs and proposed key points for future developments have been discussed.
Collapse
Affiliation(s)
- Diego A Forero
- PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
239
|
Favara DM, Zois CE, Haider S, Pires E, Sheldon H, McCullagh J, Banham AH, Harris AL. ADGRL4/ELTD1 Silencing in Endothelial Cells Induces ACLY and SLC25A1 and Alters the Cellular Metabolic Profile. Metabolites 2019; 9:E287. [PMID: 31775252 PMCID: PMC6950702 DOI: 10.3390/metabo9120287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022] Open
Abstract
Adhesion G Protein-Coupled Receptor L4 (ADGRL4/ELTD1) is an endothelial cell adhesion G protein-coupled receptor (aGPCR) which regulates physiological and tumour angiogenesis, providing an attractive target for anti-cancer therapeutics. To date, ADGRL4/ELTD1's full role and mechanism of function within endothelial biology remains unknown, as do its ligand(s). In this study, ADGRL4/ELTD1 silencing, using two independent small interfering RNAs (siRNAs), was performed in human umbilical vein endothelial cells (HUVECS) followed by transcriptional profiling, target gene validation, and metabolomics using liquid chromatography-mass spectrometry in order to better characterise ADGRL4/ELTD1's role in endothelial cell biology. We show that ADGRL4/ELTD1 silencing induced expression of the cytoplasmic metabolic regulator ATP Citrate Lyase (ACLY) and the mitochondria-to-cytoplasm citrate transporter Solute Carrier Family 25 Member 1 (SLC25A1) but had no apparent effect on pathways downstream of ACLY (fatty acid and cholesterol synthesis or acetylation). Silencing induced KIT expression and affected the Notch signalling pathway, upregulating Delta Like Canonical Notch Ligand 4 (DLL4) and suppressing Jagged Canonical Notch Ligand 1 (JAG1) and Hes Family BHLH Transcription Factor 2 (HES2). The effect of ADGRL4/ELTD1 silencing on the cellular metabolic profile was modest but several metabolites were significantly affected. Cis-aconitic acid, uridine diphosphate (UDP)-glucoronate, fructose 2,6-diphosphate, uridine 5-diphosphate, and aspartic acid were all elevated as a result of silencing and phosphocreatine, N-acetylglutamic acid, taurine, deoxyadenosine triphosphate, and cytidine monophosphate were depleted. Metabolic pathway analysis implicated ADGRL4/ELTD1 in pyrimidine, amino acid, and sugar metabolism. In summary, this study shows that ADGRL4/ELTD1 impacts core components of endothelial metabolism and regulates genes involved in endothelial differentiation/homeostasis and Notch signalling.
Collapse
Affiliation(s)
- David M. Favara
- Balliol College, University of Oxford, Oxford OX1 3BJ, UK
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (C.E.Z.); (S.H.); (H.S.)
| | - Christos E. Zois
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (C.E.Z.); (S.H.); (H.S.)
| | - Syed Haider
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (C.E.Z.); (S.H.); (H.S.)
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.)
| | - Helen Sheldon
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (C.E.Z.); (S.H.); (H.S.)
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.)
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (C.E.Z.); (S.H.); (H.S.)
| |
Collapse
|
240
|
Alaimo S, Di Maria A, Shasha D, Ferro A, Pulvirenti A. TACITuS: transcriptomic data collector, integrator, and selector on big data platform. BMC Bioinformatics 2019; 20:366. [PMID: 31757212 PMCID: PMC6873396 DOI: 10.1186/s12859-019-2912-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several large public repositories of microarray datasets and RNA-seq data are available. Two prominent examples include ArrayExpress and NCBI GEO. Unfortunately, there is no easy way to import and manipulate data from such resources, because the data is stored in large files, requiring large bandwidth to download and special purpose data manipulation tools to extract subsets relevant for the specific analysis. RESULTS TACITuS is a web-based system that supports rapid query access to high-throughput microarray and NGS repositories. The system is equipped with modules capable of managing large files, storing them in a cloud environment and extracting subsets of data in an easy and efficient way. The system also supports the ability to import data into Galaxy for further analysis. CONCLUSIONS TACITuS automates most of the pre-processing needed to analyze high-throughput microarray and NGS data from large publicly-available repositories. The system implements several modules to manage large files in an easy and efficient way. Furthermore, it is capable deal with Galaxy environment allowing users to analyze data through a user-friendly interface.
Collapse
Affiliation(s)
- Salvatore Alaimo
- Department of Clinical and Experimental Medicine, University of Catania, c/o Dipartimento di Matematica e Informatica, Viale A. Doria 6, Catania, 95125, Italy.
| | - Antonio Di Maria
- Department of Clinical and Experimental Medicine, University of Catania, c/o Dipartimento di Matematica e Informatica, Viale A. Doria 6, Catania, 95125, Italy.,Department of Physics and Astronomy, University of Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Dennis Shasha
- Courant Institute of Mathematical Science, New York University, 251 Mercer St, New York, 10012, USA
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, c/o Dipartimento di Matematica e Informatica, Viale A. Doria 6, Catania, 95125, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, c/o Dipartimento di Matematica e Informatica, Viale A. Doria 6, Catania, 95125, Italy
| |
Collapse
|
241
|
Ohshima K, Fujiya K, Nagashima T, Ohnami S, Hatakeyama K, Urakami K, Naruoka A, Watanabe Y, Moromizato S, Shimoda Y, Ohnami S, Serizawa M, Akiyama Y, Kusuhara M, Mochizuki T, Sugino T, Shiomi A, Tsubosa Y, Uesaka K, Terashima M, Yamaguchi K. Driver gene alterations and activated signaling pathways toward malignant progression of gastrointestinal stromal tumors. Cancer Sci 2019; 110:3821-3833. [PMID: 31553483 PMCID: PMC6890443 DOI: 10.1111/cas.14202] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/28/2022] Open
Abstract
Mutually exclusive KIT and PDGFRA mutations are considered to be the earliest events in gastrointestinal stromal tumors (GIST), but insufficient for their malignant progression. Herein, we aimed to identify driver genes and signaling pathways relevant to GIST progression. We investigated genetic profiles of 707 driver genes, including mutations, gene fusions, copy number gain or loss, and gene expression for 65 clinical specimens of surgically dissected GIST, consisting of six metastatic tumors and 59 primary tumors from stomach, small intestine, rectum, and esophagus. Genetic alterations included oncogenic mutations and amplification‐dependent expression enhancement for oncogenes (OG), and loss of heterozygosity (LOH) and expression reduction for tumor suppressor genes (TSG). We assigned activated OG and inactivated TSG to 27 signaling pathways, the activation of which was compared between malignant GIST (metastasis and high‐risk GIST) and less malignant GIST (low‐ and very low‐risk GIST). Integrative molecular profiling indicated that a greater incidence of genetic alterations of driver genes was detected in malignant GIST (96%, 22 of 23) than in less malignant GIST (73%, 24 of 33). Malignant GIST samples groups showed mutations, LOH, and aberrant expression dominantly in driver genes associated with signaling pathways of PI3K (PIK3CA, AKT1, and PTEN) and the cell cycle (RB1, CDK4, and CDKN1B). Additionally, we identified potential PI3K‐related genes, the expression of which was upregulated (SNAI1 and TPX2) or downregulated (BANK1) in malignant GIST. Based on our observations, we propose that inhibition of PI3K pathway signals might potentially be an effective therapeutic strategy against malignant progression of GIST.
Collapse
Affiliation(s)
- Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Region Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Watanabe
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Sachi Moromizato
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Region Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
242
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
243
|
Dikicioglu D, Coxon JWMT, Oliver SG. Metabolic response to Parkinson's disease recapitulated by the haploinsufficient diploid yeast cells hemizygous for the adrenodoxin reductase gene. Mol Omics 2019; 15:340-347. [PMID: 31429849 DOI: 10.1039/c9mo00090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adrenodoxin reductase, a widely conserved mitochondrial P450 protein, catalyses essential steps in steroid hormone biosynthesis and is highly expressed in the adrenal cortex. The yeast adrenodoxin reductase homolog, Arh1p, is involved in cytoplasmic and mitochondrial iron homeostasis and is required for activity of enzymes containing an Fe-S cluster. In this paper, we investigated the response of yeast to the loss of a single copy of ARH1, an oxidoreductase of the mitochondrial inner membrane, which is among the few mitochondrial proteins that is essential for viability in yeast. The phenotypic, transcriptional, proteomic, and metabolic landscape indicated that Saccharomyces cerevisiae successfully adapted to this loss, displaying an apparently dosage-insensitive cellular response. However, a considered investigation of transcriptional regulation in ARH1-impaired yeast highlighted that a significant hierarchical reorganisation occurred, involving the iron assimilation and tyrosine biosynthetic processes. The interconnected roles of the iron and tyrosine pathways, coupled with oxidative processes, are of interest beyond yeast since they are involved in dopaminergic neurodegeneration associated with Parkinson's disease. The identification of similar responses in yeast, albeit preliminary, suggests that this simple eukaryote could have potential as a model system for investigating the regulatory mechanisms leading to the initiation and progression of early disease responses in humans.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
244
|
Novoa B, Pereiro P, López‐Muñoz A, Varela M, Forn‐Cuní G, Anchelin M, Dios S, Romero A, Martinez‐López A, Medina‐Gali RM, Collado M, Coll J, Estepa A, Cayuela ML, Mulero V, Figueras A. Rag1 immunodeficiency-induced early aging and senescence in zebrafish are dependent on chronic inflammation and oxidative stress. Aging Cell 2019; 18:e13020. [PMID: 31348603 PMCID: PMC6718522 DOI: 10.1111/acel.13020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1−/− zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity‐ and apoptosis‐related genes was increased in the rag1−/− fish. This tool also allows us to notice alterations of the DNA repair and cell cycle mechanisms in rag1−/− zebrafish. Several senescence and aging markers were analyzed. In addition to the lower lifespan of rag1−/− zebrafish compared to their wild‐type (wt) siblings, rag1−/− showed a higher incidence of cell cycle arrest and apoptosis, a greater amount of phosphorylated histone H2AX, oxidative stress and decline of the antioxidant mechanisms, an upregulated expression and activity of senescence‐related genes and senescence‐associated β‐galactosidase, respectively, diminished telomere length, and abnormal self‐renewal and repair capacities in the retina and liver. Metabolomic analysis also demonstrated clear differences between wt and rag1−/− fish, as was the deficiency of the antioxidant metabolite l‐acetylcarnitine (ALCAR) in rag1−/− fish. Therefore, Rag1 activity does not seem to be limited to V(D)J recombination but is also involved in senescence and aging. Furthermore, we confirmed the senolytic effect of ABT‐263, a known senolytic compound and, for the first time, the potential in vivo senolytic activity of the antioxidant agent ALCAR, suggesting that this metabolite is essential to avoid premature aging.
Collapse
Affiliation(s)
- Beatriz Novoa
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Azucena López‐Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia IMIB‐Arrixaca Murcia Spain
| | - Mónica Varela
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Gabriel Forn‐Cuní
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Monique Anchelin
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca IMIB‐Arrixaca Murcia Spain
| | - Sonia Dios
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Alejandro Romero
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Alicia Martinez‐López
- Instituto de Biología Molecular y Celular (IBMC) Universidad Miguel Hernández (UMH) Elche Spain
| | - Regla María Medina‐Gali
- Instituto de Biología Molecular y Celular (IBMC) Universidad Miguel Hernández (UMH) Elche Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) SERGAS Santiago de Compostela Spain
| | - Julio Coll
- Departamento de Biotecnología Instituto Nacional Investigación y Tecnología Agraria y Alimentaria (INIA) Madrid Spain
| | - Amparo Estepa
- Instituto de Biología Molecular y Celular (IBMC) Universidad Miguel Hernández (UMH) Elche Spain
| | - María Luisa Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca IMIB‐Arrixaca Murcia Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia IMIB‐Arrixaca Murcia Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| |
Collapse
|
245
|
The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments. Toxicol Appl Pharmacol 2019; 380:114706. [DOI: 10.1016/j.taap.2019.114706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022]
|
246
|
Simader E, Beer L, Laggner M, Vorstandlechner V, Gugerell A, Erb M, Kalinina P, Copic D, Moser D, Spittler A, Tschachler E, Jan Ankersmit H, Mildner M. Tissue-regenerative potential of the secretome of γ-irradiated peripheral blood mononuclear cells is mediated via TNFRSF1B-induced necroptosis. Cell Death Dis 2019; 10:729. [PMID: 31570701 PMCID: PMC6768878 DOI: 10.1038/s41419-019-1974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) have been shown to produce and release a plethora of pro-angiogenetic factors in response to γ-irradiation, partially accounting for their tissue-regenerative capacity. Here, we investigated whether a certain cell subtype of PBMCs is responsible for this effect, and whether the type of cell death affects the pro-angiogenic potential of bioactive molecules released by γ-irradiated PBMCs. PBMCs and PBMC subpopulations, including CD4+ and CD8+ T cells, B cells, monocytes, and natural killer cells, were isolated and subjected to high-dose γ-irradiation. Transcriptome analysis revealed subpopulation-specific responses to γ-irradiation with distinct activation of pro-angiogenic pathways, cytokine production, and death receptor signalling. Analysis of the proteins released showed that interactions of the subsets are important for the generation of a pro-angiogenic secretome. This result was confirmed at the functional level by the finding that the secretome of γ-irradiated PBMCs displayed higher pro-angiogenic activity in an aortic ring assay. Scanning electron microscopy and image stream analysis of γ-irradiated PBMCs revealed distinct morphological changes, indicative for apoptotic and necroptotic cell death. While inhibition of apoptosis had no effect on the pro-angiogenic activity of the secretome, inhibiting necroptosis in stressed PBMCs abolished blood vessel sprouting. Mechanistically, we identified tumor necrosis factor (TNF) receptor superfamily member 1B as the main driver of necroptosis in response to γ-irradiation in PBMCs, which was most likely mediated via membrane-bound TNF-α. In conclusion, our study demonstrates that the pro-angiogenic activity of the secretome of γ-irradiated PBMCs requires interplay of different PBMC subpopulations. Furthermore, we show that TNF-dependent necroptosis is an indispensable molecular process for conferring tissue-regenerative activity and for the pro-angiogenic potential of the PBMC secretome. These findings contribute to a better understanding of secretome-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Elisabeth Simader
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.,Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, CB2 0QQ, UK
| | - Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Vera Vorstandlechner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Michael Erb
- Synlab Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Polina Kalinina
- Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Dragan Copic
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Doris Moser
- Division of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Research Laboratories, Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria. .,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria. .,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria.
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
247
|
Suliman Y, Becker F, Wimmers K. Implication of transcriptome profiling of spermatozoa for stallion fertility. Reprod Fertil Dev 2019. [PMID: 29534788 DOI: 10.1071/rd17188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Poor fertility of breeding stallions is a recognised problem in the equine industry. The aim of the present study was to detect molecular pathways using two groups of stallions that differed in pregnancy rates as well as in the proportion of normal and motile spermatozoa. RNA was isolated from spermatozoa of each stallion and microarray data were analysed to obtain a list of genes for which transcript abundance differed between the groups (P ≤0.05, fold change ≥1.2). In all, there were 437 differentially expressed (DE) genes between the two groups (P ≤ 0.05, fold change ≥1.2). Next, the DE genes were analysed using Database for Annotation, Visualisation, and Integrated Discovery (DAVID). Finally, ingenuity pathways analysis (IPA) was used to identify top biological functions and significant canonical pathways associated with the DE genes. Analysis using the DAVID database showed significant enrichment in the gene ontology (GO) term 'RNA binding' (P=0.05) and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cytokine-cytokine receptor interaction (P=0.02). Furthermore, IPA analysis showed interconnected biological functions and canonical pathways involved in the regulation of spermatogenesis and male fertility. In addition, significantly enriched metabolic pathways were identified. In conclusion, the present study has identified, for the first time, molecular processes in stallion spermatozoa that could be associated with stallion fertility.
Collapse
Affiliation(s)
- Yara Suliman
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhem-Stahl-Allee 2, Germany
| | - Frank Becker
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhem-Stahl-Allee 2, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany
| |
Collapse
|
248
|
Abstract
The scientific method has been guiding biological research for a long time. It not only prescribes the order and types of activities that give a scientific study validity and a stamp of approval but also has substantially shaped how we collectively think about the endeavor of investigating nature. The advent of high-throughput data generation, data mining, and advanced computational modeling has thrown the formerly undisputed, monolithic status of the scientific method into turmoil. On the one hand, the new approaches are clearly successful and expect the same acceptance as the traditional methods, but on the other hand, they replace much of the hypothesis-driven reasoning with inductive argumentation, which philosophers of science consider problematic. Intrigued by the enormous wealth of data and the power of machine learning, some scientists have even argued that significant correlations within datasets could make the entire quest for causation obsolete. Many of these issues have been passionately debated during the past two decades, often with scant agreement. It is proffered here that hypothesis-driven, data-mining-inspired, and "allochthonous" knowledge acquisition, based on mathematical and computational models, are vectors spanning a 3D space of an expanded scientific method. The combination of methods within this space will most certainly shape our thinking about nature, with implications for experimental design, peer review and funding, sharing of result, education, medical diagnostics, and even questions of litigation.
Collapse
Affiliation(s)
- Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
249
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
250
|
Gene Expression Maps in Plants: Current State and Prospects. PLANTS 2019; 8:plants8090309. [PMID: 31466308 PMCID: PMC6784182 DOI: 10.3390/plants8090309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
For many years, progress in the identification of gene functions has been based on classical genetic approaches. However, considerable recent omics developments have brought to the fore indirect but high-resolution methods of gene function identification such as transcriptomics, proteomics, and metabolomics. A transcriptome map is a powerful source of functional information and the result of the genome-wide expression analysis of a broad sampling of tissues and/or organs from different developmental stages and/or environmental conditions. In plant science, the application of transcriptome maps extends from the inference of gene regulatory networks to evolutionary studies. However, only some of these data have been integrated into databases, thus enabling analyses to be conducted without raw data; without this integration, extensive data preprocessing is required, which limits data usability. In this review, we summarize the state of plant transcriptome maps, analyze the problems associated with the combined analysis of large-scale data from various studies, and outline possible solutions to these problems.
Collapse
|