201
|
Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21:137-150. [PMID: 32020082 DOI: 10.1038/s41580-019-0204-5] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Ageing is characterized by the functional decline of tissues and organs and the increased risk of ageing-associated disorders. Several 'rejuvenating' interventions have been proposed to delay ageing and the onset of age-associated decline and disease to extend healthspan and lifespan. These interventions include metabolic manipulation, partial reprogramming, heterochronic parabiosis, pharmaceutical administration and senescent cell ablation. As the ageing process is associated with altered epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, and non-coding RNAs, the manipulation of these mechanisms is central to the effectiveness of age-delaying interventions. This Review discusses the epigenetic changes that occur during ageing and the rapidly increasing knowledge of how these epigenetic mechanisms have an effect on healthspan and lifespan extension, and outlines questions to guide future research on interventions to rejuvenate the epigenome and delay ageing processes.
Collapse
Affiliation(s)
- Weiqi Zhang
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.,Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
202
|
Campos AS, Favarato RM, Feldberg E. Interspecific cytogenetic relationships in three Acestrohynchus species (Acestrohynchinae, Characiformes) reveal the existence of possible cryptic species. COMPARATIVE CYTOGENETICS 2020; 14:27-42. [PMID: 31998448 PMCID: PMC6976687 DOI: 10.3897/compcytogen.v14i1.33483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The karyotypes and chromosomal characteristics of three Acestrorhynchus Eigenmann et Kennedy, 1903 species were examined using conventional and molecular protocols. These species had invariably a diploid chromosome number 2n = 50. Acestrorhynchus falcatus (Block, 1794) and Acestrorhynchus falcirostris (Cuvier, 1819) had the karyotype composed of 16 metacentric (m) + 28 submetacentric (sm) + 6 subtelocentric (st) chromosomes while Acestrorhynchus microlepis (Schomburgk, 1841) had the karyotype composed of 14m+30sm+6st elements. In this species, differences of the conventional and molecular markers between the populations of Catalão Lake (AM) and of Apeu Stream (PA) were found. Thus the individuals of Pará (Apeu) were named Acestrorhynchus prope microlepis. The distribution of the constitutive heterochromatin blocks was species-specific, with C-positive bands in the centromeric and telomeric regions of a number of different chromosomes, as well as in interstitial sites and completely heterochromatic arms. The phenotypes of nucleolus organizer region (NOR) were simple, i. e. in a terminal position on the p arm of pair No. 23 except in A. microlepis, in which it was located on the q arm. Fluorescence in situ hybridization (FISH) revealed 18S rDNA sites on one chromosome pair in karyotype of A. falcirostris and A. prope microlepis (pair No. 23) and three pairs (Nos. 12, 23, 24) in A. falcatus and (Nos. 8, 23, 24) in A. microlepis; 5S rDNA sites were detected in one chromosome pair in all three species. The mapping of the telomeric sequences revealed terminal sequences in all the chromosomes, as well as the presence of interstitial telomeric sequences (ITSs) in a number of chromosome pairs. The cytogenetic data recorded in the present study indicate that A. prope microlepis may be an unnamed species.
Collapse
Affiliation(s)
- Alber Sousa Campos
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv). Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, , Av. André Araújo, 2936, Petrópolis, Manaus, Amazonas, BrazilInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Ramon Marin Favarato
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv). Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, , Av. André Araújo, 2936, Petrópolis, Manaus, Amazonas, BrazilInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Eliana Feldberg
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv). Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, , Av. André Araújo, 2936, Petrópolis, Manaus, Amazonas, BrazilInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| |
Collapse
|
203
|
Georgescu PR, Capella M, Fischer-Burkart S, Braun S. The euchromatic histone mark H3K36me3 preserves heterochromatin through sequestration of an acetyltransferase complex in fission yeast. MICROBIAL CELL 2020; 7:80-92. [PMID: 32161768 PMCID: PMC7052950 DOI: 10.15698/mic2020.03.711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maintaining the identity of chromatin states requires mechanisms that ensure their structural integrity through the concerted actions of histone modifiers, readers, and erasers. Histone H3K9me and H3K27me are hallmarks of repressed heterochromatin, whereas H3K4me and H3K36me are associated with actively transcribed euchromatin. Paradoxically, several studies have reported that loss of Set2, the methyltransferase responsible for H3K36me, causes de-repression of heterochromatin. Here we show that unconstrained activity of the acetyltransferase complex Mst2C, which antagonizes heterochromatin, is the main cause of the silencing defects observed in Set2-deficient cells. As previously shown, Mst2C is sequestered to actively transcribed chromatin via binding to H3K36me3 that is recognized by the PWWP domain protein Pdp3. We demonstrate that combining deletions of set2+ and pdp3+ results in an epistatic silencing phenotype. In contrast, deleting mst2+, or other members of Mst2C, fully restores silencing in Set2-deficient cells. Suppression of the silencing defect in set2Δ cells is specific for pericentromeres and subtelomeres, which are marked by H3K9me, but is not seen for loci that lack genuine heterochromatin. Mst2 is known to acetylate histone H3K14 redundantly with the HAT Gnc5. Further, it is involved in the acetylation of the non-histone substrate and E3 ubiquitin ligase Brl1, resulting in increased H2B-K119 ubiquitylation at euchromatin. However, we reveal that none of these mechanisms are responsible for the Set2-dependent silencing pathway, implying that Mst2 targets another, unknown substrate critical for heterochromatin silencing. Our findings demonstrate that maintenance of chromatin states requires spatial constraint of opposing chromatin activities.
Collapse
Affiliation(s)
- Paula R Georgescu
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Matías Capella
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sabine Fischer-Burkart
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
204
|
Quadros J, Ferreira AMV, Viana PF, Marajó L, Oliveira E, Ferreira E, Feldberg E. Comparative cytogenetic of six species of Amazonian Peacock bass ( Cichla, Cichlinae): intrachromosomal variations and genetic introgression among sympatric species. COMPARATIVE CYTOGENETICS 2020; 14:437-451. [PMID: 33014295 PMCID: PMC7515931 DOI: 10.3897/compcytogen.v14i3.55279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 05/09/2023]
Abstract
Cytogenetic data for the genus Cichla Bloch et Schneider, 1801 are still very limited, with only four karyotype descriptions to date. The sum of the available cytogenetic information for Cichla species, points to a maintenance of the diploid number of 48 acrocentric chromosomes, considered a typical ancestral feature in cichlids. In the current study, we performed molecular and classical cytogenetic analyses of the karyotype organization of six species of Cichla, the earliest-diverging genus of Neotropical cichlids. We cytogenetically analysed Cichla kelberi Kullander et Ferreira, 2006, Cichla monoculus Agassiz, 1831, Cichla piquiti Kullander et Ferreira, 2006, Cichla temensis Humboldt, 1821, Cichla vazzoleri Kullander et Ferreira, 2006 and Cichla pinima Kullander et Ferreira, 2006, including three individuals that showed mixed morphological characteristics, likely from different species, suggesting they were hybrid individuals. All individuals analysed showed 2n = 48 acrocentric chromosomes, with centromeric heterochromatic blocks on all chromosomes and a terminal heterochromatic region on the q arm of the 2nd pair. Mapping 18S rDNA gave hybridization signals, correlated with the nucleolus organizer regions, on the 2nd pair for all analyzed individuals. However, we found distinct patterns for 5S rDNA: interstitially at the proximal position on 6th pair of four species (C. kelberi, C. pinima, C. piquiti and C. vazzoleri), and on the distal of the 4th pair in two (C. monoculus and C. temensis). Accordingly, we present here new data for the genus and discuss the evolutionary trends in the karyotype of this group of fish. In addition, we provide data that supports the occurrence of hybrid individuals in the Uatumã River region, mainly based on 5S rDNA mapping.
Collapse
Affiliation(s)
- Janice Quadros
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Alex M. V. Ferreira
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Leandro Marajó
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Ezequiel Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Efrem Ferreira
- Laboratório de Ecologia de peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| |
Collapse
|
205
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|
206
|
Holla S, Dhakshnamoorthy J, Folco HD, Balachandran V, Xiao H, Sun LL, Wheeler D, Zofall M, Grewal SIS. Positioning Heterochromatin at the Nuclear Periphery Suppresses Histone Turnover to Promote Epigenetic Inheritance. Cell 2019; 180:150-164.e15. [PMID: 31883795 DOI: 10.1016/j.cell.2019.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023]
Abstract
In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.
Collapse
Affiliation(s)
- Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling-Ling Sun
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
207
|
Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019; 10:231-253. [PMID: 31744372 PMCID: PMC6949026 DOI: 10.1080/19491034.2019.1688932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive heterochromatin is considered as a functionally inert genome compartment, important for its architecture and stability. How such stable structure is maintained is not well understood. Here, we apply four different visualization schemes to label it and investigate its dynamics during DNA replication and repair. We show that replisomes assemble over the heterochromatin in a temporally ordered manner. Furthermore, heterochromatin undergoes transient decompaction locally at the active sites of DNA synthesis. Using selective laser microirradiation conditions that lead to damage repaired via processive DNA synthesis, we measured similarly local decompaction of heterochromatin. In both cases, we could not observe large-scale movement of heterochromatin to the domain surface. Instead, the processive DNA synthesis machinery assembled at the replication/repair sites. Altogether, our data are compatible with a progression of DNA replication/repair along the chromatin in a dynamic mode with localized and transient decompaction that does not globally remodels the whole heterochromatin compartment.
Collapse
Affiliation(s)
- Vadim O. Chagin
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Britta Reinhart
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - K. Laurence Jost
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - M. Cristina Cardoso
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
208
|
Oya E, Nakagawa R, Yoshimura Y, Tanaka M, Nishibuchi G, Machida S, Shirai A, Ekwall K, Kurumizaka H, Tagami H, Nakayama J. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep 2019; 20:e48111. [PMID: 31468675 PMCID: PMC6776926 DOI: 10.15252/embr.201948111] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity. Affinity-purified CLRC ubiquitylates histone H3, and mass spectrometric and mutation analyses reveal that H3 lysine 14 (H3K14) is the preferred target of the complex. Chromatin immunoprecipitation analysis shows that H3K14 ubiquitylation (H3K14ub) is closely associated with H3K9me-enriched chromatin. Notably, the CLRC-mediated H3 ubiquitylation promotes H3K9me by Clr4, suggesting that H3 ubiquitylation is intimately linked to the establishment and/or maintenance of H3K9me. These findings demonstrate a cross-talk mechanism between histone ubiquitylation and methylation that is involved in heterochromatin assembly.
Collapse
Affiliation(s)
- Eriko Oya
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Faculty of Science and EngineeringChuo UniversityBunkyo‐ku, TokyoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuriko Yoshimura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Mayo Tanaka
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Gohei Nishibuchi
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Present address:
Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Shinichi Machida
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Present address:
Institute of Human GeneticsCNRS UMR 9002MontpellierFrance
| | | | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hitoshi Kurumizaka
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hideaki Tagami
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
| | - Jun‐ichi Nakayama
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Department of Basic BiologySchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| |
Collapse
|
209
|
Farooq Z, Abdullah E, Banday S, Ganai SA, Rashid R, Mushtaq A, Rashid S, Altaf M. Vigilin protein Vgl1 is required for heterochromatin-mediated gene silencing in Schizosaccharomyces pombe. J Biol Chem 2019; 294:18029-18040. [PMID: 31554660 DOI: 10.1074/jbc.ra119.009262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic genomes and regulates various cellular processes, including gene silencing, chromosome segregation, and maintenance of genome stability. In the fission yeast Schizosaccharomyces pombe, heterochromatin formation involves methylation of lysine 9 in histone H3 (H3K9), which recruits Swi6/HP1 proteins to heterochromatic loci. The Swi6/HP1-H3K9me3 chromatin complex lies at the center of heterochromatic macromolecular assemblies and mediates many functions of heterochromatin by recruiting a diverse set of regulators. However, additional factors may be required for proper heterochromatin organization, but they are not fully known. Here, using several molecular and biochemical approaches, we report that Vgl1, a member of a large family of multiple KH-domain proteins, collectively known as vigilins, is indispensable for the heterochromatin-mediated gene silencing in S. pombe ChIP analysis revealed that Vgl1 binds to pericentromeric heterochromatin in an RNA-dependent manner and that Vgl1 deletion leads to loss of H3K9 methylation and Swi6 recruitment to centromeric and telomeric heterochromatic loci. Furthermore, we show that Vgl1 interacts with the H3K9 methyltransferase, Clr4, and that loss of Vgl1 impairs Clr4 recruitment to heterochromatic regions of the genome. These findings uncover a novel role for Vgl1 as a key regulator in heterochromatin-mediated gene silencing in S. pombe.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ehsaan Abdullah
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shabir Ahmad Ganai
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Romana Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Samia Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
210
|
DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88. Cells 2019; 8:cells8091097. [PMID: 31533340 PMCID: PMC6770535 DOI: 10.3390/cells8091097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
Collapse
|
211
|
Kheirallah DAM, Samad LME. Histological and Ultrastructure Alterations in the Midgut of Blaps polycresta and Trachyderma hispida (Coleoptera: Tenebrionidae) Induced by Heavy Metals Pollution. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ajbs.2019.637.647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
212
|
Wright GM, Cui F. The nucleosome position-encoding WW/SS sequence pattern is depleted in mammalian genes relative to other eukaryotes. Nucleic Acids Res 2019; 47:7942-7954. [PMID: 31216031 PMCID: PMC6735720 DOI: 10.1093/nar/gkz544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
Nucleosomal DNA sequences generally follow a well-known pattern with ∼10-bp periodic WW (where W is A or T) dinucleotides that oscillate in phase with each other and out of phase with SS (where S is G or C) dinucleotides. However, nucleosomes with other DNA patterns have not been systematically analyzed. Here, we focus on an opposite pattern, namely anti-WW/SS pattern, in which WW dinucleotides preferentially occur at DNA sites that bend into major grooves and SS (where S is G or C) dinucleotides are often found at sites that bend into minor grooves. Nucleosomes with the anti-WW/SS pattern are widespread and exhibit a species- and context-specific distribution in eukaryotic genomes. Unlike non-mammals (yeast, nematode and fly), there is a positive correlation between the enrichment of anti-WW/SS nucleosomes and RNA Pol II transcriptional levels in mammals (mouse and human). Interestingly, such enrichment is not due to underlying DNA sequence. In addition, chromatin remodeling complexes have an impact on the abundance but not on the distribution of anti-WW/SS nucleosomes in yeast. Our data reveal distinct roles of cis- and trans-acting factors in the rotational positioning of nucleosomes between non-mammals and mammals. Implications of the anti-WW/SS sequence pattern for RNA Pol II transcription are discussed.
Collapse
Affiliation(s)
- Gregory M Wright
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
213
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
214
|
Pillon MC, Lo YH, Stanley RE. IT'S 2 for the price of 1: Multifaceted ITS2 processing machines in RNA and DNA maintenance. DNA Repair (Amst) 2019; 81:102653. [PMID: 31324529 PMCID: PMC6764878 DOI: 10.1016/j.dnarep.2019.102653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells utilize sophisticated RNA processing machines to ensure the quality of RNA. Many RNA processing machines have been further implicated in regulating the DNA damage response signifying a strong link between RNA processing and genome maintenance. One of the most intricate and highly regulated RNA processing pathways is the processing of the precursor ribosomal RNA (pre-rRNA), which is paramount for the production of ribosomes. Removal of the Internal Transcribed Spacer 2 (ITS2), located between the 5.8S and 25S rRNA, is one of the most complex steps of ribosome assembly. Processing of the ITS2 is initiated by the newly discovered endoribonuclease Las1, which cleaves at the C2 site within the ITS2, generating products that are further processed by the polynucleotide kinase Grc3, the 5'→3' exonuclease Rat1, and the 3'→5' RNA exosome complex. In addition to their defined roles in ITS2 processing, these critical cellular machines participate in other stages of ribosome assembly, turnover of numerous cellular RNAs, and genome maintenance. Here we summarize recent work defining the molecular mechanisms of ITS2 processing by these essential RNA processing machines and highlight their emerging roles in transcription termination, heterochromatin function, telomere maintenance, and DNA repair.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
215
|
Folco HD, McCue A, Balachandran V, Grewal SIS. Cohesin Impedes Heterochromatin Assembly in Fission Yeast Cells Lacking Pds5. Genetics 2019; 213:127-141. [PMID: 31278118 PMCID: PMC6727797 DOI: 10.1534/genetics.119.302256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a powerful genetic model system for uncovering fundamental principles of heterochromatin assembly and epigenetic inheritance of chromatin states. Heterochromatin defined by histone H3 lysine 9 methylation and HP1 proteins coats large chromosomal domains at centromeres, telomeres, and the mating-type (mat) locus. Although genetic and biochemical studies have provided valuable insights into heterochromatin assembly, many key mechanistic details remain unclear. Here, we use a sensitized reporter system at the mat locus to screen for factors affecting heterochromatic silencing. In addition to known components of heterochromatin assembly pathways, our screen identified eight new factors including the cohesin-associated protein Pds5. We find that Pds5 enriched throughout heterochromatin domains is required for proper maintenance of heterochromatin. This function of Pds5 requires its associated Eso1 acetyltransferase, which is implicated in the acetylation of cohesin. Indeed, introducing an acetylation-mimicking mutation in a cohesin subunit suppresses defects in heterochromatin assembly in pds5∆ and eso1∆ cells. Our results show that in cells lacking Pds5, cohesin interferes with heterochromatin assembly. Supporting this, eliminating cohesin from the mat locus in the pds5∆ mutant restores both heterochromatin assembly and gene silencing. These analyses highlight an unexpected requirement for Pds5 in ensuring proper coordination between cohesin and heterochromatin factors to effectively maintain gene silencing.
Collapse
Affiliation(s)
- H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrea McCue
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
216
|
The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology 2019; 20:741-761. [PMID: 31473864 DOI: 10.1007/s10522-019-09832-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Aging is a progressive decline of physiological function in tissue and organ accompanying both accumulation of DNA damage and reduction of non-coding DNA. Peripheral non-coding DNA/heterochromatin has been proposed to protect the genome and centrally-located protein-coding sequences in soma and male germ cells against radiation and the invasion of exogenous nucleic acids. Therefore, this review summarizes the reduction of non-coding DNA/heterochromatin (including telomeric DNA and rDNA) and DNA damage accumulation during normal physiological aging and in various aging-related diseases. Based on analysis of data, it is found that DNA damage accumulation is roughly negatively correlated with the reduction of non-coding DNA and therefore speculated that DNA damage accumulation is likely due to the reduction of non-coding DNA protection in genome defense during aging. Therefore, it is proposed here that means to increase the total amount of non-coding DNA and/or heterochromatin prior to the onset of these diseases could potentially better protect the genome and protein-coding DNA, reduce the incidence of aging-related diseases, and thus lead to better health during aging.
Collapse
|
217
|
Broad Heterochromatic Domains Open in Gonocyte Development Prior to De Novo DNA Methylation. Dev Cell 2019; 51:21-34.e5. [PMID: 31474564 DOI: 10.1016/j.devcel.2019.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/28/2019] [Accepted: 07/24/2019] [Indexed: 02/03/2023]
Abstract
Facultative heterochromatin forms and reorganizes in response to external stimuli. However, how the initial establishment of such a chromatin state is regulated in cell-cycle-arrested cells remains unexplored. Mouse gonocytes are arrested male germ cells, at which stage the genome-wide DNA methylome forms. Here, we discovered transiently accessible heterochromatin domains of several megabases in size in gonocytes and named them differentially accessible domains (DADs). Open DADs formed in gene desert and gene cluster regions, primarily at transposons, with the reprogramming of histone marks, suggesting DADs as facultative heterochromatin. De novo DNA methylation took place with two waves in gonocytes: the first region specific and the second genome-wide. DADs were resistant to the first wave and their opening preceded the second wave. In addition, the higher-order chromosome architecture was reorganized with less defined chromosome compartments in gonocytes. These findings suggest that multiple layers of chromatin reprogramming facilitate de novo DNA methylation.
Collapse
|
218
|
Murakami Y. Phosphorylation of repressive histone code readers by casein kinase 2 plays diverse roles in heterochromatin regulation. J Biochem 2019; 166:3-6. [PMID: 31198932 DOI: 10.1093/jb/mvz045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
Abstract
Heterochromatin is a condensed and transcriptionally silent chromatin structure and that plays important roles in epigenetic regulation of the genome. Two types of heterochromatin exist: constitutive heterochromatin is primarily associated with trimethylation of histone H3 at lysine 9 (H3K9me3), and facultative heterochromatin with trimethylation of H3 at lysine 27 (H3K27me3). The methylated histones are bound by the chromodomain of histone code 'reader' proteins: HP1 family proteins for H3K9me3 and Polycomb family proteins for H3K27me3. Each repressive reader associates with various 'effector' proteins that provide the functional basis of heterochromatin. Heterochromatin regulation is primarily achieved by controlling histone modifications. However, recent studies have revealed that the repressive readers are phosphorylated, like other regulatory proteins, suggesting that phosphorylation also participates in heterochromatin regulation. Detailed studies have shown that phosphorylation of readers affects the binding specificities of chromodomains for methylated histone H3, as well as the binding of effector proteins. Thus, phosphorylation adds another layer to heterochromatin regulation. Interestingly, casein kinase 2, a strong and predominant kinase within the cell, is responsible for phosphorylation of repressive readers. In this commentary, I summarize the regulation of repressive readers by casein kinase 2-dependent phosphorylation and discuss the functional meaning of this modification.
Collapse
Affiliation(s)
- Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
219
|
Bao K, Jia S. Noncatalytic Function of a JmjC Domain Protein Disrupts Heterochromatin. Epigenet Insights 2019; 12:2516865719862249. [PMID: 31321383 PMCID: PMC6624913 DOI: 10.1177/2516865719862249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 11/29/2022] Open
Abstract
Chromatin-modifying enzymes are frequently overexpressed in cancer cells, and
their enzymatic activities play important roles in changing the epigenetic
landscape responsible for tumorigenesis. However, many of these proteins also
execute noncatalytic functions, which are poorly understood. In fission yeast,
overexpression of Epe1, a histone demethylase homolog, causes heterochromatin
defects. Interestingly, in our recent work, we discovered that overexpressed
Epe1 recruits SAGA, a histone acetyltransferase complex important for
transcriptional regulation, to disrupt heterochromatin, independent of its
demethylase activity. Our findings suggest that overexpressed
chromatin-modifying enzymes can alter the epigenetic landscape through changing
their proteomic environments, an area that needs to be further explored in
dissecting disease etiology associated with overexpression of chromatin
regulators.
Collapse
Affiliation(s)
- Kehan Bao
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
220
|
Ren B, Tan HL, Nguyen TTT, Sayed AMM, Li Y, Mok YK, Yang H, Chen ES. Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Res 2019; 46:189-202. [PMID: 29136238 PMCID: PMC5758876 DOI: 10.1093/nar/gkx1010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)—a novel histone H3 modification—participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | | | - Ying Li
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| |
Collapse
|
221
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
222
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
223
|
Parsons T, Zhang B. Critical role of histone tail entropy in nucleosome unwinding. J Chem Phys 2019; 150:185103. [PMID: 31091895 DOI: 10.1063/1.5085663] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleosome is the fundamental packaging unit for the genome. It must remain tightly wound to ensure genome stability while simultaneously being flexible enough to keep the DNA molecule accessible for genome function. The set of physicochemical interactions responsible for the delicate balance between these naturally opposed processes have not been determined due to challenges in resolving partially unwound nucleosome configurations at atomic resolution. Using a near atomistic protein-DNA model and advanced sampling techniques, we calculate the free energy cost of nucleosome DNA unwinding. Our simulations identify a large energetic barrier that decouples the outer and the inner DNA unwinding into two separate processes, occurring on different time scales. This dynamical decoupling allows the exposure of outer DNA at a modest cost to ensure accessibility while keeping the inner DNA and the histone core intact to maintain stability. We also reveal that this energetic barrier arises from a delayed loss of contacts between disordered histone tails and the DNA and is, surprisingly, largely offset by an entropic contribution from these tails. Implications of this enthalpy entropy compensation for the regulation of nucleosome stability and genome function are discussed.
Collapse
Affiliation(s)
- Thomas Parsons
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
224
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
225
|
Frade LFDS, Almeida BRRD, Milhomem-Paixão SSR, Ready JS, Nagamachi CY, Pieczarka JC, Noronha RCR. Karyoevolution of Crenicichla heckel 1840 (Cichlidae, Perciformes): a process mediated by inversions. Biol Open 2019; 8:bio.041699. [PMID: 31036749 PMCID: PMC6550074 DOI: 10.1242/bio.041699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Crenicichla (Cichliformes, Cichlidae) present a highly conserved diploid number 2n=48 with fundamental numbers varying between 52 and 62. We analyzed four species in order to investigate the role of repetitive DNA in chromosome evolution in the genus. Crenicichla johanna, Crenicichla cf. saxatilis and Crenicichla cf. regani have 2n=48 (8 m/sm and 40st/a) and FN=56, while Crenicichla sp. ‘Xingu I’ has 2n=48 (48 st/a) and FN=48. Different patterns of constitutive heterochromatin distribution were observed including pericentric, interstitial and whole arm C bands. A single chromosome bears 18S rDNA clusters in most species, except C. johanna, where population variation exists in terms of the quantity and distribution of clusters and their association with interstitial telomeric sequences. All species showed hybridization of 5S rDNA sequences in an interstitial region on an acrocentric chromosome pair. The karyotypic differences and maintenance of the diploid number supports chromosome evolution mediated by inversions in Crenicichla. The telomeric and 18S rDNA sequence association in various chromosomes of C. johanna are proposed to represent hotspots for breakage, favoring intra-chromosomal rearrangements. The results suggest that repetitive sequences can contribute to microstructural cytogenetic diversity in Crenicichla. Summary: This paper has a great importance for understanding karyotype evolutionary dynamics in neotropical freshwater fish, focusing on repetitive DNA and the role of inversions in Crenicichla.
Collapse
Affiliation(s)
- Luan Felipe da Silva Frade
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Campus Guamá, Rua Augusto Corrêa, n° 01. Guamá, Belém, Pará, Brasil
| | - Bruno Rafael Ribeiro de Almeida
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Campus Guamá, Rua Augusto Corrêa, n° 01. Guamá, Belém, Pará, Brasil
| | - Susana Suely Rodrigues Milhomem-Paixão
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, campus Valparaıso de Goiás, BR-040, km 6, Avenida Saia Velha, S/N, Área 8, Parque Esplanada V. 72.876-601, Valparaíso de Goiás, Goiás, Brasil
| | - Jonathan Stuart Ready
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Campus Guamá, Rua Augusto Corrêa, n° 01. Guamá, Belém, Pará, Brasil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Campus Guamá, Rua Augusto Corrêa, n° 01. Guamá, Belém, Pará, Brasil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Campus Guamá, Rua Augusto Corrêa, n° 01. Guamá, Belém, Pará, Brasil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Campus Guamá, Rua Augusto Corrêa, n° 01. Guamá, Belém, Pará, Brasil
| |
Collapse
|
226
|
Adler PH, Takaoka H, Sofian-Azirun M, Chen CD, Suana IW. Evolutionary and biogeographic history of the black fly Simulium wayani (Diptera: Simuliidae) on the island of Timor. Acta Trop 2019; 193:1-6. [PMID: 30772330 DOI: 10.1016/j.actatropica.2019.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
A recently described species of black fly, Simulium wayani Takaoka and Chen, from the island of Timor was chromosomally mapped to provide insights into its evolutionary and biogeographic history. The morphologically based species status of S. wayani is supported by a suite of fixed chromosomal rearrangements and unique sex chromosomes derived primarily from a large pool of polymorphisms in the S. ornatipes complex in Australia. The banding patterns of its polytene chromosomes indicate that S. wayani is closely related to a pair of homosequential cryptic species (S. norfolkense Dumbleton and S. ornatipes cytoform A2) in the S. ornatipes Skuse complex on mainland Australia; all three species uniquely share the same amplified band in their chromosomal complement. The low level of polymorphism and heterozygosity in S. wayani, relative to Australian populations of the S. ornatipes complex, suggests few colonization events from the larger land mass.
Collapse
|
227
|
Chromatin fiber structural motifs as regulatory hubs of genome function? Essays Biochem 2019; 63:123-132. [PMID: 30967476 PMCID: PMC6484786 DOI: 10.1042/ebc20180065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Nucleosomes cover eukaryotic genomes like beads on a string and play a central role in regulating genome function. Isolated strings of nucleosomes have the potential to compact and form higher order chromatin structures, such as the well-characterized 30-nm fiber. However, despite tremendous advances in observing chromatin fibers in situ it has not been possible to confirm that regularly ordered fibers represent a prevalent structural level in the folding of chromosomes. Instead, it appears that folding at a larger scale than the nucleosome involves a variety of random structures with fractal characteristics. Nevertheless, recent progress provides evidence for the existence of structural motifs in chromatin fibers, potentially localized to strategic sites in the genome. Here we review the current understanding of chromatin fiber folding and the emerging roles that oligonucleosomal motifs play in the regulation of genome function.
Collapse
|
228
|
Beedle MT, Topping T, Hogarth C, Griswold M. Differential localization of histone variant TH2B during the first round compared with subsequent rounds of spermatogenesis. Dev Dyn 2019; 248:488-500. [PMID: 30939211 PMCID: PMC6545161 DOI: 10.1002/dvdy.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 02/02/2023] Open
Abstract
Background Male germ cells are unique because they express a substantial number of variants of the general DNA binding proteins, known as histones, yet the biological significance of these variants is still unknown. In the present study, we aimed to address the expression pattern of the testis‐specific histone H2B variant (TH2B) and the testis‐specific histone H2A variant (TH2A) within the neonatal mouse testis. Results We demonstrate that TH2B and TH2A are present in a testis‐enriched for undifferentiated spermatogonia. Co‐localization studies with an undifferentiated marker, ZBTB16, revealed that TH2B and ZBTB16 co‐localize in the neonatal testis. Upon the appearance of the primary spermatocytes, TH2B no longer co‐localized with the ZBTB16 positive spermatogonia but were instead detected within the differentiating spermatogonia. This pattern of expression where TH2B and ZBTB16 no longer co‐localize was maintained in the adult testis. Conclusion These findings are in contrast to previous studies, which demonstrated that TH2B and TH2A were found only in adult spermatocytes. Our data are in support of a switch in the expression of these variants following the first round of spermatogonial differentiation. These studies reinforce current understandings that spermatogonia within the neonatal mouse testis are inherently different from those residing within the adult testis. Contrary to previous beliefs, testis specific histone variants TH2B and TH2A are also expressed expressed in undifferentiated spermatogonia in the neonatal mouse testis. Upon the appearance of the primary spermatocytes, TH2B switches its expression from spermatogonia to the spermatocyte population. This study reinforces the idea that spermatogonia in the neonatal mouse testis is inherently different than those residing within the adult.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
229
|
Nakagawa T, Okita AK. Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Curr Genet 2019; 65:1089-1098. [PMID: 30997531 DOI: 10.1007/s00294-019-00975-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.
Collapse
Affiliation(s)
- Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
230
|
Borges AT, Cioffi MB, Bertollo LAC, Soares RX, Costa GWWF, Molina WF. Paracentric Inversions Differentiate the Conservative Karyotypes in Two Centropomus Species (Teleostei: Centropomidae). Cytogenet Genome Res 2019; 157:239-248. [PMID: 30991393 DOI: 10.1159/000499748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 11/19/2022] Open
Abstract
Centropomus is the sole genus of the Centropomidae family (Teleostei), comprising 12 species widely distributed throughout the Western Atlantic and Eastern Pacific, with 6 of them occurring in the Western Atlantic in extensive sympatry. Their life history and phylogenetic relationships are well characterized; however, aspects of chromosomal evolution are still unknown. Here, cytogenetic analyses of 2 Centropomus species of great economic value (C. undecimalis and C. mexicanus) were performed using conventional (Giemsa, Ag-NOR, and fluorochrome staining, C- and replication banding) and molecular (chromosomal mapping of 18S and 5S rDNA, H2A-H2B and H3 hisDNA, and (TTAGGG)n repeats) approaches. The karyotypes of both species were composed of 48 solely acrocentric chromosomes (2n = 48; FN = 48), but the single ribosomal site was located in varying positions in the long arms of the second largest chromosome pair. Replication bands were generally similar, although conspicuous differences were observed in some chromosome regions. In both species, the histone H3 genes were located on 3 apparently homeologous chromosome pairs, but the exact position of these clusters differed slightly. Interspecific hisDNA and rDNA site displacements can indicate the occurrence of multiple paracentric inversions during the evolutionary diversification of the Centropomus genomes. Although the karyotypes remained similar in both species, our data demonstrate an unsuspected microstructural reorganization between them, driven most likely by a series of paracentric inversions.
Collapse
|
231
|
Xie WJ, Zhang B. Learning the Formation Mechanism of Domain-Level Chromatin States with Epigenomics Data. Biophys J 2019; 116:2047-2056. [PMID: 31053260 DOI: 10.1016/j.bpj.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022] Open
Abstract
Epigenetic modifications can extend over long genomic regions to form domain-level chromatin states that play critical roles in gene regulation. The molecular mechanism for the establishment and maintenance of these states is not fully understood and remains challenging to study with existing experimental techniques. Here, we took a data-driven approach and parameterized an information-theoretic model to infer the formation mechanism of domain-level chromatin states from genome-wide epigenetic modification profiles. This model reproduces statistical correlations among histone modifications and identifies well-known states. Importantly, it predicts drastically different mechanisms and kinetic pathways for the formation of euchromatin and heterochromatin. In particular, long, strong enhancer and promoter states grow gradually from short but stable regulatory elements via a multistep process. On the other hand, the formation of heterochromatin states is highly cooperative, and no intermediate states are found along the transition path. This cooperativity can arise from a chromatin looping-mediated spreading of histone methylation mark and supports collapsed, globular three-dimensional conformations rather than regular fibril structures for heterochromatin. We further validated these predictions using changes of epigenetic profiles along cell differentiation. Our study demonstrates that information-theoretic models can go beyond statistical analysis to derive insightful kinetic information that is otherwise difficult to access.
Collapse
Affiliation(s)
- Wen Jun Xie
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
232
|
Regulation of centromeric heterochromatin in the cell cycle by phosphorylation of histone H3 tyrosine 41. Curr Genet 2019; 65:829-836. [DOI: 10.1007/s00294-019-00962-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
|
233
|
Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem 2019; 63:59-74. [DOI: 10.1042/ebc20180062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
The eukaryotic genome is regulated in the context of chromatin. Specialized histones, known as histone variants, incorporate into chromatin to replace their canonical counterparts and represent an important layer of regulation to diversify the structural characteristics and functional outputs of chromatin. MacroH2A is an unusual histone variant with a bulky C-terminal non-histone domain that distinguishes it from all other histones. It is a critical player in stabilizing differentiated cell identity by posing as a barrier to somatic cell reprogramming toward pluripotency and acts as a tumor suppressor in a wide range of cancers. MacroH2A histones are generally regarded as repressive variants that are enriched at the inactive X chromosome (Xi) and broad domains across autosomal chromatin. Recent studies have shed light on to how macroH2A influences transcriptional outputs within distinct genomic contexts and revealed new intriguing molecular functions of macroH2A variants beyond transcriptional regulation. Furthermore, the mechanisms of its mysterious chromatin deposition are beginning to be unraveled, facilitating our understanding of its complex regulation of genome function.
Collapse
|
234
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
235
|
Shastrula PK, Sierra I, Deng Z, Keeney F, Hayden JE, Lieberman PM, Janicki SM. PML is recruited to heterochromatin during S phase and represses DAXX-mediated histone H3.3 chromatin assembly. J Cell Sci 2019; 132:jcs.220970. [PMID: 30796101 DOI: 10.1242/jcs.220970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/09/2019] [Indexed: 12/18/2022] Open
Abstract
The incorporation of the histone H3 variant, H3.3, into chromatin by the H3.3-specific chaperone DAXX and the ATP-dependent chromatin remodeling factor ATRX is a critical mechanism for silencing repetitive DNA. DAXX and ATRX are also components of promyelocytic nuclear bodies (PML-NBs), which have been identified as sites of H3.3 chromatin assembly. Here, we use a transgene array that can be visualized in single living cells to investigate the mechanisms that recruit PML-NB proteins (i.e. PML, DAXX, ATRX, and SUMO-1, SUMO-2 and SUMO-3) to heterochromatin and their functions in H3.3 chromatin assembly. We show that DAXX and PML are recruited to the array through distinct SUMOylation-dependent mechanisms. Additionally, PML is recruited during S phase and its depletion increases H3.3 deposition. Since this effect is abrogated when PML and DAXX are co-depleted, it is likely that PML represses DAXX-mediated H3.3 chromatin assembly. Taken together, these results suggest that, at heterochromatin, PML-NBs coordinate H3.3 chromatin assembly with DNA replication, which has important implications for understanding how transcriptional silencing is established and maintained.
Collapse
Affiliation(s)
- Prashanth Krishna Shastrula
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.,University of the Sciences in Philadelphia, Department of Biological Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Isabel Sierra
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Zhong Deng
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Frederick Keeney
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - James E Hayden
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Susan M Janicki
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
236
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
237
|
Kuhl L, Vader G. Kinetochores, cohesin, and DNA breaks: Controlling meiotic recombination within pericentromeres. Yeast 2019; 36:121-127. [PMID: 30625250 PMCID: PMC6519163 DOI: 10.1002/yea.3366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022] Open
Abstract
In meiosis, DNA break formation and repair are essential for the formation of crossovers between homologous chromosomes. Without crossover formation, faithful meiotic chromosome segregation and sexual reproduction cannot occur. Crossover formation is initiated by the programmed, meiosis-specific introduction of numerous DNA double-strand breaks, after which specific repair pathways promote recombination between homologous chromosomes. Despite its crucial nature, meiotic recombination is fraud with danger: When positioned or repaired inappropriately, DNA breaks can have catastrophic consequences on genome stability of the resulting gametes. As such, DNA break formation and repair needs to be carefully controlled. Within centromeres and surrounding regions (i.e., pericentromeres), meiotic crossover recombination is repressed in organisms ranging from yeast to humans, and a failure to do so is implicated in chromosome missegregation and developmental aneuploidy. (Peri)centromere sequence identity and organization diverge considerably across eukaryotes, yet suppression of meiotic DNA break formation and repair appear universal. Here, we discuss emerging work that has used budding and fission yeast systems to study the mechanisms underlying pericentromeric suppression of DNA break formation and repair. We particularly highlight a role for the kinetochore, a universally conserved, centromere-associated structure essential for chromosome segregation, in suppressing (peri)centromeric DNA break formation and repair. We discuss the current understanding of kinetochore-associated and chromosomal factors involved in this regulation and suggest future avenues of research.
Collapse
Affiliation(s)
- Lisa‐Marie Kuhl
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Gerben Vader
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
238
|
Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation. J Mol Biol 2019; 431:1148-1159. [DOI: 10.1016/j.jmb.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/21/2022]
|
239
|
Leopold K, Stirpe A, Schalch T. Transcriptional gene silencing requires dedicated interaction between HP1 protein Chp2 and chromatin remodeler Mit1. Genes Dev 2019; 33:565-577. [PMID: 30808655 PMCID: PMC6499331 DOI: 10.1101/gad.320440.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1 (HP1) proteins are key factors of eukaryotic heterochromatin that coordinate chromatin compaction and transcriptional gene silencing. Through their multivalency they act as adaptors between histone H3 Lys9 di/trimethyl marks in chromatin and effector complexes that bind to the HP1 chromoshadow domain. Most organisms encode for multiple HP1 isoforms and the molecular mechanisms that underpin their diverse functions in genome regulation remain poorly understood. In fission yeast, the two HP1 proteins Chp2 and Swi6 assume distinct roles and Chp2 is tightly associated with the nucleosome remodeling and deacetylation complex SHREC. Here we show that Chp2 directly engages the SHREC nucleosome remodeler subunit Mit1. The crystal structure of the interaction interface reveals an extraordinarily extensive and specific interaction between the chromoshadow domain of Chp2 and the N terminus of Mit1. The integrity of this interface is critical for high affinity binding and for heterochromatin formation. Comparison with Swi6 shows that the Chp2-Mit1 interface is highly selective and thereby provides the molecular basis for the functional specialization of an HP1 isoform.
Collapse
Affiliation(s)
- Karoline Leopold
- Department of Molecular Biology, Faculty of Science, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alessandro Stirpe
- Department of Molecular Biology, Faculty of Science, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Thomas Schalch
- Department of Molecular Biology, Faculty of Science, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland.,Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
240
|
Menezes RST, Gazoni T, Costa MA. Cytogenetics of warrior wasps (Vespidae:Synoeca) reveals intense evolutionary dynamics of ribosomal DNA clusters and an unprecedented number of microchromosomes in Hymenoptera. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodolpho S T Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras – Universidade de São Paulo (FFCLRP/USP), Ribeirão Preto, SP, Brazil
| | - Thiago Gazoni
- Departamento de Biologia – Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil
| | - Marco A Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
241
|
Egan AN, Moore S, Stellari GM, Kang BC, Jahn MM. Tandem gene duplication and recombination at the AT3 locus in the Solanaceae, a gene essential for capsaicinoid biosynthesis in Capsicum. PLoS One 2019; 14:e0210510. [PMID: 30673734 PMCID: PMC6343889 DOI: 10.1371/journal.pone.0210510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023] Open
Abstract
Capsaicinoids are compounds synthesized exclusively in the genus Capsicum and are responsible for the burning sensation experienced when consuming hot pepper fruits. To date, only one gene, AT3, a member of the BAHD family of acyltransferases, is currently known to have a measurable quantitative effect on capsaicinoid biosynthesis. Multiple AT3 paralogs exist in the Capsicum genome, but their evolutionary relationships have not been characterized well. Recessive alleles at this locus result in absence of capsaicinoids in pepper fruit. To explore the evolution of AT3 in Capsicum and the Solanaceae, we sequenced this gene from diverse Capsicum genotypes and species, along with a number of representative solanaceous taxa. Our results revealed that the coding region of AT3 is highly conserved throughout the family. Further, we uncovered a tandem duplication that predates the diversification of the Solanaceae taxa sampled in this study. This pair of tandem duplications were designated AT3-1 and AT3-2. Sequence alignments showed that the AT3-2 locus, a pseudogene, retains regions of amino acid conservation relative to AT3-1. Gene tree estimation demonstrated that AT3-1 and AT3-2 form well supported, distinct clades. In C. rhomboideum, a non-pungent basal Capsicum species, we describe a recombination event between AT3-1 and AT3-2 that modified the putative active site of AT3-1, also resulting in a frame-shift mutation in the second exon. Our data suggest that duplication of the original AT3 representative, in combination with divergence and pseudogene degeneration, may account for the patterns of sequence divergence and punctuated amino acid conservation observed in this study. Further, an early rearrangement in C. rhomboidium could account for the absence of pungency in this Capsicum species.
Collapse
Affiliation(s)
- Ashley N. Egan
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
| | - Shanna Moore
- Department of Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, New York, United States of America
| | - Giulia Marina Stellari
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Byoung-Cheorl Kang
- Department of Horticulture, Seoul National University, Seoul, Republic of Korea
| | - Molly M. Jahn
- Department of Agronomy, University of Wisconsin-Madison, USDA FPL, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
242
|
Xie G, Vo TV, Thillainadesan G, Holla S, Zhang B, Jiang Y, Lv M, Xu Z, Wang C, Balachandran V, Shi Y, Li F, Grewal SIS. A conserved dimer interface connects ERH and YTH family proteins to promote gene silencing. Nat Commun 2019; 10:251. [PMID: 30651569 PMCID: PMC6335422 DOI: 10.1038/s41467-018-08273-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Gene regulatory mechanisms rely on a complex network of RNA processing factors to prevent untimely gene expression. In fission yeast, the highly conserved ortholog of human ERH, called Erh1, interacts with the YTH family RNA binding protein Mmi1 to form the Erh1-Mmi1 complex (EMC) implicated in gametogenic gene silencing. However, the structural basis of EMC assembly and its functions are poorly understood. Here, we present the co-crystal structure of the EMC that consists of Erh1 homodimers interacting with Mmi1 in a 2:2 stoichiometry via a conserved molecular interface. Structure-guided mutation of the Mmi1Trp112 residue, which is required for Erh1 binding, causes defects in facultative heterochromatin assembly and gene silencing while leaving Mmi1-mediated transcription termination intact. Indeed, EMC targets masked in mmi1∆ due to termination defects are revealed in mmi1W112A. Our study delineates EMC requirements in gene silencing and identifies an ERH interface required for interaction with an RNA binding protein.
Collapse
Affiliation(s)
- Guodong Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Tommy V Vo
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Beibei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Mengqi Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Chongyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China.
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
243
|
Chikkanna A, Mehan L, P. K. S, Ghosh D. Arsenic Exposures, Poisoning, and Threat to Human Health. ENVIRONMENTAL EXPOSURES AND HUMAN HEALTH CHALLENGES 2019. [DOI: 10.4018/978-1-5225-7635-8.ch004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic (As) is a naturally occurring metalloid which induces high toxicity to both human and animal health. Although As has some applications in industrial, medicinal and agricultural fields, the increasing concentrations of As in drinking water sources had made it a potential threat to living organisms. Inorganic As is naturally present in groundwater and is adsorbed by plants and crops through the irrigation system. This leads to its accumulation in crops and translocation to humans and animals through food. Increased levels of As can cause various health disorders through acute and chronic exposures such as gastrointestinal, hepatic, respiratory, cardiovascular, integumentary, renal, neurological, and reproductive disorders including stillbirth and infant mortality. Arsenic is also capable of inducing epigenetic changes, thereby causing gene mutations. This chapter focuses on the possible sources of As, leading to environmental contamination and followed by its hazardous effects which pave the way to various human health manifestations.
Collapse
|
244
|
Huang TL, Hsieh MT, Lin CC. Increased brain-derived neurotrophic factor exon IV histone 3 lysine 9 dimethylation in patients with schizophrenia. TAIWANESE JOURNAL OF PSYCHIATRY 2019. [DOI: 10.4103/tpsy.tpsy_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
245
|
Bao K, Shan CM, Moresco J, Yates J, Jia S. Anti-silencing factor Epe1 associates with SAGA to regulate transcription within heterochromatin. Genes Dev 2018; 33:116-126. [PMID: 30573453 PMCID: PMC6317313 DOI: 10.1101/gad.318030.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
In this study, Bao et al. investigated how transcription is regulated within heterochromatin in fission yeast. They show that overexpressed Epe1 associates with SAGA and recruits SAGA to heterochromatin regions (which leads to an increase in histone acetylation, transcription of repeats, and the disruption of heterochromatin) and that Epe1 recruits SAGA to regulate transcription within heterochromatin when expressed at normal levels. Heterochromatin is a highly condensed form of chromatin that silences gene transcription. Although high levels of transcriptional activities disrupt heterochromatin, transcription of repetitive DNA elements and subsequent processing of the transcripts by the RNAi machinery are required for heterochromatin assembly. In fission yeast, a JmjC domain protein, Epe1, promotes transcription of DNA repeats to facilitate heterochromatin formation, but overexpression of Epe1 leads to heterochromatin defects. However, the molecular function of Epe1 is not well understood. By screening the fission yeast deletion library, we found that heterochromatin defects associated with Epe1 overexpression are alleviated by mutations of the SAGA histone acetyltransferase complex. Overexpressed Epe1 associates with SAGA and recruits SAGA to heterochromatin regions, which leads to increased histone acetylation, transcription of repeats, and the disruption of heterochromatin. At its normal expression levels, Epe1 also associates with SAGA, albeit weakly. Such interaction regulates histone acetylation levels at heterochromatin and promotes transcription of repeats for heterochromatin assembly. Our results also suggest that increases of certain chromatin protein levels, which frequently occur in cancer cells, might strengthen relatively weak interactions to affect the epigenetic landscape.
Collapse
Affiliation(s)
- Kehan Bao
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James Moresco
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
246
|
Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in Neurospora. Genetics 2018; 211:563-578. [PMID: 30554169 DOI: 10.1534/genetics.118.301711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
In the filamentous fungus Neurospora crassa, constitutive heterochromatin is marked by tri-methylation of histone H3 lysine 9 (H3K9me3) and DNA methylation. We identified mutations in the Neurospora defective in methylation-1 (dim-1) gene that cause defects in cytosine methylation and implicate a putative AAA-ATPase chromatin remodeler. Although it was well-established that chromatin remodelers can affect transcription by influencing DNA accessibility with nucleosomes, little was known about the role of remodelers on chromatin that is normally not transcribed, including regions of constitutive heterochromatin. We found that dim-1 mutants display both reduced DNA methylation in heterochromatic regions as well as increased DNA methylation and H3K9me3 in some intergenic regions associated with highly expressed genes. Deletion of dim-1 leads to atypically spaced nucleosomes throughout the genome and numerous changes in gene expression. DIM-1 localizes to both heterochromatin and intergenic regions that become hyper-methylated in dim-1 strains. Our findings indicate that DIM-1 normally positions nucleosomes in both heterochromatin and euchromatin and that the standard arrangement and density of nucleosomes is required for the proper function of heterochromatin machinery.
Collapse
|
247
|
Yurkevich OY, Samatadze TE, Levinskikh MA, Zoshchuk SA, Signalova OB, Surzhikov SA, Sychev VN, Amosova AV, Muravenko OV. Molecular Cytogenetics of Pisum sativum L. Grown under Spaceflight-Related Stress. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4549294. [PMID: 30627557 PMCID: PMC6304655 DOI: 10.1155/2018/4549294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022]
Abstract
The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the "space grown" pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the "space grown" pea plants and generations of these plants cultivated on Earth.
Collapse
Affiliation(s)
- Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga B. Signalova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir N. Sychev
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
248
|
Swygert SG, Senapati S, Bolukbasi MF, Wolfe SA, Lindsay S, Peterson CL. SIR proteins create compact heterochromatin fibers. Proc Natl Acad Sci U S A 2018; 115:12447-12452. [PMID: 30455303 PMCID: PMC6298083 DOI: 10.1073/pnas.1810647115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterochromatin is a silenced chromatin region essential for maintaining genomic stability and driving developmental processes. The complicated structure and dynamics of heterochromatin have rendered it difficult to characterize. In budding yeast, heterochromatin assembly requires the SIR proteins-Sir3, believed to be the primary structural component of SIR heterochromatin, and the Sir2-4 complex, responsible for the targeted recruitment of SIR proteins and the deacetylation of lysine 16 of histone H4. Previously, we found that Sir3 binds but does not compact nucleosomal arrays. Here we reconstitute chromatin fibers with the complete complement of SIR proteins and use sedimentation velocity, molecular modeling, and atomic force microscopy to characterize the stoichiometry and conformation of SIR chromatin fibers. In contrast to fibers with Sir3 alone, our results demonstrate that SIR arrays are highly compact. Strikingly, the condensed structure of SIR heterochromatin fibers requires both the integrity of H4K16 and an interaction between Sir3 and Sir4. We propose a model in which a dimer of Sir3 bridges and stabilizes two adjacent nucleosomes, while a Sir2-4 heterotetramer interacts with Sir3 associated with a nucleosomal trimer, driving fiber compaction.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Subhadip Senapati
- Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Mehmet F Bolukbasi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Scot A Wolfe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Stuart Lindsay
- Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
249
|
Abstract
Predicting how epigenetic marks control the 3D organization of the genome is key to understanding how these marks regulate gene expression. We show that a physical model of a chromosome with experimentally measured local interactions segregates into euchromatin- and heterochromatin-like phases. The model reproduces many of the features of the large-scale organization of the chromosome as measured by Hi-C. Our work provides an estimate of the amount of epigenetic marking needed to segregate a gene into heterochromatin. We use a chromosome-scale simulation to show that the preferential binding of heterochromatin protein 1 (HP1) to regions high in histone methylation (specifically H3K9me3) results in phase segregation and reproduces features of the observed Hi-C contact map. Specifically, we perform Monte Carlo simulations with one computational bead per nucleosome and an H3K9me3 pattern based on published ChIP-seq signals. We implement a binding model in which HP1 preferentially binds to trimethylated histone tails and then oligomerizes to bridge together nucleosomes. We observe a phase reminiscent of heterochromatin—dense and high in H3K9me3—and another reminiscent of euchromatin—less dense and lacking H3K9me3. This segregation results in a plaid contact probability map that matches the general shape and position of published Hi-C data. Analysis suggests that a roughly 20-kb segment of H3K9me3 enrichment is required to drive segregation into the heterochromatic phase.
Collapse
|
250
|
Zhao S, Cheng L, Gao Y, Zhang B, Zheng X, Wang L, Li P, Sun Q, Li H. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res 2018; 29:54-66. [PMID: 30425322 PMCID: PMC6318295 DOI: 10.1038/s41422-018-0104-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) recognizes histone H3 lysine 9 methylation (H3K9me) through its conserved chromodomain and maintains heterochromatin from fission yeast to mammals. However, in Arabidopsis, Like Heterochromatin Protein 1 (LHP1) recognizes and colocalizes genome-wide with H3K27me3, and is the functional homolog of Polycomb protein. This raises the question whether genuine HP1 homologs exist in plants. Here, we report on the discovery of ADCP1, a plant-specific triple tandem Agenet protein, as a multivalent H3K9me reader in Arabidopsis, and establish that ADCP1 is essential for heterochromatin formation and transposon silencing through modulating H3K9 and DNA methylation levels. Structural studies revealed the molecular basis underlying H3K9me-specific recognition by tandem Agenet of ADCP1. Similar to human HP1α and fly HP1a, ADCP1 mediates heterochromatin phase separation. Our results demonstrate that despite its distinct domain compositions, ADCP1 convergently evolves as an HP1-equivalent protein in plants to regulate heterochromatin formation.
Collapse
Affiliation(s)
- Shuai Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lingling Cheng
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yifei Gao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Baichao Zhang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiangdong Zheng
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Liang Wang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pilong Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Qianwen Sun
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|