201
|
Grabenstatter HL, Carlsen J, Raol YH, Yang T, Hund D, Cruz Del Angel Y, White AM, Gonzalez MI, Longo FM, Russek SJ, Brooks-Kayal AR. Acute administration of the small-molecule p75(NTR) ligand does not prevent hippocampal neuron loss or development of spontaneous seizures after pilocarpine-induced status epilepticus. J Neurosci Res 2014; 92:1307-18. [PMID: 24801281 DOI: 10.1002/jnr.23402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/02/2023]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are initially expressed in a precursor form (e.g., pro-BDNF) and cleaved to form mature BDNF (mBDNF). After pilocarpine-induced status epilepticus (SE), increases in neurotrophins regulate a wide variety of cell-signaling pathways, including prosurvival and cell-death machinery in a receptor-specific manner. Pro-BDNF preferentially binds to the p75 neurotrophin receptor (p75(NTR) ), whereas mBDNF is the major ligand of the tropomyosin-related kinase receptor. To elucidate a potential role for p75(NTR) in acute stages of epileptogenesis, rats were injected prior to and at onset of SE with LM11A-31, a small-molecule ligand that binds to p75(NTR) to promote survival signaling and inhibit neuronal cell death. Modulation of early p75(NTR) signaling and its effects on electrographic SE, SE-induced neurodegeneration, and subsequent spontaneous seizures were examined after LM11A-31 administration. Despite an established neuroprotective effect of LM11A-31 in several animal models of neurodegenerative disorders (e.g., Alzheimer's disease, traumatic brain injury, and spinal cord injury), high-dose LM11A-31 administration prior to and at onset of SE did not reduce the intensity of electrographic SE, prevent SE-induced neuronal cell injury, or inhibit the progression of epileptogenesis. Further studies are required to understand the role of p75(NTR) activation during epileptogenesis and in seizure-induced cell injury in the hippocampus, among other potential cellular pathologies contributing to the onset of spontaneous seizures. Additional studies utilizing more prolonged treatment with LM11A-31 are required to reach a definite conclusion on its potential neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- H L Grabenstatter
- Department of Pediatrics, Division of Neurology, and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Ou SHI, Soo RA, Kubo A, Kawaguchi T, Ahn MJ. Will the Requirement by the US FDA to Simultaneously Co-Develop Companion Diagnostics (CDx) Delay the Approval of Receptor Tyrosine Kinase Inhibitors for RTK-Rearranged (ROS1-, RET-, AXL-, PDGFR-α-, NTRK1-) Non-Small Cell Lung Cancer Globally? Front Oncol 2014; 4:58. [PMID: 24744988 PMCID: PMC3978317 DOI: 10.3389/fonc.2014.00058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
The discovery of anaplastic lymphoma kinase (ALK) rearrangement in non-small cell lung cancer (NSCLC) in 2007 and the approval of crizotinib for the treatment of advanced ALK-rearranged NSCLC in 2011 represents a landmark in the development of targeted oncology therapy. The approval of crizotinib was accompanied simultaneously by the approval of the Vysis (Abbott Molecular) break-apart fluorescence in situ hybridization (FISH) test as the companion diagnostic (CDx) test to detect ALK rearrangement. Pfizer, the manufacturer of crizotinib, sponsored the screening of thousands of patients and the standardization of the ALK FISH test as part of the approval process for crizotinib, a first in class ALK inhibitor. Many pharmaceutical companies are now using the Food and Drug Administration (FDA)-approved ALK FISH assay to enroll patients onto trials for their own respective ALK inhibitors. In essence they are “piggybacking” on the FDA-approved ALK FISH assay without having to pay for the development of a CDx, nor screening for ALK-rearranged NSCLC patients in the protocols because screening for ALK rearrangement is now the standard of care in NSCLC after the approval of crizotinib. Since 2007, rearrangement in more receptor tyrosine kinases (RTKs) such as ROS1, RET, AXL, PDGFR-α, and NTRK1 have been discovered in NSCLC but the incidence of each subtype of RTK-rearranged NSCLC is quite rare. Crizotinib has now demonstrated significant clinical activity in ROS1-rearranged NSCLC patients. Whether crizotinib will gain official FDA approval for use in ROS1-rearranged NSCLC, on the other hand, remains unclear as there is no test for ROS1-rearrangement currently being developed to support US FDA approval as a CDx. This may be due in part to the fact that the full cost associated with the development of a pre-market approved-approved CDx must be borne by the company seeking the first drug approval in a new indication. Given the low incidence of ROS1-rearrangement in NSCLC, and the availability of crizotinib in most countries, a more cost-effective way is for crizotinib to gain compendium listing for ROS1-rearranged NSCLC in treatment guidelines. However, without a formal indication from the FDA, a drug cannot be marketed for off label use, it is unlikely that payers public or private will routinely pay for molecular testing for ROS1-rearrangement in NSCLC let alone reimburse off label use of crizotinib. Similarly, several marketed tyrosine kinase inhibitors (TKIs) in the US (sorafenib, sunitinib, vandetanib, cabozantinib, regorafenib) are potent RET inhibitors in vitro. It does not make sense for any one pharmaceutical company to shoulder the full cost of developing a particular CDx for RET-rearranged NSCLC where, once approved, it may be used by other pharmaceutical companies to gain addition labeling approval for their own RET inhibitors. Thus, the requirement by the US FDA that a specific CDx have to be co-developed and standardized for each of the molecular subtype of NSCLC as part of the drug approval process, while prudent, may have the un-intended consequence of deterring clinical development of these TKIs in these very rare molecular subsets of NSCLC. While we all march to the drumbeat of precision cancer medicine, the stringent requirement of co-development CDx for each molecular subtype of solid tumor may inadvertently make this goal substantially more difficult to achieve.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine , Orange, CA , USA
| | - Ross A Soo
- National University Health System and Cancer Science Institute of Singapore , Singapore
| | - Akihito Kubo
- Aichi Medical University School of Medicine , Nagakute , Japan
| | - Tomoya Kawaguchi
- National Hospital Organization Kinki-Chuo Chest Medical Center , Sakai City , Japan
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| |
Collapse
|
203
|
BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin. J Neurosci 2014; 34:963-8. [PMID: 24431454 DOI: 10.1523/jneurosci.2700-13.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke.
Collapse
|
204
|
Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014; 143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States; Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | - Richard J Martin
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
205
|
Todd D, Gowers I, Dowler SJ, Wall MD, McAllister G, Fischer DF, Dijkstra S, Fratantoni SA, van de Bospoort R, Veenman-Koepke J, Flynn G, Arjomand J, Dominguez C, Munoz-Sanjuan I, Wityak J, Bard JA. A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington's disease. PLoS One 2014; 9:e87923. [PMID: 24503862 PMCID: PMC3913682 DOI: 10.1371/journal.pone.0087923] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Huntington’s disease (HD) is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease. Brain-derived neurotrophic factor (BDNF) is a neuroprotective, secreted protein that binds with high affinity to the extracellular domain of the tropomyosin-receptor kinase B (TrkB) receptor promoting neuronal cell survival by activating the receptor and down-stream signaling proteins. Reduced cortical BDNF production and transport to the striatum have been implicated in HD pathogenesis; the ability to enhance TrkB signaling using a BDNF mimetic might be beneficial in disease progression, so we explored this as a therapeutic strategy for HD. Using recombinant and native assay formats, we report here the evaluation of TrkB antibodies and a panel of reported small molecule TrkB agonists, and identify the best candidate, from those tested, for in vivo proof of concept studies in transgenic HD models.
Collapse
Affiliation(s)
| | - Ian Gowers
- BioFocus, Saffron Walden, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Jamshid Arjomand
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Ignacio Munoz-Sanjuan
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - John Wityak
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
| | - Jonathan A. Bard
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
- CHDI Management/CHDI Foundation, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
206
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
207
|
Simmons DA, Belichenko NP, Yang T, Condon C, Monbureau M, Shamloo M, Jing D, Massa SM, Longo FM. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease. J Neurosci 2013; 33:18712-27. [PMID: 24285878 PMCID: PMC3841443 DOI: 10.1523/jneurosci.1310-13.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/09/2013] [Accepted: 10/12/2013] [Indexed: 02/08/2023] Open
Abstract
Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75(NTR), could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5-6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Department of Neurology and Neurological Sciences and
| | | | - Marie Monbureau
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medical College, New York, New York 10021, and
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, Department of Veterans Affairs Medical Center and Department of Neurology, University of California, San Francisco, San Francisco, California 94121
| | | |
Collapse
|
208
|
Antila H, Autio H, Turunen L, Harju K, Tammela P, Wennerberg K, Yli-Kauhaluoma J, Huttunen HJ, Castrén E, Rantamäki T. Utilization of in situ ELISA method for examining Trk receptor phosphorylation in cultured cells. J Neurosci Methods 2013; 222:142-6. [PMID: 24239780 DOI: 10.1016/j.jneumeth.2013.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Trk receptor tyrosine kinases regulate multiple important neuronal processes during the development and in the adulthood. Tyrosine phosphorylation of Trk serves as the initial step in the Trk signaling pathway and indicates receptor' autocatalytic activity. However, methods allowing simple and large-scale Trk phosphorylation analyses in cultured cells are lacking. NEW METHOD We describe an in situ phospho-Trk ELISA (enzyme-linked immunosorbent assay) method where cell culture, receptor stimulation and Trk phosphorylation analysis are all performed on the same multiwell plate. RESULTS In situ phospho-Trk ELISA readily and specifically detects neurotrophin-induced Trk phosphorylation in cultured cells. A proof-of-concept small molecule screening of a library composed of 2000 approved drugs and other bioactive compounds was carried out using this novel method. COMPARISON WITH EXISTING METHODS In situ phospho-Trk ELISA utilizes the principles and advantages of conventional sandwich ELISA in an in situ context. CONCLUSIONS We describe a novel method that can be efficiently used to examine Trk receptor phosphorylation in cultured cells. Principally similar methods can be developed to examine the levels and signaling of any intracellular protein.
Collapse
Affiliation(s)
- Hanna Antila
- Neuroscience Center, P.O. Box 56, Viikinkaari 4, FI-00014 University of Helsinki, Finland
| | - Henri Autio
- Neuroscience Center, P.O. Box 56, Viikinkaari 4, FI-00014 University of Helsinki, Finland
| | - Laura Turunen
- Institute For Molecular Medicine Finland (FIMM), P.O. Box 20, Tukholmankatu 8, FI-00014 University of Helsinki, Finland
| | - Kirsi Harju
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, Viikinkaari 5 E, FI-00014 University of Helsinki, Finland
| | - Päivi Tammela
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56, Viikinkaari 5 E, FI-00014 University of Helsinki, Finland
| | - Krister Wennerberg
- Institute For Molecular Medicine Finland (FIMM), P.O. Box 20, Tukholmankatu 8, FI-00014 University of Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, Viikinkaari 5 E, FI-00014 University of Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, P.O. Box 56, Viikinkaari 4, FI-00014 University of Helsinki, Finland; Hermo Pharma Ltd., Viikinkaari 4, FI-00790 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, P.O. Box 56, Viikinkaari 4, FI-00014 University of Helsinki, Finland
| | - Tomi Rantamäki
- Neuroscience Center, P.O. Box 56, Viikinkaari 4, FI-00014 University of Helsinki, Finland.
| |
Collapse
|