201
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
202
|
Rydzek S, Shein M, Bielytskyi P, Schütz AK. Observation of a Transient Reaction Intermediate Illuminates the Mechanochemical Cycle of the AAA-ATPase p97. J Am Chem Soc 2020; 142:14472-14480. [DOI: 10.1021/jacs.0c03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Rydzek
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Anne K. Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
203
|
Ikeda M, Kuwabara T, Takai E, Kasahara H, Furuta M, Sekine A, Makioka K, Yamazaki T, Fujita Y, Nagashima K, Higuchi T, Tsushima Y, Ikeda Y. Increased Neurofilament Light Chain and YKL-40 CSF Levels in One Japanese IBMPFD Patient With VCP R155C Mutation: A Clinical Case Report With CSF Biomarker Analyses. Front Neurol 2020; 11:757. [PMID: 32849216 PMCID: PMC7431878 DOI: 10.3389/fneur.2020.00757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Inclusion body myopathy (IBM) with Paget's disease of bone (PDB) and frontotemporal dementia (IBMPFD) presents with multiple symptoms and an unknown etiology. Valosin-containing protein (VCP) has been identified as the main causative gene of IBMPFD. However, no studies on neurofilament light chain (NFL) as a cerebrospinal fluid (CSF) marker of axonal neurodegeneration or on YKL-40 as a CSF marker of glial neuroinflammation have been conducted in IBMPFD patients with VCP mutations. A 65-year-old man presented with progressive muscle atrophy and weakness of all limbs, non-fluent aphasia, and changes in personality and behavior. Cerebral MRI revealed bilateral frontal and temporal atrophy. 99mTc-HMDP bone scintigraphy and pelvic CT revealed remodeling changes and active osteoblastic accumulations in the right medial iliac bone. Muscle biopsy demonstrated multiple rimmed vacuoles in muscle cells with myogenic and neurogenic pathological alterations. After the patient was clinically diagnosed with IBMPFD, DNA analysis of the VCP gene revealed a cytosine (C) to thymine (T) (C→ T) mutation, resulting in an amino acid exchange of arginine to cysteine (p.R155C mutation). The CSF levels of NFL at two time points (12 years apart) were higher than those in non-dementia controls (CTR) and Alzheimer's disease (AD); lower than those in frontotemporal dementia with motor neuron disease (FTD-MND); and comparable to those in patients with behavioral variant frontotemporal dementia (bvFTD), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS). The CSF levels of YKL-40 were comparable at both time points and higher than those in CTR; lower than those in FTD-MND; and comparable to those in bvFTD, PSP, CBS, and AD. The CSF levels of phosphorylated tau 181 (P-Tau) and total tau (T-Tau) were not significantly different from those in CTR and other neurodegenerative diseases, except those in AD, which were significantly elevated. This is the first report that demonstrates increased NFL and YKL-40 CSF levels in an IBMPFD patient with a VCP mutation (p.R155C); NFL and YKL-40 levels were comparable to those in bvFTD, PSP, CBS, and AD and higher than those in CTR. Our results suggest that IBMPFD neuropathology may involve both axonal neurodegeneration and glial neuroinflammation.
Collapse
Affiliation(s)
- Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeo Kuwabara
- Department of Neurology, Jobu Hospital for Respiratory Diseases, Maebashi, Japan
| | - Eriko Takai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekine
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuneo Yamazaki
- Department of Occupational Therapy, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Yukio Fujita
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuaki Nagashima
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
204
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
205
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
206
|
Mol MO, van Rooij JGJ, Wong TH, Melhem S, Verkerk AJMH, Kievit AJA, van Minkelen R, Rademakers R, Pottier C, Kaat LD, Seelaar H, van Swieten JC, Dopper EGP. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiol Aging 2020; 97:148.e9-148.e16. [PMID: 32843152 DOI: 10.1016/j.neurobiolaging.2020.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants.
Collapse
Affiliation(s)
- Merel O Mol
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Jeroen G J van Rooij
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tsz H Wong
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rosa Rademakers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Cyril Pottier
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Laura Donker Kaat
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elise G P Dopper
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
207
|
Lee DJ, Bigio EH, Rogalski EJ, Mesulam MM. Speech and Language Presentations of FTLD-TDP Type B Neuropathology. J Neuropathol Exp Neurol 2020; 79:277-283. [PMID: 31995205 DOI: 10.1093/jnen/nlz132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Four right-handed patients who presented with an isolated impairment of speech or language had transactive response DNA-binding protein of 43 kDa (TDP-43) type B pathology. Comportment and pyramidal motor function were preserved at presentation. Three of the cases developed axial rigidity and oculomotor findings late in their course with no additional pyramidal or lower motor neuron impairments. However, in all 4 cases, postmortem examination disclosed some degree of upper and lower motor neuron disease (MND) pathology in motor cortex, brainstem, and spinal cord. Although TDP-43 type B pathology is commonly associated with MND and behavioral variant frontotemporal dementia, it is less recognized as a pathologic correlate of primary progressive aphasia and/or apraxia of speech as the presenting syndrome. These cases, taken together, contribute to the growing heterogeneity in clinical presentations associated with TDP pathology. Additionally, 2 cases demonstrated left anterior temporal lobe atrophy but without word comprehension impairments, shedding light on the relevance of the left temporal tip for single-word comprehension.
Collapse
Affiliation(s)
- Daniel J Lee
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Neurology
| | - Eileen H Bigio
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Pathology
| | - Emily J Rogalski
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Psychiatry and Behavioral Sciences (EJR), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - M-Marsel Mesulam
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease.,Department of Neurology
| |
Collapse
|
208
|
Roggenbuck J, Fong JC. Genetic Testing for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: Impact on Clinical Management. Clin Lab Med 2020; 40:271-287. [PMID: 32718499 DOI: 10.1016/j.cll.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative disorders that share clinical, pathologic, and genetic features. Persons and families affected by these conditions frequently question why they developed the disease, the expected disease course, treatment options, and the likelihood that family members will be affected. Genetic testing has the potential to answers these important questions. Despite the progress in gene discovery, the offer of genetic testing is not yet "standard of care" in ALS and FTD clinics. The authors review the current genetic landscape and present recommendations for the laboratory genetic evaluation of persons with these conditions.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Division of Human Genetics, Department of Neurology, The Ohio State University, 2012 Kenny Road, Columbus, OH 43221, USA.
| | - Jamie C Fong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS: BCM115, Houston, TX 77030, USA
| |
Collapse
|
209
|
Nicolau S, Liewluck T, Milone M. Myopathies with finger flexor weakness: Not only inclusion-body myositis. Muscle Nerve 2020; 62:445-454. [PMID: 32478919 DOI: 10.1002/mus.26914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Muscle disorders are characterized by differential involvement of various muscle groups. Among these, weakness predominantly affecting finger flexors is an uncommon pattern, most frequently found in sporadic inclusion-body myositis. This finding is particularly significant when the full range of histopathological findings of inclusion-body myositis is not found on muscle biopsy. Prominent finger flexor weakness, however, is also observed in other myopathies. It occurs commonly in myotonic dystrophy types 1 and 2. In addition, individual reports and small case series have documented finger flexor weakness in sarcoid and amyloid myopathy, and in inherited myopathies caused by ACTA1, CRYAB, DMD, DYSF, FLNC, GAA, GNE, HNRNPDL, LAMA2, MYH7, and VCP mutations. Therefore, the finding of finger flexor weakness requires consideration of clinical, myopathological, genetic, electrodiagnostic, and sometimes muscle imaging findings to establish a diagnosis.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| |
Collapse
|
210
|
Zhang T, Hay BA, Guo M. Generation, Analyzing and in-vivo Drug Treatment of Drosophila Models with IBMPFD. Bio Protoc 2020; 10:e3621. [PMID: 33659294 DOI: 10.21769/bioprotoc.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 11/02/2022] Open
Abstract
Missense mutations of p97/cdc48/Valosin-containing protein (VCP) cause inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative diseases. The pathological mechanism of IBMPFD is not clear and there is no treatment. We generated Drosophila models of IBMPFD in adult flight muscle in vivo. Here we describe a variety of assays to characterize disease pathology and dissect disease mechanism, and the consequences of in vivo feeding of VCP inhibitors.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,California Nanosystems Institute at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
211
|
Webber CJ, Lei SE, Wolozin B. The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:187-223. [PMID: 32828466 DOI: 10.1016/bs.pmbts.2020.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) brings together functionally related proteins through the intrinsic biophysics of proteins in a process that is driven by reducing free energy and maximizing entropy. The process of LLPS allows proteins to form structures, termed membrane-less organelles. These diverse, dynamic organelles are active in a wide range of processes in the nucleus, cytoplasm, mitochondria and synapse, and ranging from bacteria to plants to eukaryotes. RNA and DNA present long chained charged polymers that promote LLPS. Consequently, many RNA binding proteins (RBPs) and DNA binding proteins form membrane-less organelles. However, the highly concentrated phase separated state creates conditions that also promote formation of irreversible protein aggregates. Mutations in RNA and DNA binding proteins that increase the stability of irreversible aggregates also increase the accumulation of irreversible aggregates directly and from membrane-less organelles. Many of the RBPs that exhibit disease-linked mutations carry out cytoplasmic actions through stress granules, which are a pleiotropic type of RNA granule that regulates the translational response to stress. Phosphorylation and oligomerization of tau facilitates its interactions with RBPs and ribosomal proteins, affecting RNA translation; we propose that this is a major reason that tau becomes phosphorylated with stress. Persistent stress leads to the accumulation of irreversible aggregates composed of RBPs or tau, which then cause toxicity and form many of the hallmark pathologies of major neurodegenerative diseases. This pathophysiology ultimately leads to multiple forms of neurodegenerative diseases, the specific type of which reflects the temporal and spatial accumulation of different aggregating proteins.
Collapse
Affiliation(s)
- Chelsea J Webber
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Shuwen Eric Lei
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States; Program in Neuroscience, Boston University, Boston, MA, United States; Neurophotonics Center, Boston University, Boston, MA, United States.
| |
Collapse
|
212
|
Gonzalez-Quereda L, Rodriguez MJ, Diaz-Manera J, Alonso-Perez J, Gallardo E, Nascimento A, Ortez C, Natera-de Benito D, Olive M, Gonzalez-Mera L, Lopez de Munain A, Zulaica M, Poza JJ, Jerico I, Torne L, Riera P, Milisenda J, Sanchez A, Garrabou G, Llano I, Madruga-Garrido M, Gallano P. Targeted Next-Generation Sequencing in a Large Cohort of Genetically Undiagnosed Patients with Neuromuscular Disorders in Spain. Genes (Basel) 2020; 11:E539. [PMID: 32403337 PMCID: PMC7288461 DOI: 10.3390/genes11050539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The term neuromuscular disorder (NMD) includes many genetic and acquired diseases and differential diagnosis can be challenging. Next-generation sequencing (NGS) is especially useful in this setting given the large number of possible candidate genes, the clinical, pathological, and genetic heterogeneity, the absence of an established genotype-phenotype correlation, and the exceptionally large size of some causative genes such as TTN, NEB and RYR1. We evaluated the diagnostic value of a custom targeted next-generation sequencing gene panel to study the mutational spectrum of a subset of NMD patients in Spain. In an NMD cohort of 207 patients with congenital myopathies, distal myopathies, congenital and adult-onset muscular dystrophies, and congenital myasthenic syndromes, we detected causative mutations in 102 patients (49.3%), involving 42 NMD-related genes. The most common causative genes, TTN and RYR1, accounted for almost 30% of cases. Thirty-two of the 207 patients (15.4%) carried variants of uncertain significance or had an unidentified second mutation to explain the genetic cause of the disease. In the remaining 73 patients (35.3%), no candidate variant was identified. In combination with patients' clinical and myopathological data, the custom gene panel designed in our lab proved to be a powerful tool to diagnose patients with myopathies, muscular dystrophies and congenital myasthenic syndromes. Targeted NGS approaches enable a rapid and cost-effective analysis of NMD- related genes, offering reliable results in a short time and relegating invasive techniques to a second tier.
Collapse
Affiliation(s)
- Lidia Gonzalez-Quereda
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
| | - Maria Jose Rodriguez
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
| | - Jordi Diaz-Manera
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neurology Dept., Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain;
| | - Jorge Alonso-Perez
- Neuromuscular Unit, Neurology Dept., Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain;
| | - Eduard Gallardo
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neurology Dept., Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain;
| | - Andres Nascimento
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Daniel Natera-de Benito
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Montse Olive
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, 08907 Barcelona, Spain; (M.O.); (L.G.-M.)
| | - Laura Gonzalez-Mera
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, 08907 Barcelona, Spain; (M.O.); (L.G.-M.)
- Department of Neurology, Hospital de Viladecans, 08840 Barcelona, Spain
| | - Adolfo Lopez de Munain
- Biodonostia, Neurosciences Area, Neuromuscular diseases Laboratory, San Sebastian, 20014 Basque Country, Spain; (A.L.d.M.); (M.Z.)
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28029 Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, 20014 Basque Country, Spain;
- Department of Neurosciences, Faculty of Medicine and Dentistry, UPV-EHU, San Sebastian, 48940 Basque Country, Spain
| | - Miren Zulaica
- Biodonostia, Neurosciences Area, Neuromuscular diseases Laboratory, San Sebastian, 20014 Basque Country, Spain; (A.L.d.M.); (M.Z.)
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28029 Madrid, Spain
| | - Juan Jose Poza
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, 20014 Basque Country, Spain;
| | - Ivonne Jerico
- Navarre Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (I.J.); (L.T.)
- Department of Neurology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Laura Torne
- Navarre Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (I.J.); (L.T.)
| | - Pau Riera
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
| | - Jose Milisenda
- Hospital Clinic de Barcelona and Universidad de Barcelona, 08036 Barcelona, Spain;
| | - Aurora Sanchez
- Department of Biochemistry and Molecular Genetics, Hospital Clinic de Barcelona, 08036 Barcelona, Spain;
| | - Gloria Garrabou
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Cellex, IDIBAPS, University of Barcelona-Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Isabel Llano
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, 48903 Bizkaia, Spain
| | - Marcos Madruga-Garrido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, 41013 Sevilla, Spain;
- Neuromuscular Disorder Unit, Pediatric Neurology Department, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Pia Gallano
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
| |
Collapse
|
213
|
Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 2020; 6:24. [PMID: 32377374 PMCID: PMC7198619 DOI: 10.1038/s41421-020-0158-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Lidia Wróbel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sandra Malmgren Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Farah Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marian Fernandez-Estevez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marco M. Manni
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Julien Villeneuve
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - David Chaim Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
214
|
Tasca G, Lattante S, Marangi G, Conte A, Bernardo D, Bisogni G, Mandich P, Zollino M, Ragozzino E, Udd B, Sabatelli M. SOD1 p.D12Y variant is associated with amyotrophic lateral sclerosis/distal myopathy spectrum. Eur J Neurol 2020; 27:1304-1309. [PMID: 32250500 DOI: 10.1111/ene.14246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The aim of our study was to describe patients with the p.D12Y variant (previously reported as D11Y) in SOD1 showing heterogeneous clinicopathological features. METHODS We performed clinical, electrophysiological, magnetic resonance imaging (MRI) and muscle pathology studies in four SOD1 p.D12Y variant-positive patients. RESULTS The SOD1 p.D12Y clinical manifestations ranged from a benign phenotype characterized by distal distribution of muscular weakness and long survival to classic forms of amyotrophic lateral sclerosis with poor prognosis. Two patients with the distal clinical phenotype showed MRI and muscle pathology alterations indicating a concurrent muscle involvement. In one of these patients significant myopathic changes were associated with rimmed vacuolar pathology. CONCLUSIONS We expand the clinical spectrum of SOD1 p.D12Y variant, including predominant lower motor neuron forms with long survival and classic forms with aggressive course. Some patients may have concomitant distal myopathy without other explanations. Given clinical, MRI and muscle pathology alterations, SOD1 should be considered in the differential diagnosis of molecularly undefined distal myopathies with rimmed vacuoles.
Collapse
Affiliation(s)
- G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - S Lattante
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - G Marangi
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A Conte
- Centro Clinico NEMO, Roma, Italy
| | | | | | - P Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M Zollino
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - E Ragozzino
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - B Udd
- Folkhälsan Research Center, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - M Sabatelli
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Centro Clinico NEMO, Roma, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
215
|
Sellami L, Saracino D, Le Ber I. Genetic forms of frontotemporal lobar degeneration: Current diagnostic approach and new directions in therapeutic strategies. Rev Neurol (Paris) 2020; 176:571-581. [PMID: 32312500 DOI: 10.1016/j.neurol.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in the genetics of neurodegenerative diseases have substantially improved our knowledge about the genetic causes of frontotemporal lobar degeneration (FTLD). Three major genes, namely progranulin (GRN), C9orf72 and MAPT, as well as several less common genes, are responsible for the majority of familial cases and for a significant proportion of sporadic forms, including FTLD with or without associated amyotrophic lateral sclerosis and some rarer clinical presentations. Plasma progranulin dosage and next-generation sequencing are currently available tools which allow the detection of a genetic cause in a more rapid and efficient way. This has important consequences for clinical practice and genetic counseling for patients and families. The ongoing investigations on some therapeutic candidates targeting different biological pathways involved in the most frequent genetic forms of FTLD, as well as a better understanding of the early pathophysiological modifications occurring during the presymptomatic phase of the disease could hopefully contribute to develop effective disease-modifying therapies. The identification of a causal mutation in a family is of outmost importance indeed to propose to presymptomatic carriers their inclusion in clinical trials with the aim to prevent or delay the onset of disease.
Collapse
Affiliation(s)
- L Sellami
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - D Saracino
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - I Le Ber
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Institut du cerveau et de la moelle épinière (ICM), FrontLab, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, CS21414, 75646 Paris cedex, France.
| |
Collapse
|
216
|
Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 2020; 16:213-228. [PMID: 32203398 DOI: 10.1038/s41582-020-0330-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Frontotemporal dementia (FTD) encompasses a spectrum of clinical syndromes characterized by progressive executive, behavioural and language dysfunction. The various FTD spectrum disorders are associated with brain accumulation of different proteins: tau, the transactive response DNA binding protein of 43 kDa (TDP43), or fused in sarcoma (FUS) protein, Ewing sarcoma protein and TATA-binding protein-associated factor 15 (TAF15) (collectively known as FET proteins). Approximately 60% of patients with FTD have autosomal dominant mutations in C9orf72, GRN or MAPT genes. Currently available treatments are symptomatic and provide limited benefit. However, the increased understanding of FTD pathogenesis is driving the development of potential disease-modifying therapies. Most of these drugs target pathological tau - this category includes tau phosphorylation inhibitors, tau aggregation inhibitors, active and passive anti-tau immunotherapies, and MAPT-targeted antisense oligonucleotides. Some of these therapeutic approaches are being tested in phase II clinical trials. Pharmacological approaches that target the effects of GRN and C9orf72 mutations are also in development. Key results of large clinical trials will be available in a few years. However, clinical trials in FTD pose several challenges, and the development of specific brain imaging and molecular biomarkers could facilitate the recruitment of clinically homogenous groups to improve the chances of positive clinical trial results.
Collapse
|
217
|
Riku Y. Reappraisal of the anatomical spreading and propagation hypothesis about TDP-43 aggregation in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neuropathology 2020; 40:426-435. [PMID: 32157757 DOI: 10.1111/neup.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Neuronal inclusion of transactivation response DNA-binding protein 43 kDa (TDP-43) is known to be a pathologic hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43, which is physiologically a nuclear protein, is mislocalized from the nucleus and aggregated within the cytoplasm of affected neurons in ALS and FTLD patients. Neuropathologic or experimental studies have addressed mechanisms underlying spreading of TDP-43 inclusions in the central nervous system of ALS and FTLD patients. On the basis of postmortem observations, it is hypothesized that TDP-43 inclusions spread along the neural projections. A centrifugal gradient of TDP-43 pathology in certain anatomical systems and axonal or synaptic aggregation of TDP-43 may support the hypothesis. Experimental studies have revealed cell-to-cell propagation of aggregated or truncated TDP-43, which indicates a direct transmission of TDP-43 inclusions to contiguous cells. However, discrepancies remain between the cell-to-cell propagation suggested in the experimental models and the anatomical spreading of TDP-43 aggregations based on postmortem observations. Trans-synaptic transmission, rather than the direct cell-to-cell transmission, may be consistent with the anatomical spreading of TDP-43 aggregations, but cellular mechanisms of trans-synaptic transmission of aggregated proteins remain to be elucidated. Moreover, the spreading of TDP-43 inclusions varies among patients and genetic backgrounds, which indicates host-dependent factors for spreading of TDP-43 aggregations. Perturbation of cellular TDP-43 clearance may be a possible factor modifying the aggregation and spreading. This review discusses postmortem and experimental evidence that address mechanisms of spreading of TDP-43 pathology in the central nervous system of ALS and FTLD patients.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan.,Department of Neuropathology Raymond Escourolle, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| |
Collapse
|
218
|
Gite J, Milko E, Brady L, Baker SK. Phenotypic convergence in Charcot-Marie-Tooth 2Y with novel VCP mutation. Neuromuscul Disord 2020; 30:232-235. [DOI: 10.1016/j.nmd.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
219
|
Dobson-Stone C, Hallupp M, Shahheydari H, Ragagnin AMG, Chatterton Z, Carew-Jones F, Shepherd CE, Stefen H, Paric E, Fath T, Thompson EM, Blumbergs P, Short CL, Field CD, Panegyres PK, Hecker J, Nicholson G, Shaw AD, Fullerton JM, Luty AA, Schofield PR, Brooks WS, Rajan N, Bennett MF, Bahlo M, Shankaracharya, Landers JE, Piguet O, Hodges JR, Halliday GM, Topp SD, Smith BN, Shaw CE, McCann E, Fifita JA, Williams KL, Atkin JD, Blair IP, Kwok JB. CYLD is a causative gene for frontotemporal dementia - amyotrophic lateral sclerosis. Brain 2020; 143:783-799. [PMID: 32185393 PMCID: PMC7089666 DOI: 10.1093/brain/awaa039] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/03/2023] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are clinically and pathologically overlapping disorders with shared genetic causes. We previously identified a disease locus on chromosome 16p12.1-q12.2 with genome-wide significant linkage in a large European Australian family with autosomal dominant inheritance of frontotemporal dementia and amyotrophic lateral sclerosis and no mutation in known amyotrophic lateral sclerosis or dementia genes. Here we demonstrate the segregation of a novel missense variant in CYLD (c.2155A>G, p.M719V) within the linkage region as the genetic cause of disease in this family. Immunohistochemical analysis of brain tissue from two CYLD p.M719V mutation carriers showed widespread glial CYLD immunoreactivity. Primary mouse neurons transfected with CYLDM719V exhibited increased cytoplasmic localization of TDP-43 and shortened axons. CYLD encodes a lysine 63 deubiquitinase and CYLD cutaneous syndrome, a skin tumour disorder, is caused by mutations that lead to reduced deubiquitinase activity. In contrast with CYLD cutaneous syndrome-causative mutations, CYLDM719V exhibited significantly increased lysine 63 deubiquitinase activity relative to the wild-type enzyme (paired Wilcoxon signed-rank test P = 0.005). Overexpression of CYLDM719V in HEK293 cells led to more potent inhibition of the cell signalling molecule NF-κB and impairment of autophagosome fusion to lysosomes, a key process in autophagy. Although CYLD mutations appear to be rare, CYLD's interaction with at least three other proteins encoded by frontotemporal dementia and/or amyotrophic lateral sclerosis genes (TBK1, OPTN and SQSTM1) suggests that it may play a central role in the pathogenesis of these disorders. Mutations in several frontotemporal dementia and amyotrophic lateral sclerosis genes, including TBK1, OPTN and SQSTM1, result in a loss of autophagy function. We show here that increased CYLD activity also reduces autophagy function, highlighting the importance of autophagy regulation in the pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marianne Hallupp
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hamideh Shahheydari
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Zac Chatterton
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Francine Carew-Jones
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Holly Stefen
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Esmeralda Paric
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Thomas Fath
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Elizabeth M Thompson
- SA Clinical Genetics Service, Women’s and Children’s Hospital, North Adelaide 5006, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter Blumbergs
- Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | - Cathy L Short
- Department of Neurology, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Colin D Field
- Adelaide Dementia Driving Clinic, Adelaide, SA 5041, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, WA 6005, Australia
| | - Jane Hecker
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW 2137, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW 2137, Australia
| | - Alex D Shaw
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Agnes A Luty
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - William S Brooks
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Neil Rajan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Mark F Bennett
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Shankaracharya
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John E Landers
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre and School of Psychology, Camperdown, NSW 2006, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon D Topp
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RX, UK
| | - Bradley N Smith
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RX, UK
| | - Christopher E Shaw
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RX, UK
| | - Emily McCann
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC 3083, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - John B Kwok
- The University of Sydney, Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, Camperdown, NSW 2006, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
220
|
|
221
|
Genetic architecture of neurodegenerative dementias. Neuropharmacology 2020; 168:108014. [PMID: 32097768 DOI: 10.1016/j.neuropharm.2020.108014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Molecular genetics has been an invaluable tool to help understand the molecular basis of neurodegenerative dementias. In this review, we provide an overview of the genetic architecture underlying some of the most prevalent causes of dementia, including Alzheimer's dementia, frontotemporal lobar degeneration, Lewy body dementia, and prion diseases. We also discuss the complexity of the human genome and how the novel technologies have revolutionized and accelerated the way we screen the variety of our DNA. Finally, we also provide some examples about how this genetic knowledge is being transferred into the clinic through personalized medicine. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
222
|
Akcan G, Alimogullari E, Abu-Issa R, Cayli S. Analysis of the developmental expression of small VCP-interacting protein and its interaction with steroidogenic acute regulatory protein in Leydig cells. Reprod Biol 2020; 20:88-96. [PMID: 32037270 DOI: 10.1016/j.repbio.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Small VCP-interacting protein (SVIP) is a 9-kDa protein that is composed of 76 amino acids, and it plays a role in the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Recent studies have shown that SVIP is an androgen-responsive protein and its expression is regulated by androgens. Because no data are available regarding the cellular localization and expression of SVIP in the mouse testis, where androgens are highly expressed, immunohistochemistry and western blotting were performed. In the fetal testis, we found that moderate but consistent staining of SVIP is present in the cytoplasm of Leydig cells. In prepubertal and adult life, SVIP remains present in Leydig cells as well as in the cytoplasm of some peritubular and Sertoli cells. From postnatal day 15 onward, SVIP is strongly expressed in the cytoplasm of Leydig cells. Furthermore, TM3, MA-10 Leydig and Sertoli cell lines were also used to evaluate the expression of SVIP. To identify the interacting partners, such as steroidogenic acute regulatory (STAR) protein, colocalization studies were performed by fluorescence microscopy, showing that STAR colocalized with SVIP in the adult mouse testis. The expression changes of STAR were studied by using SVIP siRNAs in Leydig cell line cultures. Depletion of SVIP resulted in decreased expression of STAR. Additionally, the number and size of lipid droplets were significantly increased in SVIP-depleted Leydig cells. Taken together, our data identify SVIP as a marker of Leydig cell lineage and as a regulator of STAR protein expression and lipid droplet status in Leydig cells.
Collapse
Affiliation(s)
- Gulben Akcan
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Ebru Alimogullari
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Radwan Abu-Issa
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Sevil Cayli
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
223
|
Proteasome Inhibitors: Harnessing Proteostasis to Combat Disease. Molecules 2020; 25:molecules25030671. [PMID: 32033280 PMCID: PMC7037493 DOI: 10.3390/molecules25030671] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The proteasome is the central component of the main cellular protein degradation pathway. During the past four decades, the critical function of the proteasome in numerous physiological processes has been revealed, and proteasome activity has been linked to various human diseases. The proteasome prevents the accumulation of misfolded proteins, controls the cell cycle, and regulates the immune response, to name a few important roles for this macromolecular "machine." As a therapeutic target, proteasome inhibitors have been approved for the treatment of multiple myeloma and mantle cell lymphoma. However, inability to sufficiently inhibit proteasome activity at tolerated doses has hampered efforts to expand the scope of proteasome inhibitor-based therapies. With emerging new modalities in myeloma, it might seem challenging to develop additional proteasome-based therapies. However, the constant development of new applications for proteasome inhibitors and deeper insights into the intricacies of protein homeostasis suggest that proteasome inhibitors might have novel therapeutic applications. Herein, we summarize the latest advances in proteasome inhibitor development and discuss the future of proteasome inhibitors and other proteasome-based therapies in combating human diseases.
Collapse
|
224
|
Abramzon YA, Fratta P, Traynor BJ, Chia R. The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2020; 14:42. [PMID: 32116499 PMCID: PMC7012787 DOI: 10.3389/fnins.2020.00042] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two diseases that form a broad neurodegenerative continuum. Considerable effort has been made to unravel the genetics of these disorders, and, based on this work, it is now clear that ALS and FTD have a significant genetic overlap. TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly C9orf72, are the critical genetic players in these neurological disorders. Discoveries of these genes have implicated autophagy, RNA regulation, and vesicle and inclusion formation as the central pathways involved in neurodegeneration. Here we provide a summary of the significant genes identified in these two intrinsically linked neurodegenerative diseases and highlight the genetic and pathological overlaps.
Collapse
Affiliation(s)
- Yevgeniya A. Abramzon
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Fratta
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
- Department of Neurology, Brain Science Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
| |
Collapse
|
225
|
Pensato V, Magri S, Dalla Bella E, Tannorella P, Bersano E, Sorarù G, Gatti M, Ticozzi N, Taroni F, Lauria G, Mariotti C, Gellera C. Sorting Rare ALS Genetic Variants by Targeted Re-Sequencing Panel in Italian Patients: OPTN, VCP, and SQSTM1 Variants Account for 3% of Rare Genetic Forms. J Clin Med 2020; 9:jcm9020412. [PMID: 32028661 PMCID: PMC7073901 DOI: 10.3390/jcm9020412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease due to motor neuron loss variably associated with frontotemporal dementia (FTD). Next generation sequencing technology revealed an increasing number of rare and novel genetic variants and interpretation of their pathogenicity represents a major challange in the diagnosis of ALS. We selected 213 consecutive patients with sporadic or familial (16%) ALS, tested negative for SOD1, FUS, TARDBP, and C9orf72 mutations. To reveal rare forms of genetic ALS, we performed a comprehensive multi-gene panel screening including 46 genes associated with ALS, hereditary motor neuronopathies, spastic paraplegia, and FTD. Our study allowed the identification of pathogenic or likely pathogenic variants in 4.2% of patients. The genes with the highest percentage of pathogenic variants were OPTN (1%), VCP (1%) SQSTM1(1%), SETX (0.4%), FIG4 (0.4%), and GARS1 (0.4%) genes. We also found 49 novel or rare gene variants of unknown significance in 30 patients (14%), 44 unlikely pathogenic variants (39%), and 48 variants in ALS susceptibility genes. The results of our study suggest the screening of OPTN, VCP, and SQSTM1 genes in routine diagnostic investigations for both sporadic and familial cases, and confirm the importance of diagnosis and couselling for patients and their relative family members.
Collapse
Affiliation(s)
- Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
- 3rd Neurology Unit, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy (E.B.); (G.L.)
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
| | - Eleonora Dalla Bella
- 3rd Neurology Unit, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy (E.B.); (G.L.)
| | - Pierpaola Tannorella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
| | - Enrica Bersano
- 3rd Neurology Unit, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy (E.B.); (G.L.)
| | - Gianni Sorarù
- Department of Neuroscience, University of Padova, 35122 Padova, Italy;
| | - Marta Gatti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy;
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
| | - Giuseppe Lauria
- 3rd Neurology Unit, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy (E.B.); (G.L.)
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
- Correspondence: ; Tel.: +39-02-2394-2269
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.P.); (S.M.); (P.T.); (M.G.); (F.T.); (C.G.)
| |
Collapse
|
226
|
VCP expression decrease as a biomarker of preclinical and early clinical stages of Parkinson's disease. Sci Rep 2020; 10:827. [PMID: 31964996 PMCID: PMC6972783 DOI: 10.1038/s41598-020-57938-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Valosin-containing human protein (VCP) or p97 performs enzyme functions associated with the maintenance of protein homeostasis and control of protein quality. Disruption of its normal functioning might be associated with the development of Parkinson’s disease (PD). Tissues of mice with toxin-induced presymptomatic and early symptomatic stages of PD, as well as 52 treated and untreated patients with newly diagnosed PD and nine patients with a “predicted” form of PD, were investigated. Significant changes in Vcp gene expression were observed in almost all studied mouse tissues. A significant decrease in VCP expression specific for PD was also detected at both the late preclinical and the early clinical stages of PD in untreated patients. Thus, a decrease in VCP expression is important for changes in the function of the nervous system at early stages of PD. Analysis of changes in VCP expression in all patients with PD and in Vcp in the peripheral blood of mice used as models of PD revealed significant decreases in expression specific for PD. These data suggest that a decrease in the relative levels of VCP mRNA might serve as a biomarker for the development of pathology at the early clinical and preclinical stages of human PD.
Collapse
|
227
|
Karmon O, Ben Aroya S. Spatial Organization of Proteasome Aggregates in the Regulation of Proteasome Homeostasis. Front Mol Biosci 2020; 6:150. [PMID: 31998748 PMCID: PMC6962763 DOI: 10.3389/fmolb.2019.00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/06/2019] [Indexed: 12/23/2022] Open
Abstract
Misfolded proteins and insoluble aggregates are continuously produced in the cell and can result in severe stress that threatens cellular fitness and viability if not managed effectively. Accordingly, organisms have evolved several protective protein quality control (PQC) machineries to address these threats. In eukaryotes, the ubiquitin–proteasome system (UPS) plays a vital role in the disposal of intracellular misfolded, damaged, or unneeded proteins. Although ubiquitin-mediated proteasomal degradation of many proteins plays a key role in the PQC system, cells must also dispose of the proteasomes themselves when their subunits are assembled improperly, or when they dysfunction under various conditions, e.g., as a result of genomic mutations, diverse stresses, or treatment with proteasome inhibitors. Here, we review recent studies that identified the regulatory pathways that mediate proteasomes sorting under various stress conditions, and the elimination of its dysfunctional subunits. Following inactivation of the 26S proteasome, UPS-mediated degradation of its own misassembled subunits is the favored disposal pathway. However, the cytosolic cell-compartment-specific aggregase, Hsp42 mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments, where they become extensively modified with ubiquitin, and are directed by ubiquitin receptors for autophagic clearance (proteaphagy). We also discuss the sorting mechanisms that the cell uses under nitrogen stress, and to distinguish between dysfunctional proteasome aggregates and proteasome storage granules (PSGs), reversible assemblies of membrane-free cytoplasmic condensates that form in yeast upon carbon starvation and help protect proteasomes from autophagic degradation. Regulated proteasome subunit homeostasis is thus controlled through cellular probing of the level of proteasome assembly, and the interplay between UPS-mediated degradation or sorting of misfolded proteins into distinct cellular compartments.
Collapse
Affiliation(s)
- Ofri Karmon
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shay Ben Aroya
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
228
|
Dantuma NP, Herzog LK. Machado-Joseph Disease: A Stress Combating Deubiquitylating Enzyme Changing Sides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:237-260. [PMID: 32274760 DOI: 10.1007/978-3-030-38266-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant inheritable neurodegenerative disorder. After a long pre-symptomatic period, this late-onset disease progressively disables patients and typically leads to premature death. Neuronal loss in specific regions of the cerebellum, brainstem and basal ganglia as well as the spinal cord explains the spectra of debilitating neurological symptoms, most strikingly progressive limb, and gait ataxia. The genetic cause of MJD is a polyglutamine (polyQ) repeat expansion in the gene that encodes ataxin-3. This polyQ-containing protein displays a well-defined catalytic activity as ataxin-3 is a deubiquitylating enzyme that removes and disassembles ubiquitin chains from specific substrates. While mutant ataxin-3 with an expanded polyQ repeat induces cellular stress due to its propensity to aggregate, the native functions of wild-type ataxin-3 are linked to the cellular countermeasures against the very same stress conditions inflicted by polyQ-containing and other aggregation-prone proteins. Hence, a mixture of gain-of-function and loss-of-function mechanisms are likely to contribute to the neuronal demise observed in MJD. In this review, we discuss the intimate link between ataxin-3 and cellular stress and its relevance for therapeutic intervention in MJD.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | - Laura K Herzog
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
229
|
Ramos EM, Dokuru DR, Van Berlo V, Wojta K, Wang Q, Huang AY, Deverasetty S, Qin Y, van Blitterswijk M, Jackson J, Appleby B, Bordelon Y, Brannelly P, Brushaber DE, Dickerson B, Dickinson S, Domoto-Reilly K, Faber K, Fields J, Fong J, Foroud T, Forsberg LK, Gavrilova R, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grant I, Grossman M, Heuer HW, Hsiung GYR, Huey E, Irwin D, Kantarci K, Karydas A, Kaufer D, Kerwin D, Knopman D, Kornak J, Kramer JH, Kremers W, Kukull W, Litvan I, Ljubenkov P, Lungu C, Mackenzie I, Mendez MF, Miller BL, Onyike C, Pantelyat A, Pearlman R, Petrucelli L, Potter M, Rankin KP, Rascovsky K, Roberson ED, Rogalski E, Shaw L, Syrjanen J, Tartaglia MC, Tatton N, Taylor J, Toga A, Trojanowski JQ, Weintraub S, Wong B, Wszolek Z, Rademakers R, Boeve BF, Rosen HJ, Boxer AL, Coppola G. Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimers Dement 2020; 16:118-130. [PMID: 31914217 PMCID: PMC7199807 DOI: 10.1002/alz.12011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/13/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) consortia are two closely connected studies, involving multiple North American centers that evaluate both sporadic and familial frontotemporal dementia (FTD) participants and study longitudinal changes. METHODS We screened the major dementia-associated genes in 302 sporadic and 390 familial (symptomatic or at-risk) participants enrolled in these studies. RESULTS Among the sporadic patients, 16 (5.3%) carried chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), and progranulin (GRN) pathogenic variants, whereas in the familial series we identified 207 carriers from 146 families. Of interest, one patient was found to carry a homozygous C9orf72 expansion, while another carried both a C9orf72 expansion and a GRN pathogenic variant. We also identified likely pathogenic variants in the TAR DNA binding protein (TARDBP), presenilin 1 (PSEN1), and valosin containing protein (VCP) genes, and a subset of variants of unknown significance in other rare FTD genes. DISCUSSION Our study reports the genetic characterization of a large FTD series and supports an unbiased sequencing screen, irrespective of clinical presentation or family history.
Collapse
Affiliation(s)
- Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Deepika Reddy Dokuru
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Victoria Van Berlo
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kevin Wojta
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Qing Wang
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alden Y. Huang
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Sandeep Deverasetty
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yue Qin
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Yvette Bordelon
- University of California Los Angeles, Los Angeles, California
| | | | | | | | - Susan Dickinson
- Association for Frontotemporal Degeneration, Radnor, Pennsylvania
| | | | - Kelley Faber
- National Centralized Repository for Alzheimer’s Disease and Related Dementia (NCRAD), Indiana University, Indianapolis, Indiana
| | | | - Jamie Fong
- University of California, San Francisco, San Francisco, California
| | - Tatiana Foroud
- National Centralized Repository for Alzheimer’s Disease and Related Dementia (NCRAD), Indiana University, Indianapolis, Indiana
| | | | | | | | | | | | | | - Ian Grant
- Northwestern University, Chicago, Illinois
| | | | - Hilary W. Heuer
- University of California, San Francisco, San Francisco, California
| | | | | | - David Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Anna Karydas
- University of California, San Francisco, San Francisco, California
| | - Daniel Kaufer
- University of North Carolina, Chapel Hill, North Carolina
| | - Diana Kerwin
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - John Kornak
- University of California, San Francisco, San Francisco, California
| | - Joel H. Kramer
- University of California, San Francisco, San Francisco, California
| | | | - Walter Kukull
- National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, Washington
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Peter Ljubenkov
- University of California, San Francisco, San Francisco, California
| | - Codrin Lungu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland
| | - Ian Mackenzie
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Mario F. Mendez
- University of California Los Angeles, Los Angeles, California
| | - Bruce L. Miller
- University of California, San Francisco, San Francisco, California
| | | | | | | | | | - Madeline Potter
- National Centralized Repository for Alzheimer’s Disease and Related Dementia (NCRAD), Indiana University, Indianapolis, Indiana
| | | | | | | | | | - Leslie Shaw
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, Pennsylvania
| | - Joanne Taylor
- University of California, San Francisco, San Francisco, California
| | - Arthur Toga
- Laboratory of Neuroimaging (LONI), USC, Los Angeles, California
| | | | | | - Bonnie Wong
- Harvard University/MGH, Boston, Massachusetts
| | | | | | | | - Howard J. Rosen
- University of California, San Francisco, San Francisco, California
| | - Adam L. Boxer
- University of California, San Francisco, San Francisco, California
| | - Giovanni Coppola
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
230
|
Alessenko A, Gutner U, Nebogatikov V, Shupik M, Ustyugov A. The role of lipids in the pathogenesis of lateral amyotrophic sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:108-117. [DOI: 10.17116/jnevro2020120101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
231
|
Structure of the PUB Domain from Ubiquitin Regulatory X Domain Protein 1 (UBXD1) and Its Interaction with the p97 AAA+ ATPase. Biomolecules 2019; 9:biom9120876. [PMID: 31847414 PMCID: PMC6995525 DOI: 10.3390/biom9120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing
Collapse
|
232
|
Abstract
Frontotemporal degeneration (FTD) is a heterogeneous spectrum of neurodegenerative disorders characterized by diverse clinical presentations, neuropathological characteristics, and underlying genetic causes. In the last few years, several advances in the knowledge of clinical and biological aspects have been accomplished and three major scenarios have emerged that will represent the core issues in the FTD scene over the next few years. Foremost, the development of cerebrospinal fluid and blood biomarkers as well as neuroimaging techniques will aid the pursuit of new diagnostic and prognostic markers able to identify the ongoing proteinopathy and predict disease progression, which is key in identifying and stratifying patients for enrolment in clinical trials as well as evaluating response to treatment. On the other hand, current research has focused on the first attempts to slow down or revert disease progression, with the identification of disease modulators associated with disease onset and the ongoing development of the first pharmacological treatments for both sporadic and genetic FTD. Future research will certainly improve our knowledge of FTD and possibly open up a new era of disease-modifying therapies for this still-orphan disorder.
Collapse
Affiliation(s)
- Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25100, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25100, Italy
| |
Collapse
|
233
|
Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 2019; 10:5611. [PMID: 31819057 PMCID: PMC6901537 DOI: 10.1038/s41467-019-13579-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
234
|
Mishra P, Zhang T, Guo M, Chan D. Mitochondrial Respiratory Measurements in Patient-derived Fibroblasts. Bio Protoc 2019; 9:e3446. [PMID: 33654941 DOI: 10.21769/bioprotoc.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/02/2022] Open
Abstract
Mitochondrial dysfunction is associated with a number of human diseases. As an example, we recently established in vivo Drosophila models of IBMPFD (Inclusion body myopathy, Paget disease, and frontotemporal dementia), and uncovered that human disease mutations of the p97/VCP (Valosin Containing Protein) gene behave as hyperactive alleles associated with mitochondrial defects. Pharmacologic inhibition of VCP strongly suppressed disease and mitochondrial pathology in these animal models. In this protocol, we describe a method to evaluate mitochondrial respiratory function in IBMPFD patient-derived fibroblasts, as well as investigate the role of pharmacologic treatments. These experiments complement work done in animal models by investigating mitochondrial biology and the pharmacologic response in a human cell-based model of the disease. In principle, this technique can be used to investigate mitochondrial respiratory function for any disease in which patient-derived fibroblasts are available.
Collapse
Affiliation(s)
- Prashant Mishra
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,California Nanosystems Institute at UCLA, Los Angeles, CA 90095, USA
| | - David Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
235
|
Abstract
PURPOSE OF REVIEW This article reviews the clinical, laboratory, and histopathologic features of sporadic inclusion body myositis (IBM) and explores its pathogenic overlap with inherited myopathies that have IBM-like pathology. RECENT FINDINGS Sporadic IBM is the most common acquired muscle disease in patients older than 50 years of age and is becoming more prevalent because of the increasing age of the population, the emerging development of more inclusive diagnostic criteria, and the advent of a diagnostic autoantibody. No effective therapy is known, and the pathogenic mechanism remains unclear. Some pathogenic insight can be gleaned from other myopathies with pathologic similarities or hereditary inclusion body myopathies. Although clinically distinct from sporadic IBM, preclinical models of hereditary inclusion body myopathy have offered an opportunity to move some therapies toward clinical development. SUMMARY Patients with sporadic IBM experience significant morbidity, and the disease is associated with a large unmet medical need. As therapies are developed, improved diagnosis will be essential. Early diagnosis relies on awareness, clinical history, physical examination, laboratory features, and appropriate muscle biopsy processing. Future research is needed to understand the natural history, identify genetic risk factors, and validate biomarkers to track disease progression. These steps are essential as we move toward therapeutic interventions.
Collapse
|
236
|
Stach L, Morgan RM, Makhlouf L, Douangamath A, von Delft F, Zhang X, Freemont PS. Crystal structure of the catalytic D2 domain of the AAA+ ATPase p97 reveals a putative helical split-washer-type mechanism for substrate unfolding. FEBS Lett 2019; 594:933-943. [PMID: 31701538 PMCID: PMC7154655 DOI: 10.1002/1873-3468.13667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023]
Abstract
Several pathologies have been associated with the AAA+ ATPase p97, an enzyme essential to protein homeostasis. Heterozygous polymorphisms in p97 have been shown to cause neurological disease, while elevated proteotoxic stress in tumours has made p97 an attractive cancer chemotherapy target. The cellular processes reliant on p97 are well described. High‐resolution structural models of its catalytic D2 domain, however, have proved elusive, as has the mechanism by which p97 converts the energy from ATP hydrolysis into mechanical force to unfold protein substrates. Here, we describe the high‐resolution structure of the p97 D2 ATPase domain. This crystal system constitutes a valuable tool for p97 inhibitor development and identifies a potentially druggable pocket in the D2 domain. In addition, its P61 symmetry suggests a mechanism for substrate unfolding by p97. Database The atomic coordinates and structure factors have been deposited in the PDB database under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G2V, http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G2W, http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G2X, http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G2Y, http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G2Z and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G30.
Collapse
Affiliation(s)
- Lasse Stach
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, UK
| | - Rhodri Marc Morgan
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, UK
| | - Linda Makhlouf
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, UK
| | - Alice Douangamath
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK.,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, UK.,Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Xiaodong Zhang
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, UK
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, UK
| |
Collapse
|
237
|
Torabi T, Huttner A, Nowak RJ, Roy B. Clinical Reasoning: Progressive proximal weakness in a 56-year-old man with bone pain. Neurology 2019; 93:939-944. [PMID: 31740511 DOI: 10.1212/wnl.0000000000008535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tara Torabi
- From the Departments of Pathology (A.H.) and Neurology (R.J.N., B.R.), Yale School of Medicine (T.T.), New Haven, CT
| | - Anita Huttner
- From the Departments of Pathology (A.H.) and Neurology (R.J.N., B.R.), Yale School of Medicine (T.T.), New Haven, CT
| | - Richard J Nowak
- From the Departments of Pathology (A.H.) and Neurology (R.J.N., B.R.), Yale School of Medicine (T.T.), New Haven, CT
| | - Bhaskar Roy
- From the Departments of Pathology (A.H.) and Neurology (R.J.N., B.R.), Yale School of Medicine (T.T.), New Haven, CT.
| |
Collapse
|
238
|
Coppola C, Oliva M, Saracino D, Pappatà S, Zampella E, Cimini S, Ricci M, Giaccone G, Di Iorio G, Rossi G. One novel GRN null mutation, two different aphasia phenotypes. Neurobiol Aging 2019; 87:141.e9-141.e14. [PMID: 31837909 DOI: 10.1016/j.neurobiolaging.2019.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
Progranulin gene (GRN) mutations are among the leading causes of frontotemporal lobar degeneration, a group of neurodegenerative diseases characterized by remarkable clinical heterogeneity. In this article, we report the new GRN 708+4A>T splicing mutation, identified in 2 siblings of a family with several members affected by cognitive, behavioral, and motor disorders. Plasma progranulin dosage and GRN expression analysis, together with in silico prediction studies, supported the pathogenicity of the mutation. Both the patients displayed a clinical syndrome in which language impairment was largely predominant. However, motor speech deficits were the major feature in one case, diagnosed as progressive nonfluent aphasia, whereas marked semantic alterations were present in the other, whose clinical phenotype was in favor of a mixed aphasia. The profile of neuroanatomical alterations from imaging studies was in line with the clinical phenotypes. Therefore, also this novel GRN mutation is associated with haploinsufficiency and phenotypic heterogeneity, which are both typical features of progranulinopathies.
Collapse
Affiliation(s)
- Cinzia Coppola
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Mariano Oliva
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dario Saracino
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabina Pappatà
- Department of Biomedical Sciences, Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Sara Cimini
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Ricci
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Iorio
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giacomina Rossi
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
239
|
Abstract
Recent advances suggest that the response of RNA metabolism to stress has an important role in the pathophysiology of neurodegenerative diseases, particularly amyotrophic lateral sclerosis, frontotemporal dementias and Alzheimer disease. RNA-binding proteins (RBPs) control the utilization of mRNA during stress, in part through the formation of membraneless organelles termed stress granules (SGs). These structures form through a process of liquid-liquid phase separation. Multiple biochemical pathways regulate SG biology. The major signalling pathways regulating SG formation include the mammalian target of rapamycin (mTOR)-eukaryotic translation initiation factor 4F (eIF4F) and eIF2α pathways, whereas the pathways regulating SG dispersion and removal are mediated by valosin-containing protein and the autolysosomal cascade. Post-translational modifications of RBPs also strongly contribute to the regulation of SGs. Evidence indicates that SGs are supposed to be transient structures, but the chronic stresses associated with ageing lead to chronic, persistent SGs that appear to act as a nidus for the aggregation of disease-related proteins. We suggest a model describing how intrinsic vulnerabilities within the cellular RNA metabolism might lead to the pathological aggregation of RBPs when SGs become persistent. This process might accelerate the pathophysiology of many neurodegenerative diseases and myopathies, and it suggests new targets for disease intervention.
Collapse
Affiliation(s)
- Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
240
|
Kawakami I, Arai T, Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol 2019; 138:751-770. [PMID: 31555895 PMCID: PMC6800885 DOI: 10.1007/s00401-019-02077-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) was identified as a major disease-associated component in the brain of patients with amyotrophic lateral sclerosis (ALS), as well as the largest subset of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), which characteristically exhibits cytoplasmic inclusions that are positive for ubiquitin but negative for tau and α-synuclein. TDP-43 pathology occurs in distinct brain regions, involves disparate brain networks, and features accumulation of misfolded proteins in various cell types and in different neuroanatomical regions. The clinical phenotypes of ALS and FTLD-TDP (FTLD with abnormal intracellular accumulations of TDP-43) correlate with characteristic distribution patterns of the underlying pathology across specific brain regions with disease progression. Recent studies support the idea that pathological protein spreads from neuron to neuron via axonal transport in a hierarchical manner. However, little is known to date about the basis of the selective cellular and regional vulnerability, although the information would have important implications for the development of targeted and personalized therapies. Here, we aim to summarize recent advances in the neuropathology, genetics and animal models of TDP-43 proteinopathy, and their relationship to clinical phenotypes for the underlying selective neuronal and regional susceptibilities. Finally, we attempt to integrate these findings into the emerging picture of TDP-43 proteinopathy, and to highlight key issues for future therapy and research.
Collapse
Affiliation(s)
- Ito Kawakami
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute, Tokyo, Japan
| | - Tetsuaki Arai
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
241
|
Blythe EE, Gates SN, Deshaies RJ, Martin A. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. Structure 2019; 27:1820-1829.e4. [PMID: 31623962 DOI: 10.1016/j.str.2019.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
Valosin-containing protein (VCP)/p97 is an essential ATP-dependent protein unfoldase. Dominant mutations in p97 cause multisystem proteinopathy (MSP), a disease affecting the brain, muscle, and bone. Despite the identification of numerous pathways that are perturbed in MSP, the molecular-level defects of these p97 mutants are not completely understood. Here, we use biochemistry and cryoelectron microscopy to explore the effects of MSP mutations on the unfoldase activity of p97 in complex with its substrate adaptor NPLOC4⋅UFD1L (UN). We show that all seven analyzed MSP mutants unfold substrates faster. Mutant homo- and heterohexamers exhibit tighter UN binding and faster substrate processing. Our structural studies suggest that the increased UN affinity originates from a decoupling of p97's nucleotide state and the positioning of its N-terminal domains. Together, our data support a gain-of-function model for p97-UN-dependent processes in MSP and underscore the importance of N-terminal domain movements for adaptor recruitment and substrate processing by p97.
Collapse
Affiliation(s)
- Emily E Blythe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie N Gates
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Amgen Research, Thousand Oaks, CA 91320, USA
| | - Andreas Martin
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
242
|
Molecular pathways of mitochondrial outer membrane protein degradation. Biochem Soc Trans 2019; 47:1437-1447. [DOI: 10.1042/bst20190275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
Abstract
Mitochondrial outer membrane (MOM) encloses inner compartments of mitochondria and integrates cytoplasmic signals to regulate essential mitochondrial processes, such as protein import, dynamics, metabolism, cell death, etc. A substantial understanding of MOM associated proteostatic stresses and quality control pathways has been obtained in recent years. Six MOM associated protein degradation (MAD) pathways center on three AAA ATPases: Cdc48 in the cytoplasm, Msp1 integral to MOM, and Yme1 integral to the inner membrane. These pathways survey MOM proteome from the cytoplasmic and the inter-membrane space (IMS) sides. They detect and degrade MOM proteins with misfolded cytoplasmic and IMS domains, remove mistargeted tail-anchored proteins, and clear mitochondrial precursor proteins clogged in the TOM import complex. These MOM associated protein quality control pathways collaboratively maintain mitochondrial proteostasis and cell viability.
Collapse
|
243
|
Jerath NU. Resolving a Multi-Generational Neuromuscular Mystery in a Family Presenting with a Variable Scapuloperoneal Syndrome in a c.464G>A, p.Arg155His VCP Mutation. Case Rep Genet 2019; 2019:2403024. [PMID: 31687228 PMCID: PMC6803746 DOI: 10.1155/2019/2403024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/26/2019] [Accepted: 08/31/2019] [Indexed: 01/01/2023] Open
Abstract
Valosin containing protein (VCP) mutations have been reported to present with a high degree of variability and can be present in patients even if they may have an initial normal work up. A 55-year-old woman was labeled as "normal" and "pain medication seeking" after an unrevealing work up of clinical, laboratory, electrodiagnostic, radiographic, pathologic, and genetic testing. She continued to present with chronic neck pain, and had variable features of scapuloperoneal atrophy, which was also seen in her family. The patient and her family were found to have a known pathogenic c.464G>A, p.Arg155His (R155H) mutation in the VCP gene. Despite traditional thinking of attempting to localize neurological syndromes, VCP mutations are difficult to localize as they can present with significant clinical heterogeneity including a scapuloperoneal syndrome with variable neuropathic and myopathic features.
Collapse
Affiliation(s)
- Nivedita U. Jerath
- AdventHealth Orlando, Neuromuscular Division, 1573 West Fairbanks, Winter Park, FL 32789, USA
| |
Collapse
|
244
|
Huang S, Liu C, Li N, Wu Z, Li T, Han D, Li Z, Zhao J, Wang J. Membrane proteomic analysis reveals the intestinal development is deteriorated by intrauterine growth restriction in piglets. Funct Integr Genomics 2019; 20:277-291. [PMID: 31586277 DOI: 10.1007/s10142-019-00714-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The alterations of the intestinal proteome were observed in intrauterine growth restriction (IUGR) piglets during early life by gel-based approaches. Nevertheless, how IUGR affects the intestinal membrane proteome during neonatal development remains unclear. Here, we applied the iTRAQ-based proteomics technology and biochemical analysis to investigate the impact of IUGR on the membrane proteome of the jejunal mucosa in the piglets. Three hundred sixty-one membrane proteins were screened by functional prediction. Among them, eight, five, and one differentially expressed membrane proteins were identified between IUGR and NBW piglets at day 0, day 7, and day 21 after birth, respectively. Differentially expressed membrane proteins (DEMPs) including F1SBL3, F1RRW8, F1S539, F1S2Z2, F1RIR2, F1RUF2 I3LP60, Q2EN79, and F1SIH8 were reduced while the relative abundance of I3L6A2, F1SCJ1, F1RI18, I3LRJ7, and F1RNN0 were increased in IUGR piglets than NBW piglets. From the aspects of function, F1RRW8, F1S539, F1S2Z2, and F1RIR2 are mainly associated with D2 dopamine receptor binding, transmembrane transport of small molecules, signal transduction, and translocation of GLUT4, respectively, and F1SIH8, I3LRJ7, and F1RNN0 are related to autophagy, metabolism of vitamins, and intracellular protein transport. Additionally, IUGR decreased the level of proteins (F1RRW8, Q2EN79, and F1RI18) that are involved in response to oxidative stress.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
245
|
Ide Y, Horie T, Saito N, Watanabe S, Otani C, Miyasaka Y, Kuwabara Y, Nishino T, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Koyama S, Kimura M, Tsuji S, Rodriguez RR, Xu S, Yamasaki T, Watanabe T, Yamamoto M, Yanagita M, Kimura T, Kakizuka A, Ono K. Cardioprotective Effects of VCP Modulator KUS121 in Murine and Porcine Models of Myocardial Infarction. JACC Basic Transl Sci 2019; 4:701-714. [PMID: 31709319 PMCID: PMC6834964 DOI: 10.1016/j.jacbts.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
No effective treatment is yet available to reduce infarct size and improve clinical outcomes after acute myocardial infarction by enhancing early reperfusion therapy using primary percutaneous coronary intervention. The study showed that Kyoto University Substance 121 (KUS121) reduced endoplasmic reticulum stress, maintained adenosine triphosphate levels, and ameliorated the infarct size in a murine cardiac ischemia and reperfusion injury model. The study confirmed the cardioprotective effect of KUS121 in a porcine ischemia and reperfusion injury model. These findings confirmed that KUS121 is a promising novel therapeutic agent for myocardial infarction in conjunction with primary percutaneous coronary intervention.
Collapse
Key Words
- AAR, area at risk
- ATP
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- BiP, immunoglobulin heavy chain-binding protein
- CHOP, C/EBP homologous protein
- CMR, cardiac magnetic resonance
- EF, ejection fraction
- ER stress
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- FS, fractional shortening
- H2O2, hydrogen peroxide
- HF, heart failure
- I/R, ischemia and reperfusion
- IBMPFD, inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia
- IHD, ischemic heart disease
- KUS121
- KUS121, Kyoto University Substance 121
- LAD, left anterior descending artery
- LV, left ventricular/ventricle
- MI, myocardial infarction
- PCI, percutaneous coronary intervention
- TTC, triphenyltetrazolium chloride
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling
- VCP, valosin-containing protein
- myocardial infarction
Collapse
Affiliation(s)
- Yuya Ide
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naritatsu Saito
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shin Watanabe
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiharu Otani
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Miyasaka
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Randolph Ruiz Rodriguez
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sijia Xu
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Yamasaki
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshimitsu Watanabe
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
246
|
Nicolau S, Liewluck T. TFG: At the crossroads of motor neuron disease and myopathy. Muscle Nerve 2019; 60:645-647. [PMID: 31478205 DOI: 10.1002/mus.26692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
247
|
Van Mossevelde S, Engelborghs S, van der Zee J, Van Broeckhoven C. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol 2019; 14:363-378. [PMID: 29777184 DOI: 10.1038/s41582-018-0009-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) represents a group of neurodegenerative brain diseases with highly heterogeneous clinical, neuropathological and genetic characteristics. This high degree of heterogeneity results from the presence of several different underlying molecular disease processes; consequently, it is unlikely that all patients with FTLD will benefit from a single therapy. Therapeutic strategies for FTLD are currently being explored, and tools are urgently needed that enable the selection of patients who are the most likely to benefit from a particular therapy. Definition of the phenotypic characteristics in patients with different FTLD subtypes that share the same underlying disease processes would assist in the stratification of patients into homogeneous groups. The most common subtype of FTLD is characterized by TAR DNA-binding protein 43 (TDP43) pathology (FTLD-TDP). In this group, pathogenic mutations have been identified in four genes: C9orf72, GRN, TBK1 and VCP. Here, we provide a comprehensive overview of the phenotypic characteristics of patients with FTLD-TDP, highlighting shared features and differences among groups of patients who have a pathogenic mutation in one of these four genes.
Collapse
Affiliation(s)
- Sara Van Mossevelde
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology and Memory Clinic, University Hospital Antwerp, Edegem, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.
| |
Collapse
|
248
|
Wong TH, Pottier C, Hondius DC, Meeter LHH, van Rooij JGJ, Melhem S, van Minkelen R, van Duijn CM, Rozemuller AJM, Seelaar H, Rademakers R, van Swieten JC. Three VCP Mutations in Patients with Frontotemporal Dementia. J Alzheimers Dis 2019; 65:1139-1146. [PMID: 30103325 DOI: 10.3233/jad-180301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Valosin-containing protein (VCP) is involved in multiple cellular activities. Mutations in VCP lead to heterogeneous clinical presentations including inclusion body myopathy with Paget's disease of the bone, frontotemporal dementia and amyotrophic lateral sclerosis, even in patients carrying the same mutation. We screened a cohort of 48 patients with familial frontotemporal dementia (FTD) negative for MAPT, GRN, and C9orf72 mutations for other known FTD genes by using whole exome sequencing. In addition, we carried out targeted sequencing of a cohort of 37 patients with frontotemporal lobar degeneration with Transactive response DNA-binding protein 43 (TDP-43) subtype from the Netherlands Brain bank. Two novel (p.Thr262Ser and p.Arg159Ser) and one reported (p.Met158Val) VCP mutations in three patients with a clinical diagnosis of FTD were identified, and were absence in population-match controls. All three patients presented with behavioral changes, with additional semantic deficits in one. No signs of Paget or muscle disease were observed. Pathological examination of the patient with VCP p.Arg159Ser mutation showed numerous TDP-43 immunoreactive (IR) neuronal intranuclear inclusions (NII) and dystrophic neurites (DN), while a lower number of NII and DN were observed in the patient with the VCP p.Thr262Ser mutation. Pathological findings of both patients were consistent with FTLD-TDP subtype D. Furthermore, only rare VCP-IR NII was observed in both cases. Our study expands the clinical heterogeneity of VCP mutations carriers, and indicates that other additional factors, such as genetic modifiers, may determine the clinical phenotype.
Collapse
Affiliation(s)
- Tsz Hang Wong
- Alzheimer center and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - David C Hondius
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lieke H H Meeter
- Alzheimer center and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen G J van Rooij
- Alzheimer center and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shami Melhem
- Alzheimer center and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Harro Seelaar
- Alzheimer center and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - John C van Swieten
- Alzheimer center and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
249
|
Yang G, Lu H, Wang L, Zhao J, Zeng W, Zhang T. Genome-Wide Identification and Transcriptional Expression of the METTL21C Gene Family in Chicken. Genes (Basel) 2019; 10:genes10080628. [PMID: 31434291 PMCID: PMC6723737 DOI: 10.3390/genes10080628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
The chicken is a common type of poultry that is economically important both for its medicinal and nutritional values. Previous studies have found that free-range chickens have more skeletal muscle mass. The methyltransferase-like 21C gene (METTL21C) plays an important role in muscle development; however, there have been few reports on the role of METTL21C in chickens. In this study, we performed a genome-wide identification of chicken METTL21C genes and analyzed their phylogeny, transcriptional expression profile, and real-time quantitative polymerase chain reaction (qPCR). We identified 10 GgMETTL21C genes from chickens, 11 from mice, and 32 from humans, and these genes were divided into six groups, which showed a large amount of variation among these three species. A total of 15 motifs were detected in METTL21C genes, and the intron phase of the gene structure showed that the METTL21C gene family was conservative in evolution. Further, both the transcript data and qPCR showed that a single gene’s (GgMETTL21C3) expression level increased with the muscle development of chickens, indicating that the METTL21C genes are involved in the development of chicken muscles. Our results provide some reference value for the subsequent study of the function of METTL21C.
Collapse
Affiliation(s)
- Ge Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Jiarong Zhao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China.
| |
Collapse
|
250
|
Gossye H, Van Broeckhoven C, Engelborghs S. The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications. Front Neurosci 2019; 13:757. [PMID: 31447625 PMCID: PMC6691066 DOI: 10.3389/fnins.2019.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Within the wide range of neurodegenerative brain diseases, the differential diagnosis of frontotemporal dementia (FTD) frequently poses a challenge. Often, signs and symptoms are not characteristic of the disease and may instead reflect atypical presentations. Consequently, the use of disease biomarkers is of importance to correctly identify the patients. Here, we describe how neuropsychological characteristics, neuroimaging and neurochemical biomarkers and screening for causal gene mutations can be used to differentiate FTD from other neurodegenerative diseases as well as to distinguish between FTD subtypes. Summarizing current evidence, we propose a stepwise approach in the diagnostic evaluation. Clinical consensus criteria that take into account a full neuropsychological examination have relatively good accuracy (sensitivity [se] 75–95%, specificity [sp] 82–95%) to diagnose FTD, although misdiagnosis (mostly AD) is common. Structural brain MRI (se 70–94%, sp 89–99%) and FDG PET (se 47–90%, sp 68–98%) or SPECT (se 36–100%, sp 41–100%) brain scans greatly increase diagnostic accuracy, showing greater involvement of frontal and anterior temporal lobes, with sparing of hippocampi and medial temporal lobes. If these results are inconclusive, we suggest detecting amyloid and tau cerebrospinal fluid (CSF) biomarkers that can indicate the presence of AD with good accuracy (se 74–100%, sp 82–97%). The use of P-tau181 and the Aβ1–42/Aβ1–40 ratio significantly increases the accuracy of correctly identifying FTD vs. AD. Alternatively, an amyloid brain PET scan can be performed to differentiate FTD from AD. When autosomal dominant inheritance is suspected, or in early onset dementia, mutation screening of causal genes is indicated and may also be offered to at-risk family members. We have summarized genotype–phenotype correlations for several genes that are known to cause familial frontotemporal lobar degeneration, which is the neuropathological substrate of FTD. The genes most commonly associated with this disease (C9orf72, MAPT, GRN, TBK1) are discussed, as well as some less frequent ones (CHMP2B, VCP). Several other techniques, such as diffusion tensor imaging, tau PET imaging and measuring serum neurofilament levels, show promise for future implementation as diagnostic biomarkers.
Collapse
Affiliation(s)
- Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|