201
|
Hu Z, Lv X, Chen L, Gu X, Qian H, Fransisca S, Zhang Z, Liu Q, Xie P. Protective effects of microRNA‐22‐3p against retinal pigment epithelial inflammatory damage by targeting NLRP3 inflammasome. J Cell Physiol 2019; 234:18849-18857. [PMID: 30927257 DOI: 10.1002/jcp.28523] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zizhong Hu
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Xuehua Lv
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Department of Ophthalmology Children's Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Lu Chen
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Xunyi Gu
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Huiming Qian
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Silvia Fransisca
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Zhengyu Zhang
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Qinghuai Liu
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Ping Xie
- Department of Ophthalmology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
202
|
Pronin A, Pham D, An W, Dvoriantchikova G, Reshetnikova G, Qiao J, Kozhekbaeva Z, Reiser AE, Slepak VZ, Shestopalov VI. Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury. Front Mol Neurosci 2019; 12:36. [PMID: 30930743 PMCID: PMC6425693 DOI: 10.3389/fnmol.2019.00036] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress and hypoxia during episodes of ocular hypertension (OHT) trigger glial activation and neuroinflammation in the retina. Glial activation and release of pro-inflammatory cytokines TNFα and IL-1β, complement, and other danger factors was shown to facilitate injury and loss of retinal ganglion cells (RGCs) that send visual information to the brain. However, cellular events linking neuroinflammation and neurotoxicity remain poorly characterized. Several pro-inflammatory and danger signaling pathways, including P2X7 receptors and Pannexin1 (Panx1) channels, are known to activate inflammasome caspases that proteolytically activate gasdermin D channel-formation to export IL-1 cytokines and/or induce pyroptosis. In this work, we used molecular and genetic approaches to map and characterize inflammasome complexes and detect pyroptosis in the OHT-injured retina. Acute activation of distinct inflammasome complexes containing NLRP1, NLRP3 and Aim2 sensor proteins was detected in RGCs, retinal astrocytes and Muller glia of the OHT-challenged retina. Inflammasome-mediated activation of caspases-1 and release of mature IL-1β were detected within 6 h and peaked at 12–24 h after OHT injury. These coincided with the induction of pyroptotic pore protein gasdermin D in neurons and glia in the ganglion cell layer (GCL) and inner nuclear layer (INL). The OHT-induced release of cytokines and RGC death were significantly decreased in the retinas of Casp1−/−Casp4(11)del, Panx1−/− and in Wild-type (WT) mice treated with the Panx1 inhibitor probenecid. Our results showed a complex spatio-temporal pattern of innate immune responses in the retina. Furthermore, they indicate an active contribution of neuronal NLRP1/NLRP3 inflammasomes and the pro-pyroptotic gasdermin D pathway to pathophysiology of the OHT injury. These results support the feasibility of inflammasome modulation for neuroprotection in OHT-injured retinas.
Collapse
Affiliation(s)
- Alexey Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dien Pham
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Weijun An
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianzhong Qiao
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhanna Kozhekbaeva
- Department of Medicine, The Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashlyn E Reiser
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
203
|
Yum S, Li M, Frankel AE, Chen ZJ. Roles of the cGAS-STING Pathway in Cancer Immunosurveillance and Immunotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055636] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that initiates innate immune responses. DNA-bound cGAS produces cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) to induce inflammatory cytokines and other immune mediators. cGAS detects DNA without sequence specificity and responds to both cytosolic foreign DNA from pathogens and self-DNA leaked into the cytosol due to genome instability or cellular damage. Because of the diverse sources of cytosolic DNA, the cGAS-STING pathway plays a critical role during infection, autoimmune diseases, and senescence. Moreover, cGAS detects tumor-derived DNA and stimulates endogenous antitumor immunity. Thus, the cGAS-STING pathway is a promising target for cancer immunotherapy. Here, we review the role of the cGAS-STING pathway in various diseases and highlight various approaches targeting the cGAS-STING pathway for cancer therapy.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Arthur E. Frankel
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Zhijian J. Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
204
|
Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO. The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Front Physiol 2019; 10:141. [PMID: 30873043 PMCID: PMC6400979 DOI: 10.3389/fphys.2019.00141] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain injury remains a major cause of death and life-long disability. Perinatal brain injury is typically associated with hypoxia-ischemia and/or infection/inflammation. Both hypoxia-ischemia and infection trigger an inflammatory response in the brain. The inflammatory response can contribute to brain cell loss and chronic neuroinflammation leading to neurological impairments. It is now well-established that brain injury evolves over time, and shows a striking spread from injured to previously uninjured regions of the brain. There is increasing evidence that this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in almost all cell types in the brain. Blocking connexin hemichannels within the first 3 h after hypoxia-ischemia has been shown to improve outcomes in term equivalent fetal sheep but it is important to also understand the downstream pathways linking membrane channel opening with the development of injury in order to identify new therapeutic targets. Open membrane channels release adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important physiological role, but has also been reported to act as a damage-associated molecular pattern (DAMP) signal mediated through specific purinergic receptors and so act as a primary signal 1 in the innate immune system inflammasome pathway. More crucially, extracellular ATP is a key inflammasome signal 2 activator, with purinergic receptor binding triggering the assembly of the multi-protein inflammasome complex. The inflammasome pathway and complex formation contribute to activation of inflammatory caspases, and the release of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, and vascular endothelial growth factor (VEGF). We propose that the NOD-like receptor protein-3 (NLRP3) inflammasome, which has been linked to inflammatory responses in models of ischemic stroke and various inflammatory diseases, may be one mechanism by which connexin hemichannel opening especially mediates perinatal brain injury.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
205
|
Arancio W. Progerin expression induces a significant downregulation of transcription from human repetitive sequences in iPSC-derived dopaminergic neurons. GeroScience 2019; 41:39-49. [PMID: 30623286 DOI: 10.1007/s11357-018-00050-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] Open
Abstract
Repetitive DNA sequences represent about half of the human genome. They have a central role in human biology, especially neurobiology, but are notoriously difficult to study. The purpose of this study was to quantify the transcription from repetitive sequences in a progerin-expressing cellular model of neuronal aging. Progerin is a nuclear protein causative of the Hutchinson-Gilford progeria syndrome that is also incrementally expressed during the normal aging process. A dedicated pipeline of analysis allowed to quantify transcripts containing repetitive sequences from RNAseq datasets oblivious of their genomic localization, tolerating a sufficient degree of mutational noise, all with low computational requirements. The pipeline has been applied to a published panel of RNAseq datasets derived from a well-established and well-described cellular model of aging of dopaminergic neurons. Progerin expression strongly downregulated the transcription from all the classes of repetitive sequences: satellites, long and short interspersed nuclear elements, human endogenous retroviruses, and DNA transposon. The Alu element represented by far the principal source of transcript originating either from repetitive sequences or from canonical coding genes; it was expressed on average at 192,493.5 reads per kilobase million (RPKM) (SE = 21,081.3) in the control neurons and dropped to 43,760.1 RPKM (SE = 5315.0) in the progerin-expressing neurons, being significant downregulated (p = 0.0005). The results highlighted a global perturbation of transcripts derived from repetitive sequences in a cellular model of aging and provided a direct link between progerin expression and alteration of transcription from human repetitive elements.
Collapse
Affiliation(s)
- Walter Arancio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STeBiCeF), Viale delle Scienze, University of Palermo, Ed. 16, 90128, Palermo, PA, Italy.
| |
Collapse
|
206
|
Abstract
Left-handed Z-DNA/Z-RNA is bound with high affinity by the Zα domain protein family that includes ADAR (a double-stranded RNA editing enzyme), ZBP1 and viral orthologs regulating innate immunity. Loss-of-function mutations in ADAR p150 allow persistent activation of the interferon system by Alu dsRNAs and are causal for Aicardi-Goutières Syndrome. Heterodimers of ADAR and DICER1 regulate the switch from RNA- to protein-centric immunity. Loss of DICER1 function produces age-related macular degeneration, a different type of Alu-mediated disease. The overlap of Z-forming sites with those for the signal recognition particle likely limits invasion of primate genomes by Alu retrotransposons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42, 8th Street, Unit 3412, Charlestown, MA 02129 USA
| |
Collapse
|
207
|
Yanagi Y, Foo VHX, Yoshida A. Asian age-related macular degeneration: from basic science research perspective. Eye (Lond) 2019; 33:34-49. [PMID: 30315261 PMCID: PMC6328602 DOI: 10.1038/s41433-018-0225-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
In Asian populations, polypoidal choroidal vasculopathy (PCV), a distinct phenotype of neovascular age-related macular degeneration (AMD), is more prevalent than Caucasians. Recently, there has been significant focus on how PCV differs from typical AMD. Although typical AMD and PCV share a variety of mechanisms by which abnormal angiogenic process occurs at the retinochoroidal interface, PCV has different clinical characteristics such as aneurysm-like dilation at the terminal of choroidal neovascular membranes, less frequent drusen and inner choroidal degeneration due to the thickened choroid. Recent studies support an important role for inflammation, angiogenesis molecules and lipid metabolism in the pathogenesis of neovascular AMD. Furthermore, although less attention has been paid to the role of the choroid in AMD, accumulating evidence suggests that the choriocapillaris and choroid also play a pivotal role in drusenogenesis, typical AMD and PCV. This review discusses the basic pathogenic mechanisms of AMD and explores the difference between typical AMD and PCV.
Collapse
Affiliation(s)
- Yasuo Yanagi
- Singapore National Eye Centre, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Valencia Hui Xian Foo
- Singapore National Eye Centre, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Akitoshi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
208
|
Yabal M, Calleja DJ, Simpson DS, Lawlor KE. Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol 2018; 105:377-399. [PMID: 30589456 DOI: 10.1002/jlb.mr0318-124r] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multimeric protein complexes that induce the cleavage and release of bioactive IL-1β and cause a lytic form of cell death, termed pyroptosis. Due to its diverse triggers, ranging from infectious pathogens and host danger molecules to environmental irritants, the NOD-like receptor protein 3 (NLRP3) inflammasome remains the most widely studied inflammasome to date. Despite intense scrutiny, a universal mechanism for its activation remains elusive, although, recent research has focused on mitochondrial dysfunction or potassium (K+ ) efflux as key events. In this review, we give a general overview of NLRP3 inflammasome activation and explore the recently emerging noncanonical and alternative pathways to NLRP3 activation. We highlight the role of the NLRP3 inflammasome in the pathogenesis of metabolic disease that is associated with mitochondrial and oxidative stress. Finally, we interrogate the mechanisms proposed to trigger NLRP3 inflammasome assembly and activation. A greater understanding of how NLRP3 inflammasome activation is triggered may reveal new therapeutic targets for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Monica Yabal
- III. Medical Department for Hematology and Oncology, Kinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
209
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
210
|
Tan ACS, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, Li M, Messinger JD, Dolz-Marco R, Lei J, Nittala MG, Sadda SR, Lengyel I, Freund KB, Curcio CA. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med 2018; 10:eaat4544. [PMID: 30404862 PMCID: PMC10721335 DOI: 10.1126/scitranslmed.aat4544] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2023]
Abstract
Drusen are lipid-, mineral-, and protein-containing extracellular deposits that accumulate between the basal lamina of the retinal pigment epithelium (RPE) and Bruch's membrane (BrM) of the human eye. They are a defining feature of age-related macular degeneration (AMD), a common sight-threatening disease of older adults. The appearance of heterogeneous internal reflectivity within drusen (HIRD) on optical coherence tomography (OCT) images has been suggested to indicate an increased risk of progression to advanced AMD. Here, in a cohort of patients with AMD and drusen, we show that HIRD indicated an increased risk of developing advanced AMD within 1 year. Using multimodal imaging in an independent cohort, we demonstrate that progression to AMD was associated with increasing degeneration of the RPE overlying HIRD. Morphological analysis of clinically imaged cadaveric human eye samples revealed that HIRD was formed by multilobular nodules. Nanoanalytical methods showed that nodules were composed of hydroxyapatite and that they differed from spherules and BrM plaques, other refractile features also found in the retinas of patients with AMD. These findings suggest that hydroxyapatite nodules may be indicators of progression to advanced AMD and that using multimodal clinical imaging to determine the composition of macular calcifications may help to direct therapeutic strategies and outcome measures in AMD.
Collapse
Affiliation(s)
- Anna C S Tan
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan, Eye, Ear and Throat Hospital, New York, NY 10075, USA
- Singapore National Eye Center/Singapore Eye Research Institute Singapore, Singapore 168751, Singapore
- Duke-NUS Singapore, Singapore 168751, Singapore
| | - Matthew G Pilgrim
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Sarah Fearn
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Alexander P Morrell
- Material Physics, Aston University, Aston Express Way, Birmingham B4 7ET, UK
| | - Miaoling Li
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 32594-0019, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 32594-0019, USA
| | - Rosa Dolz-Marco
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan, Eye, Ear and Throat Hospital, New York, NY 10075, USA
| | - Jianqin Lei
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Muneeswar G Nittala
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Srinivas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Imre Lengyel
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan, Eye, Ear and Throat Hospital, New York, NY 10075, USA
- Department of Ophthalmology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Christine A Curcio
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 32594-0019, USA
| |
Collapse
|
211
|
Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:369-393. [PMID: 30332560 DOI: 10.1146/annurev-pathol-020117-043952] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| |
Collapse
|
212
|
Affiliation(s)
- Carolina Uggenti
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France.
- Paris Descartes University, Sorbonne-Paris-Cité, Paris, France.
| |
Collapse
|
213
|
Hyttinen JMT, Viiri J, Kaarniranta K, Błasiak J. Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell Mol Life Sci 2018; 75:2991-3008. [PMID: 29777261 PMCID: PMC11105454 DOI: 10.1007/s00018-018-2843-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle's homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all contribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other degenerative diseases is as well explored.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
214
|
Yerramothu P. New Therapies of Neovascular AMD-Beyond Anti-VEGFs. Vision (Basel) 2018; 2:vision2030031. [PMID: 31735894 PMCID: PMC6835305 DOI: 10.3390/vision2030031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is one of the leading causes of blindness among the aging population. The current treatment options for nAMD include intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF). However, standardized frequent administration of anti-VEGF injections only improves vision in approximately 30–40% of nAMD patients. Current therapies targeting nAMD pose a significant risk of retinal fibrosis and geographic atrophy (GA) development in nAMD patients. A need exists to develop new therapies to treat nAMD with effective and long-term anti-angiogenic effects. Recent research on nAMD has identified novel therapeutic targets and angiogenic signaling mechanisms involved in its pathogenesis. For example, tissue factor, human intravenous immune globulin, interferon-β signaling, cyclooxygenase-2 (COX-2) and cytochrome P450 monooxygenase lipid metabolites have been identified as key players in the development of angiogenesis in AMD disease models. Furthermore, novel therapies such as NACHT, LRR and PYD domains containing protein 3 (NLRP3) inflammasome inhibition, inhibitors of integrins and tissue factor are currently being tested at the level of clinical trials to treat nAMD. The aim of this review is to discuss the scope for alternative therapies proposed as anti-VEGFs for the treatment of nAMD.
Collapse
Affiliation(s)
- Praveen Yerramothu
- School of Optometry and Vision Science, University of New South Wales, Sydney 00098, Australia
| |
Collapse
|
215
|
Sack MN. Mitochondrial fidelity and metabolic agility control immune cell fate and function. J Clin Invest 2018; 128:3651-3661. [PMID: 30059015 DOI: 10.1172/jci120845] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remodeling of mitochondrial metabolism plays an important role in regulating immune cell fate, proliferation, and activity. Furthermore, given their bacterial ancestry, disruption in mitochondrial fidelity leading to extravasation of their content initiates and amplifies innate immune surveillance with a myriad of physiologic and pathologic consequences. Investigations into the role of mitochondria in the immune system have come to the fore, and appreciation of mitochondrial function and quality control in immune regulation has enhanced our understanding of disease pathogenesis and identified new targets for immune modulation. This mitochondria-centered Review focuses on the role of mitochondrial metabolism and fidelity, as well as the role of the mitochondria as a structural platform, for the control of immune cell polarity, activation, and signaling. Mitochondria-linked disease and mitochondrially targeted therapeutic strategies to manage these conditions are also discussed.
Collapse
|
216
|
Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, Heymann M, van der Goot FG, Turcatti G, Behrendt R, Ablasser A. Targeting STING with covalent small-molecule inhibitors. Nature 2018; 559:269-273. [PMID: 29973723 DOI: 10.1038/s41586-018-0287-8] [Citation(s) in RCA: 756] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
Aberrant activation of innate immune pathways is associated with a variety of diseases. Progress in understanding the molecular mechanisms of innate immune pathways has led to the promise of targeted therapeutic approaches, but the development of drugs that act specifically on molecules of interest remains challenging. Here we report the discovery and characterization of highly potent and selective small-molecule antagonists of the stimulator of interferon genes (STING) protein, which is a central signalling component of the intracellular DNA sensing pathway1,2. Mechanistically, the identified compounds covalently target the predicted transmembrane cysteine residue 91 and thereby block the activation-induced palmitoylation of STING. Using these inhibitors, we show that the palmitoylation of STING is essential for its assembly into multimeric complexes at the Golgi apparatus and, in turn, for the recruitment of downstream signalling factors. The identified compounds and their derivatives reduce STING-mediated inflammatory cytokine production in both human and mouse cells. Furthermore, we show that these small-molecule antagonists attenuate pathological features of autoinflammatory disease in mice. In summary, our work uncovers a mechanism by which STING can be inhibited pharmacologically and demonstrates the potential of therapies that target STING for the treatment of autoinflammatory disease.
Collapse
Affiliation(s)
- Simone M Haag
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Muhammet F Gulen
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Luc Reymond
- Biomolecular Screening Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Gibelin
- Biomolecular Screening Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alexiane Decout
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Heymann
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
217
|
Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc Natl Acad Sci U S A 2018; 115:E6254-E6263. [PMID: 29891687 PMCID: PMC6142199 DOI: 10.1073/pnas.1800544115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue macrophages (ATMs) maintain adipose tissue homeostasis. However, during obesity ATMs become inflammatory, resulting in impaired adipose tissue function. Oxidative stress increases during obesity, which is thought to contribute to adipose tissue inflammation. To date, the connection between oxidative stress and adipose tissue inflammation remain unclear. In this study, we identify two classes of phospholipid oxidation products in lean and obese adipose tissue, which polarize macrophages to an antioxidant or proinflammatory state, respectively. Furthermore, we show that these phospholipids differently affect macrophage cellular metabolism, reflecting the metabolisms of ATMs found in lean and obese adipose tissue. Identification of pathways controlling ATM metabolism will lead to novel therapies for insulin resistance. Adipose tissue macrophages (ATMs) adapt their metabolic phenotype either to maintain lean tissue homeostasis or drive inflammation and insulin resistance in obesity. However, the factors in the adipose tissue microenvironment that control ATM phenotypic polarization and bioenergetics remain unknown. We have recently shown that oxidized phospholipids (OxPL) uniquely regulate gene expression and cellular metabolism in Mox macrophages, but the presence of the Mox phenotype in adipose tissue has not been reported. Here we show, using extracellular flux analysis, that ATMs isolated from lean mice are metabolically inhibited. We identify a unique population of CX3CR1neg/F4/80low ATMs that resemble the Mox (Txnrd1+HO1+) phenotype to be the predominant ATM phenotype in lean adipose tissue. In contrast, ATMs isolated from obese mice had characteristics typical of the M1/M2 (CD11c+CD206+) phenotype with highly activated bioenergetics. Quantifying individual OxPL species in the stromal vascular fraction of murine adipose tissue, using targeted liquid chromatography-mass spectrometry, revealed that high fat diet-induced adipose tissue expansion led to a disproportional increase in full-length over truncated OxPL species. In vitro studies showed that macrophages respond to truncated OxPL species by suppressing bioenergetics and up-regulating antioxidant programs, mimicking the Mox phenotype of ATMs isolated from lean mice. Conversely, full-length OxPL species induce proinflammatory gene expression and an activated bioenergetic profile that mimics ATMs isolated from obese mice. Together, these data identify a redox-regulatory Mox macrophage phenotype to be predominant in lean adipose tissue and demonstrate that individual OxPL species that accumulate in adipose tissue instruct ATMs to adapt their phenotype and bioenergetic profile to either maintain redox homeostasis or to promote inflammation.
Collapse
|
218
|
Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med Chem 2018; 10:1301-1317. [PMID: 29558821 DOI: 10.4155/fmc-2017-0322] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Persistent activation of STING pathway is the basis for several autoimmune diseases. STING is activated by cGAMP, which is produced by cGAS in the presence of DNA. Results/methodology: HPLC-based medium throughput screening for inhibitors of cGAS identified suramin as a potent inhibitor. Unlike other reported cGAS inhibitors, which bind to the ATP/GTP binding site, suramin displaced the bound DNA from cGAS. Addition of suramin to THP1 cells reduced the levels of IFN-β mRNA and protein. Suramin did not inhibit lipopolysaccharide- or Pam3CSK4-induced IL-6 mRNA expression. Conclusion: Suramin inhibits STING pathway via the inhibition of cGAS enzymatic activity. Suramin or analogs thereof that displace DNA from cGAS could be used as anti-inflammatory drugs.
Collapse
|
219
|
Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 2018; 215:1287-1299. [PMID: 29622565 PMCID: PMC5940270 DOI: 10.1084/jem.20180139] [Citation(s) in RCA: 851] [Impact Index Per Article: 121.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer. Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
Collapse
Affiliation(s)
- Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX .,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX .,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
220
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
221
|
|