201
|
Wu C, Jia Y, Lee JH, Kim Y, Sekharan S, Batista VS, Lee SJ. Activation of OR1A1 suppresses PPAR-γ expression by inducing HES-1 in cultured hepatocytes. Int J Biochem Cell Biol 2015; 64:75-80. [PMID: 25817041 DOI: 10.1016/j.biocel.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022]
Abstract
Olfactory receptors (ORs) comprise the largest G protein-coupled receptor gene superfamily. Recent studies indicate that ORs are also expressed in non-olfactory organs, including metabolically active tissues, although their biological functions in these tissues are largely unknown. In this study, OR1A1 expression was detected in HepG2 liver cells. OR1A1 activation by (-)-carvone, a known OR1A1 ligand, increased the cyclic adenosine monophosphate (cAMP), but not intracellular Ca(2+) concentration, thereby inducing protein kinase A (PKA) activity with subsequent phosphorylation of cAMP response element-binding protein (CREB) and upregulation of the CREB-responsive gene hairy and enhancer of split (HES)-1, a corepressor of peroxisome proliferator-activated receptor-γ (PPAR-γ) in hepatocytes. In (-)-carvone-stimulated cells, the repression of PPAR-γ reduced the expression of the target gene, mitochondrial glycerol-3-phosphate acyltransferase, which encodes a key enzyme involved in triglyceride synthesis. Intracellular triglyceride level and lipid accumulation were reduced in cells stimulated with (-)-carvone, effects that were diminished following the loss of OR1A1 function. These results indicate that OR1A1 may function as a non-redundant receptor in hepatocytes that regulates the PKA-CREB-HES-1 signaling axis and thereby modulates hepatic triglyceride metabolism.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Yaoyao Jia
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Ji Hae Lee
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Yeonji Kim
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
202
|
Chen Y, Palczewski K. Systems Pharmacology Links GPCRs with Retinal Degenerative Disorders. Annu Rev Pharmacol Toxicol 2015; 56:273-98. [PMID: 25839098 DOI: 10.1146/annurev-pharmtox-010715-103033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most biological systems, second messengers and their key regulatory and effector proteins form links between multiple cellular signaling pathways. Such signaling nodes can integrate the deleterious effects of genetic aberrations, environmental stressors, or both in complex diseases, leading to cell death by various mechanisms. Here we present a systems (network) pharmacology approach that, together with transcriptomics analyses, was used to identify different G protein-coupled receptors that experimentally protected against cellular stress and death caused by linked signaling mechanisms. We describe the application of this concept to degenerative and diabetic retinopathies in appropriate mouse models as an example. Systems pharmacology also provides an attractive framework for devising strategies to combat complex diseases by using (repurposing) US Food and Drug Administration-approved pharmacological agents.
Collapse
Affiliation(s)
- Yu Chen
- Yueyang Hospital and.,Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
203
|
Guggenhuber S, Alpar A, Chen R, Schmitz N, Wickert M, Mattheus T, Harasta AE, Purrio M, Kaiser N, Elphick MR, Monory K, Kilb W, Luhmann HJ, Harkany T, Lutz B, Klugmann M. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus. Brain Struct Funct 2015; 221:2061-74. [PMID: 25772509 DOI: 10.1007/s00429-015-1027-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo.
Collapse
Affiliation(s)
- Stephan Guggenhuber
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Alan Alpar
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 1:A1, 17177, Stockholm, Sweden
- Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rongqing Chen
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Nina Schmitz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Melanie Wickert
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Tobias Mattheus
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anne E Harasta
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, UNSW, High Street, Randwick, Sydney, NSW, 2052, Australia
| | - Martin Purrio
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Nadine Kaiser
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 1:A1, 17177, Stockholm, Sweden
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany.
| | - Matthias Klugmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany.
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, UNSW, High Street, Randwick, Sydney, NSW, 2052, Australia.
| |
Collapse
|
204
|
Groß A, Brox R, Damm D, Tschammer N, Schmidt B, Eichler J. Ligand selectivity of a synthetic CXCR4 mimetic peptide. Bioorg Med Chem 2015; 23:4050-5. [PMID: 25801155 DOI: 10.1016/j.bmc.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/17/2022]
Abstract
The chemokine receptor CXCR4 belongs to the family of seven-transmembrane G-protein coupled receptors (GPCRs). It is activated by its natural ligand SDF-1α. In addition, CXCR4, along with CCR5, serve as coreceptors during HIV-1 entry into its target cell. Recently, we introduced a CXCR4 mimetic peptide, termed CX4-M1, which presents the three extracellular loops (ECLs) of the receptor. CX4-M1 was shown to selectively bind to gp120 of X4-tropic, that is, CXCR4 using, HIV-1, as well as to peptides that present the V3-loops of these gp120 proteins. Furthermore, CX4-M1 selectively inhibits infection of cells with X4-tropic HIV-1. We have now adapted the sequence of the ECLs presented by CX4-M1 to the recently published crystal structure of CXCR4. The binding behavior, as well as the effect on HIV-1 infection, of the resulting peptide (CX4-Mc) was very similar to CX4-M1, validating retrospectively the original design of CX4-M1. A peptide presenting the ECLs of CCR5 (CR5-M), on the other hand, did neither bind to gp120 from X4-tropic HIV-1, nor did it inhibit infection of cells with X4-tropic HIV-1. Furthermore, we could show that CX4-M1, as well as CX4-Mc, but not CR5-M, are selectively recognized by anti-CXCR4 antibodies, bind to SDF-1α, and also inhibit SDF-1α signaling, extending the scope of selective functional CXCR4 mimicry through CX4-M1.
Collapse
Affiliation(s)
- Andrea Groß
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Regine Brox
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Dominik Damm
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Nuška Tschammer
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Barbara Schmidt
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen, Germany.
| |
Collapse
|
205
|
Wang D, Zhao WL, Cai MJ, Wang JX, Zhao XF. G-protein-coupled receptor controls steroid hormone signaling in cell membrane. Sci Rep 2015; 5:8675. [PMID: 25728569 DOI: 10.1038/srep08675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are involved in animal steroid hormone signaling, but their mechanism is unclear. In this research, we report that a GPCR called ErGPCR-2 controls steroid hormone 20-hydroxyecdysone (20E) signaling in the cell membrane of the lepidopteran insect Helicoverpa armigera. ErGPCR-2 was highly expressed during molting and metamorphosis. 20E, via ErGPCR-2, regulated rapid intracellular calcium increase, protein phosphorylation, gene transcription, and insect metamorphosis. ErGPCR-2 was located in the cell surface and was internalized by 20E induction. GPCR kinase 2 participated in 20E-induced ErGPCR-2 phosphorylation and internalization. The internalized ErGPCR-2 was degraded by proteases to desensitize 20E signaling. ErGPCR-2 knockdown suppressed the entrance of 20E analog [(3)H] ponasterone A ([(3)H]Pon A) into the cells. ErGPCR-2 overexpression or blocking of ErGPCR-2 internalization increased the entrance of [(3)H]Pon A into the cells. However, ErGPCR-2 did not bind to [(3)H]Pon A. Results suggest that ErGPCR-2 transmits steroid hormone 20E signaling and controls 20E entrance into cells in the cell membrane.
Collapse
Affiliation(s)
- Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen-Li Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
206
|
Smith JP, Whitcomb DC, Matters GL, Brand RE, Liao J, Huang YJ, Frazier ML. Distribution of cholecystokinin-B receptor genotype between patients with pancreatic cancer and controls and its impact on survival. Pancreas 2015; 44:236-42. [PMID: 25469546 PMCID: PMC4326549 DOI: 10.1097/mpa.0000000000000263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer through the CCK-B receptor (CCK-BR). A splice variant of the CCK-BR that results from a single nucleotide polymorphism (SNP) has been identified. Because the splice variant receptor has an extended third intracellular loop, an area involved in cell signaling and growth, we hypothesized that this genetic variant could contribute to the poor prognosis and short survival of this malignancy. METHODS DNA from 931 patients with pancreatic cancer was evaluated for the SNP (C > A; rs1800843) in the CCK-BR gene. For statistical analysis, the Fisher exact test was used to compare the genotype and allele frequency between the cancer cohort and normal controls and the dependence of genotype on factors, such as stage of disease and age, was analyzed using Cox proportional hazards models. RESULTS Compared to the normal cohort, the frequency of the A-allele in pancreatic cancer subjects was increased (P = 0.01123; odds ratio, 2.283). Even after adjustment for stage of disease, survival of subjects with the minor allele was significantly shorter than those with the wild-genotype (hazard ratio, 1.83; P = 3.11 × 10(-11)). CONCLUSIONS The CCK-BR SNP predicts survival and should be studied as a candidate genetic biomarker for those at risk of pancreatic cancer.
Collapse
Affiliation(s)
- Jill P. Smith
- Dept. of Medicine, Georgetown University, Washington, DC, USA
- Dept. of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA
| | - David C. Whitcomb
- Department of Medicine, University of Pittsburgh & UPMC, Pittsburgh, PA
| | - Gail L. Matters
- Dept. of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh & UPMC, Pittsburgh, PA
| | - Jiangang Liao
- Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, PA
| | - Yu-Jing Huang
- Department of Epidemiology, University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Marsha L. Frazier
- Department of Epidemiology, University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
207
|
Zhang XQ, Li XR, Ren J, Li YB, Cai MJ, Wang JX, Zhao XF. β-Arrestin1 interacts with G protein-coupled receptor to desensitize signaling of the steroid hormone 20-hydroxyecdysone in the lepidopteran insect Helicoverpa armigera. Cell Signal 2015; 27:878-86. [PMID: 25660147 DOI: 10.1016/j.cellsig.2015.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
Abstract
The steroid hormone 20-hydroxyecdysone (20E) plays a critical role in insect development, particularly in larval molting and larval-pupal transition. Studies have indicated that 20E transmits its signal via a G protein-coupled receptor (GPCR)-mediated non-genomic pathway before a genomic pathway is initiated. However, the mechanism by which a 20E signal is desensitized remains unclear. We proposed that β-arrestin1 interacts with ecdysone-responsible GPCR (ErGPCR1) to desensitize a 20E signal in the lepidopteran insect Helicoverpa armigera. Results showed that β-arrestin1 was highly expressed in various tissues during metamorphosis. β-Arrestin1 knockdown by RNA interference in larvae caused advanced pupation and a larval-pupal chimera. The mRNA levels of 20E-response genes were increased after β-arrestin1 was knocked down but were decreased after β-arrestin1 was overexpressed. 20E induced the migration of β-arrestin1 from the cytosol to the cytoplasmic membrane to interact with ErGPCR1. The inhibitors suramin and chelerythrine chloride repressed 20E-induced β-arrestin1 phosphorylation and membrane migration. With ErGPCR1, 20E regulated β-arrestin1 phosphorylation on serines at positions 170 and 234. The double mutation of the amino acids Ser170 and Ser234 to asparagine inhibited phosphorylation and membrane migration of β-arrestin1 in 20E induction. Therefore, 20E via ErGPCR1 and PKC signaling induces β-arrestin1 phosphorylation; phosphorylated β-arrestin1 migrates to the cytoplasmic membrane to interact with ErGPCR1 to block 20E signaling via a feedback mechanism.
Collapse
Affiliation(s)
- Xiao-Qian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
208
|
Nag K, Sultana N, Kato A, Dranik A, Nakamura N, Kutsuzawa K, Hirose S, Akaike T. Ligand-induced internalization, recycling, and resensitization of adrenomedullin receptors depend not on CLR or RAMP alone but on the receptor complex as a whole. Gen Comp Endocrinol 2015; 212:156-62. [PMID: 24815888 DOI: 10.1016/j.ygcen.2014.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
Abstract
Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1-3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1-mfRAMP3>mfCLR2-mfRAMP3>mfCLR3-mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1-mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3-mfRAMP3 and mfCLR1-mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP-CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.
Collapse
Affiliation(s)
- Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W. Hamilton, ON L8N 3Z5, Canada; Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Anna Dranik
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W. Hamilton, ON L8N 3Z5, Canada
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Koichi Kutsuzawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Toshihiro Akaike
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
209
|
Kobayashi Y, Hamamoto A, Hirayama T, Saito Y. Molecular cloning, expression, and signaling pathway of four melanin-concentrating hormone receptors from Xenopus tropicalis. Gen Comp Endocrinol 2015; 212:114-23. [PMID: 24662390 DOI: 10.1016/j.ygcen.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/15/2022]
Abstract
Melanin-concentrating hormone (MCH) mainly regulates feeding in mammals and pigmentation in teleosts. It acts via two G-protein-coupled receptors, MCH receptor 1 (MCHR1) and MCHR2. Although many studies exploring the MCH system in teleosts and mammals have been carried out, studies on other organisms are limited. In this study, we cloned and characterized four MCHR subtypes from the diploid species Xenopus tropicalis (X-MCHRs; X-MCHR1a, R1b, R2a, and R2b). According to a phylogenetic tree of the X-MCHRs, X-MCHR1a and R2a are close to mammalian MCHRs, while X-MCHR1b and R2b are close to teleostean MCHRs. We previously reported that the G-protein coupling capacity of the MCHR subtypes differed between mammals (R1: Gαi/o and Gαq; R2: Gαq) and teleosts (R1: Gαq; R2: Gαi/o and Gαq) in mammalian cell-based assays. By using Ca(2+) mobilization assays with pertussis toxin in CHO dhfr(-) cells, we found that X-MCHR1a promiscuously coupled to both Gαi/o and Gαq, while X-MCHR1b and R2a exclusively coupled to Gαq. However, no Ca(2+) influx was detected in cells transfected with X-MCHR2b. Reverse transcription-PCR showed that the X-MCHR mRNAs were expressed in various tissues. In particular, both X-MCHR1b and R2b were exclusively found in melanophores of the dorsal skin. In skin pigment migration assays, melanophores were weakly aggregated at low concentrations but dispersed at high concentrations of MCH, suggesting possible interactions between X-MCHR1b and R2b for the regulation of body color. These findings demonstrate that X. tropicalis has four characteristic MCHRs and will be useful for elucidating the nature of MCHR evolution among vertebrates.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Tomo Hirayama
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
210
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
211
|
Horie M, Saito A, Yamauchi Y, Mikami Y, Sakamoto M, Jo T, Nakajima J, Takizawa H, Nagase T, Kohyama T. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor. Exp Lung Res 2015; 40:222-36. [PMID: 24809793 DOI: 10.3109/01902148.2014.900155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Airway remodeling is implicated in irreversible airflow limitation of refractory asthma, which includes increased smooth muscle mass and subepithelial fibrosis. Activated fibroblasts acquire contractile phenotype to participate in tissue contraction and structural alteration of extracellular matrices. Histamine is a potent mediator of allergic inflammation, substantially involved in asthmatic pathophysiology. OBJECTIVE We hypothesized that histamine might play a role in airway remodeling, and investigated its effect on fibroblast-mediated collagen gel contraction. METHODS Fibroblast-mediated collagen gel contraction was studied. Histamine's regulation of collagen gel contraction was characterized by using specific histamine-receptor antagonists, an IP3 receptor antagonist and a PKC inhibitor. RESULTS Histamine induced contraction of collagen gels embedded with human lung fibroblasts, in a time-dependent manner, and at the concentration more than 10(-6) M, both in four primary cultured adult lung fibroblasts and three fetal lung fibroblast cell lines. This effect was attenuated by H1 receptor antagonist, whereas those for H2 to H4 receptors failed to show an inhibitory effect. Furthermore, IP3 receptor-mediated Ca(2+) mobilization was implicated in histamine's action on collagen gel contraction. CONCLUSIONS Our results suggest that histamine is involved in airway remodeling through its action on lung fibroblasts, and antihistamine drugs, especially H1 receptor antagonists, might be potentially beneficial for a subset of asthmatic patients.
Collapse
Affiliation(s)
- Masafumi Horie
- 1Department of Respiratory Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, Alonso CR, Apostolou Z, Aqrawi P, Arthur W, Barna JCJ, Blankenburg KP, Brites D, Capella-Gutiérrez S, Coyle M, Dearden PK, Du Pasquier L, Duncan EJ, Ebert D, Eibner C, Erikson G, Evans PD, Extavour CG, Francisco L, Gabaldón T, Gillis WJ, Goodwin-Horn EA, Green JE, Griffiths-Jones S, Grimmelikhuijzen CJP, Gubbala S, Guigó R, Han Y, Hauser F, Havlak P, Hayden L, Helbing S, Holder M, Hui JHL, Hunn JP, Hunnekuhl VS, Jackson L, Javaid M, Jhangiani SN, Jiggins FM, Jones TE, Kaiser TS, Kalra D, Kenny NJ, Korchina V, Kovar CL, Kraus FB, Lapraz F, Lee SL, Lv J, Mandapat C, Manning G, Mariotti M, Mata R, Mathew T, Neumann T, Newsham I, Ngo DN, Ninova M, Okwuonu G, Ongeri F, Palmer WJ, Patil S, Patraquim P, Pham C, Pu LL, Putman NH, Rabouille C, Ramos OM, Rhodes AC, Robertson HE, Robertson HM, Ronshaugen M, Rozas J, Saada N, Sánchez-Gracia A, Scherer SE, Schurko AM, Siggens KW, Simmons D, Stief A, Stolle E, Telford MJ, Tessmar-Raible K, Thornton R, van der Zee M, von Haeseler A, Williams JM, Willis JH, Wu Y, Zou X, Lawson D, Muzny DM, Worley KC, Gibbs RA, Akam M, Richards S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 2014; 12:e1002005. [PMID: 25423365 PMCID: PMC4244043 DOI: 10.1371/journal.pbio.1002005] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. Arthropods are the most abundant animals on earth. Among them, insects clearly dominate on land, whereas crustaceans hold the title for the most diverse invertebrates in the oceans. Much is known about the biology of these groups, not least because of genomic studies of the fruit fly Drosophila, the water flea Daphnia, and other species used in research. Here we report the first genome sequence from a species belonging to a lineage that has previously received very little attention—the myriapods. Myriapods were among the first arthropods to invade the land over 400 million years ago, and survive today as the herbivorous millipedes and venomous centipedes, one of which—Strigamia maritima—we have sequenced here. We find that the genome of this centipede retains more characteristics of the presumed arthropod ancestor than other sequenced insect genomes. The genome provides access to many aspects of myriapod biology that have not been studied before, suggesting, for example, that they have diversified receptors for smell that are quite different from those used by insects. In addition, it shows specific consequences of the largely subterranean life of this particular species, which seems to have lost the genes for all known light-sensing molecules, even though it still avoids light.
Collapse
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Carlo Brena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel S. T. Hughes
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Abt. Genetik, Rostock, Germany
| | | | - Nadia Znassi
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Huaiyang Jiang
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francisca C. Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Claudio R. Alonso
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Zivkos Apostolou
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wallace Arthur
- Department of Zoology, National University of Ireland, Galway, Ireland
| | | | - Kerstin P. Blankenburg
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniela Brites
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Marcus Coyle
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter K. Dearden
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Louis Du Pasquier
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Elizabeth J. Duncan
- Gravida and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Dieter Ebert
- Evolutionsbiologie, Zoologisches Institut, Universität Basel, Basel, Switzerland
| | - Cornelius Eibner
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Galina Erikson
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
- Scripps Translational Science Institute, La Jolla, California, United States of America
| | | | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Liezl Francisco
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - William J. Gillis
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Jack E. Green
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Sai Gubbala
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roderic Guigó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Paul Havlak
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Luke Hayden
- Department of Zoology, National University of Ireland, Galway, Ireland
| | - Sophie Helbing
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jerome H. L. Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Julia P. Hunn
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Hunnekuhl
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - LaRonda Jackson
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mehwish Javaid
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin E. Jones
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tobias S. Kaiser
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Divya Kalra
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathan J. Kenny
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christie L. Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - F. Bernhard Kraus
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- Department of Laboratory Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
| | - François Lapraz
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Lv
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Christigale Mandapat
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California, United States of America
| | - Marco Mariotti
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation, Barcelona, Spain
| | - Robert Mata
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tittu Mathew
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tobias Neumann
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Irene Newsham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dinh N. Ngo
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fiona Ongeri
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William J. Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shobha Patil
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro Patraquim
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Christopher Pham
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicholas H. Putman
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Olivia Mendivil Ramos
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Adelaide C. Rhodes
- Harte Research Institute, Texas A&M University Corpus Christi, Corpus Christi, Texas, United States of America
| | - Helen E. Robertson
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Nehad Saada
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew M. Schurko
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Kenneth W. Siggens
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - DeNard Simmons
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Stief
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute for Biochemistry and Biology, University Potsdam, Potsdam-Golm, Germany
| | - Eckart Stolle
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Maximilian J. Telford
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life”, Vienna, Austria
| | - Rebecca Thornton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - James M. Williams
- Department of Biology, Hendrix College, Conway, Arkansas, United States of America
| | - Judith H. Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yuanqing Wu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyan Zou
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Lawson
- EMBL - European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
213
|
Kumar A, Gopalswamy M, Wishart C, Henze M, Eschen-Lippold L, Donnelly D, Balbach J. N-terminal phosphorylation of parathyroid hormone (PTH) abolishes its receptor activity. ACS Chem Biol 2014; 9:2465-70. [PMID: 25158085 DOI: 10.1021/cb5004515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The parathyroid hormone (PTH) is an 84-residue peptide, which regulates the blood Ca(2+) level via GPCR binding and subsequent activation of intracellular signaling cascades. PTH is posttranslationally phosphorylated in the parathyroid glands; however, the functional significance of this processes is not well characterized. In the present study, mass spectrometric analysis revealed three sites of phosphorylation, and NMR spectroscopy assigned Ser1, Ser3, and Ser17 as modified sites. These sites are located at the N-terminus of the hormone, which is important for receptor recognition and activation. NMR shows further that the three phosphate groups remotely disturb the α-helical propensity up to Ala36. An intracellular cAMP accumulation assay elucidated the biological significance of this phosphorylation because it ablated the PTH-mediated signaling. Our studies thus shed light on functional implications of phosphorylation at native PTH as an additional level of regulation.
Collapse
Affiliation(s)
| | | | - Clare Wishart
- School of
Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Lennart Eschen-Lippold
- Department of Stress and Developmental
Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Dan Donnelly
- School of
Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | | |
Collapse
|
214
|
Adamson RJ, Watts A. Kinetics of the early events of GPCR signalling. FEBS Lett 2014; 588:4701-7. [PMID: 25447525 PMCID: PMC4266533 DOI: 10.1016/j.febslet.2014.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Little is known of the kinetics of interactions between GPCRs and their signalling partners. NTS1 binds Gαi1 and Gαs with affinities of 15 ± 6 nM and 31 ± 18 nM (SE), respectively. This SPR assay may be applicable to multiple partners in the signalling cascade. We provide the first direct evidence for GPCR-G protein coupling in nanodiscs.
Neurotensin receptor type 1 (NTS1) is a G protein-coupled receptor (GPCR) that affects cellular responses by initiating a cascade of interactions through G proteins. The kinetic details for these interactions are not well-known. Here, NTS1-nanodisc-Gαs and Gαi1 interactions were studied. The binding affinities of Gαi1 and Gαs to NTS1 were directly measured by surface plasmon resonance (SPR) and determined to be 15 ± 6 nM and 31 ± 18 nM, respectively. This SPR configuration permits the kinetics of early events in signalling pathways to be explored and can be used to initiate descriptions of the GPCR interactome.
Collapse
Affiliation(s)
- Roslin J Adamson
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anthony Watts
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
215
|
Santiago FE, Fior-Chadi DR, Carrettiero DC. Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development. Auton Neurosci 2014; 187:36-44. [PMID: 25466830 DOI: 10.1016/j.autneu.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 02/07/2023]
Abstract
Alpha2-adrenoceptor and A1 adenosine receptor systems within the nucleus tractus solitarii (NTS) play an important role in cardiovascular control. Deregulation of these systems may result in an elevated sympathetic tone, one of the root causes of neurogenic hypertension. The dorsomedial/dorsolateral and subpostremal NTS subnuclei of spontaneously hypertensive rats (SHR) show density changes in both receptors, even at 15 days of age, prior to the onset of hypertension. In addition, adenosine A1 receptors have been specifically reported to modulate alpha2-adrenoceptors in several brain regions, including the NTS, via a PLC-dependent pathway involving cross regulation between sympathetic neurons and astrocytes. The physiological cross talk between these receptor systems is also deregulated in SHR suggesting that alpha2-adrenoceptor and A1 adenosine receptor might be germane to the development of hypertension. In this review, we will focus on these systems within the NTS during development, pointing out some interesting modulations in processes, and chemical changes within specific subnuclei of NTS circuitry, that might have implications for neurogenic hypertension.
Collapse
Affiliation(s)
- Fernando E Santiago
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil
| | - Débora R Fior-Chadi
- Universidade de São Paulo (USP), Departamento de Fisiologia, Instituto de Biociências, São Paulo, SP, Brazil
| | - Daniel C Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil.
| |
Collapse
|
216
|
Walker CS, Sundrum T, Hay DL. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells. Br J Pharmacol 2014; 171:1521-33. [PMID: 24303997 DOI: 10.1111/bph.12541] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. EXPERIMENTAL APPROACH We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. KEY RESULTS PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6-38) also displayed cell-type-dependent, agonist-specific, antagonism. CONCLUSIONS AND IMPLICATIONS The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types.
Collapse
Affiliation(s)
- C S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
217
|
Esaki K, Yoshinaga S, Tsuji T, Toda E, Terashima Y, Saitoh T, Kohda D, Kohno T, Osawa M, Ueda T, Shimada I, Matsushima K, Terasawa H. Structural basis for the binding of the membrane-proximal C-terminal region of chemokine receptor CCR2 with the cytosolic regulator FROUNT. FEBS J 2014; 281:5552-66. [DOI: 10.1111/febs.13096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/09/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Kaori Esaki
- Department of Structural BioImaging; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - Sosuke Yoshinaga
- Department of Structural BioImaging; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - Tatsuichiro Tsuji
- Department of Structural BioImaging; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| | - Etsuko Toda
- Department of Molecular Preventive Medicine; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Yuya Terashima
- Department of Molecular Preventive Medicine; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Takashi Saitoh
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| | - Daisuke Kohda
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| | - Toshiyuki Kohno
- Department of Biochemistry; Kitasato University School of Medicine; Kanagawa Japan
| | - Masanori Osawa
- Division of Physical Chemistry; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo Japan
| | - Takumi Ueda
- Division of Physical Chemistry; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo Japan
| | - Ichio Shimada
- Division of Physical Chemistry; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hiroaki Terasawa
- Department of Structural BioImaging; Faculty of Life Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
218
|
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14:736-46. [PMID: 25342631 DOI: 10.1038/nrc3818] [Citation(s) in RCA: 1567] [Impact Index Per Article: 156.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) proteins, particularly STAT3, are among the most promising new targets for cancer therapy. In addition to interleukin-6 (IL-6) and its family members, multiple pathways, including G-protein-coupled receptors (GPCRs), Toll-like receptors (TLRs) and microRNAs were recently identified to regulate JAK-STAT signalling in cancer. Well known for its role in tumour cell proliferation, survival, invasion and immunosuppression, JAK-STAT3 signalling also promotes cancer through inflammation, obesity, stem cells and the pre-metastatic niche. In addition to its established role as a transcription factor in cancer, STAT3 regulates mitochondrion functions, as well as gene expression through epigenetic mechanisms. Newly identified regulators and functions of JAK-STAT3 in tumours are important targets for potential therapeutic strategies in the treatment of cancer.
Collapse
Affiliation(s)
- Hua Yu
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Heehyoung Lee
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Andreas Herrmann
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Ralf Buettner
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Richard Jove
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida 34987, USA
| |
Collapse
|
219
|
Bock A, Kostenis E, Tränkle C, Lohse MJ, Mohr K. Pilot the pulse: controlling the multiplicity of receptor dynamics. Trends Pharmacol Sci 2014; 35:630-8. [PMID: 25455830 DOI: 10.1016/j.tips.2014.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in almost every (patho)physiological process, which explains their importance as drug targets. GPCRs have long been regarded as on/off-switches, which is reflected by direct activation or blockade of these receptors through the majority of marketed GPCR drugs. In recent years, however, our view of GPCRs has changed dramatically. GPCRs are now appreciated as integrative and highly dynamic signaling machines which can adopt numerous distinct conformations enabling them to initiate a highly ramified signaling network. We argue here that it may be possible to chemically encode distinct signaling profiles into ligands by rational ligand design. We exemplify our hypothesis by fine-tuning partial and biased agonism, thereby exploiting two new principles of GPCR modulation - dynamic and dualsteric ligand binding. We propose that the emerging understanding of the multiplicity of receptor dynamics will eventually lead to rationally designed new drugs which pilot the pulse; in other words, that stabilize distinct receptor states to fine-tune GPCR signaling.
Collapse
Affiliation(s)
- Andreas Bock
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| | - Evi Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Christian Tränkle
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany.
| |
Collapse
|
220
|
Zhang X, Brovkovych V, Zhang Y, Tan F, Skidgel RA. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling. Cell Signal 2014; 27:90-103. [PMID: 25289859 DOI: 10.1016/j.cellsig.2014.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Viktor Brovkovych
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Yongkang Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Fulong Tan
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Randal A Skidgel
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States; Center for Lung and Vascular Biology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States.
| |
Collapse
|
221
|
Francelle L, Galvan L, Brouillet E. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease. Front Cell Neurosci 2014; 8:295. [PMID: 25309327 PMCID: PMC4176035 DOI: 10.3389/fncel.2014.00295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/03/2014] [Indexed: 01/01/2023] Open
Abstract
HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion translated into an abnormal poly-glutamine (polyQ) tract in the huntingtin (Htt) protein. The most striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of mutant Htt (mHtt) is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of compensatory responses to cellular stress. In this review, we focus on gene products that are preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene products are for a vast majority down-regulated and more rarely increased in HD. Recent research shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g., MSK1, A2A, and CB1 receptors) whereas others enhance the susceptibility of striatal neurons to mHtt (e.g., Rhes, RGS2, D2 receptors). The down-regulation of these latter proteins may be considered as a potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products that have been identified so far, their function in the striatum is unknown and their modifying effects on mHtt toxicity remain to be experimentally addressed. Focusing on these striatal markers may contribute to a better understanding of HD pathogenesis, and possibly the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Laetitia Francelle
- Neurodegenerative Disease Laboratory, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut d'Imagerie BioMédicale, Molecular Imaging Research Center Fontenay-aux-Roses, France ; Centre National de la Recherche Scientifique - Commissariat à l'Énergie Atomique et aux Énergies Alternatives Unité de Recherche Associée 2210 Fontenay-aux-Roses, France
| | - Laurie Galvan
- Neurodegenerative Disease Laboratory, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut d'Imagerie BioMédicale, Molecular Imaging Research Center Fontenay-aux-Roses, France ; Centre National de la Recherche Scientifique - Commissariat à l'Énergie Atomique et aux Énergies Alternatives Unité de Recherche Associée 2210 Fontenay-aux-Roses, France ; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | - Emmanuel Brouillet
- Neurodegenerative Disease Laboratory, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut d'Imagerie BioMédicale, Molecular Imaging Research Center Fontenay-aux-Roses, France ; Centre National de la Recherche Scientifique - Commissariat à l'Énergie Atomique et aux Énergies Alternatives Unité de Recherche Associée 2210 Fontenay-aux-Roses, France
| |
Collapse
|
222
|
Ciruela F, Jacobson KA, Fernández-Dueñas V. Portraying G protein-coupled receptors with fluorescent ligands. ACS Chem Biol 2014; 9:1918-28. [PMID: 25010291 PMCID: PMC4168789 DOI: 10.1021/cb5004042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The
thermodynamics of ligand–receptor interactions at the
surface of living cells represents a fundamental aspect of G protein-coupled
receptor (GPCR) biology; thus, its detailed elucidation constitutes
a challenge for modern pharmacology. Interestingly, fluorescent ligands
have been developed for a variety of GPCRs in order to monitor ligand–receptor
binding in living cells. Accordingly, new methodological strategies
derived from noninvasive fluorescence-based approaches, especially
fluorescence resonance energy transfer (FRET), have been successfully
developed to characterize ligand–receptor interactions. Importantly,
these technologies are supplanting more hazardous and expensive radioactive
binding assays. In addition, FRET-based tools have also become extremely
powerful approaches for visualizing receptor–receptor interactions
(i.e., GPCR oligomerization) in living cells. Thus, by means of the
synthesis of compatible fluorescent ligands these novel techniques
can be implemented to demonstrate the existence of GPCR oligomerization
not only in heterologous systems but also in native tissues. Finally,
there is no doubt that these methodologies would also be relevant
in drug discovery in order to develop new high-throughput screening
approaches or to identify new therapeutic targets. Overall, herein,
we provide a thorough assessment of all technical and biological aspects,
including strengths and weaknesses, of these fluorescence-based methodologies
when applied to the study of GPCR biology at the plasma membrane of
living cells.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet
de Llobregat, 08907 Barcelona, Spain
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Víctor Fernández-Dueñas
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet
de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
223
|
Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol 2014; 27:129-37. [PMID: 25198166 DOI: 10.1016/j.sbi.2014.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The seven-transmembrane (7TM) helix fold of G-protein coupled receptors (GPCRs) has been adapted for a wide variety of physiologically important signaling functions. Here, we discuss the diversity in the structured and disordered regions of GPCRs based on the recently published crystal structures and sequence analysis of all human GPCRs. A comparison of the structures of rhodopsin-like receptors (class A), secretin-like receptors (class B), metabotropic receptors (class C) and frizzled receptors (class F) shows that the relative arrangement of the transmembrane helices is conserved across all four GPCR classes although individual receptors can be activated by ligand binding at varying positions within and around the transmembrane helical bundle. A systematic analysis of GPCR sequences reveals the presence of disordered segments in the cytoplasmic side, abundant post-translational modification sites, evidence for alternative splicing and several putative linear peptide motifs that have the potential to mediate interactions with cytosolic proteins. While the structured regions permit the receptor to bind diverse ligands, the disordered regions appear to have an underappreciated role in modulating downstream signaling in response to the cellular state. An integrated paradigm combining the knowledge of structured and disordered regions is imperative for gaining a holistic understanding of the GPCR (un)structure-function relationship.
Collapse
|
224
|
Tautermann CS. GPCR structures in drug design, emerging opportunities with new structures. Bioorg Med Chem Lett 2014; 24:4073-9. [DOI: 10.1016/j.bmcl.2014.07.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022]
|
225
|
Kukkonen JP, Leonard CS. Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 2014; 171:314-31. [PMID: 23902572 DOI: 10.1111/bph.12324] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/18/2013] [Accepted: 07/28/2013] [Indexed: 12/16/2022] Open
Abstract
Orexin (hypocretin) peptides and their two known G-protein-coupled receptors play essential roles in sleep-wake control and powerfully influence other systems regulating appetite/metabolism, stress and reward. Consequently, drugs that influence signalling by these receptors may provide novel therapeutic opportunities for treating sleep disorders, obesity and addiction. It is therefore critical to understand how these receptors operate, the nature of the signalling cascades they engage and their physiological targets. In this review, we evaluate what is currently known about orexin receptor signalling cascades, while a sister review (Leonard & Kukkonen, this issue) focuses on tissue-specific responses. The evidence suggests that orexin receptor signalling is multifaceted and is substantially more diverse than originally thought. Indeed, orexin receptors are able to couple to members of at least three G-protein families and possibly other proteins, through which they regulate non-selective cation channels, phospholipases, adenylyl cyclase, and protein and lipid kinases. In the central nervous system, orexin receptors produce neuroexcitation by postsynaptic depolarization via activation of non-selective cation channels, inhibition of K⁺ channels and activation of Na⁺/Ca²⁺ exchange, but they also can stimulate the release of neurotransmitters by presynaptic actions and modulate synaptic plasticity. Ca²⁺ signalling is also prominently influenced by these receptors, both via the classical phospholipase C-Ca²⁺ release pathway and via Ca²⁺ influx, mediated by several pathways. Upon longer-lasting stimulation, plastic effects are observed in some cell types, while others, especially cancer cells, are stimulated to die. Thus, orexin receptor signals appear highly tunable, depending on the milieu in which they are operating.
Collapse
Affiliation(s)
- J P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
226
|
Early stress prevents the potentiation of muscarinic excitation by calcium release in adult prefrontal cortex. Biol Psychiatry 2014; 76:315-23. [PMID: 24315552 PMCID: PMC4640900 DOI: 10.1016/j.biopsych.2013.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The experience of early stress contributes to the etiology of several psychiatric disorders and can lead to lasting deficits in working memory and attention. These executive functions require activation of the prefrontal cortex (PFC) by muscarinic M1 acetylcholine (ACh) receptors. Such Gαq-protein coupled receptors trigger the release of calcium (Ca(2+)) from internal stores and elicit prolonged neuronal excitation. METHODS In brain slices of rat PFC, we employed multiphoton imaging simultaneously with whole-cell electrophysiological recordings to examine potential interactions between ACh-induced Ca(2+) release and excitatory currents in adulthood, across postnatal development, and following the early stress of repeated maternal separation, a rodent model for depression. We also investigated developmental changes in related genes in these groups. RESULTS Acetylcholine-induced Ca(2+) release potentiates ACh-elicited excitatory currents. In the healthy PFC, this potentiation of muscarinic excitation emerges in young adulthood, when executive function typically reaches maturity. However, the developmental consolidation of muscarinic ACh signaling is abolished in adults with a history of early stress, where ACh responses retain an adolescent phenotype. In prefrontal cortex, these rats show a disruption in the expression of multiple developmentally regulated genes associated with Gαq and Ca(2+) signaling. Pharmacologic and ionic manipulations reveal that the enhancement of muscarinic excitation in the healthy adult PFC arises via the electrogenic process of sodium/Ca(2+) exchange. CONCLUSIONS This work illustrates a long-lasting disruption in ACh-mediated cortical excitation following early stress and raises the possibility that such cellular mechanisms may disrupt the maturation of executive function.
Collapse
|
227
|
Le Naour M, Lunzer MM, Powers MD, Kalyuzhny AE, Benneyworth MA, Thomas MJ, Portoghese PS. Putative kappa opioid heteromers as targets for developing analgesics free of adverse effects. J Med Chem 2014; 57:6383-92. [PMID: 24978316 PMCID: PMC4136663 DOI: 10.1021/jm500159d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 11/29/2022]
Abstract
It is now generally recognized that upon activation by an agonist, β-arrestin associates with G protein-coupled receptors and acts as a scaffold in creating a diverse signaling network that could lead to adverse effects. As an approach to reducing side effects associated with κ opioid agonists, a series of β-naltrexamides 3-10 was synthesized in an effort to selectively target putative κ opioid heteromers without recruiting β-arrestin upon activation. The most potent derivative 3 (INTA) strongly activated KOR-DOR and KOR-MOR heteromers in HEK293 cells. In vivo studies revealed 3 to produce potent antinociception, which, when taken together with antagonism data, was consistent with the activation of both heteromers. 3 was devoid of tolerance, dependence, and showed no aversive effect in the conditioned place preference assay. As immunofluorescence studies indicated no recruitment of β-arrestin2 to membranes in coexpressed KOR-DOR cells, this study suggests that targeting of specific putative heteromers has the potential to identify leads for analgesics devoid of adverse effects.
Collapse
MESH Headings
- Analgesics/adverse effects
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Arrestins/metabolism
- Avoidance Learning/drug effects
- Calcium/metabolism
- Drug Tolerance
- HEK293 Cells
- Humans
- Indoles/adverse effects
- Indoles/chemistry
- Indoles/pharmacology
- Mice
- Naltrexone/adverse effects
- Naltrexone/analogs & derivatives
- Naltrexone/chemistry
- Naltrexone/pharmacology
- Protein Multimerization
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Stereoisomerism
- Structure-Activity Relationship
- Substance-Related Disorders/etiology
- beta-Arrestins
Collapse
Affiliation(s)
- Morgan Le Naour
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota , WDH 8-114, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | |
Collapse
|
228
|
Torres-Fuentes C, Theeuwes WF, McMullen MK, McMullen AK, Dinan TG, Cryan JF, Schellekens H. Devil's Claw to suppress appetite--ghrelin receptor modulation potential of a Harpagophytum procumbens root extract. PLoS One 2014; 9:e103118. [PMID: 25068823 PMCID: PMC4113378 DOI: 10.1371/journal.pone.0103118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022] Open
Abstract
Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a). Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek) stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits.
Collapse
Affiliation(s)
| | - Wessel F. Theeuwes
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Michael K. McMullen
- Life Force Research, Ljungskile, Sweden
- School of Biosciences, University of Westminster, London, United Kingdom
| | | | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Dept of Psychiatry, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
229
|
Park J, Sharma N, Cutting GR. Melanocortin 3 receptor has a 5' exon that directs translation of apically localized protein from the second in-frame ATG. Mol Endocrinol 2014; 28:1547-57. [PMID: 25051171 DOI: 10.1210/me.2014-1105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melanocortin-3 receptor (MC3R) is a canonical MSH receptor that plays an essential role in energy homeostasis. Variants in MC3R have been implicated in obesity in humans and mice. However, interpretation of the functional consequences of these variants is challenging because the translational start site of MC3R is unclear. Using 5' rapid amplification of cDNA ends, we discovered a novel upstream exon that extends the length of the 5' untranslated region (UTR) in MC3R without changing the open-reading frame. The full-length 5' UTR directs utilization of an evolutionarily conserved second in-frame ATG as the primary translation start site. MC3R synthesized from the second ATG is localized to apical membranes of polarized Madin-Darby canine kidney cells, consistent with its function as a cell surface mediator of melanocortin signaling. Expression of MC3R causes relocalization of melanocortin receptor accessory protein 2, an accessory factor for melanocortin-2 receptor, to the apical membrane, coincident with the location of MC3R. In contrast, protein synthesized from MC3R cDNAs lacking the 5' UTR displayed diffuse cytosolic distribution and has no effect on the distribution of melanocortin receptor accessory protein 2. Our findings demonstrate that a previously unannotated 5' exon directs translation of MC3R protein that localizes to apical membranes of polarized cells. Together, our work provides insight on the structure of human MC3R and reveals a new pathway for regulation of energy metabolism.
Collapse
Affiliation(s)
- Jeenah Park
- McKusick-Nathans Institute of Genetic Medicine (J.P., N.S., G.R.C.), Johns Hopkins University, Baltimore, Maryland 21218; and Department of Pediatrics (G.R.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3914
| | | | | |
Collapse
|
230
|
A naturally occurring GIP receptor variant undergoes enhanced agonist-induced desensitization, which impairs GIP control of adipose insulin sensitivity. Mol Cell Biol 2014; 34:3618-29. [PMID: 25047836 DOI: 10.1128/mcb.00256-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP), an incretin hormone secreted from gastrointestinal K cells in response to food intake, has an important role in the control of whole-body metabolism. GIP signals through activation of the GIP receptor (GIPR), a G-protein-coupled receptor (GPCR). Dysregulation of this pathway has been implicated in the development of metabolic disease. Here we demonstrate that GIPR is constitutively trafficked between the plasma membrane and intracellular compartments of both GIP-stimulated and unstimulated adipocytes. GIP induces a downregulation of plasma membrane GIPR by slowing GIPR recycling without affecting internalization kinetics. This transient reduction in the expression of GIPR in the plasma membrane correlates with desensitization to the effects of GIP. A naturally occurring variant of GIPR (E354Q) associated with an increased incidence of insulin resistance, type 2 diabetes, and cardiovascular disease in humans responds to GIP stimulation with an exaggerated downregulation from the plasma membrane and a delayed recovery of GIP sensitivity following cessation of GIP stimulation. This perturbation in the desensitization-resensitization cycle of the GIPR variant, revealed in studies of cultured adipocytes, may contribute to the link of the E354Q variant to metabolic disease.
Collapse
|
231
|
Tovo-Rodrigues L, Roux A, Hutz MH, Rohde LA, Woods AS. Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 2014; 277:764-79. [PMID: 24997265 DOI: 10.1016/j.neuroscience.2014.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Complex molecular and cellular mechanisms regulate G protein-coupled receptors (GPCRs). It is suggested that proteins intrinsically disordered regions (IDRs) are to play a role in GPCR's intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformations which allow them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence-based prediction of IDRs within a protein. We also evaluated putative ligand-binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third intracellular loop (3IL) and C-terminus. About 31%, 39% and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. ELM instances sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system's functional plasticity.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - A Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - M H Hutz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L A Rohde
- Child and Adolescent Psychiatric Division, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| |
Collapse
|
232
|
Fujikawa Y, Nakanishi T, Kawakami H, Yamasaki K, Sato MH, Tsuji H, Matsuoka M, Kato N. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. RICE (NEW YORK, N.Y.) 2014; 7:11. [PMID: 24987490 PMCID: PMC4077619 DOI: 10.1186/s12284-014-0011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/27/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. RESULTS A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. CONCLUSIONS A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome.
Collapse
Affiliation(s)
- Yukichi Fujikawa
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| | - Takahiro Nakanishi
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| | - Hiroko Kawakami
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| | - Kanako Yamasaki
- Faculty of Human Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Masa H Sato
- Faculty of Human Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hiroyuki Tsuji
- Department of Plant Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Nara, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi 464-8601, Japan
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, 226 Life Sciences Building, Baton Rouge 70803, LA, USA
| |
Collapse
|
233
|
O'Neill PR, Gautam N. Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol Biol Cell 2014; 25:2305-14. [PMID: 24920824 PMCID: PMC4116304 DOI: 10.1091/mbc.e14-04-0870] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein-coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.
Collapse
Affiliation(s)
- Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
234
|
Fang Y, French J, Zhao H, Benkovic S. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol Genet Eng Rev 2014; 29:31-48. [PMID: 24568251 DOI: 10.1080/02648725.2013.801237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- a Biochemical Technologies, Science and Technology Division , Corning Incorporated , Corning , New York , USA
| | | | | | | |
Collapse
|
235
|
Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci 2014; 8:57. [PMID: 24834023 PMCID: PMC4018553 DOI: 10.3389/fnins.2014.00057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/12/2014] [Indexed: 01/01/2023] Open
Abstract
Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts the involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are discussed. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated—with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency—leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics) is also discussed in the review.
Collapse
Affiliation(s)
- Miles D Thompson
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Henri Xhaard
- Faculty of Pharmacy, Centre for Drug Research, University of Helsinki Helsinki, Finland
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | | | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
236
|
Almontashiri NAM, Chen HH, Mailloux RJ, Tatsuta T, Teng ACT, Mahmoud AB, Ho T, Stewart NAS, Rippstein P, Harper ME, Roberts R, Willenborg C, Erdmann J, Pastore A, McBride HM, Langer T, Stewart AFR. SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Rep 2014; 7:834-47. [PMID: 24767997 DOI: 10.1016/j.celrep.2014.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/06/2014] [Accepted: 03/20/2014] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial production of reactive oxygen species (ROS) affects many processes in health and disease. SPG7 assembles with AFG3L2 into the mAAA protease at the inner membrane of mitochondria, degrades damaged proteins, and regulates the synthesis of mitochondrial ribosomes. SPG7 is cleaved and activated by AFG3L2 upon assembly. A variant in SPG7 that replaces arginine 688 with glutamine (Q688) is associated with several phenotypes, including toxicity of chemotherapeutic agents, type 2 diabetes mellitus, and (as reported here) coronary artery disease. We demonstrate that SPG7 processing is regulated by tyrosine phosphorylation of AFG3L2. Carriers of Q688 bypass this regulation and constitutively process and activate SPG7 mAAA protease. Cells expressing Q688 produce higher ATP levels and ROS, promoting cell proliferation. Our results thus reveal an unexpected link between the phosphorylation-dependent regulation of the mitochondria mAAA protease affecting ROS production and several clinical phenotypes.
Collapse
Affiliation(s)
- Naif A M Almontashiri
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Genetics and Inherited Diseases, Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Takashi Tatsuta
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Allen C T Teng
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ahmad B Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tiffany Ho
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | - Nicolas A S Stewart
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peter Rippstein
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | - Mary Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robert Roberts
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | | | | | | | - Annalisa Pastore
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Alexandre F R Stewart
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
237
|
Fischer MJM, McNaughton PA. How anchoring proteins shape pain. Pharmacol Ther 2014; 143:316-22. [PMID: 24727631 DOI: 10.1016/j.pharmthera.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022]
Abstract
Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.
Collapse
Affiliation(s)
- Michael J M Fischer
- Institute of Physiology and Pathophysiology, FAU Erlangen-Nürnberg, Germany.
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Research, Hodgkin Building, King's College London, London SE1 1UH, UK
| |
Collapse
|
238
|
Jaremko KM, Thompson NL, Reyes BAS, Jin J, Ebersole B, Jenney CB, Grigson PS, Levenson R, Berrettini WH, Van Bockstaele EJ. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:53-65. [PMID: 24333843 PMCID: PMC3928604 DOI: 10.1016/j.pnpbp.2013.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Opiate addiction is a devastating health problem, with approximately 2million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As the LC-NE system is important for cognition as well as decisions underlying substance abuse, adaptations in WLS trafficking and expression may play a role in modulating MOR function in the LC and contribute to the negative sequelae of opiate exposure on executive function.
Collapse
Affiliation(s)
- Kellie M Jaremko
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Nicholas L Thompson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Jay Jin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Brittany Ebersole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Christopher B Jenney
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
239
|
Bias in chemokine receptor signalling. Trends Immunol 2014; 35:243-52. [PMID: 24679437 DOI: 10.1016/j.it.2014.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/14/2023]
Abstract
Chemokine receptors are widely expressed on a variety of immune cells and play a crucial role in normal physiology as well as in inflammatory and infectious diseases. The existence of 23 chemokine receptors and 48 chemokine ligands guarantees a tight control and fine-tuning of the immune system. Here, we discuss the multiple regulatory mechanisms of chemokine signalling at a systemic, cellular, and molecular level. In particular, we focus on the impact of biased signalling at the receptor level; an emerging concept in molecular pharmacology. An improved understanding of these mechanisms may provide a framework for more effective drug discovery and development at a target class that is so relevant for immune function.
Collapse
|
240
|
Palazzo E, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain. Amino Acids 2014; 46:1441-8. [PMID: 24623118 DOI: 10.1007/s00726-014-1703-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/18/2014] [Indexed: 12/28/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system and as such controls the majority of synapses. Glutamatergic neurotransmission is mediated via ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Signaling via mGluRs permits to finely tune, rather than turning on/off, the excitatory neurotransmission as the iGluRs do. Eight mGluRs (mGluR1-8) have been cloned so far, which have been divided into three groups based on sequence homology, pharmacological properties and second messenger signaling. mGluRs are widely expressed both on glia and neurons. On neurons they are located both at postsynaptic (group I) and presynaptic sites (group II and III). Group II and III mGluR stimulation reduces glutamate release, which can prove useful in pathological conditions characterized by elevated glutamatergic neurotransmission which include chronic pain. Indeed, mGluRs are widely distributed on pain neuraxis. The recent development of selective mGluR ligands has permitted investigating the individual role of each mGluR on pain control. The development of (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, has revealed the mGluR8 role in inhibiting pain and its related affective consequences in chronic pain conditions. mGluR8 proved also to be overexpressed in pain controlling areas during pathological pain guaranteeing the availability of a switch for turning off abnormal pain. Thus, mGluR8 corresponds to an ideal target in designing novel analgesics. This review will focus on the novel insights into the mGluR8 role on pain control, with particular emphasis on the supraspinal descending pathway, an antinociceptive endogenous source, whose activation or disinhibition (via mGluR8) induces analgesia.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy,
| | | | | | | |
Collapse
|
241
|
Pusapati GV, Hughes CE, Dorn KV, Zhang D, Sugianto P, Aravind L, Rohatgi R. EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell 2014; 28:483-96. [PMID: 24582806 DOI: 10.1016/j.devcel.2014.01.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/02/2014] [Accepted: 01/23/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The Hedgehog (Hh) pathway depends on primary cilia in vertebrates, but the signaling machinery within cilia remains incompletely defined. We report the identification of a complex between two ciliary proteins, EFCAB7 and IQCE, which positively regulates the Hh pathway. The EFCAB7-IQCE module anchors the EVC-EVC2 complex in a signaling microdomain at the base of cilia. EVC and EVC2 genes are mutated in Ellis van Creveld and Weyers syndromes, characterized by impaired Hh signaling in skeletal, cardiac, and orofacial tissues. EFCAB7 binds to a C-terminal disordered region in EVC2 that is deleted in Weyers patients. EFCAB7 depletion mimics the Weyers cellular phenotype-the mislocalization of EVC-EVC2 within cilia and impaired activation of the transcription factor GLI2. Evolutionary analysis suggests that emergence of these complexes might have been important for adaptation of an ancient organelle, the cilium, for an animal-specific signaling network. VIDEO ABSTRACT
Collapse
Affiliation(s)
- Ganesh V Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Casey E Hughes
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karolin V Dorn
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Priscilla Sugianto
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
242
|
Sauvageau E, Rochdi MD, Oueslati M, Hamdan FF, Percherancier Y, Simpson JC, Pepperkok R, Bouvier M. CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum. Traffic 2014; 15:383-400. [PMID: 24405750 DOI: 10.1111/tra.12148] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/24/2013] [Accepted: 01/09/2013] [Indexed: 01/02/2023]
Abstract
The molecular mechanisms regulating G protein-coupled receptors (GPCRs) trafficking from their site of synthesis in the endoplasmic reticulum (ER) to their site of function (the cell surface) remain poorly characterized. Using a bioluminescence resonance energy transfer-based proteomic screen, we identified a novel GPCR-interacting protein; the human cornichon homologue 4 (CNIH4). This previously uncharacterized protein is localized in the early secretory pathway where it interacts with members of the 3 family of GPCRs. Both overexpression and knockdown expression of CNIH4 caused the intracellular retention of GPCRs, indicating that this ER-resident protein plays an important role in GPCR export. Overexpression of CNIH4 at low levels rescued the maturation and cell surface expression of an intracellularly retained mutant form of the β2-adrenergic receptor, further demonstrating a positive role of CNIH4 in GPCR trafficking. Taken with the co-immunoprecipitation of CNIH4 with Sec23 and Sec24, components of the COPII coat complex responsible for ER export, these data suggest that CNIH4 acts as a cargo-sorting receptor, recruiting GPCRs into COPII vesicles.
Collapse
Affiliation(s)
- Etienne Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada; Department of Biochemistry, Université de Montréal, Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Allostery in Ca²⁺ channel modulation by calcium-binding proteins. Nat Chem Biol 2014; 10:231-8. [PMID: 24441587 DOI: 10.1038/nchembio.1436] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022]
Abstract
Distinguishing between allostery and competition among modulating ligands is challenging for large target molecules. Out of practical necessity, inferences are often drawn from in vitro assays on target fragments, but such inferences may belie actual mechanisms. One key example of such ambiguity concerns calcium-binding proteins (CaBPs) that tune signaling molecules regulated by calmodulin (CaM). As CaBPs resemble CaM, CaBPs are believed to competitively replace CaM on targets. Yet, brain CaM expression far surpasses that of CaBPs, raising questions as to whether CaBPs can exert appreciable biological actions. Here, we devise a live-cell, holomolecule approach that reveals an allosteric mechanism for calcium channels whose CaM-mediated inactivation is eliminated by CaBP4. Our strategy is to covalently link CaM and/or CaBP to holochannels, enabling live-cell fluorescence resonance energy transfer assays to resolve a cyclical allosteric binding scheme for CaM and CaBP4 to channels, thus explaining how trace CaBPs prevail. This approach may apply generally for discerning allostery in live cells.
Collapse
|
244
|
G protein-coupled receptors: what a difference a 'partner' makes. Int J Mol Sci 2014; 15:1112-42. [PMID: 24441568 PMCID: PMC3907859 DOI: 10.3390/ijms15011112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.
Collapse
|
245
|
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111:2247-52. [PMID: 24390544 DOI: 10.1073/pnas.1322269111] [Citation(s) in RCA: 1370] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors.
Collapse
|
246
|
Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF. Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6946-2-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
247
|
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF. Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 2014; 39:131-55. [PMID: 24105074 PMCID: PMC3857668 DOI: 10.1038/npp.2013.242] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/28/2022]
Abstract
There is serious interest in understanding the dynamics of the receptor-receptor and receptor-protein interactions in space and time and their integration in GPCR heteroreceptor complexes of the CNS. Moonlighting proteins are special multifunctional proteins because they perform multiple autonomous, often unrelated, functions without partitioning into different protein domains. Moonlighting through receptor oligomerization can be operationally defined as an allosteric receptor-receptor interaction, which leads to novel functions of at least one receptor protomer. GPCR-mediated signaling is a more complicated process than previously described as every GPCR and GPCR heteroreceptor complex requires a set of G protein interacting proteins, which interacts with the receptor in an orchestrated spatio-temporal fashion. GPCR heteroreceptor complexes with allosteric receptor-receptor interactions operating through the receptor interface have become major integrative centers at the molecular level and their receptor protomers act as moonlighting proteins. The GPCR heteroreceptor complexes in the CNS have become exciting new targets for neurotherapeutics in Parkinson's disease, schizophrenia, drug addiction, and anxiety and depression opening a new field in neuropsychopharmacology.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet,, Stockholm, Sweden
| | | | | | - Miklós Palkovits
- Department of Anatomy, Histology and Embryology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Alexander O Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and Automation, Saint Petersburg, Russia
| | - Francisco Ciruela
- Facultat de Medicina, Departament de Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Unitat de Farmacologia, Barcelona, Spain
| | | |
Collapse
|
248
|
GPCR & Company: Databases and Servers for GPCRs and Interacting Partners. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:185-204. [DOI: 10.1007/978-94-007-7423-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
249
|
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 2013; 31:1676-94. [DOI: 10.1016/j.biotechadv.2013.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
|
250
|
Lyon AM, Taylor VG, Tesmer JJG. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci 2013; 35:23-30. [PMID: 24287282 DOI: 10.1016/j.tips.2013.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The heterotrimeric G protein Gαq is a central player in signal transduction, relaying signals from activated G-protein-coupled receptors (GPCRs) to effectors and other proteins to elicit changes in intracellular Ca(2+), the actin cytoskeleton, and gene transcription. Gαq functions at the intracellular surface of the plasma membrane, as do its best-characterized targets, phospholipase C-β, p63RhoGEF, and GPCR kinase 2 (GRK2). Recent insights into the structure and function of these signaling complexes reveal several recurring themes, including complex multivalent interactions between Gαq, its protein target, and the membrane, that are likely essential for allosteric control and maximum efficiency in signal transduction. Thus, the plasma membrane is not only a source of substrates but also a key player in the scaffolding of Gαq-dependent signaling pathways.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Veronica G Taylor
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|