201
|
RBM20 Regulates CaV1.2 Surface Expression by Promoting Exon 9* Inclusion of CACNA1C in Neonatal Rat Cardiomyocytes. Int J Mol Sci 2019; 20:ijms20225591. [PMID: 31717392 PMCID: PMC6888234 DOI: 10.3390/ijms20225591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/25/2023] Open
Abstract
The CACNA1C gene encodes for the CaV1.2 protein, which is the pore subunit of cardiac l-type voltage-gated calcium (Ca2+) channels (l-channels). Through alternative splicing, CACNA1C encodes for various CaV1.2 isoforms with different electrophysiological properties. Splice variants of CaV1.2 are differentially expressed during heart development or pathologies. The molecular mechanisms of CACNA1C alternative splicing still remain incompletely understood. RNA sequencing analysis has suggested that CACNA1C is a potential target of the splicing factor RNA-binding protein motif 20 (RBM20). Here, we aimed at elucidating the role of RBM20 in the regulation of CACNA1C alternative splicing. We found that in neonatal rat cardiomyocytes (NRCMs), RBM20 overexpression promoted the inclusion of CACNA1C’s exon 9*, whereas the skipping of exon 9* occurred upon RBM20 siRNA knockdown. The splicing of other known alternative exons was not altered by RBM20. RNA immunoprecipitation suggested that RBM20 binds to introns flanking exon 9*. Functionally, in NRCMs, RBM20 overexpression decreased l-type Ca2+ currents, whereas RBM20 siRNA knockdown increased l-type Ca2+ currents. Finally, we found that RBM20 overexpression reduced CaV1.2 membrane surface expression in NRCMs. Taken together, our results suggest that RBM20 specifically regulates the inclusion of exon 9* in CACNA1C mRNA, resulting in reduced cell-surface membrane expression of l-channels in cardiomyocytes.
Collapse
|
202
|
Angiotensin II Influences Pre-mRNA Splicing Regulation by Enhancing RBM20 Transcription Through Activation of the MAPK/ELK1 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20205059. [PMID: 31614708 PMCID: PMC6829565 DOI: 10.3390/ijms20205059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
RNA binding motif 20 (RBM20) is a key regulator of pre-mRNA splicing of titin and other genes that are associated with cardiac diseases. Hormones, like insulin, triiodothyronine (T3), and angiotensin II (Ang II), can regulate gene-splicing through RBM20, but the detailed mechanism remains unclear. This study was aimed at investigating the signaling mechanism by which hormones regulate pre-mRNA splicing through RBM20. We first examined the role of RBM20 in Z-, I-, and M-band titin splicing at different ages in wild type (WT) and RBM20 knockout (KO) rats using RT-PCR; we found that RBM20 is the predominant regulator of I-band titin splicing at all ages. Then we treated rats with propylthiouracil (PTU), T3, streptozotocin (STZ), and Ang II and evaluated the impact of these hormones on the splicing of titin, LIM domain binding 3 (Ldb3), calcium/calmodulin-dependent protein kinase II gamma (Camk2g), and triadin (Trdn). We determined the activation of mitogen-activated protein kinase (MAPK) signaling in primary cardiomyocytes treated with insulin, T3, and Ang II using western blotting; MAPK signaling was activated and RBM20 expression increased after treatment. Two downstream transcriptional factors c-jun and ETS Transcription Factor (ELK1) can bind the promoter of RBM20. A dual-luciferase activity assay revealed that Ang II, but not insulin and T3, can trigger ELK1 and thus promote transcription of RBM20. This study revealed that Ang II can trigger ELK1 through activation of MAPK signaling by enhancing RBM20 expression which regulates pre-mRNA splicing. Our study provides a potential therapeutic target for the treatment of cardiac diseases in RBM20-mediated pre-mRNA splicing.
Collapse
|
203
|
Cresci S, Pereira NL, Ahmad F, Byku M, de las Fuentes L, Lanfear DE, Reilly CM, Owens AT, Wolf MJ. Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:458-485. [PMID: 31510778 DOI: 10.1161/hcg.0000000000000058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of 5 people will develop heart failure over his or her lifetime. Early diagnosis and better understanding of the pathophysiology of this disease are critical to optimal treatment. The "omics"-genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and microbiomics- of heart failure represent rapidly expanding fields of science that have, to date, not been integrated into a single body of work. The goals of this statement are to provide a comprehensive overview of the current state of these omics as they relate to the development and progression of heart failure and to consider the current and potential future applications of these data for precision medicine with respect to prevention, diagnosis, and therapy.
Collapse
|
204
|
Cowan JR, Kinnamon DD, Morales A, Salyer L, Nickerson DA, Hershberger RE. Multigenic Disease and Bilineal Inheritance in Dilated Cardiomyopathy Is Illustrated in Nonsegregating LMNA Pedigrees. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002038. [PMID: 30012837 DOI: 10.1161/circgen.117.002038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have previously described 19 pedigrees with apparent lamin (LMNA)-related dilated cardiomyopathy (DCM) manifesting in affected family members across multiple generations. In 6 of 19 families, at least 1 individual with idiopathic DCM did not carry the family's LMNA variant. We hypothesized that additional genetic cause may underlie DCM in these families. METHODS Affected family members underwent exome sequencing to identify additional genetic cause of DCM in the 6 families with nonsegregating LMNA variants. RESULTS In 5 of 6 pedigrees, we identified at least 1 additional rare variant in a known DCM gene that could plausibly contribute to disease in the LMNA variant-negative individuals. Bilineal inheritance was clear or presumed to be present in 3 of 5 families and was possible in the remaining 2. At least 1 individual with a LMNA variant also carried a variant in an additional identified DCM gene in each family. Using a multivariate linear mixed model for quantitative traits, we demonstrated that the presence of these additional variants was associated with a more severe phenotype after adjusting for sex, age, and the presence/absence of the family's nonsegregating LMNA variant. CONCLUSIONS Our data support DCM as a genetically heterogeneous disease with, at times, multigene causation. Although the frequency of DCM resulting from multigenic cause is uncertain, our data suggest it may be higher than previously anticipated.
Collapse
Affiliation(s)
- Jason R Cowan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., D.D.K., A.M., L.S., R.E.H.).,Divisions of Human Genetics (J.R.C., D.D.K., A.M., L.S., R.E.H.)
| | - Daniel D Kinnamon
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., D.D.K., A.M., L.S., R.E.H.).,Divisions of Human Genetics (J.R.C., D.D.K., A.M., L.S., R.E.H.)
| | - Ana Morales
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., D.D.K., A.M., L.S., R.E.H.).,Divisions of Human Genetics (J.R.C., D.D.K., A.M., L.S., R.E.H.)
| | - Lorien Salyer
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., D.D.K., A.M., L.S., R.E.H.).,Divisions of Human Genetics (J.R.C., D.D.K., A.M., L.S., R.E.H.)
| | - Deborah A Nickerson
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus. Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle (D.A.N.)
| | - Ray E Hershberger
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., D.D.K., A.M., L.S., R.E.H.) .,Divisions of Human Genetics (J.R.C., D.D.K., A.M., L.S., R.E.H.).,Cardiovascular Medicine (R.E.H.)
| |
Collapse
|
205
|
Stevens M, Oltean S. Modulation of the Apoptosis Gene Bcl-x Function Through Alternative Splicing. Front Genet 2019; 10:804. [PMID: 31552099 PMCID: PMC6743414 DOI: 10.3389/fgene.2019.00804] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023] Open
Abstract
Apoptosis plays a vital role in cell homeostasis during development and disease. Bcl-x, a member of the Bcl-2 family of proteins, is a mitochondrial transmembrane protein that functions to regulate the intrinsic apoptosis pathway. An alternative splicing (AS) event in exon 2 of Bcl-x results in two isoforms of Bcl-x with antagonistic effects on cell survival: Bcl-xL (long isoform), which is anti-apoptotic, and Bcl-xS (short isoform), which is pro-apoptotic. Bcl-xL is the most abundant Bcl-x protein and functions to inhibit apoptosis by a number of different mechanisms including inhibition of Bax. In contrast, Bcl-xS can directly bind to and inhibit the anti-apoptotic Bcl-xL and Bcl-2 proteins, resulting in the release of the pro-apoptotic Bak. There are multiple splice factors and signaling pathways that influence the Bcl-xL/Bcl-xS splicing ratio, including serine/arginine-rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), transcription factors, and cytokines. Dysregulation of the AS of Bcl-x has been implicated in cancer and diabetes. In cancer, the upregulation of Bcl-xL expression in tumor cells can result in resistance to chemotherapeutic agents. On the other hand, dysregulation of Bcl-x AS to promote Bcl-xS expression has been shown to be detrimental to pancreatic β-cells in diabetes, resulting in β-cell apoptosis. Therefore, manipulation of the splice factor, transcription factor, and signaling pathways that modulate this splicing event is fast emerging as a therapeutic avenue in the treatment of cancer and diabetes.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
206
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
207
|
Yamamoto T, Miura A, Itoh K, Takeshima Y, Nishio H. RNA sequencing reveals abnormal LDB3 splicing in sudden cardiac death. Forensic Sci Int 2019; 302:109906. [DOI: 10.1016/j.forsciint.2019.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023]
|
208
|
Dauksaite V, Gotthardt M. Molecular basis of titin exon exclusion by RBM20 and the novel titin splice regulator PTB4. Nucleic Acids Res 2019. [PMID: 29518215 PMCID: PMC6007684 DOI: 10.1093/nar/gky165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNA-binding motif protein 20 (RBM20) is a cardiac splice regulator that adapts cardiac filling via its diverse substrates—including the sarcomeric protein titin. The molecular basis and regulation of RBM20-dependent exon exclusion are largely unknown. In tissue culture experiments, we show that the combination of RNA recognition motif (RRM) and C-terminus is necessary and sufficient for RBM20 activity, indicating an important function of the ZnF2 domain in splicing repression. Using splice reporter and in vitro binding assays targeting titin exons 241–243, we identified a minimal genomic segment that is necessary for RBM20-mediated splicing repression of the alternative exon. Here, RBM20 binds the cluster containing most RBM20 binding motifs through its RRM domain and represses the upstream and downstream introns. For subsequent exon exclusion, specific regions upstream, downstream and within the alternative exon 242 are required. Regulation of exon exclusion involves PTB4 as a novel titin splice regulator, which counteracts RBM20 repressor activity in HEK293 cells. Together, these mechanistic insights into the regulation and action of RBM20 and PTB4 provide a basis for the future development of RBM20 modulators that adapt titin elasticity in cardiac disease.
Collapse
Affiliation(s)
- Vita Dauksaite
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin (DZHK), 10115 Berlin, Germany
| |
Collapse
|
209
|
Najafi A, van de Locht M, Schuldt M, Schönleitner P, van Willigenburg M, Bollen I, Goebel M, Ottenheijm CAC, van der Velden J, Helmes M, Kuster DWD. End-diastolic force pre-activates cardiomyocytes and determines contractile force: role of titin and calcium. J Physiol 2019; 597:4521-4531. [PMID: 31314138 PMCID: PMC6852589 DOI: 10.1113/jp277985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Titin functions as a molecular spring, and cardiomyocytes are able, through splicing, to control the length of titin. We hypothesized that together with diastolic [Ca2+], titin‐based stretch pre‐activates cardiomyocytes during diastole and is a major determinant of force production in the subsequent contraction. Through this mechanism titin would play an important role in active force development and length‐dependent activation. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) result in expression of large, highly compliant titin isoforms. We measured single cardiomyocyte work loops that mimic the cardiac cycle in wild‐type (WT) and heterozygous (HET) RBM20‐deficient rats. In addition, we studied the role of diastolic [Ca2+] in membrane‐permeabilized WT and HET cardiomyocytes. Intact cardiomyocytes isolated from HET left ventricles were unable to produce normal levels of work (55% of WT) at low pacing frequencies, but this difference disappeared at high pacing frequencies. Length‐dependent activation (force–sarcomere length relationship) was blunted in HET cardiomyocytes, but the force–end‐diastolic force relationship was not different between HET and WT cardiomyocytes. To delineate the effects of diastolic [Ca2+] and titin pre‐activation on force generation, measurements were performed in detergent‐permeabilized cardiomyocytes. Cardiac twitches were simulated by transiently exposing permeabilized cardiomyocytes to 2 µm Ca2+. Increasing diastolic [Ca2+] from 1 to 80 nm increased force development twofold in WT. Higher diastolic [Ca2+] was needed in HET. These findings are consistent with our hypothesis that pre‐activation increases active force development. Highly compliant titin allows cells to function at higher diastolic [Ca2+].
Collapse
Affiliation(s)
- Aref Najafi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.,Netherlands Heart Institute, PO box 19258, 3501 DG, Utrecht, the Netherlands
| | - Martijn van de Locht
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | | | | | - Ilse Bollen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.,Netherlands Heart Institute, PO box 19258, 3501 DG, Utrecht, the Netherlands
| | - Michiel Helmes
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.,Ionoptix, de Boelelaan 1108, 1081 HV, Amsterdam, the Netherlands.,CytoCypher, de Boelelaan 1108, 1081 HV, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| |
Collapse
|
210
|
Chothani S, Schäfer S, Adami E, Viswanathan S, Widjaja AA, Langley SR, Tan J, Wang M, Quaife NM, Jian Pua C, D'Agostino G, Guna Shekeran S, George BL, Lim S, Yiqun Cao E, van Heesch S, Witte F, Felkin LE, Christodoulou EG, Dong J, Blachut S, Patone G, Barton PJR, Hubner N, Cook SA, Rackham OJL. Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins. Circulation 2019; 140:937-951. [PMID: 31284728 PMCID: PMC6749977 DOI: 10.1161/circulationaha.119.039596] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global posttranscriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored.
Collapse
Affiliation(s)
- Sonia Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Sebastian Schäfer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.).,National Heart Centre Singapore, Singapore (S.S., S.L., J.T., C.J.P., S.A.C.)
| | - Eleonora Adami
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.).,Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.A., S.v.H., F.W., S.B., G.P., N.H.)
| | - Sivakumar Viswanathan
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Anissa A Widjaja
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Sarah R Langley
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Jessie Tan
- National Heart Centre Singapore, Singapore (S.S., S.L., J.T., C.J.P., S.A.C.)
| | - Mao Wang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Nicholas M Quaife
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.M.Q., L.E.F., P.J.R.B., S.A.C.).,Medical Research Council-London Institute of Medical Sciences, Hammersmith Hospital Campus, United Kingdom (N.M.Q, S.A.C.).,Cardiovascular Research Centre, Royal Brompton and Harefield National Health Serfice Trust, London, United Kingdom (N.M.Q, P.J.R.B.)
| | - Chee Jian Pua
- National Heart Centre Singapore, Singapore (S.S., S.L., J.T., C.J.P., S.A.C.)
| | - Giuseppe D'Agostino
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Shamini Guna Shekeran
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Benjamin L George
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Stella Lim
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.).,National Heart Centre Singapore, Singapore (S.S., S.L., J.T., C.J.P., S.A.C.)
| | - Elaine Yiqun Cao
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Sebastiaan van Heesch
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.A., S.v.H., F.W., S.B., G.P., N.H.)
| | - Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.A., S.v.H., F.W., S.B., G.P., N.H.)
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.M.Q., L.E.F., P.J.R.B., S.A.C.)
| | - Eleni G Christodoulou
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Jinrui Dong
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.A., S.v.H., F.W., S.B., G.P., N.H.)
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.A., S.v.H., F.W., S.B., G.P., N.H.)
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.M.Q., L.E.F., P.J.R.B., S.A.C.).,Cardiovascular Research Centre, Royal Brompton and Harefield National Health Serfice Trust, London, United Kingdom (N.M.Q, P.J.R.B.)
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.A., S.v.H., F.W., S.B., G.P., N.H.).,German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H.).,Charité-Universitätsmedizin, Berlin, Germany (N.H.).,Berlin Institute of Health, Germany (N.H.)
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.).,National Heart Centre Singapore, Singapore (S.S., S.L., J.T., C.J.P., S.A.C.).,National Heart and Lung Institute, Imperial College London, United Kingdom (N.M.Q., L.E.F., P.J.R.B., S.A.C.).,Medical Research Council-London Institute of Medical Sciences, Hammersmith Hospital Campus, United Kingdom (N.M.Q, S.A.C.)
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore (S.C., S.S., E.A., S.V., A.W., S.L., M.W., G.D., S.G.S., B.L.G., S.L., E.Y.C., E.C., J.D., S.A.C., O.J.L.R.)
| |
Collapse
|
211
|
Schwahn DJ, Pleitner JM, Greaser ML. Megaesophagus Is a Major Pathological Condition in Rats With a Large Deletion in the Rbm20 Gene. Vet Pathol 2019; 57:151-159. [PMID: 31221019 PMCID: PMC7221460 DOI: 10.1177/0300985819854224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A spontaneously arising, loss-of-function mutation in the RNA binding motif protein 20
(Rbm20) gene, which encodes a nuclear splicing protein,
was previously identified as the underlying reason for expression of an abnormally large
TITIN (TTN) protein in a rat model of cardiomyopathy. An outbreak of Pseudomonas aeruginosa led to submission of rats with dyspnea, sneezing,
lethargy, nasal discharge, and/or unexpected death for diagnostic evaluation. Necropsy
revealed underlying megaesophagus in Rbm20–/–
rats. Further phenotyping of this rat strain and determination of the size of esophageal
TTN was undertaken. The Rbm20-defective rats developed
megaesophagus at an early age (26 weeks) with high frequency (13/32, 41%). They also often
exhibited secondary rhinitis (9/32, 28%), aspiration pneumonia (8/32, 25%), and otitis
media/interna (6/32, 19%). In addition, these rats had a high prevalence of hydronephrosis
(13/32, 41%). RBM20 is involved in splicing multiple RNA transcripts, one of which is the
muscle-specific protein TTN. Rbm20 mutations are a
significant cause of dilated cardiomyopathy in humans. In Rbm20-defective rats, TTN size was significantly increased in the skeletal
muscle of the esophagus. Megaesophagus in this rat strain (maintained on a mixed genetic
background) is hypothesized to result from altered TTN stretch signaling in esophageal
skeletal muscle. This study describes a novel mechanism for the development of
megaesophagus, which may be useful for understanding the pathogenesis of megaesophagus in
humans and offers insights into potential myogenic causes of this condition. This is the
first report of megaesophagus and other noncardiac pathogenic changes associated with
mutation of Rbm20 in any species.
Collapse
Affiliation(s)
- Denise J Schwahn
- Research Animal Resources Center and Muscle Biology Laboratory, University of Wisconsin, Madison, WI, USA
| | | | - Marion L Greaser
- Muscle Biology Laboratory, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
212
|
Liu J, Carnero-Montoro E, van Dongen J, Lent S, Nedeljkovic I, Ligthart S, Tsai PC, Martin TC, Mandaviya PR, Jansen R, Peters MJ, Duijts L, Jaddoe VWV, Tiemeier H, Felix JF, Willemsen G, de Geus EJC, Chu AY, Levy D, Hwang SJ, Bressler J, Gondalia R, Salfati EL, Herder C, Hidalgo BA, Tanaka T, Moore AZ, Lemaitre RN, Jhun MA, Smith JA, Sotoodehnia N, Bandinelli S, Ferrucci L, Arnett DK, Grallert H, Assimes TL, Hou L, Baccarelli A, Whitsel EA, van Dijk KW, Amin N, Uitterlinden AG, Sijbrands EJG, Franco OH, Dehghan A, Spector TD, Dupuis J, Hivert MF, Rotter JI, Meigs JB, Pankow JS, van Meurs JBJ, Isaacs A, Boomsma DI, Bell JT, Demirkan A, van Duijn CM. An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis. Nat Commun 2019; 10:2581. [PMID: 31197173 PMCID: PMC6565679 DOI: 10.1038/s41467-019-10487-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.
Collapse
Affiliation(s)
- Jun Liu
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands. .,Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7FL, UK.
| | - Elena Carnero-Montoro
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18007, Spain.,Department of Twin Research and Genetic Epidemiology, King's College London, London, WC2R 2LS, UK
| | - Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health (APH) research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081BT, The Netherlands
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, WC2R 2LS, UK.,Department of Biomedical Sciences, Chang Gung University, Taoyuan, 333, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Tiphaine C Martin
- Department of Twin Research and Genetic Epidemiology, King's College London, London, WC2R 2LS, UK.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pooja R Mandaviya
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Rick Jansen
- Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081BT, The Netherlands
| | - Marjolein J Peters
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Liesbeth Duijts
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Division of Respiratory Medicine, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Generation R Study Group, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Janine F Felix
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Generation R Study Group, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health (APH) research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081BT, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Amsterdam Public Health (APH) research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081BT, The Netherlands
| | - Audrey Y Chu
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20814, USA.,The Framingham Heart Study, National Heart, Lung and Blood Institute, National Institutes of Health, Framingham, MA, 01702, USA
| | - Daniel Levy
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20814, USA.,The Framingham Heart Study, National Heart, Lung and Blood Institute, National Institutes of Health, Framingham, MA, 01702, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20814, USA.,The Framingham Heart Study, National Heart, Lung and Blood Institute, National Institutes of Health, Framingham, MA, 01702, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Elias L Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Bertha A Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Ann Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Min A Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | | | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Donna K Arnett
- School of Public Health, University of Kentucky, Lexington, KY, 40536, USA
| | - Harald Grallert
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany.,Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, 60611, USA.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.,Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, NC, 27516, USA
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands.,Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, 3012, Switzerland
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,Department of Epidemiology and Biostatistics, Imperial College London, London, SW7 2AZ, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, WC2R 2LS, UK
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, J1K0A5, Canada.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.,Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences and Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joyce B J van Meurs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), and Departments of Biochemistry and Physiology, Maastricht University, Maastricht, 6211LK, The Netherlands
| | - Aaron Isaacs
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), and Departments of Biochemistry and Physiology, Maastricht University, Maastricht, 6211LK, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health (APH) research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081BT, The Netherlands
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, WC2R 2LS, UK
| | - Ayşe Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands. .,Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands. .,Section of Statistical Multi-Omics, Department of Experimental and Clinical Research, School of Bioscience and Medicine, Univeristy of Surrey, Guildford, GU2 7XH, UK.
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015GD, The Netherlands. .,Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7FL, UK. .,Leiden Academic Center for Drug Research, Leiden University, Leiden, 2311EZ, The Netherlands.
| |
Collapse
|
213
|
Ortiz-Sánchez P, Villalba-Orero M, López-Olañeta MM, Larrasa-Alonso J, Sánchez-Cabo F, Martí-Gómez C, Camafeita E, Gómez-Salinero JM, Ramos-Hernández L, Nielsen PJ, Vázquez J, Müller-McNicoll M, García-Pavía P, Lara-Pezzi E. Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-Related mRNAs and Severe Systolic Dysfunction. Circ Res 2019; 125:170-183. [PMID: 31145021 PMCID: PMC6615931 DOI: 10.1161/circresaha.118.314515] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.
Collapse
Affiliation(s)
- Paula Ortiz-Sánchez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.O.-S., P.G.-P.)
| | - María Villalba-Orero
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Marina M López-Olañeta
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Javier Larrasa-Alonso
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Fátima Sánchez-Cabo
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Carlos Martí-Gómez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Emilio Camafeita
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Jesús M Gómez-Salinero
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Laura Ramos-Hernández
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Peter J Nielsen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany (P.J.N.)
| | - Jesús Vázquez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P)
| | - Michaela Müller-McNicoll
- Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt/Main, Germany (M.M.-M.)
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.O.-S., P.G.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P).,National Heart and Lung Institute, Imperial College London, United Kingdom (E.L.-P.)
| |
Collapse
|
214
|
Abstract
PURPOSE OF REVIEW To describe recent advancements in cardiovascular genetics made possible by leveraging next-generation sequencing (NGS), and to provide a framework for practical applications of genetic testing for hypertrophic (HCM), dilated (DCM), and arrhythmogenic right ventricular cardiomyopathies (ARVC). RECENT FINDINGS The availability of NGS has made possible extensive reference databases. These, combined with recent initiatives to compile previously siloed commercial and research cardiomyopathy data sets, provide a more powerful and precise approach to cardiovascular genetic medicine. HCM, DCM and ARVC are cardiomyopathies usually inherited in an autosomal dominant pattern. Over 1000 pathogenic mutations have been identified: HCM in genes encoding proteins of the sarcomere, and ARVC in genes encoding proteins of the desosome. DCM shows considerably more diverse ontology, suggesting more complex pathophysiology. In addition to allelic and locus heterogeneity, reduced penetrance and variable expressivity among affected individuals can make the clinical diagnosis of 'familial cardiomyopathy' less apparent. SUMMARY Current evidence supports the use of genetic testing in clinical practice to improve risk stratification for clinically affected patients and their at-risk relatives for hypertrophic, arrhythmogenic, and dilated cardiomyopathies. Understanding how to implement genetic testing and to evaluate at-risk family members, provide clinical implications of results as well as discuss limitations of genetic testing is essential to improving personalized care.
Collapse
|
215
|
Comprehensive and Systematic Analysis of Gene Expression Patterns Associated with Body Mass Index. Sci Rep 2019; 9:7447. [PMID: 31092860 PMCID: PMC6520409 DOI: 10.1038/s41598-019-43881-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Both genetic and environmental factors are suggested to influence overweight and obesity risks. Although individual loci and genes have been frequently shown to be associated with body mass index (BMI), the overall interaction of these genes and their role in BMI remains underexplored. Data were collected in 90 healthy, predominately Caucasian participants (51% female) with a mean age of 26.00 ± 9.02 years. Whole blood samples were assayed by Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. We integrated and analyzed the clinical and microarray gene expression data from those individuals to understand various systematic gene expression patterns underlying BMI. Conventional differential expression analysis identified seven genes RBM20, SEPT12, AX748233, SLC30A3, WTIP, CASP10, and OR12D3 associated with BMI. Weight gene co-expression network analysis among 4,647 expressed genes identified two gene modules associated with BMI. These two modules, with different extents of gene connectivity, are enriched for catabolic and muscle system processes respectively, and tend to be regulated by zinc finger transcription factors. A total of 246 hub genes were converted to non-hub genes, and 286 non-hub genes were converted to hub genes between normal and overweight individuals, revealing the network dynamics underlying BMI. A total of 28 three-way gene interactions were identified, suggesting the existence of high-order gene expression patterns underlying BMI. Our study demonstrated a variety of systematic gene expression patterns associated with BMI and thus provided novel understanding regarding the genetic factors for overweight and obesity risks on system levels.
Collapse
|
216
|
Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019; 37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, are the ideal cell sources for disease modeling, drug discovery, and regenerative medicine. In particular, regenerative therapy with hPSC-derived cardiomyocytes (CMs) is an unmet medical need for the treatment of severe heart failure. Cardiac differentiation protocols from hPSCs are made on the basis of cardiac development in vivo. However, current protocols have yet to yield 100% pure CMs, and their maturity is low. Cardiac development is regulated by the cardiac gene network, including transcription factors (TFs). According to our current understanding of cardiac development, cardiac TFs are sequentially expressed during cardiac commitment in hPSCs. Expression levels of each gene are strictly regulated by epigenetic modifications. DNA methylation, histone modification, and noncoding RNAs significantly influence cardiac differentiation. These complex circuits of genetic and epigenetic factors dynamically affect protein expression and metabolic changes in cardiac differentiation and maturation. Here, we review cardiac differentiation protocols and their molecular machinery, closing with a discussion of the future challenges for producing hPSC-derived CMs. Stem Cells 2019;37:992-1002.
Collapse
Affiliation(s)
- Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
217
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
218
|
|
219
|
Misaka T, Yoshihisa A, Takeishi Y. Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clin Chim Acta 2019; 495:123-128. [PMID: 30959043 DOI: 10.1016/j.cca.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023]
Abstract
Titin, encoded by the gene TTN, is the largest human protein, and plays central roles in sarcomeric structures and functions in skeletal and cardiac muscles. Mutations of TTN are causally related to specific types of muscular dystrophies and cardiomyopathies. A developed methodology of next generation sequencing has recently led to the identification of novel TTN mutations in such diseases. The clinical significance of titin is now emerging as a target for genetic strategies. Titin-related muscular dystrophies include tibial muscular dystrophy, limb-girdle muscular dystrophy, Emery-Dreifuss muscular dystrophy, hereditary myopathy with early respiratory failure, central core myopathy, centronuclear myopathies, and Salih myopathy. Truncation mutations of TTN have been identified as the most frequent genetic cause of dilated cardiomyopathy. In this review article, we highlight the role of titin and impact of TTN mutations in the pathogenesis of muscular dystrophies and cardiomyopathies. Recently, a novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of the urinary titin N-terminal fragments (U-TN) has been established. We discuss the clinical significance of U-TN in the diagnosis of muscular dystrophies and differential diagnosis of cardiomyopathies, as well as risk stratification in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan..
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
220
|
Bertero A, Fields PA, Ramani V, Bonora G, Yardimci GG, Reinecke H, Pabon L, Noble WS, Shendure J, Murry CE. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat Commun 2019; 10:1538. [PMID: 30948719 PMCID: PMC6449405 DOI: 10.1038/s41467-019-09483-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/08/2019] [Indexed: 01/25/2023] Open
Abstract
Functional changes in spatial genome organization during human development are poorly understood. Here we report a comprehensive profile of nuclear dynamics during human cardiogenesis from pluripotent stem cells by integrating Hi-C, RNA-seq and ATAC-seq. While chromatin accessibility and gene expression show complex on/off dynamics, large-scale genome architecture changes are mostly unidirectional. Many large cardiac genes transition from a repressive to an active compartment during differentiation, coincident with upregulation. We identify a network of such gene loci that increase their association inter-chromosomally, and are targets of the muscle-specific splicing factor RBM20. Genome editing studies show that TTN pre-mRNA, the main RBM20-regulated transcript in the heart, nucleates RBM20 foci that drive spatial proximity between the TTN locus and other inter-chromosomal RBM20 targets such as CACNA1C and CAMK2D. This mechanism promotes RBM20-dependent alternative splicing of the resulting transcripts, indicating the existence of a cardiac-specific trans-interacting chromatin domain (TID) functioning as a splicing factory.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - Paul A Fields
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Galip G Yardimci
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - Lil Pabon
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA. .,Department of Medicine/Cardiology, 1959 NE Pacific Street, University of Washington, Seattle, 98195, WA, USA. .,Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
221
|
Kellermayer D, Smith JE, Granzier H. Titin mutations and muscle disease. Pflugers Arch 2019; 471:673-682. [PMID: 30919088 DOI: 10.1007/s00424-019-02272-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM). Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3-4 MDa) and abundant protein that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available. Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA. .,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
222
|
Parikh VN, Caleshu C, Reuter C, Lazzeroni LC, Ingles J, Garcia J, McCaleb K, Adesiyun T, Sedaghat-Hamedani F, Kumar S, Graw S, Gigli M, Stolfo D, Ferro MD, Ing AY, Nussbaum R, Funke B, Wheeler MT, Hershberger RE, Cook S, Steinmetz L, Lakdawala NK, Taylor MRG, Mestroni L, Merlo M, Sinagra G, Semsarian C, Meder B, Judge DP, Ashley EA. Regional Variation in RBM20 Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy. Circ Heart Fail 2019; 12:e005371. [PMID: 30871351 PMCID: PMC6422044 DOI: 10.1161/circheartfailure.118.005371] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
Background Variants in the cardiomyocyte-specific RNA splicing factor RBM20 have been linked to familial cardiomyopathy, but the causative genetic architecture and clinical consequences of this disease are incompletely defined. Methods and Results To define the genetic architecture of RBM20 cardiomyopathy, we first established a database of RBM20 variants associated with cardiomyopathy and compared these to variants observed in the general population with respect to their location in the RBM20 coding transcript. We identified 2 regions significantly enriched for cardiomyopathy-associated variants in exons 9 and 11. We then assembled a registry of 74 patients with RBM20 variants from 8 institutions across the world (44 index cases and 30 from cascade testing). This RBM20 patient registry revealed highly prevalent family history of sudden cardiac death (51%) and cardiomyopathy (72%) among index cases and a high prevalence of composite arrhythmias (including atrial fibrillation, nonsustained ventricular tachycardia, implantable cardiac defibrillator discharge, and sudden cardiac arrest, 43%). Patients harboring variants in cardiomyopathy-enriched regions identified by our variant database analysis were enriched for these findings. Further, these characteristics were more prevalent in the RBM20 registry than in large cohorts of patients with dilated cardiomyopathy and TTNtv cardiomyopathy and not significantly different from a cohort of patients with LMNA-associated cardiomyopathy. Conclusions Our data establish RBM20 cardiomyopathy as a highly penetrant and arrhythmogenic cardiomyopathy. These findings underline the importance of arrhythmia surveillance and family screening in this disease and represent the first step in defining the genetic architecture of RBM20 disease causality on a population level.
Collapse
Affiliation(s)
- Victoria N. Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Colleen Caleshu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chloe Reuter
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura C. Lazzeroni
- Depts. Of Psychiatry and Behavioral Sciences and of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Jodie Ingles
- Department of Cardiology, Royal Prince Alfred Hospital and Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, University of Sydney, NSW, Australia
| | | | | | | | - Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK)
| | - Saurabh Kumar
- Brigham and Women’s Hospital, Partners Health Care and Harvard Medical School, Boston, MA, USA
| | - Sharon Graw
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Trieste, Italy
| | - Matteo Dal Ferro
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Trieste, Italy
| | - Alexander Y. Ing
- Laboratory of Molecular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Birgit Funke
- Laboratory of Molecular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ray E. Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH
| | - Stuart Cook
- National Heart Lung Institute, Imperial College London, UK and National Heart Centre, Singapore
| | - Lars Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA,USA
| | - Neal K. Lakdawala
- Brigham and Women’s Hospital, Partners Health Care and Harvard Medical School, Boston, MA, USA
| | - Matthew RG Taylor
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marco Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Trieste, Italy
| | - Christopher Semsarian
- Department of Cardiology, Royal Prince Alfred Hospital and Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, University of Sydney, NSW, Australia
| | - Benjamin Meder
- Institute for Cardiomyopathies, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK)
- Department of Genetics, Stanford University School of Medicine, Stanford, CA,USA
| | - Daniel P. Judge
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Euan A. Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA,USA
| |
Collapse
|
223
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
224
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
225
|
Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung Circ 2019; 28:31-38. [DOI: 10.1016/j.hlc.2018.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022]
|
226
|
Double de novo mutations in dilated cardiomyopathy with cardiac arrest. J Electrocardiol 2018; 53:40-43. [PMID: 30611920 DOI: 10.1016/j.jelectrocard.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 01/27/2023]
Abstract
Here we report the identification of two novel mutations in a previously asymptomatic young man who suffered an out-of-hospital sudden cardiac arrest. During following evaluation, diagnosis of early stage dilated cardiomyopathy was established, while electrocardiogram monitoring showed frequent complex ventricular arrhythmias, incomplete right bundle branch block and prolonged QT duration. No reversible causes explaining the clinical presentation were established and an automatic implantable cardioverter defibrillator was therefore implanted. Heterozygous mutations in human protein coding genes NKX2-5 and RBM20 are associated with a wide array of pathological phenotypes some of which are sudden cardiac death, unexplained syncope and either combined or isolated congenital heart diseases such as dilated cardiomyopathy.
Collapse
|
227
|
Pantou MP, Gourzi P, Gkouziouta A, Tsiapras D, Zygouri C, Constantoulakis P, Adamopoulos S, Degiannis D. Phenotypic Heterogeneity within Members of a Family Carrying the Same RBM20 Mutation R634W. Cardiology 2018; 141:150-155. [PMID: 30557877 DOI: 10.1159/000494453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We present the genotypic and phenotypic characterization of a family displaying dilated cardiomyopathy (DCM). METHODS The proband and his relatives underwent full cardiological assessment. Genetic analysis of the proband was performed with the use of next-generation sequencing technology. RESULTS In this study, we present 6 members of a family carrying the RBM20 mutation NM_001134363.2:c.1900C>T. The proband was initially diagnosed with DCM at the age of 18 years and received an implantable cardioverter defibrillator (ICD) due to ventricular arrhythmias. His brother, carrier of the mutation, has been diagnosed with borderline left ventricular function. The mutation was shown to be of paternal origin, but their father remains asymptomatic with a mild DCM, while his electrocardiogram at the initial evaluation showed a right bundle branch block pattern. The mutation was also detected in the index case's aunt who was resuscitated from sudden cardiac death. Her echocardiography revealed early stages of DCM and a bicuspid aortic valve. Her children are both carriers of the mutation. Her daughter is unaffected, but her son has an ICD implanted due to sustained ventricular tachycardia and presents early signs of DCM. CONCLUSION Our findings are the first report of co-segregation of the mutation in 6 family members, supporting its pathogenic role.
Collapse
Affiliation(s)
- Malena P Pantou
- Molecular Immunopathology and Histocompatibility Unit, Division of Molecular Genetics, Onassis Cardiac Surgery Center, Athens, Greece
| | - Polyxeni Gourzi
- Molecular Immunopathology and Histocompatibility Unit, Division of Molecular Genetics, Onassis Cardiac Surgery Center, Athens, Greece,
| | - Aggeliki Gkouziouta
- Heart Failure, MCS and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Christianna Zygouri
- Department of Molecular Genetics, BioAnalytica-Genotypes S.A., Athens, Greece
| | | | - Stamatis Adamopoulos
- Heart Failure, MCS and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Dimitrios Degiannis
- Molecular Immunopathology and Histocompatibility Unit, Division of Molecular Genetics, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
228
|
Chen Z, Maimaiti R, Zhu C, Cai H, Stern A, Mozdziak P, Ge Y, Ford SP, Nathanielsz PW, Guo W. Z-band and M-band titin splicing and regulation by RNA binding motif 20 in striated muscles. J Cell Biochem 2018; 119:9986-9996. [PMID: 30133019 PMCID: PMC6218289 DOI: 10.1002/jcb.27328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Titin (TTN) has multifunctional roles in sarcomere assembly, mechanosignaling transduction, and muscle stiffness. TTN splicing generates variable protein sizes with different functions. Therefore, understanding TTN splicing is important to develop a novel treatment for TTN-based diseases. The I-band TTN splicing regulated by RNA binding motif 20 (RBM20) has been extensively studied. However, the Z- and M-band splicing and regulation remain poorly understood. Herein, we aimed to define the Z- and M-band splicing in striated muscles and determined whether RBM20 regulates the Z- and M-band splicing. We discovered four new Z-band TTN splicing variants, and one of them dominates in mouse, rat, sheep, and human hearts. But only one form can be detected in frog and chicken hearts. In skeletal muscles, three new Z repeats (Zr) were detected, and Zr4 to 6 exclusion dominates in the fast muscles, whereas Zr4 skipping dominates in the slow muscle. No developmental changes were detected in the Z-band. In the M-band, two new variants were discovered with alternative 3' splice site in exon363 (Mex5) and alternative 5' splice site in intron 362. However, only the sheep heart expresses two new variants rather than other species. Skeletal muscles express three M-band variants with altered ratios of Mex5 inclusion to Mex5 exclusion. Finally, we revealed that RBM20 does not regulate the Z- and M-band splicing in the heart, but does in skeletal muscles. Taken together, we characterized the Z- and M-band splicing and provided the first evidence of the role of RBM20 in the Z- and M-band TTN splicing.
Collapse
Affiliation(s)
- Zhilong Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Rexiati Maimaiti
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Chaoqun Zhu
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Hanfang Cai
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Allysa Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Ying Ge
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin, Madison, Wisconsin
- Department of Chemistry, Human Proteomics Program, University of Wisconsin, Madison, Wisconsin
| | - Stephen P Ford
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | | | - Wei Guo
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
229
|
Watanabe T, Kimura A, Kuroyanagi H. Alternative Splicing Regulator RBM20 and Cardiomyopathy. Front Mol Biosci 2018; 5:105. [PMID: 30547036 PMCID: PMC6279932 DOI: 10.3389/fmolb.2018.00105] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
RBM20 is a vertebrate-specific RNA-binding protein with two zinc finger (ZnF) domains, one RNA-recognition motif (RRM)-type RNA-binding domain and an arginine/serine (RS)-rich region. RBM20 has initially been identified as one of dilated cardiomyopathy (DCM)-linked genes. RBM20 is a regulator of heart-specific alternative splicing and Rbm20ΔRRM mice lacking the RRM domain are defective in the splicing regulation. The Rbm20ΔRRM mice, however, do not exhibit a characteristic DCM-like phenotype such as dilatation of left ventricles or systolic dysfunction. Considering that most of the RBM20 mutations identified in familial DCM cases were heterozygous missense mutations in an arginine-serine-arginine-serine-proline (RSRSP) stretch whose phosphorylation is crucial for nuclear localization of RBM20, characterization of a knock-in animal model is awaited. One of the major targets for RBM20 is the TTN gene, which is comprised of the largest number of exons in mammals. Alternative splicing of the TTN gene is exceptionally complicated and RBM20 represses >160 of its consecutive exons, yet detailed mechanisms for such extraordinary regulation are to be elucidated. The TTN gene encodes the largest known protein titin, a multi-functional sarcomeric structural protein specific to striated muscles. As titin is the most important factor for passive tension of cardiomyocytes, extensive heart-specific and developmentally regulated alternative splicing of the TTN pre-mRNA by RBM20 plays a critical role in passive stiffness and diastolic function of the heart. In disease models with diastolic dysfunctions, the phenotypes were rescued by increasing titin compliance through manipulation of the Ttn pre-mRNA splicing, raising RBM20 as a potential therapeutic target.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akinori Kimura
- Division of Pathology, Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory for Integrated Research Projects on Intractable Diseases Advanced Technology Laboratories, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory for Integrated Research Projects on Intractable Diseases Advanced Technology Laboratories, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
230
|
Lorenzi P, Sangalli A, Fochi S, Dal Molin A, Malerba G, Zipeto D, Romanelli MG. RNA-binding proteins RBM20 and PTBP1 regulate the alternative splicing of FHOD3. Int J Biochem Cell Biol 2018; 106:74-83. [PMID: 30468920 DOI: 10.1016/j.biocel.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Regulation of alternative splicing events is an essential step required for the expression of functional cytoskeleton and sarcomere proteins in cardiomyocytes. About 3% of idiopathic dilated cardiomyopathy cases present mutations in the RNA binding protein RBM20, a tissue specific regulator of alternative splicing. Transcripts expressed preferentially in skeletal and cardiac muscle, including TTN, CAMK2D, LDB3, LMO7, PDLIM3, RTN4, and RYR2, are RBM20-dependent splice variants. In the present study, we investigated the RBM20 involvement in post-transcriptional regulation of splicing variants expressed by Formin homology 2 domain containing 3 (FHOD3) gene. FHOD3 is a sarcomeric protein highly expressed in the cardiac tissue and required for the assembly of the contractile apparatus. Recently, FHOD3 mutations have been found associated with heart diseases. We identified novel FHOD3 splicing variants differentially expressed in human tissues and provided evidences that FHOD3 transcripts are specific RBM20 and PTBP1 targets. Furthermore, we demonstrated that the expression of RBM20 and PTBP1 promoted the alternative shift, from inclusion to exclusion, of selected FHOD3 exons. These results indicate that RBM20 and PTBP1 play a role in the actin filament functional organization mediated by FHOD3 isoforms and suggest their possible involvement in heart diseases.
Collapse
Affiliation(s)
- P Lorenzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - A Sangalli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - S Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - A Dal Molin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - G Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - D Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Italy.
| |
Collapse
|
231
|
Wang Q, Zhu C, Sun M, Maimaiti R, Ford SP, Nathanielsz PW, Ren J, Guo W. Maternal obesity impairs fetal cardiomyocyte contractile function in sheep. FASEB J 2018; 33:2587-2598. [PMID: 30289749 DOI: 10.1096/fj.201800988r] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a major public health problem worldwide. In the United States, one-third of women of reproductive age are obese. Human studies show that maternal obesity (MO) predisposes offspring to cardiovascular disease. However, the underlying mechanisms remain unclear. Given the similarities between pregnancy in sheep and humans, we studied sheep to examine the impact of MO on fetal cardiomyocyte contractility at term. We observed that MO impaired cardiomyocyte contractility by reducing peak shortening and shortening/relengthening velocity, prolonging time to relengthening. MO disrupted Ca2+ homeostasis in fetal cardiomyocytes, increasing intracellular Ca2+ and inducing cellular Ca2+ insensitivity. The Ca2+-release channel was impaired, but Ca2+ uptake was unaffected by MO. The upstream kinases that phosphorylate the Ca2+-release channel-ryanodine receptor-2, PKA, and calmodulin-dependent protein kinase II-were activated in MO fetuses. Contractile dysfunction was associated with an increased ratio of myosin heavy chain (MHC)-β to MHC-α and upregulated cardiac troponin (cTn)-T and tropomyosin, as well as cTn-I phosphorylation. In summary, this is the first characterization of the effects of MO on fetal cardiomyocyte contractility. Our findings indicate that MO impairs fetal cardiomyocyte contractility through altered intracellular Ca2+ handling, overloading fetal cardiomyocyte intracellular Ca2+ and aberrant myofilament protein composition. These mechanisms may contribute to developmental programming by MO of offspring cardiac function and predisposition to later life cardiovascular disease in the offspring.-Wang, Q., Zhu, C., Sun, M., Maimaiti, R., Ford, S. P., Nathanielsz, P. W., Ren, J., Guo, W. Maternal obesity impairs fetal cardiomyocyte contractile function in sheep.
Collapse
Affiliation(s)
- Qiurong Wang
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Chaoqun Zhu
- Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Mingming Sun
- Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Rexiati Maimaiti
- Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Stephen P Ford
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Peter W Nathanielsz
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming, USA
| | - Wei Guo
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, Wyoming, USA.,Animal Science Department, University of Wyoming, Laramie, Wyoming, USA; and.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
232
|
PRMT1 Deficiency in Mouse Juvenile Heart Induces Dilated Cardiomyopathy and Reveals Cryptic Alternative Splicing Products. iScience 2018; 8:200-213. [PMID: 30321814 PMCID: PMC6197527 DOI: 10.1016/j.isci.2018.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzes the asymmetric dimethylation of arginine residues in proteins and methylation of various RNA-binding proteins and is associated with alternative splicing in vitro. Although PRMT1 has essential in vivo roles in embryonic development, CNS development, and skeletal muscle regeneration, the functional importance of PRMT1 in the heart remains to be elucidated. Here, we report that juvenile cardiomyocyte-specific PRMT1-deficient mice develop severe dilated cardiomyopathy and exhibit aberrant cardiac alternative splicing. Furthermore, we identified previously undefined cardiac alternative splicing isoforms of four genes (Asb2, Fbxo40, Nrap, and Eif4a2) in PRMT1-cKO mice and revealed that eIF4A2 protein isoforms translated from alternatively spliced mRNA were differentially ubiquitinated and degraded by the ubiquitin-proteasome system. These findings highlight the essential roles of PRMT1 in cardiac homeostasis and alternative splicing regulation. PRMT1 deficiency in cardiomyocytes causes dilated cardiomyopathy in juvenile mice PRMT1-deficient heart shows abnormal alternative splicing patterns Previously undefined cardiac splicing events are revealed by transcriptome analysis eIF4A2 isoforms are differentially ubiquitinated and degraded
Collapse
|
233
|
RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy. Protein Cell 2018; 10:405-416. [PMID: 30267374 PMCID: PMC6538757 DOI: 10.1007/s13238-018-0578-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
RNA splicing contributes to a broad spectrum of post-transcriptional gene regulation during normal development, as well as pathological manifestation of heart diseases. However, the functional role and regulation of splicing in heart failure remain poorly understood. RNA binding protein (RBP), a major component of the splicing machinery, is a critical factor in this process. RNA binding motif protein 24 (RBM24) is a tissue-specific RBP which is highly expressed in human and mouse heart. Previous studies demonstrated the functional role of RBM24 in the embryonic heart development. However, the role of RBM24 in postnatal heart development and heart disease has not been investigated. In this paper, using conditional RBM24 knockout mice, we demonstrated that ablation of RBM24 in postnatal heart led to rapidly progressive dilated cardiomyopathy (DCM), heart failure, and postnatal lethality. Global splicing profiling revealed that RBM24 regulated a network of genes related to cardiac function and diseases. Knockout of RBM24 resulted in misregulation of these splicing transitions which contributed to the subsequent development of cardiomyopathy. Notably, our analysis identified RBM24 as a splice factor that determined the splicing switch of a subset of genes in the sacomeric Z-disc complex, including Titin, the major disease gene of DCM and heart failure. Together, this study identifies regulation of RNA splicing by RBM24 as a potent player in remodeling of heart during postnatal development, and provides novel mechanistic insights to the pathogenesis of DCM.
Collapse
|
234
|
|
235
|
van den Hoogenhof MM, Beqqali A, Amin AS, van der Made I, Aufiero S, Khan MA, Schumacher CA, Jansweijer JA, van Spaendonck-Zwarts KY, Remme CA, Backs J, Verkerk AO, Baartscheer A, Pinto YM, Creemers EE. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling. Circulation 2018; 138:1330-1342. [DOI: 10.1161/circulationaha.117.031947] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism.
Methods:
We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca
2+
measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels.
Results:
Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively,
P
=0.006). Splicing events that affected Ca
2+
- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca
2+
current (
I
Ca,L
). In line with this, we found an increased
I
Ca,L
, intracellular Ca
2+
overload and increased sarcoplasmic reticulum Ca
2+
content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca
2+
releases, which could be attenuated by treatment with the
I
Ca,L
antagonist verapamil.
Conclusions:
We show that loss of Rbm20 disturbs Ca
2+
handling and leads to more proarrhythmic Ca
2+
releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an
I
Ca,L
blocker to reduce their arrhythmia burden.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Abdelaziz Beqqali
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ahmad S. Amin
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Mohsin A.F. Khan
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (S.A., M.A.F.K.), Academic Medical Center, Amsterdam, The Netherlands
| | - Cees A. Schumacher
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Joeri A. Jansweijer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Carol Ann Remme
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Germany (J.B.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology (A.o.V.), Academic Medical Center, Amsterdam, The Netherlands
| | - Antonius Baartscheer
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology (M.M.G.v.d.H., A.B., A.S.A., I.v.d.M., S.A., M.A.F.K., C.A.S., J.A.J., C.A.R., A.o.V., A.B., Y.M.P., E.E.C.), Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
236
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
237
|
Lindqvist J, van den Berg M, van der Pijl R, Hooijman PE, Beishuizen A, Elshof J, de Waard M, Girbes A, Spoelstra-de Man A, Shi ZH, van den Brom C, Bogaards S, Shen S, Strom J, Granzier H, Kole J, Musters RJP, Paul MA, Heunks LMA, Ottenheijm CAC. Positive End-Expiratory Pressure Ventilation Induces Longitudinal Atrophy in Diaphragm Fibers. Am J Respir Crit Care Med 2018; 198:472-485. [PMID: 29578749 PMCID: PMC6118031 DOI: 10.1164/rccm.201709-1917oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.
Collapse
Affiliation(s)
- Johan Lindqvist
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Robbert van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| | | | - Albertus Beishuizen
- Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands; and
| | | | | | | | | | - Zhong-Hua Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | | | | | - Shengyi Shen
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joshua Strom
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Marinus A. Paul
- Department of Cardiothoracic Surgery, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | | | - Coen A. C. Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| |
Collapse
|
238
|
Paldino A, De Angelis G, Merlo M, Gigli M, Dal Ferro M, Severini GM, Mestroni L, Sinagra G. Genetics of Dilated Cardiomyopathy: Clinical Implications. Curr Cardiol Rep 2018; 20:83. [DOI: 10.1007/s11886-018-1030-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
239
|
Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, Lai A, Frese K, Pribe-Wolferts R, Amr A, Li DT, Samani OS, Carstensen A, Bordalo DM, Müller M, Fischer C, Shao J, Wang J, Nie M, Yuan L, Haßfeld S, Schwartz C, Zhou M, Zhou Z, Shu Y, Wang M, Huang K, Zeng Q, Cheng L, Fehlmann T, Ehlermann P, Keller A, Dieterich C, Streckfuß-Bömeke K, Liao Y, Gotthardt M, Katus HA, Meder B. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J 2018; 38:3449-3460. [PMID: 29029073 DOI: 10.1093/eurheartj/ehx545] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Aims In this study, we aimed to clinically and genetically characterize LVNC patients and investigate the prevalence of variants in known and novel LVNC disease genes. Introduction Left ventricular non-compaction cardiomyopathy (LVNC) is an increasingly recognized cause of heart failure, arrhythmia, thromboembolism, and sudden cardiac death. We sought here to dissect its genetic causes, phenotypic presentation and outcome. Methods and results In our registry with follow-up of in the median 61 months, we analysed 95 LVNC patients (68 unrelated index patients and 27 affected relatives; definite familial LVNC = 23.5%) by cardiac phenotyping, molecular biomarkers and exome sequencing. Cardiovascular events were significantly more frequent in LVNC patients compared with an age-matched group of patients with non-ischaemic dilated cardiomyopathy (hazard ratio = 2.481, P = 0.002). Stringent genetic classification according to ACMG guidelines revealed that TTN, LMNA, and MYBPC3 are the most prevalent disease genes (13 patients are carrying a pathogenic truncating TTN variant, odds ratio = 40.7, Confidence interval = 21.6-76.6, P < 0.0001, percent spliced in 76-100%). We also identified novel candidate genes for LVNC. For RBM20, we were able to perform detailed familial, molecular and functional studies. We show that the novel variant p.R634L in the RS domain of RBM20 co-segregates with LVNC, leading to titin mis-splicing as revealed by RNA sequencing of heart tissue in mutation carriers, protein analysis, and functional splice-reporter assays. Conclusion Our data demonstrate that the clinical course of symptomatic LVNC can be severe. The identified pathogenic variants and distribution of disease genes-a titin-related pathomechanism is found in every fourth patient-should be considered in genetic counselling of patients. Pathogenic variants in the nuclear proteins Lamin A/C and RBM20 were associated with worse outcome.
Collapse
Affiliation(s)
- Farbod Sedaghat-Hamedani
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Jan Haas
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Feng Zhu
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Christian Geier
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation of Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Augustenburger Platz 1, 13353 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Elham Kayvanpour
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Martin Liss
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Alan Lai
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Karen Frese
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Regina Pribe-Wolferts
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ali Amr
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Daniel Tian Li
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Omid Shirvani Samani
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Avisha Carstensen
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Diana Martins Bordalo
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Marion Müller
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Christine Fischer
- Department of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Jing Shao
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Ming Nie
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Li Yuan
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Sabine Haßfeld
- Department of Cardiology, Virchow Klinikum, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christine Schwartz
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation of Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Min Zhou
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Yanwen Shu
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Min Wang
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Kai Huang
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Longxian Cheng
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Tobias Fehlmann
- Department of Bioinformatics, University of Saarland, Building E2.1, 66123 Saarbrücken, Germany
| | - Philipp Ehlermann
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andreas Keller
- Department of Bioinformatics, University of Saarland, Building E2.1, 66123 Saarbrücken, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany.,Department of Medicine III, Klaus Tschira Institute for Computational Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Katrin Streckfuß-Bömeke
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Yuhua Liao
- Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Michael Gotthardt
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Hugo A Katus
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Benjamin Meder
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| |
Collapse
|
240
|
van den Hoogenhof MMG, van der Made I, de Groot NE, Damanafshan A, van Amersfoorth SCM, Zentilin L, Giacca M, Pinto YM, Creemers EE. AAV9-mediated Rbm24 overexpression induces fibrosis in the mouse heart. Sci Rep 2018; 8:11696. [PMID: 30076363 PMCID: PMC6076270 DOI: 10.1038/s41598-018-29552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfβ-signaling genes, suggesting enhanced Tgfβ-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and induced extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfβR1 and TgfβR2 expression.
Collapse
Affiliation(s)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Nina E de Groot
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Amin Damanafshan
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Yigal M Pinto
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands.
| |
Collapse
|
241
|
Nordgren KKS, Hampton M, Wallace KB. Editor's Highlight: The Altered DNA Methylome of Chronic Doxorubicin Exposure in Sprague Dawley Rats. Toxicol Sci 2018; 159:470-479. [PMID: 28962528 DOI: 10.1093/toxsci/kfx150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is a widely used treatment for human cancers, but increases the risk of life-threatening congestive heart failure (CHF). DOX-induced mitochondrial damage is cumulative and persistent, similar to that observed clinically for risk of CHF. Recent evidence suggests the persistent nature of this injury is caused by altered regulation of genes important to normal cardiac functioning. We hypothesize that chronic DOX therapy is associated with epigenetic modifications of DNA methylation status, particularly in critical regulators of mitochondrial function and capacity. Cardiac tissue from Sprague Dawley rats receiving injections of DOX (2 mg/kg, s.c.) or saline once a week for 6 weeks, followed by 5 weeks of drug-free holiday was used for Reduced Representation Bisulfite Sequencing to map specific sites of DNA methylation. Comparison of these methylomes indicated DOX exposure alters DNA methylation landscapes, and identified 14 genes with highly altered methylation status. Preliminary functional effects of DNA methylation changes were characterized by quantifying mRNA expression of selected targets (Rbm20, Nmnat2, Klhl29, Cacna1c, Scn5a.) Gene expression of Rbm20, Klhl29, and Nmnat2 were significantly altered in DOX treated animals; Klhl29 and Nmnat2 demonstrated significant decreases in protein expression corresponding to gene expression. Through an epigenotype-to-phenotype approach, this study identifies potential markers and molecular regulators of irreversible DOX-induced cardiovascular toxicity associated with clinically limiting CHF. However, none of the most prevalent genes identified directly relate to mitochondrial structure or function. Thus, the investigation fails to demonstrate a direct association between this altered methylome and persistent mitochondrionopathy associated with chronic doxorubicin cardiac toxicity.
Collapse
Affiliation(s)
- Kendra K S Nordgren
- Department of Biomedical Science, University of Minnesota Medical School Duluth Campus, Duluth, Minnesota 55812
| | - Marshall Hampton
- Department of Mathematics, University of Minnesota Duluth, Duluth, Minnesota 55812
| | - Kendall B Wallace
- Department of Biomedical Science, University of Minnesota Medical School Duluth Campus, Duluth, Minnesota 55812
| |
Collapse
|
242
|
Abstract
Alternative splicing is an important mechanism used by the cell to generate greater transcriptomic and proteomic diversity from the genome. In the heart, alternative splicing is increasingly being recognised as an important layer of post-transcriptional gene regulation. Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial process governing complex biological processes during cardiac development and disease. The recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and 24, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the factors controlling cardiac alternative splicing and their role in cardiomyopathies and subsequent heart failure.
Collapse
|
243
|
Force-Dependent Recruitment from the Myosin Off State Contributes to Length-Dependent Activation. Biophys J 2018; 115:543-553. [PMID: 30054031 DOI: 10.1016/j.bpj.2018.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
Cardiac muscle develops more force when it is activated at longer lengths. The concentration of Ca2+ required to develop half-maximal force also decreases. These effects are known as length-dependent activation and are thought to play critical roles in the Frank-Starling relationship and cardiovascular homeostasis. The molecular mechanisms underpinning length-dependent activation remain unclear, but recent experiments suggest that they may include recruitment of myosin heads from the off (sometimes called super-relaxed) state. This manuscript presents a mathematical model of muscle contraction that was developed to investigate this hypothesis. Myosin heads in the model transitioned between an off state (that could not interact with actin), an on state (that could bind to actin), and a single attached state. Simulations were fitted to experimental data using multidimensional parameter optimization. Statistical analysis showed that a model in which the rate of the off-to-on transition increased linearly with force reproduced the length-dependent behavior of chemically permeabilized myocardium better than a model with a constant off-to-on transition rate (F-test, p < 0.001). This result suggests that the thick-filament transitions are modulated by force. Additional calculations showed that the model incorporating a mechanosensitive thick filament could also reproduce twitch responses measured in a trabecula stretched to different lengths. A final set of simulations was then used to test the model. These calculations predicted how reducing passive stiffness would impact the length dependence of the calcium sensitivity of contractile force. The prediction (a 60% reduction in ΔpCa50) mimicked the 58% reduction in ΔpCa50 in myocardium from rats that expressed a giant isoform of titin and had low resting tension. Together, these computational results suggest that force-dependent recruitment of myosin heads from the thick-filament off state contributes to length-dependent activation and the Frank-Starling relationship.
Collapse
|
244
|
Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet 2018; 9:231. [PMID: 30050558 PMCID: PMC6052891 DOI: 10.3389/fgene.2018.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the LMNA gene, which encodes for the nuclear lamina proteins lamins A and C, are responsible for a diverse group of diseases known as laminopathies. One type of laminopathy is Dilated Cardiomyopathy (DCM), a heart muscle disease characterized by dilation of the left ventricle and impaired systolic function, often leading to heart failure and sudden cardiac death. LMNA is the second most commonly mutated gene in DCM. In addition to LMNA, mutations in more than 60 genes have been associated with DCM. The DCM-associated genes encode a variety of proteins including transcription factors, cytoskeletal, Ca2+-regulating, ion-channel, desmosomal, sarcomeric, and nuclear-membrane proteins. Another important category among DCM-causing genes emerged upon the identification of DCM-causing mutations in RNA binding motif protein 20 (RBM20), an alternative splicing factor that is chiefly expressed in the heart. In addition to RBM20, several essential splicing factors were validated, by employing mouse knock out models, to be embryonically lethal due to aberrant cardiogenesis. Furthermore, heart-specific deletion of some of these splicing factors was found to result in aberrant splicing of their targets and DCM development. In addition to splicing alterations, advances in next generation sequencing highlighted the association between splice-site mutations in several genes and DCM. This review summarizes LMNA mutations and splicing alterations in DCM and discusses how the interaction between LMNA and splicing regulators could possibly explain DCM disease mechanisms.
Collapse
Affiliation(s)
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
245
|
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 2018; 113:29. [PMID: 29905892 PMCID: PMC6003982 DOI: 10.1007/s00395-018-0688-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation-contraction and also excitation-transcription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after several post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflammatory processes in the heart.
Collapse
Affiliation(s)
- Jan Beckendorf
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department for Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
246
|
Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-Binding Motif Protein 20 (RBM20) through nuclear localization. Sci Rep 2018; 8:8970. [PMID: 29895960 PMCID: PMC5997748 DOI: 10.1038/s41598-018-26624-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/14/2018] [Indexed: 11/08/2022] Open
Abstract
RBM20 is a major regulator of heart-specific alternative pre-mRNA splicing of TTN encoding a giant sarcomeric protein titin. Mutation in RBM20 is linked to autosomal-dominant familial dilated cardiomyopathy (DCM), yet most of the RBM20 missense mutations in familial and sporadic cases were mapped to an RSRSP stretch in an arginine/serine-rich region of which function remains unknown. In the present study, we identified an R634W missense mutation within the stretch and a G1031X nonsense mutation in cohorts of DCM patients. We demonstrate that the two serine residues in the RSRSP stretch are constitutively phosphorylated and mutations in the stretch disturb nuclear localization of RBM20. Rbm20S637A knock-in mouse mimicking an S635A mutation reported in a familial case showed a remarkable effect on titin isoform expression like in a patient carrying the mutation. These results revealed the function of the RSRSP stretch as a critical part of a nuclear localization signal and offer the Rbm20S637A mouse as a good model for in vivo study.
Collapse
|
247
|
A gene-centric strategy for identifying disease-causing rare variants in dilated cardiomyopathy. Genet Med 2018; 21:133-143. [PMID: 29892087 DOI: 10.1038/s41436-018-0036-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.
Collapse
|
248
|
Liss M, Radke MH, Eckhard J, Neuenschwander M, Dauksaite V, von Kries JP, Gotthardt M. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling. PLoS One 2018; 13:e0198492. [PMID: 29889873 PMCID: PMC5995442 DOI: 10.1371/journal.pone.0198492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023] Open
Abstract
Diastolic dysfunction is increasingly prevalent in our ageing society and an important contributor to heart failure. The giant protein titin could serve as a therapeutic target, as its elastic properties are a main determinant of cardiac filling in diastole. This study aimed to develop a high throughput pharmacological screen to identify small molecules that affect titin isoform expression through differential inclusion of exons encoding the elastic PEVK domains. We used a dual luciferase splice reporter assay that builds on the titin splice factor RBM20 to screen ~34,000 small molecules and identified several compounds that inhibit the exclusion of PEVK exons. These compounds belong to the class of cardenolides and affect RBM20 dependent titin exon exclusion but did not affect RBFOX1 mediated splicing of FMNL3. We provide evidence that cardenolides do not bind to the RNA interacting domain of RBM20, but reduce RBM20 protein levels and alter transcription of select splicing factors that interact with RBM20. Cardenolides affect titin isoform expression. Understanding their mode of action and harnessing the splice effects through chemical modifications that suppress the effects on ion homeostasis and more selectively affect cardiac splicing has the potential to improve cardiac filling and thus help patients with diastolic heart failure, for which currently no targeted therapy exists.
Collapse
Affiliation(s)
- Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael H. Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jamina Eckhard
- Screening Unit, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Vita Dauksaite
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
249
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
250
|
Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018; 3:75-98. [PMID: 30159442 PMCID: PMC6096412 DOI: 10.1016/j.ncrna.2018.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
As part of the superfamily of long noncoding RNAs, circular RNAs (circRNAs) are emerging as a new type of regulatory molecules that partake in gene expression control. Here, we review the current knowledge about circRNAs in cardiovascular disease. CircRNAs are not only associated with different types of cardiovascular disease, but they have also been identified as intracellular effector molecules for pathophysiological changes in cardiovascular tissues, and as cardiovascular biomarkers. This evidence is put in the context of the current understanding of general circRNA biogenesis and of known interactions of circRNAs with DNA, RNA, and proteins.
Collapse
Affiliation(s)
- Lesca M. Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | | | | |
Collapse
|