201
|
Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun 2015. [PMID: 26209532 DOI: 10.1177/1753425915595874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last 40 yr, the majority of research on glucans has focused on β-(1→3)-glucans. Recent studies indicate that β-(1→6)-glucans may be even more potent immune modulators than β-(1→3)-glucans. Mechanisms by which β-(1→6)-glucans are recognized and modulate immunity are unknown. In this study, we examined the interaction of purified water-soluble β-(1→6)-glucans with macrophage cell lines and primary peritoneal macrophages and the cellular and molecular consequences of this interaction. Our results indicate the existence of a specific β-(1→6)-glucan receptor that internalizes the glucan ligand via a clathrin-dependent mechanism. We show that the known β-(1→3)-glucans receptors are not responsible for β-(1→6)-glucan recognition and interaction. The receptor-ligand uptake/interaction has an apparent dissociation constant (KD) of ∼ 4 µM, and was associated with phosphorylation of ERK and JNK but not IκB-α or p38. Our results indicate that macrophage interaction with β-(1→6)-glucans may lead to modulation of genes associated with anti-fungal immunity and recruitment/activation of neutrophils. In summary, we show that macrophages specifically bind and internalize β-(1→6)-glucans followed by activation of intracellular signaling and modulation of anti-fungal immune response-related gene regulation. Thus, we conclude that the interaction between innate immunity and β-(1→6)-glucans may play an important role in shaping the anti-fungal immune response.
Collapse
Affiliation(s)
- Ilka Noss
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Bridget M Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
202
|
Chaiyadet S, Smout M, Johnson M, Whitchurch C, Turnbull L, Kaewkes S, Sotillo J, Loukas A, Sripa B. Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production. Int J Parasitol 2015; 45:773-81. [PMID: 26187786 DOI: 10.1016/j.ijpara.2015.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/18/2015] [Accepted: 06/06/2015] [Indexed: 01/22/2023]
Abstract
Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south-eastern Asia.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand; Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Michael Johnson
- Faculty of Science, University of Technology Sydney, Sydney, Australia
| | | | - Lynne Turnbull
- Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Sasithorn Kaewkes
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
203
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
204
|
Reis CR, Chen PH, Srinivasan S, Aguet F, Mettlen M, Schmid SL. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J 2015; 34:2132-46. [PMID: 26139537 DOI: 10.15252/embj.201591518] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this "checkpoint." Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3β signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3β accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3β signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME.
Collapse
Affiliation(s)
- Carlos R Reis
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping-Hung Chen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - François Aguet
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marcel Mettlen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
205
|
Tang X, Basavarajappa D, Haeggström JZ, Wan M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. THE JOURNAL OF IMMUNOLOGY 2015; 195:1191-201. [PMID: 26116509 DOI: 10.4049/jimmunol.1402845] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023]
Abstract
Bioactive peptide LL-37/hCAP18, the only human member of the cathelicidin family, plays important roles in killing various pathogens, as well as in immune modulation. We demonstrate that LL-37 is internalized by human macrophages in a time-, dose-, temperature-, and peptide sequence-dependent endocytotic process. Both clathrin- and caveolae/lipid raft-mediated endocytosis pathways are involved in LL-37 internalization. We find that the P2X7 receptor (P2X7R) plays an important role in LL-37 internalization by human macrophages because significantly less internalized LL-37 was detected in macrophages pretreated with P2X7R antagonists or, more specifically, in differentiated THP-1 cells in which the P2X7R gene had been silenced. Furthermore, this P2X7R-mediated LL-37 internalization is primarily connected to the clathrin-mediated endocytosis pathway. In addition, our results demonstrate that internalized LL-37 traffics to endosomes and lysosomes and contributes to intracellular clearance of bacteria by human macrophages, coinciding with increased reactive oxygen species and lysosome formation. Finally, we show that human macrophages have the potential to import LL-37 released from activated human neutrophils. In conclusion, our study unveils a novel mechanism by which human macrophages internalize antimicrobial peptides to improve their intracellular pathogen clearance.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Devaraj Basavarajappa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Min Wan
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
206
|
Ye D, Anguissola S, O'Neill T, Dawson KA. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model. NANOSCALE 2015; 7:10050-8. [PMID: 25975182 DOI: 10.1039/c5nr01539a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.
Collapse
Affiliation(s)
- Dong Ye
- Centre for Bio-Nano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
207
|
Healey EG, Bishop B, Elegheert J, Bell CH, Padilla-Parra S, Siebold C. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Nat Struct Mol Biol 2015; 22:458-65. [PMID: 25938661 PMCID: PMC4456160 DOI: 10.1038/nsmb.3016] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Repulsive guidance molecules (RGMs) control crucial processes including cell motility, adhesion, immune-cell regulation and systemic iron metabolism. RGMs signal via the neogenin (NEO1) and the bone morphogenetic protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a new protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the crystal structure of the ternary BMP2-RGM-NEO1 complex, which, along with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM-NEO1 complex. Our results show how RGM acts as the central hub that links BMP and NEO1 and physically connects these fundamental signaling pathways.
Collapse
Affiliation(s)
- Eleanor G Healey
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian H Bell
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sergi Padilla-Parra
- 1] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Cellular Imaging Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
208
|
Fox CB, Chirra HD, Desai TA. Planar bioadhesive microdevices: a new technology for oral drug delivery. Curr Pharm Biotechnol 2015; 15:673-83. [PMID: 25219863 DOI: 10.2174/1389201015666140915152706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/01/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery.
Collapse
Affiliation(s)
| | | | - Tejal A Desai
- 1700 4th Street, Byers Hall 204, Box 2520, San Francisco, CA 94158, USA.
| |
Collapse
|
209
|
Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv 2015; 12:1627-36. [PMID: 25994800 DOI: 10.1517/17425247.2015.1046431] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Macromolecular therapeutics, including enzymes, transcription factors, siRNAs, peptides and large synthetic molecules, can potentially be used to treat human diseases by targeting intracellular molecular pathways and modulating biological responses. However, large macromolecules have no ability to enter cells and require delivery vehicles. Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), are a diverse class of peptides that can deliver macromolecules into cells. AREAS COVERED In this review, we cover the uptake and usage of arginine-rich PTDs/CPPs (TAT-PTD, Penetratin/Antp and 8R). We review the endocytosis-mediated uptake of these peptides and highlight three important steps: i) cell association; ii) internalization and iii) endosomal escape. We also discuss the array of different cargos that have been delivered by cationic PTDs/CPPs as well as cellular processes and biological responses that have been modulated. EXPERT OPINION PTDs/CPPs have shown great potential to deliver otherwise undeliverable macromolecular therapeutics into cells for experimentation in cell culture and in animal disease models in vivo. Moreover, over 25 clinical trials have been performed predominantly using the TAT-PTD. However, more work is still needed. Endosomal escape and target-cell specificity remain two of the major future challenges.
Collapse
Affiliation(s)
- Peter Lönn
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA .,b 2 Uppsala University, Science for Life Laboratory, Department of Immunology, Genetics and Pathology , SE-751 08 Uppsala, Sweden
| | - Steven F Dowdy
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA
| |
Collapse
|
210
|
Balogh P, Magyar M, Szabó A, Müllner N, Likó I, Patócs A, Kiss AL. The subcellular compartmentalization of TGFβ-RII and the dynamics of endosomal formation during the signaling events: An in vivo study on rat mesothelial cells. Eur J Cell Biol 2015; 94:204-13. [DOI: 10.1016/j.ejcb.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/14/2022] Open
|
211
|
Makiyama T, Nakamura H, Nagasaka N, Yamashita H, Honda T, Yamaguchi N, Nishida A, Murayama T. Trafficking of Acetyl-C16-Ceramide-NBD with Long-Term Stability and No Cytotoxicity into the Golgi Complex. Traffic 2015; 16:476-92. [DOI: 10.1111/tra.12265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Tomohiko Makiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Nobuo Nagasaka
- Laboratory of Organic Chemistry, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Hisahiro Yamashita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Atsushi Nishida
- Laboratory of Organic Chemistry, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| |
Collapse
|
212
|
Tremblay MÈ, Lecours C, Samson L, Sánchez-Zafra V, Sierra A. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia. Front Neuroanat 2015; 9:45. [PMID: 25926775 PMCID: PMC4396411 DOI: 10.3389/fnana.2015.00045] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022] Open
Abstract
Under the guidance of Ramón y Cajal, a plethora of students flourished and began to apply his silver impregnation methods to study brain cells other than neurons: the neuroglia. In the first decades of the twentieth century, Nicolás Achúcarro was one of the first researchers to visualize the brain cells with phagocytic capacity that we know today as microglia. Later, his pupil Pío del Río-Hortega developed modifications of Achúcarro's methods and was able to specifically observe the fine morphological intricacies of microglia. These findings contradicted Cajal's own views on cells that he thought belonged to the same class as oligodendroglia (the so called “third element” of the nervous system), leading to a long-standing discussion. It was only in 1924 that Río-Hortega's observations prevailed worldwide, thus recognizing microglia as a unique cell type. This late landing in the Neuroscience arena still has repercussions in the twenty first century, as microglia remain one of the least understood cell populations of the healthy brain. For decades, microglia in normal, physiological conditions in the adult brain were considered to be merely “resting,” and their contribution as “activated” cells to the neuroinflammatory response in pathological conditions mostly detrimental. It was not until microglia were imaged in real time in the intact brain using two-photon in vivo imaging that the extreme motility of their fine processes was revealed. These findings led to a conceptual revolution in the field: “resting” microglia are constantly surveying the brain parenchyma in normal physiological conditions. Today, following Cajal's school of thought, structural and functional investigations of microglial morphology, dynamics, and relationships with neurons and other glial cells are experiencing a renaissance and we stand at the brink of discovering new roles for these unique immune cells in the healthy brain, an essential step to understand their causal relationship to diseases.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada ; Département de médecine moléculaire, Université Laval Québec, QC, Canada
| | - Cynthia Lecours
- Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada ; Département de médecine moléculaire, Université Laval Québec, QC, Canada
| | - Louis Samson
- Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada ; Département de médecine moléculaire, Université Laval Québec, QC, Canada
| | - Víctor Sánchez-Zafra
- Achúcarro Basque Center for Neuroscience, Bizkaia Science and Technology Park Zamudio, Spain ; Department of Neurosciences, University of the Basque Country Leioa, Spain
| | - Amanda Sierra
- Achúcarro Basque Center for Neuroscience, Bizkaia Science and Technology Park Zamudio, Spain ; Department of Neurosciences, University of the Basque Country Leioa, Spain ; Ikerbasque Foundation Bilbao, Spain
| |
Collapse
|
213
|
Joo EJ, Chun J, Ha YW, Ko HJ, Xu MY, Kim YS. Novel roles of ginsenoside Rg3 in apoptosis through downregulation of epidermal growth factor receptor. Chem Biol Interact 2015; 233:25-34. [PMID: 25824408 DOI: 10.1016/j.cbi.2015.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/26/2015] [Accepted: 03/18/2015] [Indexed: 12/17/2022]
Abstract
Ginsenoside Rg3 (Rg3), a pharmacologically active compound from red ginseng, has been reported to induce cell death in various cancer cell lines, although the specific mechanisms have not been well established. In the present study, Rg3 treatment to A549 human lung adenocarcinoma led to cell death via not only apoptotic pathways but also the downregulation of epidermal growth factor receptor (EGFR). We used cross-linker and cell enzyme-linked immunosorbent assays to show that Rg3 inhibited EGFR dimerization by EGF stimulation and caused EGFR internalization from the cell membrane. Among several important phosphorylation sites in cytoplasmic EGFR, Rg3 increased the phosphorylation of tyrosine 1045 (pY1045) and serine 1046/1047 (pS1046/1047) for EGFR degradation and coincidently, attenuated pY1173 and pY1068 for mitogen-activated protein kinase activity. These effects were amplified under EGF-pretreated Rg3 stimulation. In vivo experiments showed that the average volume of the tumors treated with 30 mg/kg of Rg3 was significantly decreased by 40% compared with the control. Through immunohistochemistry, we detected the fragmentation of DNA, the accumulation of Rg3, and the reduction of EGFR expression in the Rg3-treated groups. Here, we provide the first description of the roles of Rg3 in the reduction of cell surface EGFR, the attenuation of EGFR signal transduction, and the eventual activation of apoptosis in A549 human lung adenocarcinoma.
Collapse
Affiliation(s)
- Eun Ji Joo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Division of Hematology/Oncology and Leukemia Research Program, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jaemoo Chun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young Wan Ha
- Samsung Advanced Institute of Technology (SAIT)/Samsung Electronics Co. Ltd, Suwon 443-803, Republic of Korea
| | - Hye Jin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mei-Ying Xu
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
214
|
Piña MJ, Alex SM, Arias FJ, Santos M, Rodriguez-Cabello JC, Ramesan RM, Sharma CP. Elastin-like recombinamers with acquired functionalities for gene-delivery applications. J Biomed Mater Res A 2015; 103:3166-78. [DOI: 10.1002/jbm.a.35455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Maria J. Piña
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Susan M. Alex
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Francisco J. Arias
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Mercedes Santos
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | | | - Rekha M. Ramesan
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Chandra P. Sharma
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| |
Collapse
|
215
|
Lin WL, Lin YS, Shi GY, Chang CF, Wu HL. Lewisy promotes migration of oral cancer cells by glycosylation of epidermal growth factor receptor. PLoS One 2015; 10:e0120162. [PMID: 25799278 PMCID: PMC4370659 DOI: 10.1371/journal.pone.0120162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022] Open
Abstract
Aberrant glycosylation changes normal cellular functions and represents a specific hallmark of cancer. Lewisy (Ley) carbohydrate upregulation has been reported in a variety of cancers, including oral squamous cell carcinoma (OSCC). A high level of Ley expression is related to poor prognosis of patients with oral cancer. However, it is unclear how Ley mediates oral cancer progression. In this study, the role of Ley in OSCC was explored. Our data showed that Ley was upregulated in HSC-3 and OC-2 OSCC cell lines. Particularly, glycosylation of epidermal growth factor receptor (EGFR) with Ley was found in OC-2 cells, and this modification was absent upon inhibition of Ley synthesis. The absence of Ley glycosylation of EGFR weakened phosphorylation of AKT and ERK in response to epidermal growth factor (EGF). Additionally, EGF-triggered cell migration was reduced, but cell proliferation was not affected. Ley modification stabilized EGFR upon ligand activation. Conversely, absence of Ley glycosylation accelerated EGFR degradation. In summary, these results indicate that increased expression of Ley in OSCC cells is able to promote cell migration by modifying EGFR which in turn stabilizes EGFR expression and downstream signaling. Targeting Ley on EGFR could have a potential therapeutic effect on oral cancer.
Collapse
Affiliation(s)
- Wei-Ling Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shiuan Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (CFC); (HLW)
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (CFC); (HLW)
| |
Collapse
|
216
|
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 2015; 11:e1004106. [PMID: 25793621 PMCID: PMC4368204 DOI: 10.1371/journal.pcbi.1004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. Human neural progenitor cells offer the promising perspective of using in-vitro grown neural cell populations for replacement therapies in the context of neurodegenerative diseases, such as Parkinson’s or Huntington’s disease. However, to control hNPC differentiation within the scope of stem cell engineering, a thorough understanding of cell fate determination and its endogenous regulation is required. Here we investigate the spatio-temporal regulation of WNT/β-catenin signaling in the process of cell fate commitment in hNPCs, which has been reported to play a crucial role for the differentiation process of hNPCs. Based on a combined in-vitro and in-silico approach we demonstrate an elaborate interplay between endogenous ROS and lipid raft dependent WNT/beta-catenin signaling controlling the nuclear beta-catenin levels throughout the initial phase of neural differentiation. The stochastic multi-level computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far. Cross validation studies manifest its predictive capability for other cells and cell lines rendering the model a suitable basis for further studies also in the context of embryonic development, developmental disorders and cancers.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heiko Lemcke
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, Rostock, Germany
| | - Roland Ewald
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| | - Tareck Rharass
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
217
|
Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, Wu YM, Huang MC. Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget 2015; 6:5650-65. [PMID: 25730904 PMCID: PMC4467392 DOI: 10.18632/oncotarget.3117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
O-glycosylation is a common protein modification. Aberrant O-glycosylation is associated with many cancers. GALNT1 is a GalNAc-transferase that initiates protein O-glycosylation. We found that GALNT1 is frequently up-regulated in hepatocellular carcinoma (HCC) and is associated with poor patient survival. Overexpression of GALNT1 increased and knockdown decreased HCC cell migration and invasion. Knockdown of GALNT1 inhibited EGF-induced migration and invasion. Knockdown of GALNT1 decreased EGFR activation and increased EGFR degradation, by decreasing EGFR O-glycosylation. This study demonstrates that down-regulation of GALNT1 is sufficient to suppress malignant phenotype of HCC cells by decreasing EGFR signaling. Thus, GALNT1 is a potential target in HCC.
Collapse
Affiliation(s)
- Miao-Juei Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsing Chou
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - John Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ji-Shiang Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
218
|
Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc Natl Acad Sci U S A 2015; 112:E1423-32. [PMID: 25775509 DOI: 10.1073/pnas.1418491112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a key pathway for transporting cargo into cells via membrane vesicles; it plays an integral role in nutrient import, signal transduction, neurotransmission, and cellular entry of pathogens and drug-carrying nanoparticles. Because CME entails substantial local remodeling of the plasma membrane, the presence of membrane tension offers resistance to bending and hence, vesicle formation. Experiments show that in such high-tension conditions, actin dynamics is required to carry out CME successfully. In this study, we build on these pioneering experimental studies to provide fundamental mechanistic insights into the roles of two key endocytic proteins-namely, actin and BAR proteins-in driving vesicle formation in high membrane tension environment. Our study reveals an actin force-induced "snap-through instability" that triggers a rapid shape transition from a shallow invagination to a highly invaginated tubular structure. We show that the association of BAR proteins stabilizes vesicles and induces a milder instability. In addition, we present a rather counterintuitive role of BAR depolymerization in regulating the shape evolution of vesicles. We show that the dissociation of BAR proteins, supported by actin-BAR synergy, leads to considerable elongation and squeezing of vesicles. Going beyond the membrane geometry, we put forth a stress-based perspective for the onset of vesicle scission and predict the shapes and composition of detached vesicles. We present the snap-through transition and the high in-plane stress as possible explanations for the intriguing direct transformation of broad and shallow invaginations into detached vesicles in BAR mutant yeast cells.
Collapse
|
219
|
Bardita C, Predescu DN, Sha F, Patel M, Balaji G, Predescu SA. Endocytic deficiency induced by ITSN-1s knockdown alters the Smad2/3-Erk1/2 signaling balance downstream of Alk5. J Cell Sci 2015; 128:1528-41. [PMID: 25720380 PMCID: PMC4406123 DOI: 10.1242/jcs.163030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Recently, we demonstrated in cultured endothelial cells and in vivo that deficiency of an isoform of intersectin-1, ITSN-1s, impairs caveolae and clathrin-mediated endocytosis and functionally upregulates compensatory pathways and their morphological carriers (i.e. enlarged endocytic structures, membranous rings or tubules) that are normally underrepresented. We now show that these endocytic structures internalize the broadly expressed transforming growth factor β receptor I (TGFβ-RI or TGFBR1), also known as Alk5, leading to its ubiquitylation and degradation. Moreover, the apoptotic or activated vascular cells of the ITSN-1s-knockdown mice release Alk5-bearing microparticles to the systemic circulation. These interact with and transfer Alk5 to endocytosis-deficient endothelial cells, resulting in lung endothelial cell survival and phenotypic alteration towards proliferation through activation of Erk1 and Erk2 (also known as MAPK3 and MAPK1, respectively). We also show that non-productive assembly of the Alk5–Smad–SARA (Smad anchor for receptor activation, also known as ZFYVE9) signaling complex and preferential formation of the Alk5–mSos–Grb2 complex account for Erk1/2 activation downstream of Alk5 and proliferation of pulmonary endothelial cells. Taken together, our studies demonstrate a functional relationship between the intercellular transfer of Alk5 by microparticles and endothelial cell survival and proliferation, and define a novel molecular mechanism for TGFβ and Alk5-dependent Erk1/2MAPK signaling that is significant for proliferative signaling and abnormal growth.
Collapse
Affiliation(s)
- Cristina Bardita
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| | - Dan N Predescu
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fei Sha
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| | - Monal Patel
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| | - Ganesh Balaji
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
220
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
221
|
Pang M, Wang H, Bai JZ, Cao D, Jiang Y, Zhang C, Liu Z, Zhang X, Hu X, Xu J, Du Y. Recombinant rat CC16 protein inhibits LPS-induced MMP-9 expression via NF-κB pathway in rat tracheal epithelial cells. Exp Biol Med (Maywood) 2015; 240:1266-78. [PMID: 25716019 DOI: 10.1177/1535370215570202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023] Open
Abstract
Clara cell protein (CC16) is a well-known anti-inflammatory protein secreted by the epithelial Clara cells of the airways. It is involved in the development of airway inflammatory diseases such as chronic obstructive pulmonary disease and asthma. Previous studies suggest that CC16 gene transfer suppresses expression of interleukin (IL)-8 in bronchial epithelial cells. However, its role in the function of these cells during inflammation is not well understood. In this study, we evaluated the effect of CC16 on the expression of matrix metalloproteinase (MMP)-9 in lipopolysaccharide (LPS)-stimulated rat tracheal epithelial cells and its underlying molecular mechanisms. We generated recombinant rat CC16 protein (rCC16) which was bioactive in inhibiting the activity of phospholipase A2. rCC16 inhibited LPS-induced MMP-9 expression at both mRNA and protein levels in a concentration-dependent (0-2 µg/mL) manner, as demonstrated by real time RT-PCR, ELISA, and zymography assays. Gene transcription and DNA binding studies demonstrated that rCC16 suppressed LPS-induced NF-κB activation and its binding of gene promoters as identified by luciferase reporter and gel mobility shift assays, respectively. Western blotting and immunofluorescence staining analyses further revealed that rCC16 concentration dependently inhibited the effects of LPS on nuclear increase and cytosol reduction of NF-κB, on the phosphorylation and reduction of NF-κB inhibitory IκBα, and on p38 MAPK-dependent NF-κB activation by phosphorylation at Ser276 of its p65 subunit. These data indicate that inhibition of LPS-mediated NF-κB activation by rCC16 involves both translocation- and phosphorylation-dependent signaling pathways. When the tracheal epithelial cells were pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, cellular uptake of rCC16 and its inhibition of LPS-induced NF-κB nuclear translocation and also MMP-9 production were significantly abolished. Taken together, our data suggest that clathrin-mediated uptake of rCC16 suppresses LPS-mediated inflammatory MMP-9 production through inactivation of NF-κB and p38 MAPK pathways in tracheal epithelial cells.
Collapse
Affiliation(s)
- Min Pang
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hailong Wang
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Dawei Cao
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Jiang
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Caiping Zhang
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhihong Liu
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xinri Zhang
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyun Hu
- Department of Respiration, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jianying Xu
- Department of Respiration, Shanxi Da Yi Hospital, Taiyuan, Shanxi 030032, China
| | - Yongcheng Du
- Department of Respiration, the Provincial People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| |
Collapse
|
222
|
Podocin is translocated to cytoplasm in puromycin aminonucleoside nephrosis rats and in poor-prognosis patients with IgA nephropathy. Cell Tissue Res 2015; 360:391-400. [PMID: 25676004 PMCID: PMC4544490 DOI: 10.1007/s00441-014-2100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022]
Abstract
Podocytes serve as the final barrier to urinary protein loss through a highly specialized structure called a slit membrane and maintain foot process and glomerular basement membranes. Podocyte injury results in progressive glomerular damage and accelerates sclerotic changes, although the exact mechanism of podocyte injury is still obscure. We focus on the staining gap (podocin gap) defined as the staining difference between podocin and synaptopodin, which are normally located in the foot process. In puromycin aminonucleoside nephrosis rats, the podocin gap is significantly increased (p < 0.05) and podocin is translocated to the cytoplasm on days 7 and 14 but not on day 28. Surprisingly, the gap is also significantly increased (p < 0.05) in human kidney biopsy specimens of poor-prognosis IgA nephropathy patients. This suggests that the podocin gap could be a useful marker for classifying the prognosis of IgA nephropathy and indicating the translocation of podocin to the cytoplasm. Next, we find more evidence of podocin trafficking in podocytes where podocin merges with Rab5 in puromycin aminonucleoside nephrosis rats at day 14. In immunoelectron microscopy, the podocin positive area was significantly translocated from the foot process areas to the cytoplasm (p< 0.05) on days 7 and 14 in puromycin aminonucleoside nephrosis rats. Interestingly, podocin is also translocated to the cytoplasm in poor-prognosis human IgA nephropathy. In this paper, we demonstrate that the translocation of podocin by endocytosis could be a key traffic event of critical podocyte injury and that the podocin gap could indicate the prognosis of IgA nephropathy.
Collapse
|
223
|
Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015:137823. [PMID: 25709154 PMCID: PMC4325469 DOI: 10.1155/2015/137823] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
The transforming growth factor beta (TGF-β) family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors' involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.
Collapse
|
224
|
Abstract
Oncogenic alterations of epidermal growth factor receptor (EGFR) signaling are frequently observed in lung cancer patients with worse differentiation and poor prognosis. However, the therapeutic efficacy of EGFR-tyrosine kinase inhibitors (TKIs) is currently limited in selected patients with EGFR mutations. Therefore, in this study, we investigated the potential molecular mechanism that contributes to cell viability and the response of gefitinib, one of the EGFR-TKIs, in lung cancer models with wide-type EGFR (wtEGFR). Interestingly, we found that EGF-induced EGFR endocytosis is existed differently between gefitinib-sensitive and -insensitive lung cancer cell lines. Suppressing EGFR endocytos decreased cell viability and increased apoptotic cell death in gefitinib-insensitive lung cancer with wtEGFR in vitro and in vivo. In addition, we found that Rab25 was differentially expressed in between gefitinib-sensitive and -insensitive lung cancer cells. Rab25 knockdown caused the changed EGFR endocytosis and reverted the gefitinib response in gefitinib-sensitive lung cancer with wtEGFR in vitro and in vivo. Taken together, our findings suggest a novel insight that EGFR endocytosis is a rational therapeutic target in lung cancer with wtEGFR, in which the combined efficacy with gefitinib is expected. Furthermore, we demonstrated that Rab25 plays an important role in EGFR endocytosis and gefitinib therapy.
Collapse
|
225
|
Nyati S, Schinske-Sebolt K, Pitchiaya S, Chekhovskiy K, Chator A, Chaudhry N, Dosch J, Van Dort ME, Varambally S, Kumar-Sinha C, Nyati MK, Ray D, Walter NG, Yu H, Ross BD, Rehemtulla A. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling. Sci Signal 2015; 8:ra1. [PMID: 25564677 DOI: 10.1126/scisignal.2005379] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion.
Collapse
Affiliation(s)
- Shyam Nyati
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katerina Chekhovskiy
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areeb Chator
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nauman Chaudhry
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Dosch
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcian E Van Dort
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA. Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mukesh Kumar Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian Dale Ross
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
226
|
Tanimoto R, Morcavallo A, Terracciano M, Xu SQ, Stefanello M, Buraschi S, Lu KG, Bagley DH, Gomella LG, Scotlandi K, Belfiore A, Iozzo RV, Morrione A. Sortilin regulates progranulin action in castration-resistant prostate cancer cells. Endocrinology 2015; 156:58-70. [PMID: 25365768 PMCID: PMC4272403 DOI: 10.1210/en.2014-1590] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Departments of Urology (R.T., A.Morc., M.T., S.-Q.X., M.S., K.G.L., D.H.B., L.G.G., A.Morr.), Biology of Prostate Cancer Program (L.G.G., A.Morr.), and Pathology, Anatomy, and Cell Biology (S.B., R.V.I.) and Cancer Cell Biology and Signaling Program (R.V.I.), Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Department of Health Sciences (A.Morc., M.S., A.B.), Endocrinology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and CRS Development of Biomolecular Therapies (M.T., K.S.), Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Intracellular delivery of functional proteins using nanoparticles can be a game-changing approach for cancer therapy. However, cytosolic release of functional protein is still a major challenge. In addition, formation of protein corona on the surface of the nanoparticles can also alter the behavior of the nanoparticles. Here, we will review recent strategies for protein delivery into the cell. Finally we will discuss the issue of protein corona formation in light of nanoparticle-protein interactions.
Collapse
|
228
|
Tomé-Amat J, Ruiz-de-la-Herrán J, Martínez-del-Pozo Á, Gavilanes JG, Lacadena J. α-sarcin and RNase T1 based immunoconjugates: the role of intracellular trafficking in cytotoxic efficiency. FEBS J 2014; 282:673-84. [PMID: 25475209 DOI: 10.1111/febs.13169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
Toxins have been thoroughly studied for their use as therapeutic agents in search of an improvement in toxic efficiency together with a minimization of their undesired side effects. Different studies have shown how toxins can follow different intracellular pathways which are connected with their cytotoxic action inside the cells. The work herein presented describes the different pathways followed by the ribotoxin α-sarcin and the fungal RNase T1, as toxic domains of immunoconjugates with identical binding domain, the single chain variable fragment of a monoclonal antibody raised against the glycoprotein A33. According to the results obtained both immunoconjugates enter the cells via early endosomes and, while α-sarcin can translocate directly into the cytosol to exert its deathly action, RNase T1 follows a pathway that involves lysosomes and the Golgi apparatus. These facts contribute to explaining the different cytotoxicity observed against their targeted cells, and reveal how the innate properties of the toxic domain, apart from its catalytic features, can be a key factor to be considered for immunotoxin optimization.
Collapse
Affiliation(s)
- Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Spain; Department of Food Science, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
229
|
Lin YC, Wu MH, Wei TT, Lin YC, Huang WC, Huang LY, Lin YT, Chen CC. Metformin sensitizes anticancer effect of dasatinib in head and neck squamous cell carcinoma cells through AMPK-dependent ER stress. Oncotarget 2014; 5:298-308. [PMID: 24457597 PMCID: PMC3960210 DOI: 10.18632/oncotarget.1628] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an important endemic disease in Taiwan with aggressive course and dismal outcome. Dasatinib is a Bcr-bl and Src kinase inhibitor that has potential against HNSCC. We recently disclosed that EGFR degradation is critical for dasatinib-induced apoptosis. Here, we further demonstrate that AMPK-dependent ER stress is responsible for this event. Dasatinib induced ER stress which mediated EGFR degradation in a c-cbl-dependent manner. AMPK activation induced by dasatinib might be due to ATP decrease through the up-regulation of pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, activation of AMPK by metformin sensitized dasatinib-induced in vitro and in vivo anti-cancer effect. The correlation of AMPK activation and EGFR expression was seen in HNSCC cells and human tumor specimens. Our results disclose that AMPK-dependent ER stress plays a crucial role in the anti-cancer effect of dasatinib in HNSCC and further activation of AMPK by metformin might enhance dasatinib efficacy.
Collapse
|
230
|
Recktenwald CV, Lichtenfels R, Wulfaenger J, Müller A, Dressler SP, Seliger B. Impact of the mitogen-activated protein kinase pathway on the subproteome of detergent-resistant microdomains of colon carcinoma cells. Proteomics 2014; 15:77-88. [PMID: 25359454 DOI: 10.1002/pmic.201300321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
Lipid rafts play a key role in the regulation of fundamentally important cellular processes, including cell proliferation, differentiation, and survival. The composition of such detergent-resistant microdomains (DRMs) is altered under pathologic conditions, including cancer. Although DRMs have been analyzed in colorectal carcinoma little information exists about their composition upon treatment with targeted drugs. Hence, a quantitative proteomic profiling approach was performed to define alterations within the DRM fraction of colorectal carcinoma cells upon treatment with the drug U0126, an inhibitor of the mitogen-activated protein kinase pathway. Comparative expression profilings resulted in the identification of 300 proteins, which could partially be linked to key oncogenic signaling pathways and tumor-related cellular features, such as cell proliferation, adhesion, motility, invasion, and apoptosis resistance. Most of these proteins were downregulated upon inhibitor treatment. In addition, quantitative proteomic profilings of cholesterol-depleted versus intact lipid rafts were performed to define, which U0126-regulated target structures represent bona fide raft proteins. Selected differentially abundant raft proteins were validated at the mRNA and/or protein level using U0126- or Trametinib-treated cells. The presented data provide insights into the molecular mechanisms associated with the response to the treatment with MEK inhibitors and might also lead to novel candidates for therapeutic interventions.
Collapse
|
231
|
Pisco AO, Jackson DA, Huang S. Reduced Intracellular Drug Accumulation in Drug-Resistant Leukemia Cells is Not Only Solely Due to MDR-Mediated Efflux but also to Decreased Uptake. Front Oncol 2014; 4:306. [PMID: 25401091 PMCID: PMC4215691 DOI: 10.3389/fonc.2014.00306] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
Expression of ABC family transporter proteins that promote drug efflux from cancer cells is a widely observed mechanism of multi-drug resistance of cancer cells. Cell adaptation in long-term culture of HL60 leukemic cells in the presence of chemotherapy leads to induction and maintenance of the ABC transporters expression, preventing further accumulation of drugs. However, we found that decreased accumulation of drugs and fluorescent dyes also contributed by a reduced uptake by the resistant cells. Confocal time-lapse microscopy and flow cytometry revealed that fluid-phase endocytosis was diminished in drug-resistant cells compared to drug-sensitive cells. Drug uptake was increased by insulin co-treatment when cells were grown in methylcellulose and monitored under the microscope, but not when cultured in suspension. We propose that multi-drug resistance is not only solely achieved by enhanced efflux capacity but also by supressed intake of the drug, offering an alternative target to overcome drug resistance or potentiate chemotherapy.
Collapse
Affiliation(s)
- Angela Oliveira Pisco
- Institute for Systems Biology , Seattle, WA , USA ; Faculty of Life Sciences, University of Manchester , Manchester , UK
| | | | - Sui Huang
- Institute for Systems Biology , Seattle, WA , USA ; Department of Biological Sciences, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
232
|
Asmat TM, Agarwal V, Saleh M, Hammerschmidt S. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. Int J Med Microbiol 2014; 304:1233-46. [PMID: 25455218 DOI: 10.1016/j.ijmm.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/17/2022] Open
Abstract
Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC-pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC-pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes.
Collapse
Affiliation(s)
- Tauseef M Asmat
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vaibhav Agarwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Department of Laboratory Medicine, Medical Protein Chemistry, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany.
| |
Collapse
|
233
|
Cheng JY, Wang SH, Lin J, Tsai YC, Yu J, Wu JC, Hung JT, Lin JJ, Wu YY, Yeh KT, Yu AL. Globo-H Ceramide Shed from Cancer Cells Triggers Translin-Associated Factor X-Dependent Angiogenesis. Cancer Res 2014; 74:6856-66. [DOI: 10.1158/0008-5472.can-14-1651] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
234
|
Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 2014; 12:154-69. [PMID: 25263490 PMCID: PMC4654299 DOI: 10.1038/cmi.2014.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.
Collapse
|
235
|
Gucwa AL, Brown DA. UIM domain-dependent recruitment of the endocytic adaptor protein Eps15 to ubiquitin-enriched endosomes. BMC Cell Biol 2014; 15:34. [PMID: 25260758 PMCID: PMC4181756 DOI: 10.1186/1471-2121-15-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/22/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Eps15 is an endocytic adaptor protein that stimulates clathrin-mediated endocytosis. Among other interactions, Eps15 binds ubiquitin via UIM domains, recruiting ubiquitinated cargo into clathrin-coated vesicles. In EGF-treated cells, Eps15 also localizes to endosomes. The basis of this localization is not known. RESULTS We show that accumulation of ubiquitinated cargo can recruit Eps15 to endosomes via UIM domain interactions. First, treatment of SK-Br-3 breast cancer cells, which overexpress the EGFR family member ErbB2, with geldanamycin to promote receptor ubiquitination and endosomal transport, recruited FLAG-Eps15 to endosomes. Two in-frame ubiquitin constructs, PM-GFP-Ub (retained in endosomes after endocytosis), and GFP-FYVE-UbΔGG (targeted directly to endosomes) also recruited Eps15 to endosomes, as did slowing endosome maturation with constitutively-active Rab5-Q79L. Endosomal recruitment required the UIM domains, but not the N-terminal EH domains or central coiled-coil domains, of Eps15. Silencing of the endosomal Eps15 binding partner Hrs did not affect recruitment of Eps15 to ubiquitin-enriched endosomes. In fact, Hrs silencing itself modestly recruited Eps15 to endosomes, probably by accumulating endogenous ubiquitinated cargo. Eps15 silencing did not affect lysosomal degradation of ubiquitinated ErbB2; however, GFP-FYVE-UbΔGG overexpression inhibited internalization of EGFR and transferrin receptor. CONCLUSIONS We show for the first time that ubiquitin is sufficient for Eps15 recruitment to endosomes. We speculate that Eps15 recruitment to ubiquitin-rich endosomes may reduce the level of Eps15 at the plasma membrane, slowing endocytosis to allow time for processing of ubiquitinated cargo in endosomes.
Collapse
Affiliation(s)
- Azad L Gucwa
- Department of Biomedical Sciences, Long Island University at Post, Brookville, NY 11548-1300, USA.
| | | |
Collapse
|
236
|
Abstract
In recent years, hundreds of genes have been linked to a variety of human diseases, and the field of gene therapy has emerged as a way to treat this wide range of diseases. The main goal of gene therapy is to find a gene delivery vehicle that can successfully target diseased cells and deliver therapeutic genes directly to their cellular compartment. The two main types of gene delivery vectors currently being investigated in clinical trials are recombinant viral vectors and synthetic nonviral vectors. Recombinant viral vectors take advantage of the evolutionarily optimized viral mechanisms to deliver genes, but they can be hard to specifically target in vivo and are also associated with serious side effects. Synthetic nonviral vectors are made out of highly biocompatible lipids or polymers, but they are much less efficient at delivering their genetic payload due to the lack of any active delivery mechanism. This mini review will introduce the current state of gene delivery in clinical trials, and discuss the specific challenges associated with each of these vectors. It will also highlight some specific gaps in knowledge that are limiting the advancement of this field and touch on the current areas of research being explored to overcome them.
Collapse
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA
| | - Jennifer Rohrs
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
237
|
Danelishvili L, Stang B, Bermudez LE. Identification of Mycobacterium avium genes expressed during in vivo infection and the role of the oligopeptide transporter OppA in virulence. Microb Pathog 2014; 76:67-76. [PMID: 25245008 DOI: 10.1016/j.micpath.2014.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
Mycobacterium avium causes disseminated disease in patients with AIDS and other immunosuppressive conditions and pulmonary infections in individuals with chronic lung diseases. Much still need to be learn about the mechanisms of M. avium pathogenesis. Using a mouse model of disseminated M. avium disease, we applied an in vivo expression technology system and identified M. avium genes up-regulated in different organs of mice during early stage of infection. The M. avium oppA gene, involved in an active transport of oligopeptides across the cell membrane, was found highly expressed in lung, liver and spleen of mice. Mutation in the transport domain of the oppA gene resulted in bacterial attenuation in both macrophages and in mice. Using protein-protein interaction assay, it was determined that two hypothetical small proteins, MAV_2941 (73aa) and MAV_4320 (45aa), interact with OppA. MAV_2941 was shown to be secreted by the bacterium into the macrophage cytoplasm. Mutations in MAV_2941 was associated with significant impairment of growth in macrophages. Understanding the mechanisms involved in the functions of MAV_2941 and MAV_4320 is warranted.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Bernadette Stang
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA; Molecular and Cell Biology Program, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
238
|
Bitsikas V, Corrêa IR, Nichols BJ. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 2014; 3:e03970. [PMID: 25232658 PMCID: PMC4185422 DOI: 10.7554/elife.03970] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells. DOI:http://dx.doi.org/10.7554/eLife.03970.001 Cells are enclosed by a ‘plasma membrane’ that allows nutrients and certain small molecules to move in and out of cells. Larger molecules—such as proteins—are carried into cells through a process known as endocytosis, where part of the plasma membrane engulfs the molecule and transports it through the cell inside a bubble-like compartment called a vesicle. There may be several different ways by which endocytosis can occur. The most common method involves a protein known as clathrin, which coats part of the plasma membrane on the side facing the inside of the cell. This causes the membrane to deform into a pit. The pit grows around, and eventually completely surrounds, the molecule to be transported, at which point the clathrin-coated membrane pinches off from the rest of the plasma membrane to form a vesicle. Other forms of endocytosis do not need clathrin to form vesicles, and so are collectively known as clathrin-independent endocytosis. However, the details of how these other types of endocytosis work and how important they are for moving molecules into the cell remain unclear. This is partly because it is difficult to identify particular types of endocytosis. Previous attempts to do this have involved trying to identify molecules that are specifically and solely associated with that type of endocytosis, and using these to track the vesicle. However, few—if any—such molecules are known for clathrin-independent methods of endocytosis. Another approach is to inhibit the formation of clathrin-coated pits and study those molecules that are still taken into cells. The problem here is that incomplete inhibition can make interpreting the results difficult. Furthermore, complete inhibition of an important process like clathrin-dependent endocytosis is likely to have severe effects on many other aspects of cell function. Bitsikas et al. have developed a new method that allows a vesicle to be identified—regardless of how it forms—in cells that have not been treated with inhibitors. This method involves labelling proteins in the plasma membrane with a chemical that allows them to be traced, and so shows when they are included in vesicle membranes. Importantly, this new method can provide very accurate information as to whether or not proteins have been included in vesicles, and this may provide advantages over previous approaches. Bitsikas et al. selected a group of proteins that are thought to only enter cells in a clathrin-independent manner, but unexpectedly found that these proteins predominantly enter cells through clathrin-coated vesicles. Further analysis revealed that approximately 95% of all molecules that enter cells by endocytosis are taken up via clathrin-coated endocytosis. Therefore, clathrin-independent endocytosis does not make a significant contribution to the transport of large molecules into cells. These results are at odds with current thinking in the field. Future work could reveal whether the techniques applied by Bitsikas et al. detect more active clathrin-independent endocytosis in special situations, for example during cell migration, or in specific cell types. DOI:http://dx.doi.org/10.7554/eLife.03970.002
Collapse
Affiliation(s)
- Vassilis Bitsikas
- Department of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Benjamin J Nichols
- Department of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
239
|
Fu A, Tang R, Hardie J, Farkas M, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem 2014; 25:1602-8. [PMID: 25133522 PMCID: PMC4166028 DOI: 10.1021/bc500320j] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/10/2014] [Indexed: 02/07/2023]
Abstract
The direct delivery of functional proteins into the cell cytosol is a key issue for protein therapy, with many current strategies resulting in endosomal entrapment. Protein delivery to the cytosol is challenging due to the high molecular weight and the polarity of therapeutic proteins. Here we review strategies for the delivery of proteins into cells, including cell-penetrating peptides, virus-like particles, supercharged proteins, nanocarriers, polymers, and nanoparticle-stabilized nanocapsules. The advantages and disadvantages of these approaches including cytosolar delivery are compared and contrasted, with promising pathways forward identified.
Collapse
Affiliation(s)
- Ailing Fu
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- School
of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Rui Tang
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joseph Hardie
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michelle
E. Farkas
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
240
|
Cipriani P, Di Benedetto P, Capece D, Zazzeroni F, Liakouli V, Ruscitti P, Pantano I, Berardicurti O, Carubbi F, Alesse E, Giacomelli R. Impaired Cav-1 expression in SSc mesenchymal cells upregulates VEGF signaling: a link between vascular involvement and fibrosis. FIBROGENESIS & TISSUE REPAIR 2014; 7:13. [PMID: 25237397 PMCID: PMC4166421 DOI: 10.1186/1755-1536-7-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/27/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is characterized by vascular alteration and fibrosis, the former probably leading to fibrosis via the ability of both endothelial cells and pericytes to differentiate toward myofibroblast. It is well known that vascular endothelial growth factor A (VEGF-A, hereafter referred to as VEGF) may induce a profibrotic phenotype on perivascular cells. Caveolin-1 (Cav-1) is involved in the regulation of VEGF signaling, playing a role in the transport of internalized VEGF receptor 2 (VEGFR2) toward degradation, thus decreasing VEGF signaling. In this work, we assessed the levels of Cav-1 in SSc bone marrow mesenchymal stem cells (SSc-MSCs), a pericyte surrogate, and correlate these results with VEGF signaling, focusing onpotential pathogenic pathways leading to fibrosis. RESULTS WE EXPLORED THE VEGF SIGNALING ASSESSING: (1) Cav-1 expression; (2) its co-localization with VEGFR2; (3) the activity of VEGFR2, by IF, immunoprecipitation, and western blot. In SSc-MSCs, Cav-1 levels were lower when compared to healthy controls (HC)-MSCs. Furthermore, the Cav-1/VEGFR2 co-localization and the ubiquitination of VEGFR2 were impaired in SSc-MSCs, suggesting a decreased degradation of the receptor and, as a consequence, the tyrosine phosphorylation of VEGFR2 and the PI3-kinase-Akt pathways were significantly increased when compared to HC. Furthermore, an increased connective tissue growth factor (CTGF) expression was observed in SSc-MSCs. Taken together, these data suggested the upregulation of VEGF signaling in SSc-MSCs. Furthermore, after silencing Cav-1 expression in HC-MSCs, an increased CTGF expression in HC-MSCs was observed, mirroring the results obtained in SSc-MSCs, and confirming the potential role that the lack of Cav-1 may play in the persistent VEGF signaling . CONCLUSIONS During SSc, the lower levels of Cav-1 may contribute to the pathogenesis of fibrosis via an upregulation of the VEGF signaling in perivascular cells which are shifted to a profibrotic phenotype.
Collapse
Affiliation(s)
- Paola Cipriani
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Paola Di Benedetto
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Coppito 2, 67100 L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Coppito 2, 67100 L’Aquila, Italy
| | - Vasiliki Liakouli
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Piero Ruscitti
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Ilenia Pantano
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Onorina Berardicurti
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Francesco Carubbi
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Edoardo Alesse
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Coppito 2, 67100 L’Aquila, Italy
| | - Roberto Giacomelli
- Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| |
Collapse
|
241
|
Major histocompatibility complex class I downregulation induced by equine herpesvirus type 1 pUL56 is through dynamin-dependent endocytosis. J Virol 2014; 88:12802-15. [PMID: 25165105 DOI: 10.1128/jvi.02079-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Equine herpesvirus type 1 (EHV-1) downregulates cell surface expression of major histocompatibility complex class I (MHC-I) in infected cells. We have previously shown that pUL56 encoded by the EHV-1 ORF1 gene regulates the process (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, doi:http://dx.doi.org/10.1128/JVI.06994-11). Here, we report that cell surface MHC-I in EHV-1-infected cells is internalized and degraded in the lysosomal compartment in a pUL56-dependent fashion. pUL56-induced MHC-I endocytosis required dynamin and tyrosine kinase but was independent of clathrin and caveolin-1, the main constituents of the clathrin- and raft/caveola-mediated endocytosis pathways, respectively. Downregulation of cell surface MHC-I was significantly inhibited by the ubiquitin-activating enzyme E1 inhibitor PYR41, indicating that ubiquitination is essential for the process. Finally, we show that downregulation is not specific for MHC-I and that other molecules, including CD46 and CD63, are also removed from the cell surface in a pUL56-dependent fashion. IMPORTANCE We show that alphaherpesvirus induces MHC-I downregulation through endocytosis, which is mediated by pUL56. The dynamin-dependent endocytic pathway is responsible for MHC-I internalization in infected cells. Furthermore, we discovered that this endocytic process can be disrupted by the inhibiting ubiquitin-activating E1 enzyme, which is indispensable for ubiquitination. Finally, pUL56 action extends to a number of cell surface molecules that are significant for host immunity. Therefore, the protein may exert a more general immunomodulatory effect.
Collapse
|
242
|
Firdessa R, Oelschlaeger TA, Moll H. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems. Eur J Cell Biol 2014; 93:323-37. [PMID: 25224362 DOI: 10.1016/j.ejcb.2014.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/17/2023] Open
Abstract
Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle-cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases' pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences.
Collapse
Affiliation(s)
- Rebuma Firdessa
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Heidrun Moll
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
243
|
Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma. PLoS One 2014; 9:e105278. [PMID: 25148256 PMCID: PMC4141763 DOI: 10.1371/journal.pone.0105278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.
Collapse
|
244
|
Liu CC, Kanekiyo T, Roth B, Bu G. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling. J Biol Chem 2014; 289:27562-70. [PMID: 25143377 DOI: 10.1074/jbc.m113.533927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.
Collapse
Affiliation(s)
- Chia-Chen Liu
- From the Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China and the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Takahisa Kanekiyo
- the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Barbara Roth
- the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Guojun Bu
- From the Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China and the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| |
Collapse
|
245
|
Xiao X, Wong EWP, Lie PPY, Mruk DD, Wong CKC, Cheng CY. Cytokines, polarity proteins, and endosomal protein trafficking and signaling-the sertoli cell blood-testis barrier system in vitro as a study model. Methods Enzymol 2014; 534:181-94. [PMID: 24359954 DOI: 10.1016/b978-0-12-397926-1.00010-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endosomal signaling is emerging as one of the most important cellular events that regulate signaling function in mammalian cells or an epithelium in response to changes in environment such as the presence of stimuli mediated by cytokines, toxicants, heat, ions during growth and development, and other cellular processes such as cytokinesis and spermatogenesis. Recent studies have shown that protein endocytosis-the initial step of endosomal signaling-involves the participation of polarity proteins, such as partitioning defective protein 6 (Par6), Cdc42 and 14-3-3 (also known as Par5), which in turn is regulated by cytokines (e.g., TGF-β2, TGF-β3) and testosterone at the Sertoli cell blood-testis barrier (BTB) in the mammalian testis. In this short method paper, we provide a detailed protocol of assessing protein endocytosis, the initial and also the most critical step of endosomal signaling at the Sertoli cell BTB. This biochemical endocytosis assay summarizes our experience for the last decade, which should likely be performed in conjunction with the dual-labeled immunofluorescence analysis to assess protein endocytosis. While we are using a Sertoli cell in vitro system that mimics the BTB in vivo, this approach should be applicable to virtually all mammalian cells.
Collapse
Affiliation(s)
- Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Elissa W P Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Pearl P Y Lie
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA.
| |
Collapse
|
246
|
Suresh D, Zambre A, Chanda N, Hoffman TJ, Smith CJ, Robertson JD, Kannan R. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug Chem 2014; 25:1565-79. [PMID: 25020251 DOI: 10.1021/bc500295s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Departments of †Bioengineering, ‡Radiology, ¥Medicine and §Chemistry, ⊥University of Missouri Research Reactor, and #International Center for Nano/Micro Systems and Nanotechnology, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | | | | | | | |
Collapse
|
247
|
Caveolin-1 is required for TGF-β-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death Dis 2014; 5:e1326. [PMID: 25032849 PMCID: PMC4123087 DOI: 10.1038/cddis.2014.294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-beta (TGF-β) plays a dual role in hepatocytes, inducing both pro- and anti-apoptotic responses, whose balance decides cell fate. Survival signals are mediated by the epidermal growth factor receptor (EGFR) pathway, which is activated by TGF-β in these cells. Caveolin-1 (Cav1) is a structural protein of caveolae linked to TGF-β receptors trafficking and signaling. Previous results have indicated that in hepatocytes, Cav1 is required for TGF-β-induced anti-apoptotic signals, but the molecular mechanism is not fully understood yet. In this work, we show that immortalized Cav1(-/-) hepatocytes were more sensitive to the pro-apoptotic effects induced by TGF-β, showing a higher activation of caspase-3, higher decrease in cell viability and prolonged increase through time of intracellular reactive oxygen species (ROS). These results were coincident with attenuation of TGF-β-induced survival signals in Cav1(-/-) hepatocytes, such as AKT and ERK1/2 phosphorylation and NFκ-B activation. Transactivation of the EGFR pathway by TGF-β was impaired in Cav1(-/-) hepatocytes, which correlated with lack of activation of TACE/ADAM17, the metalloprotease responsible for the shedding of EGFR ligands. Reconstitution of Cav1 in Cav1(-/-) hepatocytes rescued wild-type phenotype features, both in terms of EGFR transactivation and TACE/ADAM17 activation. TACE/ADAM17 was localized in detergent-resistant membrane (DRM) fractions in Cav1(+/+) cells, which was not the case in Cav1(-/-) cells. Disorganization of lipid rafts after treatment with cholesterol-binding agents caused loss of TACE/ADAM17 activation after TGF-β treatment. In conclusion, in hepatocytes, Cav1 is required for TGF-β-mediated activation of the metalloprotease TACE/ADAM17 that is responsible for shedding of EGFR ligands and activation of the EGFR pathway, which counteracts the TGF-β pro-apoptotic effects. Therefore, Cav1 contributes to the pro-tumorigenic effects of TGF-β in liver cancer cells.
Collapse
|
248
|
Ishihara T, Nara S, Mizushima T. Interactions of Lecithinized Superoxide Dismutase with Serum Proteins and Cells. J Pharm Sci 2014; 103:1987-1994. [DOI: 10.1002/jps.24031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023]
|
249
|
Ha SW, Weitzmann MN, Beck GR. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS NANO 2014; 8:5898-910. [PMID: 24806912 PMCID: PMC4076025 DOI: 10.1021/nn5009879] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We recently identified an engineered bioactive silica-based nanoparticle formulation (designated herein as NP1) that stimulates in vitro differentiation and mineralization of osteoblasts, the cells responsible for bone formation, and increases bone mineral density in young mice in vivo. The results demonstrate that these nanoparticles have intrinsic biological activity; however, the intracellular fate and a complete understanding of the mechanism(s) involved remains to be elucidated. Here we investigated the cellular mechanism(s) by which NP1 stimulates differentiation and mineralization of osteoblasts. We show that NP1 enters the cells through a caveolae-mediated endocytosis followed by stimulation of the mitogen activated protein kinase ERK1/2 (p44/p42). Our findings further revealed that NP1 stimulates autophagy including the processing of LC3β-I to LC3β-II, a key protein involved in autophagosome formation, which is dependent on ERK1/2 signaling. Using a variant of NP1 with cobalt ferrite magnetic metal core (NP1-MNP) to pull down associated proteins, we found direct binding of LC3β and p62, two key proteins involved in autophagosome formation, with silica nanoparticles. Interestingly, NP1 specifically interacts with the active and autophagosome associated form of LC3β (LC3β-II). Taken together, the stimulation of autophagy and associated signaling suggests a cellular mechanism for the stimulatory effects of silica nanoparticles on osteoblast differentiation and mineralization.
Collapse
Affiliation(s)
- Shin-Woo Ha
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, Georgia 30322, United States
| | - M. Neale Weitzmann
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia 30033, United States
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, Georgia 30322, United States
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Address correspondence to ,
| | - George R. Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia 30033, United States
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, Georgia 30322, United States
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Address correspondence to ,
| |
Collapse
|
250
|
Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng SY. Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. eLife 2014; 3. [PMID: 24925320 PMCID: PMC4080449 DOI: 10.7554/elife.02555] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Cell surface reception of Sonic hedgehog (Shh) must ensure that the graded morphogenic signal is interpreted accordingly in neighboring cells to specify tissue patterns during development. Here, we report endocytic sorting signals for the receptor Patched1 (Ptch1), comprising two 'PPXY' motifs, that direct it to degradation in lysosomes. These signals are recognized by two HECT-domain ubiquitin E3 ligases, Smurf1 and Smurf2, which are induced by Shh and become enriched in Caveolin-1 lipid rafts in association with Ptch1. Smurf-mediated endocytic turnover of Ptch1 is essential for its clearance from the primary cilium and pathway activation. Removal of both Smurfs completely abolishes the ability of Shh to sustain the proliferation of postnatal granule cell precursors in the cerebellum. These findings reveal a novel step in the Shh pathway activation as part of the Ptch1 negative feedback loop that precisely controls the signaling output in response to Shh gradient signal.
Collapse
Affiliation(s)
- Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Ying Tang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Qiu-Hong Shen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zengdi Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Yu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|