201
|
Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, Li Z, Fu Y, Zhang Y, Yang F, Zhao J, Wu H, Wang P, Shen Y, Shen S, Xu G, Wang L, Yan C, Zou X, Chen D, Lv Y. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun 2023; 14:5123. [PMID: 37612267 PMCID: PMC10447466 DOI: 10.1038/s41467-023-40727-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease refractory to all targeted and immune therapies. However, our understanding of PDAC microenvironment especially the metastatic microenvironment is very limited partly due to the inaccessibility to metastatic tumor tissues. Here, we present the single-cell transcriptomic landscape of synchronously resected PDAC primary tumors and matched liver metastases. We perform comparative analysis on both cellular composition and functional phenotype between primary and metastatic tumors. Tumor cells exhibit distinct transcriptomic profile in liver metastasis with clearly defined evolutionary routes from cancer cells in primary tumor. We also identify specific subtypes of stromal and immune cells critical to the formation of the pro-tumor microenvironment in metastatic lesions, including RGS5+ cancer-associated fibroblasts, CCL18+ lipid-associated macrophages, S100A8+ neutrophils and FOXP3+ regulatory T cells. Cellular interactome analysis further reveals that the lack of tumor-immune cell interaction in metastatic tissues contributes to the formation of the immunosuppressive microenvironment. Our study provides a comprehensive characterization of the transcriptional landscape of PDAC liver metastasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Dongming Zhu
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ruidong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin Gao
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Chao Yan
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| | - Dijun Chen
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| |
Collapse
|
202
|
Yang Y, Gu H, Zhang K, Guo Z, Wang X, Wei Q, Weng L, Han X, Lv Y, Cao M, Cao P, Huang C, Qiu Z. Exosomal ACADM sensitizes gemcitabine-resistance through modulating fatty acid metabolism and ferroptosis in pancreatic cancer. BMC Cancer 2023; 23:789. [PMID: 37612627 PMCID: PMC10463774 DOI: 10.1186/s12885-023-11239-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to evaluate the potential of exosomes from cancer cells to predict chemoresistance in pancreatic cancer (PC) and explore the molecular mechanisms through RNA-sequencing and mass spectrometry. We sought to understand the connection between the exosomal Medium-chain acyl-CoA dehydrogenase (ACADM) level and the reaction to gemcitabine in vivo and in patients with PC. We employed loss-of-function, gain-of-function, metabolome mass spectrometry, and xenograft models to investigate the effect of exosomal ACADM in chemoresistance in PC. Our results showed that the molecules involved in lipid metabolism in exosomes vary between PC cells with different gemcitabine sensitivity. Exosomal ACADM (Exo-ACADM) was strongly correlated with gemcitabine sensitivity in vivo, which can be used as a predictor for postoperative gemcitabine chemosensitivity in pancreatic patients. Moreover, ACADM was found to regulate the gemcitabine response by affecting ferroptosis through Glutathione peroxidase 4 (GPX4) and mevalonate pathways. It was also observed that ACADM increased the consumption of unsaturated fatty acids and decreased intracellular lipid peroxides and reactive oxygen species (ROS) levels. In conclusion, this research suggests that Exo-ACADM may be a viable biomarker for predicting the responsiveness of patients to chemotherapy.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaofeng Wang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingyun Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Ling Weng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Xuan Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Yan Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
203
|
Storkholm JH, Burgdorf SK, Larsen PN, Hansen CP. Pancreaticoduodenectomy with preoperative total embolization of the hepatic arteries (PD-HAE)-a novel treatment with sacrifice of the hepatic arterial blood supply without the need for arterial reconstruction. Langenbecks Arch Surg 2023; 408:310. [PMID: 37580555 PMCID: PMC10425295 DOI: 10.1007/s00423-023-03054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Tumors with involvement of common hepatic and gastroduodenal arteries (CHA and GDA) or GDA and the proper hepatic artery (PHA) are traditionally considered nonresectable. We have devised a new procedure that includes pancreaticoduodenectomy with preoperative hepatic artery embolization (PD-HAE) to facilitate an R0 resection of tumors involving the hepatic arteries without vascular anastomoses and complete sacrifice of normal hepatic arterial blood supply. METHODS To allow resection of the hepatic arteries, preoperative embolization of the PHA was performed to induce an increased collateral arterial blood flow from the periphery of the liver, far from the hepatic hilum 10-14 days prior to the operation. Between May 1, 2017 and December 31, 2019, eight patients with ductal adenocarcinoma were operated with the PD-HAE procedure. RESULTS The embolizations were uneventful apart from a transient marginal elevation of alanine aminotransferase in three patients. All patients had N disease with perineural invasion of tumor cells around the adventitia of the artery and severe perivascular inflammation. An R0 resection (> 1.0 mm to all resection margins) was obtained in six patients (75%). Mean hospital stay was 12 days. Median survival was 23 months (95% CI: 19.5-26.5 months). Six patients (75%) are still alive 11 to 36 months after the operation. There was perioperative fatality, and morbidity was comparable to standard pancreaticoduodenectomy. CONCLUSION PD-HAE is a safe procedure and may provide the opportunity for curative resection in otherwise unresectable patients. However, larger studies are needed to evaluate this procedure.
Collapse
Affiliation(s)
- J H Storkholm
- Department of Gastroenterological Surgery and Transplantation CTx, Rigshospitalet, Copenhagen, Denmark.
- Department of HPB Surgery, Imperial College, Hammersmith Hospital, London, UK.
| | - S K Burgdorf
- Department of Gastroenterological Surgery and Transplantation CTx, Rigshospitalet, Copenhagen, Denmark
| | - P N Larsen
- Department of Gastroenterological Surgery and Transplantation CTx, Rigshospitalet, Copenhagen, Denmark
| | - C P Hansen
- Department of Gastroenterological Surgery and Transplantation CTx, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
204
|
Liang C, Huang W, Zhang Y, Zhang D, An S, Wu Q, Zhao H, Wang C, Huang G, Wei W, Liu J. ImmunoPET Imaging of CD47 with VHH-Derived Tracers in Pancreatic Cancers. Mol Pharm 2023; 20:4184-4195. [PMID: 37403817 DOI: 10.1021/acs.molpharmaceut.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with insidious onset, rapid progression, and a very poor prognosis. CD47 is a transmembrane protein associated with the development and poor prognosis of pancreatic cancer. The aim of this study was to evaluate the diagnostic value of novel immunoPET tracers targeting CD47 in preclinical pancreatic cancer models. The association of CD47 expression with pancreatic cancer was analyzed using the Gene Expression Profiling Interactive Analysis platform. Immunohistochemical analysis of tissue microarrays was performed to detect CD47 expression in PDAC. CD47 expression levels on BxPC-3 and AsPC-1 cell membranes were compared using flow cytometry. A VHH (C2)-targeting human CD47 and its albumin-binding derivative (ABDC2) were labeled with 68Ga or 89Zr, respectively. The developed tracers were evaluated by immuno-positron emission tomography (immunoPET) imaging in tumor-bearing nude and CD47-humanized mice. [68Ga]Ga-NOTA-C2 effectively detected tumor lesions in nude mice models and further showed confirmative imaging capacity in CD47-humanized PDAC models. Compared with [68Ga]Ga-NOTA-C2, [89Zr]Zr-DFO-ABDC2 had a significantly prolonged circulation time, increased tumor uptake, and reduced accumulation in the kidneys. Finally, biodistribution and histological staining confirmed the results of the immunoPET imaging studies. In this study, we validated that two novel VHH-derived molecular imaging tracers for immunoPET imaging ([68Ga]Ga-NOTA-C2 and [89Zr]Zr-DFO-ABDC2) can effectively annotate CD47 expression and diagnose PDAC in a target-specific manner. Clinical application of the imaging strategies may help select patients for CD47-targeted therapies and assess the response thereafter.
Collapse
Affiliation(s)
- Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
205
|
Yang J, Liu Y, Liu S. The role of epithelial-mesenchymal transition and autophagy in pancreatic ductal adenocarcinoma invasion. Cell Death Dis 2023; 14:506. [PMID: 37550301 PMCID: PMC10406904 DOI: 10.1038/s41419-023-06032-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Of all pancreatic cancer (PC) cases, approximately 90% are pancreatic ductal adenocarcinoma (PDAC), which progress rapidly due to its high degree of invasiveness and high metastatic potential. Epithelial-mesenchymal transition (EMT) is a prerequisite for cancer cell invasion and spread, and it is mediated by the specific cellular behaviors and the tumor microenvironment. Autophagy has long been a target of cancer therapy, and it has been considered to play a dual and contradictory role, particularly regarding EMT-mediated PDAC invasion. This review discusses the characteristics and the biological role of EMT and autophagy from a cellular perspective, explaining invasion as a survival behavior of PDAC, with the aim of providing novel insights into targeting EMT and autophagy to overcome PDAC invasion.
Collapse
Affiliation(s)
- Jian Yang
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Ying Liu
- Department of Medical Oncology, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Shi Liu
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China.
| |
Collapse
|
206
|
Schneider C, El-Koubani O, Intzepogazoglou D, Atkinson S, Menon K, Patel AG, Ross P, Srirajaskanthan R, Prachalias AA, Srinivasan P. Evaluation of treatment delays in hepatopancreatico-biliary surgery during the first COVID-19 wave. Ann R Coll Surg Engl 2023; 105:S12-S17. [PMID: 35175785 PMCID: PMC10390244 DOI: 10.1308/rcsann.2021.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 08/02/2023] Open
Abstract
INTRODUCTION The COVID-19 pandemic has caused oncological services worldwide to face unprecedented challenges resulting in treatment disruption for surgical patients. Hepatopancreatico-biliary (HPB) cancers are characterised by rapid disease progression. This study aims to assess delays in receiving surgery for this patient cohort during the first COVID-19 wave. METHODS Patients undergoing surgery between April and July 2020 (COVID-19 period) were compared with a control group from the preceding year. Delay in receiving surgery was defined as more than 50 days between referral and surgery date. Statistical analysis was carried out to evaluate predictors of delay and short-term outcomes. RESULTS During the COVID-19 and pre-COVID-19 periods, 94 and 115 patients underwent surgery, respectively. No patients contracted COVID-19 postoperatively. Some 118 patients waited more than 50 days for surgery versus 91 who received surgery within 50 days from referral. Independent predictors for surgical delay were undergoing surgery in the COVID-19 era (odds ratio (OR) 2.2, 95% confidence interval (CI) 1.2-4.1; p=0.015), referral pathway (OR 35.1, 95% CI 4.2-296; p=0.001) and presenting pathology (OR 8.3, 95% CI 1.2-56.1; p=0.03). Short-term outcomes were comparable between groups. CONCLUSIONS Patient referral pathway and presenting pathology may contribute to delays in undergoing HPB cancer surgery during COVID-19 outbreaks. It is hoped that a better understanding of these factors will aid in designing shifts in healthcare policy during future pandemic outbreaks.
Collapse
Affiliation(s)
- C Schneider
- King’s College Hospital NHS Foundation Trust, UK
| | - O El-Koubani
- King’s College Hospital NHS Foundation Trust, UK
| | | | - S Atkinson
- King’s College Hospital NHS Foundation Trust, UK
| | - K Menon
- King’s College Hospital NHS Foundation Trust, UK
| | - AG Patel
- King’s College Hospital NHS Foundation Trust, UK
| | - P Ross
- King’s College Hospital NHS Foundation Trust, UK
| | | | | | - P Srinivasan
- King’s College Hospital NHS Foundation Trust, UK
| |
Collapse
|
207
|
Zhou Z, Van der Jeught K, Li Y, Sharma S, Yu T, Moulana I, Liu S, Wan J, Territo PR, Opyrchal M, Zhang X, Wan G, Lu X. A T Cell-Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300548. [PMID: 37271874 PMCID: PMC10427404 DOI: 10.1002/advs.202300548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Indexed: 06/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a clinically challenging disease with limited treatment options. Despite a small percentage of cases with defective mismatch DNA repair (dMMR), PDA is included in the most immune-resistant cancer types that are poorly responsive to immune checkpoint blockade (ICB) therapy. To facilitate drug discovery combating this immunosuppressive tumor type, a high-throughput drug screen platform is established with the newly developed T cell-incorporated pancreatic tumor organoid model. Tumor-specific T cells are included in the pancreatic tumor organoids by two-step cell packaging, fully recapitulating immune infiltration in the immunosuppressive tumor microenvironment (TME). The organoids are generated with key components in the original tumor, including epithelial, vascular endothelial, fibroblast and macrophage cells, and then packaged with T cells into their outside layer mimicking a physical barrier and enabling T cell infiltration and cytotoxicity studies. In the PDA organoid-based screen, epigenetic inhibitors ITF2357 and I-BET151 are identified, which in combination with anti-PD-1 based therapy show considerably greater anti-tumor effect. The combinatorial treatment turns the TME from immunosuppressive to immunoactive, up-regulates the MHC-I antigen processing and presentation, and enhances the effector T cell activity. The standardized PDA organoid model has shown great promise to accelerate drug discovery for the immunosuppressive cancer.
Collapse
Affiliation(s)
- Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Yujing Li
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ishara Moulana
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsCenter for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsCenter for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Paul R. Territo
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIN46202USA
| | - Mateusz Opyrchal
- Division of Hematology/OncologyDepartment of MedicineMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Guohui Wan
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Xiongbin Lu
- Department of Medical and Molecular GeneticsCenter for Computational Biology and BioinformaticsMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
208
|
Sarkar R, Xu Z, Perera CJ, Apte MV. Emerging role of pancreatic stellate cell-derived extracellular vesicles in pancreatic cancer. Semin Cancer Biol 2023; 93:114-122. [PMID: 37225047 DOI: 10.1016/j.semcancer.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
Collapse
Affiliation(s)
- Rohit Sarkar
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| | - Minoti V Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| |
Collapse
|
209
|
Mohammed I, Alhammer AH, Arif IS. The p53 reactivator PRIMA-1 MET synergises with 5-fluorouracil to induce apoptosis in pancreatic cancer cells. Invest New Drugs 2023; 41:587-595. [PMID: 37402008 DOI: 10.1007/s10637-023-01380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies; p53 is mutated in approximately 75% of PC patients. Hence, the protein derived from mutant/wild-type TP53 may represent a therapeutic target. Interestingly, a p53 reactivator (PRIMA-1MET) showed promise in clinical trials of haematological malignancies; therefore, it warrants an in vitro evaluation in PC cell lines. To evaluate the antiproliferative effects of PRIMA-1MET, either alone or combined with the common chemotherapy 5-fluorouracil (5-FU), against mutated and wild-type p53 PC cell lines. This study involved p53-mutant (AsPC-1) and p53-wild type (Capan-2) PC cell lines. The cytotoxicity of PRIMA-1MET alone or in combination with 5-FU was evaluated by MTT assay. Synergism was assessed by calculating the combination index (CI) via CalcuSyn software. Fluorescence microscopy was used to analyse apoptosis following acridine orange/ethidium bromide (AO/EB) staining. Morphological changes were investigated with an inverted microscope. Quantitative reverse transcription PCR (RT‒qPCR) was used to measure gene expression. Both PC cell lines were sensitive to PRIMA-1MET monotherapy. Furthermore, PRIMA-1MET and 5-FU had a synergistic effect (CI < 1), reflected by significant enhancement of apoptosis and morphological changes in the combination vs. monotherapy treatments. Moreover, the RT‒qPCR results indicated increased expression of the NOXA and TP73 genes in combination-treated cells. Our data suggested that PRIMA-1MET, whether alone or combined with 5-FU, has an antiproliferative effect on PC cell lines regardless of p53 mutational status. The synergism of the combination was associated with significant apoptosis induction through p53-dependent and p53-independent pathways. Preclinical confirmation of these data in in vivo models is highly recommended.
Collapse
Affiliation(s)
- Ibtehal Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ali Haider Alhammer
- Medical and Molecular Biotechnology Department, Biotechnology Research Center, Al-Nahrain University, Jadriya, Baghdad, Iraq.
| | - Inam Sameh Arif
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
210
|
Wang Y, Ge W, Xue S, Cui J, Zhang X, Mao T, Xu H, Li S, Ma J, Yue M, Shentu D, Wang L. Cuproptosis-related lncRNAs are correlated with tumour metabolism and immune microenvironment and predict prognosis in pancreatic cancer patients. IET Syst Biol 2023; 17:174-186. [PMID: 37341253 PMCID: PMC10439495 DOI: 10.1049/syb2.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
Cuproptosis is a novel cell death pathway, and the regulatory mechanism in pancreatic cancer (PC) is unclear. The authors aimed to figure out whether cuproptosis-related lncRNAs (CRLs) could predict prognosis in PC and the underlying mechanism. First, the prognostic model based on seven CRLs screened by the least absolute shrinkage and selection operator Cox analysis was constructed. Following this, the risk score was calculated for pancreatic cancer patients and divided patients into high and low-risk groups. In our prognostic model, PC patients with higher risk scores had poorer outcomes. Based on several prognostic features, a predictive nomogram was established. Furthermore, the functional enrichment analysis of differentially expressed genes between risk groups was performed, indicating that endocrine and metabolic pathways were potential regulatory pathways between risk groups. TP53, KRAS, CDKN2A, and SMAD4 were dominant mutated genes in the high-risk group and tumour mutational burden was positively correlated with the risk score. Finally, the tumour immune landscape indicated patients in the high-risk group were more immunosuppressive than that in the low-risk group, with lower infiltration of CD8+ T cells and higher M2 macrophages. Above all, CRLs can be applied to predict PC prognosis, which is closely correlated with the tumour metabolism and immune microenvironment.
Collapse
Affiliation(s)
- Yanling Wang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiyu Ge
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shengbai Xue
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiujie Cui
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Zhang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Tiebo Mao
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Haiyan Xu
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shumin Li
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jingyu Ma
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Yue
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Daiyuan Shentu
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Liwei Wang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
211
|
Ma J, Zhou W, Yuan Y, Wang B, Meng X. PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression. Cancer Gene Ther 2023; 30:1072-1083. [PMID: 37037907 DOI: 10.1038/s41417-023-00609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Proteasome 26S subunit, non-ATPase 12 (PSMD12) genes have been implicated in several types of malignancies but the role of PSMD12 in pancreatic cancer (PC) remains elusive. Bioinformatics analysis showed that PSMD12 was highly expressed in PC patients and was associated with shorter overall survival. PSMD12 was also shown to be highly expressed in PC tissues and cell lines. Upregulated PSMD12 showed enhanced cell viability, increased colony formation rate and upregulated levels of PCNA and c-Myc, while the inhibition of PSMD12 abated these levels. PSMD12 knockdown promoted cell apoptosis. The results of xenografts in nude mice confirmed that PSMD12 promoted PC tumor growth in vivo. Protein‒protein interaction network and functional enrichment analyses implied that PSMD12 may have a connection with cyclin-dependent kinase inhibitor 3 (CDKN3). Co‑immunoprecipitation and western blot results confirmed that PSMD12 could interact with and abate the ubiquitination level of CDKN3, thus stabilizing the CDKN3 protein. Rescue assays showed that PSMD12 overexpression caused cell proliferation and that knockdown-induced cell apoptosis could be reversed by CDKN3 regulation. This work reveals the essential roles of PSMD12 in the proliferation and apoptosis of PC development. PSMD12 may regulate CDKN3 expression by interacting with and abating the ubiquitination level of CDKN3, thereby participating in the malignant behavior of PC.
Collapse
Affiliation(s)
- Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenyang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yifeng Yuan
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosheng Wang
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiangpeng Meng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
212
|
Halle-Smith JM, Powell-Brett S, Roberts K, Chatzizacharias NA. Resection of isolated liver oligometastatic disease in pancreatic ductal adenocarcinoma: Is there a survival benefit? A systematic review. World J Gastrointest Surg 2023; 15:1512-1521. [PMID: 37555114 PMCID: PMC10405113 DOI: 10.4240/wjgs.v15.i7.1512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Presence of liver metastatic disease in pancreatic ductal adenocarcinoma (PDAC), either synchronous or metachronous after pancreatic resection, is a terminal diagnosis that warrants management with palliative intent as per all international practice guidelines. However, there is an increasing interest on any potential value of surgical treatment of isolated oligometastatic disease in selected cases. AIM To present the published evidence on surgical management of PDAC liver metastases, synchronous and metachronous, and compare the outcomes of these treatments to the current standard of care. METHODS A systematic review was performed in line with the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to compare the outcomes of both synchronous and metachronous liver metastases resection to standard care. RESULTS 356 studies were identified, 31 studies underwent full-text review and of these 10 were suitable for inclusion. When synchronous resection of liver metastases was compared to standard care, most studies did not demonstrate a survival benefit with the exception of one study that utilised neoadjuvant treatment. However, resection of metachronous disease appeared to confer a survival advantage when compared to treatment with chemotherapy alone. CONCLUSION A survival benefit may exist in resection of selected cases of metachronous liver oligometastatic PDAC disease, after disease biology has been tested with time and systemic treatment. Any survival benefit is less clear in synchronous cases; however an approach with neoadjuvant treatment and consideration of resection in some selected cases may confer some benefit. Future studies should focus on pathways for selection of cases that may benefit from an aggressive approach.
Collapse
Affiliation(s)
- James M Halle-Smith
- Department of HPB and Liver Transplant, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2GW, United Kingdom
| | - Sarah Powell-Brett
- Department of HPB and Liver Transplant, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2GW, United Kingdom
| | - Keith Roberts
- Department of HPB and Liver Transplant, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2GW, United Kingdom
| | - Nikolaos A Chatzizacharias
- Department of HPB and Liver Transplant, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
213
|
González-Abós C, Pineda C, Arrocha C, Farguell J, Gil I, Ausania F. Incisional Hernia Following Open Pancreaticoduodenectomy: Incidence and Risk Factors at a Tertiary Care Centre. Curr Oncol 2023; 30:7089-7098. [PMID: 37622995 PMCID: PMC10453869 DOI: 10.3390/curroncol30080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Incisional hernia (IH) is one of the most common complications following open abdominal surgery. There is scarce evidence on its real incidence following pancreatic surgery. The purpose of this study is to evaluate the incidence and the risk factors associated with IH development in patients undergoing pancreaticoduodenectomy (PD). (2) Methods: We retrospectively reviewed all patients undergoing PD between 2014 and 2020 at our centre. Data were extracted from a prospectively held database, including perioperative and long-term factors. We performed univariate and multivariate analysis to detect those factors potentially associated with IH development. (3) Results: The incidence of IH was 8.8% (19/213 patients). Median age was 67 (33-85) years. BMI was 24.9 (14-41) and 184 patients (86.4%) underwent PD for malignant disease. Median follow-up was 23 (6-111) months. Median time to IH development was 31 (13-89) months. Six (31.5%) patients required surgical repair. Following univariate and multivariate analysis, preoperative hypoalbuminemia (OR 3.4, 95% CI 1.24-9.16, p = 0.01) and BMI ≥ 30 kg/m2 (OR 2.6, 95% CI 1.06-8.14, p = 0.049) were the only factors independently associated with the development of IH. (4) Conclusions: The incidence of IH following PD was 8.8% in a tertiary care center. Preoperative hypoalbuminemia and obesity are independently associated with IH occurrence following PD.
Collapse
Affiliation(s)
- Carolina González-Abós
- Department of HBP and Transplant Surgery, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain (J.F.); (I.G.); (F.A.)
- Gene Therapy and Cancer, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Catalina Pineda
- Department of HBP and Transplant Surgery, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain (J.F.); (I.G.); (F.A.)
| | - Carlos Arrocha
- Department of HBP and Transplant Surgery, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain (J.F.); (I.G.); (F.A.)
| | - Jordi Farguell
- Department of HBP and Transplant Surgery, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain (J.F.); (I.G.); (F.A.)
| | - Ignacio Gil
- Department of HBP and Transplant Surgery, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain (J.F.); (I.G.); (F.A.)
| | - Fabio Ausania
- Department of HBP and Transplant Surgery, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain (J.F.); (I.G.); (F.A.)
- Gene Therapy and Cancer, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
214
|
Morgan A, Griffin M, Kameni L, Wan DC, Longaker MT, Norton JA. Medical Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. BIOLOGY 2023; 12:1044. [PMID: 37626931 PMCID: PMC10451924 DOI: 10.3390/biology12081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a variety of surface markers and performing a wide range of tumor promoting and inhibiting functions. Single-cell transcriptomic analyses have revealed a high degree of specialization among CAFs. Some examples of CAF subpopulations include myofibrotic CAFs (myCAFs), which exhibit a matrix-producing contractile phenotype; inflammatory CAFs (iCAF) that are classified by their immunomodulating, secretory phenotype; and antigen-presenting CAFs (apCAFs), which have antigen-presenting capabilities and express Major Histocompatibility Complex II (MHC II). Over the last several years, various attempts have been undertaken to describe the mechanisms of CAF-tumor cell interaction, as well as CAF-immune cell interaction, that contribute to tumor proliferation, invasion, and metastasis. Although our understanding of CAF biology in cancer has steadily increased, the extent of CAFs heterogeneity and their role in the pathobiology of pancreatic cancer remains elusive. In this regard, it becomes increasingly evident that further research on CAFs in pancreatic cancer is necessary.
Collapse
Affiliation(s)
- Annah Morgan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey A. Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
215
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
216
|
Ashry R, Mustafa AHM, Hausmann K, Linnebacher M, Strand S, Sippl W, Wirth M, Krämer OH. NOXA Accentuates Apoptosis Induction by a Novel Histone Deacetylase Inhibitor. Cancers (Basel) 2023; 15:3650. [PMID: 37509312 PMCID: PMC10377841 DOI: 10.3390/cancers15143650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Epigenetic modifiers of the histone deacetylase (HDAC) family are often dysregulated in cancer cells. Experiments with small molecule HDAC inhibitors (HDACi) have proven that HDACs are a vulnerability of transformed cells. We evaluated a novel hydroxamic acid-based HDACi (KH16; termed yanostat) in human pancreatic ductal adenocarcinoma (PDAC) cells, short- and long-term cultured colorectal cancer (CRC) cells, and retinal pigment epithelial cells. We show that KH16 induces cell cycle arrest and apoptosis, both time and dose dependently in PDAC and CRC cells. This is associated with altered expression of BCL2 family members controlling intrinsic apoptosis. Recent data illustrate that PDAC cells frequently have an altered expression of the pro-apoptotic BH3-only protein NOXA and that HDACi induce an accumulation of NOXA. Using PDAC cells with a deletion of NOXA by CRISPR-Cas9, we found that a lack of NOXA delayed apoptosis induction by KH16. These results suggest that KH16 is a new chemotype of hydroxamic acid HDACi with superior activity against solid tumor-derived cells. Thus, KH16 is a scaffold for future research on compounds with nanomolar activity against HDACs.
Collapse
Affiliation(s)
- Ramy Ashry
- Institute of Toxicology, University Medical Centre Mainz, 55131 Mainz, Germany
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Al-Hassan M Mustafa
- Institute of Toxicology, University Medical Centre Mainz, 55131 Mainz, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Kristin Hausmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Centre Mainz, 55131 Mainz, Germany
| |
Collapse
|
217
|
Lilly AC, Astsaturov I, Golemis EA. Intrapancreatic fat, pancreatitis, and pancreatic cancer. Cell Mol Life Sci 2023; 80:206. [PMID: 37452870 PMCID: PMC10349727 DOI: 10.1007/s00018-023-04855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-β, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.
Collapse
Affiliation(s)
- Anna C Lilly
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Igor Astsaturov
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
218
|
Kinny-Köster B, Habib JR, van Oosten F, Javed AA, Cameron JL, Burkhart RA, Burns WR, He J, Wolfgang CL. Conduits in Vascular Pancreatic Surgery: Analysis of Clinical Outcomes, Operative Techniques, and Graft Performance. Ann Surg 2023; 278:e94-e104. [PMID: 35838419 DOI: 10.1097/sla.0000000000005575] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We analyze successes and failures of pushing the boundaries in vascular pancreatic surgery to establish safety of conduit reconstructions. BACKGROUND Improved systemic control from chemotherapy in pancreatic cancer is increasing the demand for surgical solutions of extensive local vessel involvement, but conduit-specific data are scarce. METHODS We identified 63 implanted conduits (41% autologous vessels, 37% allografts, 18% PTFE) in 56 pancreatic resections of highly selected cancer patients between October 2013 and July 2020 from our prospectively maintained database. Assessed parameters were survival, perioperative complications, operative techniques (anatomic and extra-anatomic routes), and conduit patency. RESULTS For vascular reconstruction, 25 arterial and 38 venous conduits were utilized during 39 pancreatoduodenectomies, 14 distal pancreatectomies, and 3 total pancreatectomies. The median postoperative survival was 2 years. A Clavien-Dindo grade ≥IIIa complication was apparent in 50% of the patients with a median Comprehensive Complication Index of 29.6. The 90-day mortality in this highly selected cohort was 9%. Causes of mortality were conduit related in 3 patients, late postpancreatectomy hemorrhage in 1 patient, and early liver metastasis in 1 patient. Image-based patency rates of conduits were 66% and 45% at postoperative days 30 and 90, respectively. CONCLUSIONS Our perioperative mortality of vascular pancreatic surgery with conduits in the arterial or venous system is 9%. Reconstructions are technically feasible with different anatomic and extra-anatomic strategies, while identifying predictors of early conduit occlusion remains challenging. Optimizing reconstructed arterial and venous hemodynamics in the context of pancreatic malignancy will enable long-term survival in more patients responsive to chemotherapies.
Collapse
Affiliation(s)
- Benedict Kinny-Köster
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
- Department of Surgery, New York University Grossman School of Medicine and NYU-Langone Health, New York, NY
| | - Joseph R Habib
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
| | - Floortje van Oosten
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
| | - Ammar A Javed
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
- Department of Surgery, New York University Grossman School of Medicine and NYU-Langone Health, New York, NY
| | - John L Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
| | - Richard A Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
| | - William R Burns
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MA
| | - Christopher L Wolfgang
- Department of Surgery, New York University Grossman School of Medicine and NYU-Langone Health, New York, NY
| |
Collapse
|
219
|
Romutis S, Brand R. Burden of New Pancreatic Cyst Diagnosis. Gastrointest Endosc Clin N Am 2023; 33:487-495. [PMID: 37245931 DOI: 10.1016/j.giec.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cysts are an increasingly identified entity with significant health care implications. Although some cysts present with concurrent symptoms that often require operative intervention, the advent of improved cross-sectional imaging has heralded an era of increased incidentally detected pancreatic cysts. Although the rate of malignant progression in pancreatic cysts remains low, the poor prognosis of pancreatic malignancy has driven recommendations for ongoing surveillance. A uniform consensus has not been reached on the management and surveillance of pancreatic cysts leading clinicians to grapple with the burden of how best to approach pancreatic cysts from a health, psychosocial, and cost perspective.
Collapse
Affiliation(s)
- Stephanie Romutis
- UPMC Division of Gastroenterology, Hepatology, and Nutrition, 200 Lothrop Street, Mezzanine Level C-wing, Pittsburgh, PA 15213, USA.
| | - Randall Brand
- UPMC Division of Gastroenterology, Hepatology, and Nutrition, 200 Lothrop Street, Mezzanine Level C-wing, Pittsburgh, PA 15213, USA
| |
Collapse
|
220
|
Asplund E, Bergqvist M, Krook M, Löhr JM. Plasma thymidine kinase activity as a prognostic biomarker in pancreatic ductal adenocarcinoma: a single-center prospective study. Scand J Gastroenterol 2023; 58:1044-1048. [PMID: 37038772 DOI: 10.1080/00365521.2023.2198057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) patients might benefit from a biomarker to more precisely prognosticate their overall survival to make more informed treatment and surveillance decisions. The aim of the study was to assess the circulating biomarker Thymidine kinase (TK) activity in samples from patients with PDAC to improve prognostic precision. MATERIAL AND METHODS Using the sensitive TK activity (TKa) assay DiviTum®, serum samples from 60 PDAC patients were analyzed. RESULTS Median TKa value for patients with PDAC was 931 Du/L. TK activity <931 and CA19-9 < 37 was prognostic for a longer survival, compared to patients with any or both TK activity >931 and CA19-9 > 37, with median 41.3 vs 8.6 months from sample to death (p < 0.001), and 3-year survival was 55.6% vs 8.9% (p < 0.001). Hazard ratio was 2.81 if any or both of TK or CA19-9 were above the cut-off value (p < 0.05). TKa in combination with CA19-9 outperforms each marker individually for prediction of survival. Overall survival is longer in patients with both TKa <931 Du/L and CA19-9 < 37. Further studies of TKa levels at different disease stages and correlation to outcome is warranted to find the full potential clinical usage of the TKa marker in PDAC.
Collapse
Affiliation(s)
- Ebba Asplund
- Department of Upper Gastroenterology, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | | | - Maura Krook
- Department of Upper Gastroenterology, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J-Matthias Löhr
- Department of Upper Gastroenterology, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
221
|
Dahiya DS, Chandan S, Ali H, Pinnam BSM, Gangwani MK, Al Bunni H, Canakis A, Gopakumar H, Vohra I, Bapaye J, Al-Haddad M, Sharma NR. Role of Therapeutic Endoscopic Ultrasound in Management of Pancreatic Cancer: An Endoscopic Oncologist Perspective. Cancers (Basel) 2023; 15:3235. [PMID: 37370843 DOI: 10.3390/cancers15123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is a highly lethal disease with an aggressive clinical course. Patients with pancreatic cancer are usually asymptomatic until significant progression of their disease. Additionally, there are no effective screening guidelines for pancreatic cancer in the general population. This leads to a delay in diagnosis and treatment, resulting in poor clinical outcomes and low survival rates. Endoscopic Ultrasound (EUS) is an indispensable tool for the diagnosis and staging of pancreatic cancer. In the modern era, with exponential advancements in technology and device innovation, EUS is also being increasingly used in a variety of therapeutic interventions. In the context of pancreatic cancer where therapies are limited due to the advanced stage of the disease at diagnosis, EUS-guided interventions offer new and innovative options. Moreover, due to their minimally invasive nature and ability to provide real-time images for tumor localization and therapy, they are associated with fewer complication rates compared to conventional open and laparoscopic approaches. In this article, we detail the most current and important therapeutic applications of EUS for pancreatic cancer, namely EUS-guided Fine Needle Injections, EUS-guided Radiotherapy, and EUS-guided Ablations. Furthermore, we also discuss the feasibility and safety profile of each intervention in patients with pancreatic cancer to provide gastrointestinal medical oncologists, radiation and surgical oncologists, and therapeutic endoscopists with valuable information to facilitate patient discussions and aid in the complex decision-making process.
Collapse
Affiliation(s)
- Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, CHI Creighton University Medical Center, Omaha, NE 68131, USA
| | - Hassam Ali
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL 60612, USA
| | | | - Hashem Al Bunni
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew Canakis
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Ishaan Vohra
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Jay Bapaye
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Mohammad Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Neil R Sharma
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Interventional Oncology & Surgical Endoscopy Programs (IOSE), GI Oncology Tumor Site Team, Parkview Cancer Institute, Parkview Health, Fort Wayne, IN 46845, USA
| |
Collapse
|
222
|
Rasmussen LS, Winther SB, Chen IM, Weber B, Ventzel L, Liposits G, Johansen JS, Detlefsen S, Egendal I, Shim S, Christensen S, Pfeiffer P, Ladekarl M. A randomized phase II study of full dose gemcitabine versus reduced dose gemcitabine and nab-paclitaxel in vulnerable patients with non-resectable pancreatic cancer (DPCG-01). BMC Cancer 2023; 23:552. [PMID: 37328835 PMCID: PMC10273702 DOI: 10.1186/s12885-023-11035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND According to current evidence, the best treatment for fit patients with non-resectable pancreatic cancer (PC) is combination chemotherapy, whereas frail patients are recommended gemcitabine (Gem) monotherapy. Randomized controlled trials in colorectal cancer and a post-hoc analysis of gemcitabine and nab-paclitaxel (GemNab) in PC suggest, however, that reduced dose of combination chemotherapy may be feasible and more efficient compared to monotherapy in frail patients. The aim of this study is to investigate whether reduced dose GemNab is superior to full dose Gem in patients with resectable PC, who are not candidates for full dose combination chemotherapy in first line. METHODS The Danish Pancreas Cancer Group (DPCG)-01 trial is a national multicenter prospective randomized phase II trial. A total of 100 patients in ECOG performance status 0-2 with non-resectable PC, not candidate for full dose combination chemotherapy in first line, but eligible for full dose Gem, will be included. Patients are randomized 1:1 to either full dose Gem or GemNab in 80% of recommended dose. The primary endpoint is progression-free survival. Secondary endpoints are overall survival, overall response rate, quality of life, toxicity and rate of hospitalizations during treatment. The correlation between blood inflammatory markers, including YKL-40 and IL-6, circulating tumor DNA, and tissue biomarkers of resistance to chemotherapy and outcome will be explored. Finally, the study will include measures of frailty (G8, modified G8, and chair-stand-test) to assess whether scoring would enable a personalized allocation to different treatments or indicates a possibility for interventions. DISCUSSION Single-drug treatment with Gem has for frail patients with non-resectable PC been the main treatment option for more than thirty years, but the impact on outcome is modest. If improved results and sustained tolerability with reduced dose combination chemotherapy can be shown, this could change the future practice for this increasing group of patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05841420. Secondary Identifying No: N-20210068. EudraCT No: 2021-005067-52. PROTOCOL VERSION 1.5, 16-MAY-2023.
Collapse
Affiliation(s)
- Louise Skau Rasmussen
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Stine B Winther
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Ventzel
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Gabor Liposits
- Department of Oncology, Gødstrup Hospital, Herning, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, and Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Ida Egendal
- Center for Clinical Data Science (CLINDA), and Clinical Cancer Research Center, Aalborg University and, Aalborg University Hospital, Aalborg, Denmark
| | - Susy Shim
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Signe Christensen
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, and Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Morten Ladekarl
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
223
|
Tornel-Avelar AI, Velarde Ruiz-Velasco JA, Pelaez-Luna M. Pancreatic cancer, autoimmune or chronic pancreatitis, beyond tissue diagnosis: Collateral imaging and clinical characteristics may differentiate them. World J Gastrointest Oncol 2023; 15:925-942. [PMID: 37389107 PMCID: PMC10302998 DOI: 10.4251/wjgo.v15.i6.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and is developing into the 2nd leading cause of cancer-related death. Often, the clinical and radiological presentation of PDAC may be mirrored by other inflammatory pancreatic masses, such as autoimmune pancreatitis (AIP) and mass-forming chronic pancreatitis (MFCP), making its diagnosis challenging. Differentiating AIP and MFCP from PDAC is vital due to significant therapeutic and prognostic implications. Current diagnostic criteria and tools allow the precise differentiation of benign from malignant masses; however, the diagnostic accuracy is imperfect. Major pancreatic resections have been performed in AIP cases under initial suspicion of PDAC after a diagnostic approach failed to provide an accurate diagnosis. It is not unusual that after a thorough diagnostic evaluation, the clinician is confronted with a pancreatic mass with uncertain diagnosis. In those cases, a re-evaluation must be entertained, preferably by an experienced multispecialty team including radiologists, pathologists, gastroenterologists, and surgeons, looking for disease-specific clinical, imaging, and histological hallmarks or collateral evidence that could favor a specific diagnosis. Our aim is to describe current diagnostic limitations that hinder our ability to reach an accurate diagnosis among AIP, PDAC, and MFCP and to highlight those disease-specific clinical, radiological, serological, and histological characteristics that could support the presence of any of these three disorders when facing a pancreatic mass with uncertain diagnosis after an initial diagnostic approach has been unsuccessful.
Collapse
Affiliation(s)
- Ana I Tornel-Avelar
- Department of Gastroenterology, Hospital Civil of Guadalajara “Fray Antonio Alcalde”, Guadalajara 44340, Jalisco, Mexico
| | | | - Mario Pelaez-Luna
- Research Division School of Medicine/Department of Gastroenterology, Universidad Nacional Autonoma de México/National Institute of Medical Sciences and Nutrition “Salvador Zubiran”, Tlalpan 14000, Mexico City, Mexico
| |
Collapse
|
224
|
Cassese G, Han HS, Yoon YS, Lee JS, Lee B, Cubisino A, Panaro F, Troisi RI. Role of neoadjuvant therapy for nonmetastatic pancreatic cancer: Current evidence and future perspectives. World J Gastrointest Oncol 2023; 15:911-924. [PMID: 37389109 PMCID: PMC10302990 DOI: 10.4251/wjgo.v15.i6.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most common and lethal human cancers worldwide. Surgery followed by adjuvant chemotherapy offers the best chance of a long-term survival for patients with PDAC, although only approximately 20% of the patients have resectable tumors when diagnosed. Neoadjuvant chemotherapy (NACT) is recommended for borderline resectable pancreatic cancer. Several studies have investigated the role of NACT in treating resectable tumors based on the recent advances in PDAC biology, as NACT provides the potential benefit of selecting patients with favorable tumor biology and controls potential micro-metastases in high-risk patients with resectable PDAC. In such challenging cases, new potential tools, such as ct-DNA and molecular targeted therapy, are emerging as novel therapeutic options that may improve old paradigms. This review aims to summarize the current evidence regarding the role of NACT in treating non-metastatic pancreatic cancer while focusing on future perspectives in light of recent evidence.
Collapse
Affiliation(s)
- Gianluca Cassese
- Department of Clinical Medicine and Surgery, Division of Minimally Invasive HPB Surgery and Transplantation Service, Federico II University Hospital, Naples 80131, Italy
| | - Ho-Seong Han
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Boram Lee
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Antonio Cubisino
- Department of HPB Surgery and Transplantation, Beaujon Hospital, Clichy 92110, France
| | - Fabrizio Panaro
- Department of Digestive Surgery and Liver Transplantation, CHU Montpellier, Montpellier 34100, France
| | - Roberto Ivan Troisi
- Department of Clinical Medicine and Surgery, Division of Minimally Invasive HPB Surgery and Transplantation Service, Federico II University Hospital, Naples 80131, Italy
| |
Collapse
|
225
|
Yamada R, Tsuboi J, Murashima Y, Tanaka T, Nose K, Nakagawa H. Advances in the Early Diagnosis of Pancreatic Ductal Adenocarcinoma and Premalignant Pancreatic Lesions. Biomedicines 2023; 11:1687. [PMID: 37371782 DOI: 10.3390/biomedicines11061687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is one of the most lethal human malignancies, in part because it is often diagnosed at late stages when surgery and systemic therapies are either unfeasible or ineffective. Therefore, diagnosing pancreatic cancer in earlier stages is important for effective treatment. However, because the signs and symptoms may be nonspecific and not apparent until the disease is at a late stage, the timely diagnoses of pancreatic cancer can be difficult to achieve. Recent studies have shown that selective screening and increased usage of biomarkers could improve the early diagnosis of pancreatic cancer. In this review, we discuss recent advancements in the early detection of pancreatic ductal carcinoma and precancerous lesions. These include innovations in imaging modalities, the diagnostic utility of various biomarkers, biopsy techniques, and population-based surveillance approaches. Additionally, we discuss how machine learning methods are being applied to develop integrated methods of identifying individuals at high risk of developing pancreatic disease. In the future, the overall survival of pancreatic cancer patients could be improved by the development and adoption of these new methods and techniques.
Collapse
Affiliation(s)
- Reiko Yamada
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Junya Tsuboi
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Yumi Murashima
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Takamitsu Tanaka
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kenji Nose
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
226
|
Huang R, Hammelef E, Sabitsky M, Ream C, Khalilieh S, Zohar N, Lavu H, Bowne WB, Yeo CJ, Nevler A. Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers. Biomedicines 2023; 11:1684. [PMID: 37371779 DOI: 10.3390/biomedicines11061684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer mortality in the United States. Hypoxic and hypercapnic tumor microenvironments have been suggested to promote tumor aggressiveness. The objective of this study was to evaluate the association between chronic obstructive pulmonary disease (COPD) and oncologic survival outcomes in patients with early-stage PDAC and periampullary cancers. In this case-control study, patients who underwent a pancreaticoduodenectomy during 2014-2021 were assessed. Demographic, perioperative, histologic, and oncologic data were collected. A total of 503 PDAC and periampullary adenocarcinoma patients were identified, 257 males and 246 females, with a mean age of 68.1 (±9.8) years and a mean pre-operative BMI of 26.6 (±4.7) kg/m2. Fifty-two percent of patients (N = 262) reported a history of smoking. A total of 42 patients (8.3%) had COPD. The average resected tumor size was 2.9 ± 1.4 cm and 65% of the specimens (N = 329) were positive for lymph-node involvement. Kaplan-Meier analysis showed that COPD was associated with worse overall and disease-specific survival (p < 0.05). Cox regression analysis showed COPD to be an independent prognostic factor (HR = 1.5, 95% CI 1.0-2.3, p = 0.039) along with margin status, lymphovascular invasion, and perineural invasion (p < 0.05 each). A 1:3 nearest neighbor propensity score matching was also employed and revealed COPD to be an independent risk factor for overall and disease-specific survival (OR 1.8 and OR 1.6, respectively; p < 0.05 each). These findings may support the rationale posed by in vitro laboratory studies, suggesting an important impact of hypoxic and hypercapnic tumor respiratory microenvironments in promoting therapy resistance in cancer.
Collapse
Affiliation(s)
- Rachel Huang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emma Hammelef
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew Sabitsky
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carolyn Ream
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Saed Khalilieh
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nitzan Zohar
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harish Lavu
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wilbur B Bowne
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
227
|
De Simoni O, Dal Santo L, Scarpa M, Munari G, Spolverato YC, Scapinello A, Lonardi S, Soldà C, Bergamo F, Fantin A, Bardini R, Pilati P, Fassan M, Gruppo M. Role of Immune Microenvironment in Pancreatic Ductal Adenocarcinoma: Could It Be Considered a Predictor of Prognosis? Curr Oncol 2023; 30:5515-5528. [PMID: 37366900 DOI: 10.3390/curroncol30060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly immunosuppressive tumor microenvironment (TME). The aim of this study is to determine the potential significant TME immune markers of long-term survival. METHODS We retrospectively included patients with a diagnosis of resectable PDAC having undergone upfront surgery. Immunohistochemical (IHC) staining using tissue microarray for PD-L1, CD3, CD4, CD8, FOXP3, CD20, iNOS and CD163 was performed in order to characterize the TME. The primary endpoint was long-term survival, defined as the Overall Survival > 24 months from surgery. RESULTS A total of 38 consecutive patients were included, and 14 (36%) of them were long-term survivors. Long-term survivors showed a higher density of CD8+ lymphocytes intra- and peri-acinar (p = 0.08), and a higher CD8/FOXP3 intra- and peri-tumoral ratio (p = 0.05). A low density of intra- and peri-tumoral FOXP3 infiltration is a good predictor of long-term survival (p = 0.04). A significant association of the low density of intra- and peri-tumoral tumor-associated macrophages (TAMs) iNOS+ with long-term survival was detected (p = 0.04). CONCLUSIONS Despite the retrospective nature and small sample size, our study showed that the high infiltration of CD8+ lymphocytes and low infiltration of FOXP3+ and TAMs iNOS+ are predictors of good prognosis. A preoperative assessment of these potential immune markers could be useful and determinant in the staging process and in PDAC management.
Collapse
Affiliation(s)
- Ottavia De Simoni
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Luca Dal Santo
- Pathology Unit, Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Marco Scarpa
- Chirurgia Generale 3, Azienda Ospedale Università Padova, 35128 Padua, Italy
| | - Giada Munari
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | | | - Antonio Scapinello
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Sara Lonardi
- Unit of Medical Oncology 3, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Caterina Soldà
- Unit of Medical Oncology 1, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Francesca Bergamo
- Unit of Medical Oncology 1, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Romeo Bardini
- General Surgery Unit, Azienda Ospedaliera di Padova, 35128 Padua, Italy
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Matteo Fassan
- Pathology Unit, Department of Medicine, University of Padova, 35128 Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| | - Mario Gruppo
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy
| |
Collapse
|
228
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
229
|
Gentiluomo M, Corradi C, Arcidiacono PG, Crippa S, Falconi M, Belfiori G, Farinella R, Apadula L, Lauri G, Bina N, Rizzato C, Canzian F, Morelli L, Capurso G, Campa D. Role of pancreatic ductal adenocarcinoma risk factors in intraductal papillary mucinous neoplasm progression. Front Oncol 2023; 13:1172606. [PMID: 37346070 PMCID: PMC10280811 DOI: 10.3389/fonc.2023.1172606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is lethal due to its late diagnosis and lack of successful treatments. A possible strategy to reduce its death burden is prevention. Intraductal papillary mucinous neoplasms (IPMNs) are precursors of PDAC. It is difficult to estimate the incidence of IPMNs because they are asymptomatic. Two recent studies reported pancreatic cysts in 3% and 13% of scanned subjects. The possibility of identifying a subgroup of IPMN patients with a higher probability of progression into cancer could be instrumental in increasing the survival rate. In this study, genetic and non-genetic PDAC risk factors were tested in a group of IPMN patients under surveillance. Methods A retrospective study was conducted on 354 IPMN patients enrolled in two Italian centres with an average follow-up of 64 months. With the use of DNA extracted from blood, collected at IPMN diagnosis, all patients were genotyped for 30 known PDAC risk loci. The polymorphisms were analysed individually and grouped in an unweighted polygenic score (PGS) in relation to IPMN progression. The ABO blood group and non-genetic PDAC risk factors were also analysed. IPMN progression was defined based on the development of worrisome features and/or high-risk stigmata during follow-up. Results Two genetic variants (rs1517037 and rs10094872) showed suggestive associations with an increment of IPMN progression. After correction for multiple testing, using the Bonferroni correction, none of the variants showed a statistically significant association. However, associations were observed for the non-genetic variables, such as smoking status, comparing heavy smokers with light smokers (HR = 3.81, 95% 1.43-10.09, p = 0.007), and obesity (HR = 2.46, 95% CI 1.22-4.95, p = 0.012). Conclusion In conclusion, this study is the first attempt to investigate the presence of shared genetic background between PDAC risk and IPMN progression; however, the results suggest that the 30 established PDAC susceptibility polymorphisms are not associated with clinical IPMN progression in a sample of 354 patients. However, we observed indications of cigarette smoking and body mass index (BMI) involvement in IPMN progression. The biological mechanism that could link these two risk factors to progression could be chronic inflammation, of which both smoking and obesity are strong promoters.
Collapse
Affiliation(s)
| | | | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Crippa
- Unit of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Massimo Falconi
- Unit of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giulio Belfiori
- Unit of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Laura Apadula
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gaetano Lauri
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Niccolò Bina
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant’Andrea University Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
230
|
Hao J, Zhou C, Wang Z, Ma Z, Wu Z, Lv Y, Wu R. An amino acid metabolism-based seventeen-gene signature correlates with the clinical outcome and immune features in pancreatic cancer. Front Genet 2023; 14:1084275. [PMID: 37333498 PMCID: PMC10272610 DOI: 10.3389/fgene.2023.1084275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Pancreatic cancer is an aggressive tumor with a low 5-year survival rate and primary resistance to most therapy. Amino acid (AA) metabolism is highly correlated with tumor growth, crucial to the aggressive biological behavior of pancreatic cancer; nevertheless, the comprehensive predictive significance of genes that regulate AA metabolism in pancreatic cancer remains unknown. Methods: The mRNA expression data downloaded from The Cancer Genome Atlas (TCGA) were derived as the training cohort, and the GSE57495 cohort from Gene Expression Omnibus (GEO) database was applied as the validation cohort. Random survival forest (RSF) and the least absolute shrinkage and selection operator (LASSO) regression analysis were employed to screen genes and construct an AA metabolism-related risk signature (AMRS). Kaplan-Meier analysis and receiver operating characteristic (ROC) curve were performed to assess the prognostic value of AMRS. We performed genomic alteration analysis and explored the difference in tumor microenvironment (TME) landscape associated with KRAS and TP53 mutation in both high- and low-AMRS groups. Subsequently, the relationships between AMRS and immunotherapy and chemotherapy sensitivity were evaluated. Results: A 17-gene AA metabolism-related risk model in the TCGA cohort was constructed according to RSF and LASSO. After stratifying patients into high- and low-AMRS groups based on the optimal cut-off value, we found that high-AMRS patients had worse overall survival (OS) in the training cohort (a median OS: 13.1 months vs. 50.1 months, p < 0.0001) and validation cohort (a median OS: 16.2 vs. 30.5 months, p = 1e-04). Genetic mutation analysis revealed that KRAS and TP53 were significantly more mutated in high-AMRS group, and patients with KRAS and TP53 alterations had significantly higher risk scores than those without. Based on the analysis of TME, low-AMRS group displayed significantly higher immune score and more enrichment of T Cell CD8+ cells. In addition, high-AMRS-group exhibited higher TMB and significantly lower tumor immune dysfunction and exclusion (TIDE) score and T Cells dysfunction score, which suggested a higher sensitive to immunotherapy. Moreover, high-AMRS group was also more sensitive to paclitaxel, cisplatin, and docetaxel. Conclusion: Overall, we constructed an AA-metabolism prognostic model, which provided a powerful prognostic predictor for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jie Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
231
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
232
|
Cephas AT, Hwang WL, Maitra A, Parnas O, DelGiorno KE. It is better to light a candle than to curse the darkness: single-cell transcriptomics sheds new light on pancreas biology and disease. Gut 2023; 72:1211-1219. [PMID: 36997301 PMCID: PMC10988578 DOI: 10.1136/gutjnl-2022-329313] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Recent advances in single-cell RNA sequencing and bioinformatics have drastically increased our ability to interrogate the cellular composition of traditionally difficult to study organs, such as the pancreas. With the advent of these technologies and approaches, the field has grown, in just a few years, from profiling pancreas disease states to identifying molecular mechanisms of therapy resistance in pancreatic ductal adenocarcinoma, a particularly deadly cancer. Single-cell transcriptomics and related spatial approaches have identified previously undescribed epithelial and stromal cell types and states, how these populations change with disease progression, and potential mechanisms of action which will serve as the basis for designing new therapeutic strategies. Here, we review the recent literature on how single-cell transcriptomic approaches have changed our understanding of pancreas biology and disease progression.
Collapse
Affiliation(s)
- Amelia T Cephas
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Oren Parnas
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathleen E DelGiorno
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
233
|
Mercanti L, Sindaco M, Mazzone M, Di Marcantonio MC, Piscione M, Muraro R, Mincione G. PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies. Cancers (Basel) 2023; 15:2923. [PMID: 37296886 PMCID: PMC10251917 DOI: 10.3390/cancers15112923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of death by cancer in the world. What makes this pathological condition particularly lethal is a combination of clinical and molecular heterogeneity, lack of early diagnostic indexes, and underwhelming results from current therapeutic protocols. A major cause of PDAC chemoresistance seems to lie in the ability of cancer cells to spread out and fill the pancreatic parenchyma, exchanging nutrients, substrates, and even genetic material with cells from the surrounding tumor microenvironment (TME). Several components can be found in the TME ultrastructure, including collagen fibers, cancer-associated fibroblasts, macrophages, neutrophils, mast cells, and lymphocytes. Cross-talk between PDAC and TME cells results in the latter being converted into cancer-favoring phenotypes; this behavior could be compared to an influencer guiding followers into supporting his activity. Moreover, TME could be a potential target for some of the newest therapeutic strategies; these include the use of pegvorhyaluronidase-α and CAR-T lymphocytes against HER2, FAP, CEA, MLSN, PSCA, and CD133. Other experimental therapy options are being currently studied, aiming to interfere with the KRAS pathway, DNA-repairing proteins, and apoptosis resistance in PDAC cells. Hopefully these new approaches will grant better clinical outcomes in future patients.
Collapse
Affiliation(s)
- Leonardo Mercanti
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Sindaco
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | | | - Raffaella Muraro
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| |
Collapse
|
234
|
Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol 2023; 13:1149551. [PMID: 37287924 PMCID: PMC10242099 DOI: 10.3389/fonc.2023.1149551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
235
|
Huang P, Gao W, Fu C, Tian R. Functional and Clinical Proteomic Exploration of Pancreatic Cancer. Mol Cell Proteomics 2023:100575. [PMID: 37209817 PMCID: PMC10388587 DOI: 10.1016/j.mcpro.2023.100575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Pancreatic cancer, most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for PDAC patients, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. Global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement of proteomics technologies has enabled profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.
Collapse
Affiliation(s)
- Peiwu Huang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changying Fu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
236
|
Park LK, Lim KH, Volkman J, Abdiannia M, Johnston H, Nigogosyan Z, Siegel MJ, McGill JB, McKee AM, Salam M, Zhang RM, Ma D, Popuri K, Chow VTY, Beg MF, Hawkins WG, Peterson LR, Ippolito JE. Safety, tolerability, and effectiveness of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin in combination with standard chemotherapy for patients with advanced, inoperable pancreatic adenocarcinoma: a phase 1b observational study. Cancer Metab 2023; 11:6. [PMID: 37202813 DOI: 10.1186/s40170-023-00306-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Thus, there is an urgent need for safe and effective novel therapies. PDAC's excessive reliance on glucose metabolism for its metabolic needs provides a target for metabolic therapy. Preclinical PDAC models have demonstrated that targeting the sodium-glucose co-transporter-2 (SGLT2) with dapagliflozin may be a novel strategy. Whether dapagliflozin is safe and efficacious in humans with PDAC is unclear. METHODS We performed a phase 1b observational study (ClinicalTrials.gov ID NCT04542291; registered 09/09/2020) to test the safety and tolerability of dapagliflozin (5 mg p.o./day × 2 weeks escalated to 10 mg p.o./day × 6 weeks) added to standard Gemcitabine and nab-Paclitaxel (GnP) chemotherapy in patients with locally advanced and/or metastatic PDAC. Markers of efficacy including Response Evaluation Criteria in Solid Tumors (RECIST 1.1) response, CT-based volumetric body composition measurements, and plasma chemistries for measuring metabolism and tumor burden were also analyzed. RESULTS Of 23 patients who were screened, 15 enrolled. One expired (due to complications from underlying disease), 2 dropped out (did not tolerate GnP chemotherapy) during the first 4 weeks, and 12 completed. There were no unexpected or serious adverse events with dapagliflozin. One patient was told to discontinue dapagliflozin after 6 weeks due to elevated ketones, although there were no clinical signs of ketoacidosis. Dapagliflozin compliance was 99.4%. Plasma glucagon increased significantly. Although abdominal muscle and fat volumes decreased; increased muscle-to-fat ratio correlated with better therapeutic response. After 8 weeks of treatment in the study, partial response (PR) to therapy was seen in 2 patients, stable disease (SD) in 9 patients, and progressive disease (PD) in 1 patient. After dapagliflozin discontinuation (and chemotherapy continuation), an additional 7 patients developed the progressive disease in the subsequent scans measured by increased lesion size as well as the development of new lesions. Quantitative imaging assessment was supported by plasma CA19-9 tumor marker measurements. CONCLUSIONS Dapagliflozin is well-tolerated and was associated with high compliance in patients with advanced, inoperable PDAC. Overall favorable changes in tumor response and plasma biomarkers suggest it may have efficacy against PDAC, warranting further investigation.
Collapse
Affiliation(s)
- Lauren K Park
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Oncology Division, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jonas Volkman
- Department of Medicine, Oncology Division, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mina Abdiannia
- Department of Medicine, Oncology Division, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hannah Johnston
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 4559 Scott Ave., St. Louis, MO, 63110, USA
| | - Zack Nigogosyan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 4559 Scott Ave., St. Louis, MO, 63110, USA
| | - Marilyn J Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 4559 Scott Ave., St. Louis, MO, 63110, USA
| | - Janet B McGill
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alexis M McKee
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maamoun Salam
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rong M Zhang
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Da Ma
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Linda R Peterson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 4559 Scott Ave., St. Louis, MO, 63110, USA.
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Mail Stop Code: 8131, 4559 Scott Ave., St. Louis, MO, 63110, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
237
|
Ogunleye AO, Nimmakayala RK, Batra SK, Ponnusamy MP. Metabolic Rewiring and Stemness: A Critical Attribute of Pancreatic Cancer Progression. Stem Cells 2023; 41:417-430. [PMID: 36869789 PMCID: PMC10183971 DOI: 10.1093/stmcls/sxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases with a poor 5-year survival rate. PDAC cells rely on various metabolic pathways to fuel their unlimited proliferation and metastasis. Reprogramming glucose, fatty acid, amino acid, and nucleic acid metabolisms contributes to PDAC cell growth. Cancer stem cells are the primary cell types that play a critical role in the progression and aggressiveness of PDAC. Emerging studies indicate that the cancer stem cells in PDAC tumors are heterogeneous and show specific metabolic dependencies. In addition, understanding specific metabolic signatures and factors that regulate these metabolic alterations in the cancer stem cells of PDAC paves the way for developing novel therapeutic strategies targeting CSCs. In this review, we discuss the current understanding of PDAC metabolism by specifically exploring the metabolic dependencies of cancer stem cells. We also review the current knowledge of targeting these metabolic factors that regulate CSC maintenance and PDAC progression.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
238
|
Stouten I, van Montfoort N, Hawinkels LJAC. The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24108707. [PMID: 37240052 DOI: 10.3390/ijms24108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of response to therapy in pancreatic ductal adenocarcinoma (PDAC) patients has contributed to PDAC having one of the lowest survival rates of all cancer types. The poor survival of PDAC patients urges the exploration of novel treatment strategies. Immunotherapy has shown promising results in several other cancer types, but it is still ineffective in PDAC. What sets PDAC apart from other cancer types is its tumour microenvironment (TME) with desmoplasia and low immune infiltration and activity. The most abundant cell type in the TME, cancer-associated fibroblasts (CAFs), could be instrumental in why low immunotherapy responses are observed. CAF heterogeneity and interactions with components of the TME is an emerging field of research, where many paths are to be explored. Understanding CAF-immune cell interactions in the TME might pave the way to optimize immunotherapy efficacy for PDAC and related cancers with stromal abundance. In this review, we discuss recent discoveries on the functions and interactions of CAFs and how targeting CAFs might improve immunotherapy.
Collapse
Affiliation(s)
- Imke Stouten
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
239
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
240
|
Sagini MN, Klika KD, Owen RW, Berger MR. Khasianine Affects the Expression of Sugar-Sensitive Proteins in Pancreatic Cancer Cells, Which Are Altered in Data from the Rat Model and Patients. ACS Pharmacol Transl Sci 2023; 6:727-737. [PMID: 37200805 PMCID: PMC10186360 DOI: 10.1021/acsptsci.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with no effective treatment, particularly in the advanced stage. This study explored the antiproliferative activity of khasianine against pancreatic cancer cell lines of human (Suit2-007) and rat (ASML) origin. Khasianine was purified from Solanum incanum fruits by silica gel column chromatography and analyzed by LC-MS and NMR spectroscopy. Its effect in pancreatic cancer cells was evaluated by cell proliferation assay, chip array and mass spectrometry. Proteins showing sensitivity to sugars, i.e. sugar-sensitive lactosyl-Sepharose binding proteins (LSBPs), were isolated from Suit2-007 cells by competitive affinity chromatography. The eluted fractions included galactose-, glucose-, rhamnose- and lactose-sensitive LSBPs. The resulting data were analyzed by Chipster, Ingenuity Pathway Analysis (IPA) and GraphPad Prism. Khasianine inhibited proliferation of Suit2-007 and ASML cells with IC50 values of 50 and 54 μg/mL, respectively. By comparative analysis, khasianine downregulated lactose-sensitive LSBPs the most (126%) and glucose-sensitive LSBPs the least (85%). Rhamnose-sensitive LSBPs overlapped significantly with lactose-sensitive LSBPs and were the most upregulated in data from patients (23%) and a pancreatic cancer rat model (11.5%). From IPA, the Ras homolog family member A (RhoA) emerged as one of the most activated signaling pathways involving rhamnose-sensitive LSBPs. Khasianine altered the mRNA expression of sugar-sensitive LSBPs, some of which were modulated in data from patients and the rat model. The antiproliferative effect of khasianine in pancreatic cancer cells and the downregulation of rhamnose-sensitive proteins underscore the potential of khasianine in treating pancreatic cancer.
Collapse
Affiliation(s)
- Micah N. Sagini
- Toxicology
and Chemotherapy Unit, German Cancer Research
Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Karel D. Klika
- Molecular
Structure Analysis, German Cancer Research
Center (DKFZ), Im Neuenheimer
Feld 280, 69120 Heidelberg, Germany
| | - Robert W. Owen
- Biochemistry
and Biomarkers Unit, German Cancer Research
Center (DKFZ), Im Neuenheimer
Feld 580, 69120 Heidelberg, Germany
| | - Martin R. Berger
- Toxicology
and Chemotherapy Unit, German Cancer Research
Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
241
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Zou J, Engle DD. The impact of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525757. [PMID: 36747742 PMCID: PMC9900943 DOI: 10.1101/2023.01.26.525757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance (pharmacotyping) is a promising precision medicine approach. The potential of this approach to inform clinical decisions is now being tested in several large multi-institutional clinical trials. PDOs are cultivated in extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the impact of different sources and lots of BMEs on organoid drug response is unknown. Here, we tested the impact of BME source and lot on proliferation, chemotherapy and targeted therapy drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel (Corning) compared to Cultrex (RnD) and UltiMatrix (RnD). However, we observed no substantial impact on drug response when oragnoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their Classical or Basal-like designation. Overall, we find that BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves and drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
|
242
|
Duan Y, Zhang X, Ying H, Xu J, Yang H, Sun K, He L, Li M, Ji Y, Liang T, Bai X. Targeting MFAP5 in cancer-associated fibroblasts sensitizes pancreatic cancer to PD-L1-based immunochemotherapy via remodeling the matrix. Oncogene 2023:10.1038/s41388-023-02711-9. [PMID: 37156839 DOI: 10.1038/s41388-023-02711-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
243
|
Feng J, Shu Y, An Y, Niu Q, Fan Q, Lei Y, Gong Y, Hu X, Zhang P, Liu Y, Yang C, Wu L. Encoded Fusion-Mediated MicroRNA Signature Profiling of Tumor-Derived Extracellular Vesicles for Pancreatic Cancer Diagnosis. Anal Chem 2023; 95:7743-7752. [PMID: 37147770 DOI: 10.1021/acs.analchem.3c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) in tumor-derived extracellular vesicles (tEVs) are important cancer biomarkers for cancer screening and early diagnosis. Multiplex detection of miRNAs in tEVs facilitates accurate diagnosis but remains a challenge. Herein, we propose an encoded fusion strategy to profile the miRNA signature in tEVs for pancreatic cancer diagnosis. A panel of encoded-targeted-fusion beads was fabricated for the selective recognition and fusion of tEVs, with the turn-on fluorescence signals of molecule beacons for miRNA quantification and barcode signals for miRNA identification using readily accessible flow cytometers. Using this strategy, six types of pancreatic-cancer-associated miRNAs can be profiled in tEVs from 2 μL plasma samples (n = 36) in an isolation-free and lysis-free manner with only 2 h of processing, offering a high accuracy (98%) to discriminate pancreatic cancer, pancreatitis, and healthy donors. This encoded fusion strategy exhibits great potential for multiplex profiling of miRNA in tEVs, offering new avenues for cancer diagnosis and screening.
Collapse
Affiliation(s)
- Jianzhou Feng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi Niu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanmei Lei
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanli Gong
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Peng Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
244
|
Wang Y, Chen F, Zhou H, Huang L, Ye J, Liu X, Sheng W, Gao W, Yu H, Wang F. Redox Dyshomeostasis with Dual Stimuli-Activatable Dihydroartemisinin Nanoparticles to Potentiate Ferroptotic Therapy of Pancreatic Cancer. SMALL METHODS 2023; 7:e2200888. [PMID: 36446643 DOI: 10.1002/smtd.202200888] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/13/2022] [Indexed: 05/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to conventional therapies, including chemo-, radio-, and immunotherapy. In this study, it is first determined that a combination of dihydroartemisinin (DHA) and RSL-3 (a glutathione peroxidase 4 (GPX4) inhibitor) markedly induced ferroptosis of PDAC tumor cells. A mechanistic study revealed that DHA can react with iron ions to generate carbon radicals and deplete intracellular glutathione, thereby cumulatively triggering the lipid peroxidation of tumor cells with RSL-3-mediated GPX4 inhibition. A DHA-conjugated amphiphilic copolymer is subsequently synthesized, and intracellular acidity and oxidation dual-responsive DHA nanoparticles are further engineered for the tumor-specific co-delivery of DHA and RSL-3. The resultant nanoparticles (PDBA@RSL-3) efficiently induce ferroptosis of tumor cells in the Panc02 tumor-bearing immune-deficient mouse model, and elicit T-cell-based antitumor immunity in the immune-competent mouse model. The combination of PDBA@RSL-3 nanoparticles and programmed death ligand 1 blockade therapy efficiently inhibits PDAC tumor growth in the immune-competent mouse models. This study may provide novel insights for treatment of PDAC with ferroptosis-based immunotherapy.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, P. R. China
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Fangmin Chen
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiling Zhou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jiayi Ye
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xiaoying Liu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Weizhong Sheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Weidong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
245
|
Hall LA, McKay SC, Halle-Smith J, Soane J, Osei-Bordom DC, Goodburn L, Magill L, Pinkney T, Radhakrishna G, Valle JW, Corrie P, Roberts KJ. The impact of the COVID-19 pandemic upon pancreatic cancer treatment (CONTACT Study): a UK national observational cohort study. Br J Cancer 2023; 128:1922-1932. [PMID: 36959376 PMCID: PMC10035482 DOI: 10.1038/s41416-023-02220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION CONTACT is a national multidisciplinary study assessing the impact of the COVID-19 pandemic upon diagnostic and treatment pathways among patients with pancreatic ductal adenocarcinoma (PDAC). METHODS The treatment of consecutive patients with newly diagnosed PDAC from a pre-COVID-19 pandemic cohort (07/01/2019-03/03/2019) were compared to a cohort diagnosed during the first wave of the UK pandemic ('COVID' cohort, 16/03/2020-10/05/2020), with 12-month follow-up. RESULTS Among 984 patients (pre-COVID: n = 483, COVID: n = 501), the COVID cohort was less likely to receive staging investigations other than CT scanning (29.5% vs. 37.2%, p = 0.010). Among patients treated with curative intent, there was a reduction in the proportion of patients recommended surgery (54.5% vs. 76.6%, p = 0.001) and increase in the proportion recommended upfront chemotherapy (45.5% vs. 23.4%, p = 0.002). Among patients on a non-curative pathway, fewer patients were recommended (47.4% vs. 57.3%, p = 0.004) or received palliative anti-cancer therapy (20.5% vs. 26.5%, p = 0.045). Ultimately, fewer patients in the COVID cohort underwent surgical resection (6.4% vs. 9.3%, p = 0.036), whilst more patients received no anti-cancer treatment (69.3% vs. 59.2% p = 0.009). Despite these differences, there was no difference in median overall survival between the COVID and pre-COVID cohorts, (3.5 (IQR 2.8-4.1) vs. 4.4 (IQR 3.6-5.2) months, p = 0.093). CONCLUSION Pathways for patients with PDAC were significantly disrupted during the first wave of the COVID-19 pandemic, with fewer patients receiving standard treatments. However, no significant impact on survival was discerned.
Collapse
Affiliation(s)
- Lewis A Hall
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, England.
| | - Siobhan C McKay
- Queen Elizabeth Hospital, Birmingham, England
- Department of Academic Surgery, University of Birmingham, Birmingham, England
| | | | - Joshua Soane
- Southend University Hospital, Southend-on-Sea, England
| | | | | | - Laura Magill
- Birmingham Surgical Trials Consortium, University of Birmingham, Birmingham, England
| | - Thomas Pinkney
- Birmingham Surgical Trials Consortium, University of Birmingham, Birmingham, England
| | | | - Juan W Valle
- The Christie NHS Foundation Trust, Manchester, England
| | - Pippa Corrie
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Keith J Roberts
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, England
- Queen Elizabeth Hospital, Birmingham, England
| |
Collapse
|
246
|
Słodkowski M, Wroński M, Karkocha D, Kraj L, Śmigielska K, Jachnis A. Current Approaches for the Curative-Intent Surgical Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15092584. [PMID: 37174050 PMCID: PMC10177138 DOI: 10.3390/cancers15092584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Radical resection is the only curative treatment for pancreatic cancer. However, only up to 20% of patients are considered eligible for surgical resection at the time of diagnosis. Although upfront surgery followed by adjuvant chemotherapy has become the gold standard of treatment for resectable pancreatic cancer there are numerous ongoing trials aiming to compare the clinical outcomes of various surgical strategies (e.g., upfront surgery or neoadjuvant treatment with subsequent resection). Neoadjuvant treatment followed by surgery is considered the best approach in borderline resectable pancreatic tumors. Individuals with locally advanced disease are now candidates for palliative chemo- or chemoradiotherapy; however, some patients may become eligible for resection during the course of such treatment. When metastases are found, the cancer is qualified as unresectable. It is possible to perform radical pancreatic resection with metastasectomy in selected cases of oligometastatic disease. The role of multi-visceral resection, which involves reconstruction of major mesenteric veins, is well known. Nonetheless, there are some controversies in terms of arterial resection and reconstruction. Researchers are also trying to introduce personalized treatments. The careful, preliminary selection of patients eligible for surgery and other therapies should be based on tumor biology, among other factors. Such selection may play a key role in improving survival rates in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Maciej Słodkowski
- Department of General, Gastroenterologic and Oncologic Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Marek Wroński
- Department of General, Gastroenterologic and Oncologic Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dominika Karkocha
- Department of General, Gastroenterologic and Oncologic Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Leszek Kraj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kaja Śmigielska
- Department of General, Gastroenterologic and Oncologic Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aneta Jachnis
- Department of General, Gastroenterologic and Oncologic Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
247
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
248
|
Sharma G, Enriquez JS, Armijo R, Wang M, Bhattacharya P, Pudakalakatti S. Enhancing Cancer Diagnosis with Real-Time Feedback: Tumor Metabolism through Hyperpolarized 1- 13C Pyruvate MRSI. Metabolites 2023; 13:606. [PMID: 37233647 PMCID: PMC10224418 DOI: 10.3390/metabo13050606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
This review article discusses the potential of hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) as a noninvasive technique for identifying altered metabolism in various cancer types. Hyperpolarization significantly improves the signal-to-noise ratio for the identification of 13C-labeled metabolites, enabling dynamic and real-time imaging of the conversion of [1-13C] pyruvate to [1-13C] lactate and/or [1-13C] alanine. The technique has shown promise in identifying upregulated glycolysis in most cancers, as compared to normal cells, and detecting successful treatment responses at an earlier stage than multiparametric MRI in breast and prostate cancer patients. The review provides a concise overview of the applications of HP [1-13C] pyruvate MRSI in various cancer systems, highlighting its potential for use in preclinical and clinical investigations, precision medicine, and long-term studies of therapeutic response. The article also discusses emerging frontiers in the field, such as combining multiple metabolic imaging techniques with HP MRSI for a more comprehensive view of cancer metabolism, and leveraging artificial intelligence to develop real-time, actionable biomarkers for early detection, assessing aggressiveness, and interrogating the early efficacy of therapies.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular & Thoracic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | - Ryan Armijo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| | - Muxin Wang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| |
Collapse
|
249
|
Yamazaki M, Hino S, Usuki S, Miyazaki Y, Oda T, Nakao M, Ito T, Yamagata K. YAP/BRD4-controlled ROR1 promotes tumor-initiating cells and hyperproliferation in pancreatic cancer. EMBO J 2023:e112614. [PMID: 37096681 DOI: 10.15252/embj.2022112614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Tumor-initiating cells are major drivers of chemoresistance and attractive targets for cancer therapy, however, their identity in human pancreatic ductal adenocarcinoma (PDAC) and the key molecules underlying their traits remain poorly understood. Here, we show that a cellular subpopulation with partial epithelial-mesenchymal transition (EMT)-like signature marked by high expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is the origin of heterogeneous tumor cells in PDAC. We demonstrate that ROR1 depletion suppresses tumor growth, recurrence after chemotherapy, and metastasis. Mechanistically, ROR1 induces the expression of Aurora kinase B (AURKB) by activating E2F through c-Myc to enhance PDAC proliferation. Furthermore, epigenomic analyses reveal that ROR1 is transcriptionally dependent on YAP/BRD4 binding at the enhancer region, and targeting this pathway reduces ROR1 expression and prevents PDAC growth. Collectively, our findings reveal a critical role for ROR1high cells as tumor-initiating cells and the functional importance of ROR1 in PDAC progression, thereby highlighting its therapeutic targetability.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepatobiliary Pancreatic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepatobiliary Pancreatic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takaaki Ito
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
250
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|