201
|
Johnston RK, Seamon KJ, Saada EA, Podlevsky JD, Branda SS, Timlin JA, Harper JC. Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection. Biosens Bioelectron 2019; 141:111361. [PMID: 31207570 DOI: 10.1016/j.bios.2019.111361] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complex is an RNA-guided DNA-nuclease that is part of the bacterial adaptive immune system. CRISPR/Cas9 RNP has been adapted for targeted genome editing within cells and whole organisms with new applications vastly outpacing detection and quantification of gene-editing reagents. Detection of the CRISPR/Cas9 RNP within biological samples is critical for assessing gene-editing reagent delivery efficiency, retention, persistence, and distribution within living organisms. Conventional detection methods are effective, yet the expense and lack of scalability for antibody-based affinity reagents limit these techniques for clinical and/or field settings. This necessitates the development of low cost, scalable CRISPR/Cas9 RNP affinity reagents as alternatives or augments to antibodies. Herein, we report the development of the Streptococcus pyogenes anti-CRISPR/Cas9 protein, AcrIIA4, as a novel affinity reagent. An engineered cysteine linker enables covalent immobilization of AcrIIA4 onto glassy carbon electrodes functionalized via aryl diazonium chemistry for detection of CRISPR/Cas9 RNP by electrochemical, fluorescent, and colorimetric methods. Electrochemical measurements achieve a detection of 280 pM RNP in reaction buffer and 8 nM RNP in biologically representative conditions. Our results demonstrate the ability of anti-CRISPR proteins to serve as robust, specific, flexible, and economical recognition elements in biosensing/quantification devices for CRISPR/Cas9 RNP.
Collapse
Affiliation(s)
- Robert K Johnston
- Nanobiology Department, Sandia National Laboratories, Albuquerque, NM, USA
| | - Kyle J Seamon
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Edwin A Saada
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Joshua D Podlevsky
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - Steven S Branda
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jerilyn A Timlin
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jason C Harper
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA.
| |
Collapse
|
202
|
Shehreen S, Chyou TY, Fineran PC, Brown CM. Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180384. [PMID: 30905286 PMCID: PMC6452267 DOI: 10.1098/rstb.2018.0384] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are widespread in bacterial and archaeal genomes, and in their canonical role in phage defence they confer a fitness advantage. However, CRISPR-Cas may also hinder the uptake of potentially beneficial genes. This is particularly true under antibiotic selection, where preventing the uptake of antibiotic resistance genes could be detrimental. Newly discovered features within these evolutionary dynamics are anti-CRISPR genes, which inhibit specific CRISPR-Cas systems. We hypothesized that selection for antibiotic resistance might have resulted in an accumulation of anti-CRISPR genes in genomes that harbour CRISPR-Cas systems and horizontally acquired antibiotic resistance genes. To assess that question, we analysed correlations between the CRISPR-Cas, anti-CRISPR and antibiotic resistance gene content of 104 947 reference genomes, including 5677 different species. In most species, the presence of CRISPR-Cas systems did not correlate with the presence of antibiotic resistance genes. However, in some clinically important species, we observed either a positive or negative correlation of CRISPR-Cas with antibiotic resistance genes. Anti-CRISPR genes were common enough in four species to be analysed. In Pseudomonas aeruginosa, the presence of anti-CRISPRs was associated with antibiotic resistance genes. This analysis indicates that the role of CRISPR-Cas and anti-CRISPRs in the spread of antibiotic resistance is likely to be very different in particular pathogenic species and clinical environments. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Saadlee Shehreen
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Te-yuan Chyou
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, New Zealand
| | - Chris M. Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, New Zealand
| |
Collapse
|
203
|
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180087. [PMID: 30905284 PMCID: PMC6452270 DOI: 10.1098/rstb.2018.0087] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g)RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | | |
Collapse
|
204
|
Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P. Genetic Engineering of Bacteriophages Against Infectious Diseases. Front Microbiol 2019; 10:954. [PMID: 31130936 PMCID: PMC6509161 DOI: 10.3389/fmicb.2019.00954] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and widely distributed organisms on Earth, constituting a virtually unlimited resource to explore the development of biomedical therapies. The therapeutic use of phages to treat bacterial infections (“phage therapy”) was conceived by Felix d’Herelle nearly a century ago. However, its power has been realized only recently, largely due to the emergence of multi-antibiotic resistant bacterial pathogens. Progress in technologies, such as high-throughput sequencing, genome editing, and synthetic biology, further opened doors to explore this vast treasure trove. Here, we review some of the emerging themes on the use of phages against infectious diseases. In addition to phage therapy, phages have also been developed as vaccine platforms to deliver antigens as part of virus-like nanoparticles that can stimulate immune responses and prevent pathogen infections. Phage engineering promises to generate phage variants with unique properties for prophylactic and therapeutic applications. These approaches have created momentum to accelerate basic as well as translational phage research and potential development of therapeutics in the near future.
Collapse
Affiliation(s)
- Yibao Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Junhua Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Cen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Pan Tao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|
205
|
|
206
|
Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM, Santiago-Frangos A, Faith D, Lawrence CM, Lander GC, Wiedenheft B. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Mol Cell 2019; 74:132-142.e5. [PMID: 30872121 PMCID: PMC6521718 DOI: 10.1016/j.molcel.2019.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Bacteria and archaea have evolved sophisticated adaptive immune systems that rely on CRISPR RNA (crRNA)-guided detection and nuclease-mediated elimination of invading nucleic acids. Here, we present the cryo-electron microscopy (cryo-EM) structure of the type I-F crRNA-guided surveillance complex (Csy complex) from Pseudomonas aeruginosa bound to a double-stranded DNA target. Comparison of this structure to previously determined structures of this complex reveals a ∼180-degree rotation of the C-terminal helical bundle on the "large" Cas8f subunit. We show that the double-stranded DNA (dsDNA)-induced conformational change in Cas8f exposes a Cas2/3 "nuclease recruitment helix" that is structurally homologous to a virally encoded anti-CRISPR protein (AcrIF3). Structural homology between Cas8f and AcrIF3 suggests that AcrIF3 is a mimic of the Cas8f nuclease recruitment helix.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- CRISPR-Associated Proteins/chemistry
- CRISPR-Associated Proteins/genetics
- CRISPR-Associated Proteins/immunology
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cryoelectron Microscopy
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Models, Molecular
- Molecular Mimicry
- Nucleic Acid Conformation
- Protein Conformation
- Pseudomonas aeruginosa/enzymology
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/immunology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Structure-Activity Relationship
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- MaryClare F Rollins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah M Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Heini M Miettinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Dominick Faith
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
207
|
Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat Struct Mol Biol 2019; 26:315-321. [PMID: 30936531 PMCID: PMC6449189 DOI: 10.1038/s41594-019-0208-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
Abstract
Cas12a (Cpf1) is a bacterial RNA-guided nuclease used widely for genome editing and diagnostic applications. In bacteria, Cas12a enzymes can be inhibited by bacteriophage-derived proteins, anti-CRISPRs (Acrs), to thwart clustered regularly interspaced short palindromic repeat (CRISPR) adaptive immune systems. How these inhibitors disable Cas12a by preventing programmed DNA cleavage is unknown. We show that three inhibitors (AcrVA1, AcrVA4 and AcrVA5) block Cas12a activity using functionally distinct mechanisms, including a previously unobserved enzymatic strategy. AcrVA4 and AcrVA5 inhibit double-stranded DNA (dsDNA) recognition with AcrVA4 driving Cas12a dimerization. In contrast, AcrVA1 is a multiple-turnover inhibitor that triggers cleavage of the target recognition sequence of the Cas12a-bound guide RNA to irreversibly inactivate the Cas12a complex. These distinct mechanisms equip bacteriophage with tools to evade CRISPR-Cas12a and support biotechnological applications where multiple-turnover enzymatic inhibition of Cas12a are desirable.
Collapse
|
208
|
Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents 2019; 53:371-382. [DOI: 10.1016/j.ijantimicag.2018.11.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 02/08/2023]
|
209
|
Abstract
Co-evolution with their bacterial hosts has led to viral countermeasures against CRISPR-mediated immunity. In a recent issue of Cell, Landsberger et al. (2018) and Borges et al. (2018) report that cooperation among bacteriophages and multiple infection events are necessary to overcome CRISPR immune responses.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
210
|
Abstract
The discovery and characterization of the prokaryotic CRISPR-Cas immune system has led to a revolution in genome editing and engineering technologies. Despite the fact that most applications emerged after the discovery of the type II-A CRISPR-Cas9 system of Streptococcus pyogenes, its biological importance in this organism has received little attention. Here, we provide a comprehensive overview of the current knowledge about CRISPR-Cas systems from S. pyogenes. We discuss how the interplay between CRISPR-mediated immunity and horizontal gene transfer might have modeled the evolution of this pathogen. We review the current literature about the CRISPR-Cas systems present in S. pyogenes (types I-C and II-A), and describe their distinctive biochemical and functional features. Finally, we summarize the main biotechnological applications that have arisen from the discovery of the CRISPR-Cas9 system in S. pyogenes.
Collapse
Affiliation(s)
- Anaïs Le Rhun
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany
| | - Andrés Escalera-Maurer
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Institute for Biology , Humboldt University , Berlin , Germany
| | - Majda Bratovič
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Institute for Biology , Humboldt University , Berlin , Germany
| | - Emmanuelle Charpentier
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Institute for Biology , Humboldt University , Berlin , Germany
| |
Collapse
|
211
|
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights Into Non-coding RNAs as Novel Antimicrobial Drugs. Front Genet 2019; 10:57. [PMID: 30853970 PMCID: PMC6395445 DOI: 10.3389/fgene.2019.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant bacteria are a serious worldwide problem, especially carbapenem-resistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.
Collapse
Affiliation(s)
- Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Carolina Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
212
|
Jiang F, Liu JJ, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA. Temperature-Responsive Competitive Inhibition of CRISPR-Cas9. Mol Cell 2019; 73:601-610.e5. [PMID: 30595438 PMCID: PMC6480404 DOI: 10.1016/j.molcel.2018.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
Abstract
CRISPR-Cas immune systems utilize RNA-guided nucleases to protect bacteria from bacteriophage infection. Bacteriophages have in turn evolved inhibitory "anti-CRISPR" (Acr) proteins, including six inhibitors (AcrIIA1-AcrIIA6) that can block DNA cutting and genome editing by type II-A CRISPR-Cas9 enzymes. We show here that AcrIIA2 and its more potent homolog, AcrIIA2b, prevent Cas9 binding to DNA by occluding protein residues required for DNA binding. Cryo-EM-determined structures of AcrIIA2 or AcrIIA2b bound to S. pyogenes Cas9 reveal a mode of competitive inhibition of DNA binding that is distinct from other known Acrs. Differences in the temperature dependence of Cas9 inhibition by AcrIIA2 and AcrIIA2b arise from differences in both inhibitor structure and the local inhibitor-binding environment on Cas9. These findings expand the natural toolbox for regulating CRISPR-Cas9 genome editing temporally, spatially, and conditionally.
Collapse
Affiliation(s)
- Fuguo Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jun-Jie Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Beatriz A Osuna
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joel D Berry
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin J Rauch
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94704, USA; Howard Hughes Medical Institute, Berkeley; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
213
|
Uribe RV, van der Helm E, Misiakou MA, Lee SW, Kol S, Sommer MOA. Discovery and Characterization of Cas9 Inhibitors Disseminated across Seven Bacterial Phyla. Cell Host Microbe 2019; 25:233-241.e5. [PMID: 30737174 DOI: 10.1016/j.chom.2019.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/24/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023]
Abstract
CRISPR-Cas systems in bacteria and archaea provide immunity against bacteriophages and plasmids. To overcome CRISPR immunity, phages have acquired anti-CRISPR genes that reduce CRISPR-Cas activity. Using a synthetic genetic circuit, we developed a high-throughput approach to discover anti-CRISPR genes from metagenomic libraries based on their functional activity rather than sequence homology or genetic context. We identified 11 DNA fragments from soil, animal, and human metagenomes that circumvent Streptococcus pyogenes Cas9 activity in our selection strain. Further in vivo and in vitro characterization of a subset of these hits validated the activity of four anti-CRISPRs. Notably, homologs of some of these anti-CRISPRs were detected in seven different phyla, namely Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Spirochaetes, and Balneolaeota, and have high sequence identity suggesting recent horizontal gene transfer. Thus, anti-CRISPRs against type II-A CRISPR-Cas systems are widely distributed across bacterial phyla, suggesting a more complex ecological role than previously appreciated.
Collapse
Affiliation(s)
- Ruben V Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Maria-Anna Misiakou
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Sang-Woo Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark.
| |
Collapse
|
214
|
Gangopadhyay SA, Cox KJ, Manna D, Lim D, Maji B, Zhou Q, Choudhary A. Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry 2019; 58:234-244. [PMID: 30640437 PMCID: PMC6586488 DOI: 10.1021/acs.biochem.8b01202] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system is an adaptive immune system of bacteria that has furnished several RNA-guided DNA endonucleases (e.g., Cas9) that are revolutionizing the field of genome engineering. Cas9 is being used to effect genomic alterations as well as in gene drives, where a particular trait may be propagated through a targeted species population over several generations. The ease of targeting catalytically impaired Cas9 to any genomic loci has led to development of technologies for base editing, chromatin imaging and modeling, epigenetic editing, and gene regulation. Unsurprisingly, Cas9 is being developed for numerous applications in biotechnology and biomedical research and as a gene therapy agent for multiple pathologies. There is a need for precise control of Cas9 activity over several dimensions, including those of dose, time, and space in these applications. Such precision controls, which are required of therapeutic agents, are particularly important for Cas9 as off-target effects, chromosomal translocations, immunogenic response, genotoxicity, and embryonic mosaicism are observed at elevated levels and with prolonged activity of Cas9. Here, we provide a perspective on advances in the precision control of Cas9 over aforementioned dimensions using external stimuli (e.g., small molecules or light) for controlled activation, inhibition, or degradation of Cas9.
Collapse
Affiliation(s)
- Soumyashree A. Gangopadhyay
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Kurt J. Cox
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Debasish Manna
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Qingxuan Zhou
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
215
|
Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 2019; 103:2121-2131. [PMID: 30680434 DOI: 10.1007/s00253-019-09629-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.
Collapse
|
216
|
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
217
|
Tong Y, Weber T, Lee SY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 2019; 36:1262-1280. [DOI: 10.1039/c8np00089a] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
218
|
Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B. CRISPR RNA-guided autonomous delivery of Cas9. Nat Struct Mol Biol 2019; 26:14-24. [PMID: 30598555 PMCID: PMC7703833 DOI: 10.1038/s41594-018-0173-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Cas9 is an endonuclease that can be programed to autonomously deliver diverse effectors to specified genetic addresses. High-resolution structures of this protein and its associated CRISPR RNA guide explain the molecular mechanisms of CRISPR-RNA-guided DNA recognition and provide a molecular blueprint that has facilitated structure-guided functional remodeling. Here we retrace events that led from early efforts to understand the central role of Cas9 in CRISPR-mediated adaptive immunity to contemporary efforts aimed at developing and deploying this enzyme for programmable genetic editing.
Collapse
Affiliation(s)
- Royce A Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Coleman Martin
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Artem A Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
219
|
Wang H, Chou C, Hsu K, Lee C, Wang AH. New paradigm of functional regulation by DNA mimic proteins: Recent updates. IUBMB Life 2018; 71:539-548. [DOI: 10.1002/iub.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Hao‐Ching Wang
- Graduate Institute of Translational MedicineCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
| | - Chia‐Cheng Chou
- National Center for High‐performance ComputingNational Applied Research Laboratories Hsinchu 300 Taiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
| | - Chi‐Hua Lee
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Andrew H.‐J. Wang
- Graduate Institute of Translational MedicineCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
220
|
Abstract
As one of their countermeasures against CRISPR-Cas immunity, bacteriophages have evolved natural inhibitors known as anti-CRISPR (Acr) proteins. Despite the existence of such examples for type II CRISPR-Cas systems, we currently know relatively little about the breadth of Cas9 inhibitors, and most of their direct Cas9 targets are uncharacterized. In this work we identify two new type II-C anti-CRISPRs and their cognate Cas9 orthologs, validate their functionality in vitro and in bacteria, define their inhibitory spectrum against a panel of Cas9 orthologs, demonstrate that they act before Cas9 DNA binding, and document their utility as off-switches for Cas9-based tools in mammalian applications. The discovery of diverse anti-CRISPRs, the mechanistic analysis of their cognate Cas9s, and the definition of Acr inhibitory mechanisms afford deeper insight into the interplay between Cas9 orthologs and their inhibitors and provide greater scope for exploiting Acrs for CRISPR-based genome engineering. In their natural settings, CRISPR-Cas systems play crucial roles in bacterial and archaeal adaptive immunity to protect against phages and other mobile genetic elements, and they are also widely used as genome engineering technologies. Previously we discovered bacteriophage-encoded Cas9-specific anti-CRISPR (Acr) proteins that serve as countermeasures against host bacterial immunity by inactivating their CRISPR-Cas systems (A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, et al., Cell 167:1829–1838.e9, 2016, https://doi.org/10.1016/j.cell.2016.11.017). We hypothesized that the evolutionary advantages conferred by anti-CRISPRs would drive the widespread occurrence of these proteins in nature (K. L. Maxwell, Mol Cell 68:8–14, 2017, https://doi.org/10.1016/j.molcel.2017.09.002; A. Pawluk, A. R. Davidson, and K. L. Maxwell, Nat Rev Microbiol 16:12–17, 2018, https://doi.org/10.1038/nrmicro.2017.120; E. J. Sontheimer and A. R. Davidson, Curr Opin Microbiol 37:120–127, 2017, https://doi.org/10.1016/j.mib.2017.06.003). We have identified new anti-CRISPRs using the same bioinformatic approach that successfully identified previous Acr proteins (A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, et al., Cell 167:1829–1838.e9, 2016, https://doi.org/10.1016/j.cell.2016.11.017) against Neisseria meningitidis Cas9 (NmeCas9). In this work, we report two novel anti-CRISPR families in strains of Haemophilus parainfluenzae and Simonsiella muelleri, both of which harbor type II-C CRISPR-Cas systems (A. Mir, A. Edraki, J. Lee, and E. J. Sontheimer, ACS Chem Biol 13:357–365, 2018, https://doi.org/10.1021/acschembio.7b00855). We characterize the type II-C Cas9 orthologs from H. parainfluenzae and S. muelleri, show that the newly identified Acrs are able to inhibit these systems, and define important features of their inhibitory mechanisms. The S. muelleri Acr is the most potent NmeCas9 inhibitor identified to date. Although inhibition of NmeCas9 by anti-CRISPRs from H. parainfluenzae and S. muelleri reveals cross-species inhibitory activity, more distantly related type II-C Cas9s are not inhibited by these proteins. The specificities of anti-CRISPRs and divergent Cas9s appear to reflect coevolution of their strategies to combat or evade each other. Finally, we validate these new anti-CRISPR proteins as potent off-switches for Cas9 genome engineering applications.
Collapse
|
221
|
Zhu Y, Huang Z. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Natl Sci Rev 2018; 6:438-451. [PMID: 34691893 PMCID: PMC8291651 DOI: 10.1093/nsr/nwy150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and accompanying CRISPR-associated (Cas) proteins provide RNA-guided adaptive immunity for prokaryotes to defend themselves against viruses. The CRISPR-Cas systems have attracted much attention in recent years for their power in aiding the development of genome editing tools. Based on the composition of the CRISPR RNA-effector complex, the CRISPR-Cas systems can be divided into two classes and six types. In this review, we summarize recent advances in the structural biology of the CRISPR-Cas-mediated genome editing tools, which helps us to understand the mechanism of how the guide RNAs assemble with diverse Cas proteins to cleave target nucleic acids.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
222
|
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| |
Collapse
|
223
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
224
|
Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B. A Unified Resource for Tracking Anti-CRISPR Names. CRISPR J 2018; 1:304-305. [PMID: 31021273 PMCID: PMC10625466 DOI: 10.1089/crispr.2018.0043] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, California
| | - Alan R. Davidson
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California
- Department of Chemistry, University of California, Berkeley, California
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
- Gladstone Institutes, San Francisco, California
- Howard Hughes Medical Institute, University of California, Berkeley, California
- Innovative Genomics Institute, University of California, Berkeley, California
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Orago, Dunedin, New Zealand
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Moineau
- Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Sciences and Engineering, Université Laval, Québec City, Quebec, Canada
| | - Xu Peng
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eric J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
225
|
Hidalgo-Cantabrana C, Sanozky-Dawes R, Barrangou R. Insights into the Human Virome Using CRISPR Spacers from Microbiomes. Viruses 2018; 10:v10090479. [PMID: 30205462 PMCID: PMC6165519 DOI: 10.3390/v10090479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Due to recent advances in next-generation sequencing over the past decade, our understanding of the human microbiome and its relationship to health and disease has increased dramatically. Yet, our insights into the human virome, and its interplay with important microbes that impact human health, is relatively limited. Prokaryotic and eukaryotic viruses are present throughout the human body, comprising a large and diverse population which influences several niches and impacts our health at various body sites. The presence of prokaryotic viruses like phages, has been documented at many different body sites, with the human gut being the richest ecological niche. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated proteins constitute the adaptive immune system of bacteria, which prevents attack by invasive nucleic acid. CRISPR-Cas systems function by uptake and integration of foreign genetic element sequences into the CRISPR array, which constitutes a genomic archive of iterative vaccination events. Consequently, CRISPR spacers can be investigated to reconstruct interplay between viruses and bacteria, and metagenomic sequencing data can be exploited to provide insights into host-phage interactions within a niche. Here, we show how the CRISPR spacer content of commensal and pathogenic bacteria can be used to determine the evidence of their phage exposure. This framework opens new opportunities for investigating host-virus dynamics in metagenomic data, and highlights the need to dedicate more efforts for virome sampling and sequencing.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| |
Collapse
|
226
|
Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD, Joung JK, Kleinstiver BP, Bondy-Denomy J. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 2018; 362:240-242. [PMID: 30190308 DOI: 10.1126/science.aau5174] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022]
Abstract
Bacterial CRISPR-Cas systems protect their host from bacteriophages and other mobile genetic elements. Mobile elements, in turn, encode various anti-CRISPR (Acr) proteins to inhibit the immune function of CRISPR-Cas. To date, Acr proteins have been discovered for type I (subtypes I-D, I-E, and I-F) and type II (II-A and II-C) but not other CRISPR systems. Here, we report the discovery of 12 acr genes, including inhibitors of type V-A and I-C CRISPR systems. AcrVA1 inhibits a broad spectrum of Cas12a (Cpf1) orthologs-including MbCas12a, Mb3Cas12a, AsCas12a, and LbCas12a-when assayed in human cells. The acr genes reported here provide useful biotechnological tools and mark the discovery of acr loci in many bacteria and phages.
Collapse
Affiliation(s)
- Nicole D Marino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Y Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adair L Borges
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander A Sousa
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lina M Leon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin J Rauch
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Russell T Walton
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Joel D Berry
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin P Kleinstiver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA. .,Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
227
|
Stout EA, Sanozky-Dawes R, Goh YJ, Crawley AB, Klaenhammer TR, Barrangou R. Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri. Microbiology (Reading) 2018; 164:1098-1111. [DOI: 10.1099/mic.0.000689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emily A. Stout
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rosemary Sanozky-Dawes
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandra B. Crawley
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Todd R. Klaenhammer
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- 2Functional Genomics Program, North Carolina State University, Raleigh, NC, USA
- 1Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
228
|
Hupfeld M, Trasanidou D, Ramazzini L, Klumpp J, Loessner MJ, Kilcher S. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Res 2018; 46:6920-6933. [PMID: 30053228 PMCID: PMC6061871 DOI: 10.1093/nar/gky544] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against invading DNA elements including bacteriophages and plasmids. While CRISPR technology has revolutionized eukaryotic genome engineering, its application to prokaryotes and their viruses remains less well established. Here we report the first functional CRISPR-Cas system from the genus Listeria and demonstrate its native role in phage defense. LivCRISPR-1 is a type II-A system from the genome of L. ivanovii subspecies londoniensis that uses a small, 1078 amino acid Cas9 variant and a unique NNACAC protospacer adjacent motif. We transferred LivCRISPR-1 cas9 and trans-activating crRNA into Listeria monocytogenes. Along with crRNA encoding plasmids, this programmable interference system enables efficient cleavage of bacterial DNA and incoming phage genomes. We used LivCRISPR-1 to develop an effective engineering platform for large, non-integrating Listeria phages based on allelic replacement and CRISPR-Cas-mediated counterselection. The broad host-range Listeria phage A511 was engineered to encode and express lysostaphin, a cell wall hydrolase that specifically targets Staphylococcus peptidoglycan. In bacterial co-culture, the armed phages not only killed Listeria hosts but also lysed Staphylococcus cells by enzymatic collateral damage. Simultaneous killing of unrelated bacteria by a single phage demonstrates the potential of CRISPR-Cas-assisted phage engineering, beyond single pathogen control.
Collapse
Affiliation(s)
- Mario Hupfeld
- Institute of Food, Nutrition, and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Despoina Trasanidou
- Institute of Food, Nutrition, and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Livia Ramazzini
- Institute of Food, Nutrition, and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition, and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition, and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Samuel Kilcher
- Institute of Food, Nutrition, and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| |
Collapse
|
229
|
Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, Cambillau C, Moineau S. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun 2018; 9:2919. [PMID: 30046034 PMCID: PMC6060171 DOI: 10.1038/s41467-018-05092-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.
Collapse
Affiliation(s)
- Alexander P Hynes
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University. Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Daniel Agudelo
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Dennis A Romero
- DuPont Nutrition and Health, 3329 Agriculture Dr, Madison, WI, 53716, USA
| | | | - Philippe Horvath
- DuPont Nutrition and Health, BP 10, 86220, Dangé-Saint-Romain, France
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
230
|
Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J. Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity. Cell 2018; 174:917-925.e10. [PMID: 30033364 DOI: 10.1016/j.cell.2018.06.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022]
Abstract
Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.
Collapse
Affiliation(s)
- Adair L Borges
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Y Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - MaryClare F Rollins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Beatriz A Osuna
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
231
|
Guo T, Han W, She Q. Tolerance of Sulfolobus SMV1 virus to the immunity of I-A and III-B CRISPR-Cas systems in Sulfolobus islandicus. RNA Biol 2018; 16:549-556. [PMID: 29629622 DOI: 10.1080/15476286.2018.1460993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sulfolobus islandicus Rey15A encodes one Type I-A and two Type III-B systems, all of which are active in mediating nucleic acids interference. However, the effectiveness of each CRISPR system against virus infection was not tested in this archaeon. Here we constructed S. islandicus strains that constitutively express the antiviral immunity from either I-A, or III-B, or I-A plus III-B systems against SMV1 and tested the response of each host to SMV1 infection. We found that, although both CRISPR immunities showed a strong inhibition to viral DNA replication at an early stage of incubation, the host I-A CRISPR immunity gradually lost the control on virus proliferation, allowing accumulation of cellular viral DNA and release of a large number of viral particles. In contrast, the III-B CRISPR immunity showed a tight control on both viral DNA replication and virus particle formation. Furthermore, the SMV1 tolerance to the I-A CRISPR immunity did not result from the occurrence of escape mutations, suggesting the virus probably encodes an anti-CRISPR protein (Acr) to compromise the host I-A CRISPR immunity. Together, this suggests that the interplay between viral Acrs and CRISPR-Cas systems in thermophilic archaea could have shaped the stable virus-host relationship that is observed for many archaeal viruses.
Collapse
Affiliation(s)
- Tong Guo
- a Archaea Center, Department of Biology , University of Copenhagen, Copenhagen Biocenter , Copenhagen N , Denmark
| | - Wenyuan Han
- a Archaea Center, Department of Biology , University of Copenhagen, Copenhagen Biocenter , Copenhagen N , Denmark
| | - Qunxin She
- a Archaea Center, Department of Biology , University of Copenhagen, Copenhagen Biocenter , Copenhagen N , Denmark.,b State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
232
|
Stone NP, Hilbert BJ, Hidalgo D, Halloran KT, Lee J, Sontheimer EJ, Kelch BA. A Hyperthermophilic Phage Decoration Protein Suggests Common Evolutionary Origin with Herpesvirus Triplex Proteins and an Anti-CRISPR Protein. Structure 2018; 26:936-947.e3. [PMID: 29779790 PMCID: PMC6277972 DOI: 10.1016/j.str.2018.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022]
Abstract
Virus capsids are protein shells that protect the viral genome from environmental assaults, while maintaining the high internal pressure of the tightly packaged genome. To elucidate how capsids maintain stability under harsh conditions, we investigated the capsid components of the hyperthermophilic phage P74-26. We determined the structure of capsid protein gp87 and show that it has the same fold as decoration proteins in many other phages, despite lacking significant sequence homology. We also find that gp87 is significantly more stable than mesophilic homologs. Our analysis of the gp87 structure reveals that the core "β tulip" domain is conserved in trimeric capsid components across numerous double-stranded DNA viruses, including Herpesviruses. Moreover, this β barrel domain is found in anti-CRISPR protein AcrIIC1, suggesting a mechanism for the evolution of this Cas9 inhibitor. Our work illustrates the principles for increased stability of gp87, and extends the evolutionary reach of the β tulip domain.
Collapse
Affiliation(s)
- Nicholas P Stone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Brendan J Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniel Hidalgo
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kevin T Halloran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jooyoung Lee
- RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
233
|
Li C, Psatha N, Gil S, Wang H, Papayannopoulou T, Lieber A. HDAd5/35 ++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells. Mol Ther Methods Clin Dev 2018; 9:390-401. [PMID: 30038942 PMCID: PMC6054697 DOI: 10.1016/j.omtm.2018.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/26/2018] [Indexed: 01/12/2023]
Abstract
We generated helper-dependent HDAd5/35++ adenovirus vectors expressing CRISPR/Cas9 for potential hematopoietic stem cells (HSCs) gene therapy of β-thalassemia and sickle cell disease through re-activation of fetal γ-globin expression (HDAd-globin-CRISPR). The process of CRISPR/Cas9 gene transfer using these vectors was not associated with death of human CD34+ cells and did not affect their in vitro expansion and erythroid differentiation. However, functional assays for primitive HSCs, e.g., multi-lineage progenitor colony formation and engraftment in irradiated NOD/Shi-scid/interleukin-2 receptor γ (IL-2Rγ) null (NSG) mice, revealed toxicity of HDAd-globin-CRISPR vectors related to the prolonged expression and activity of CRISPR/Cas9. To control the duration of CRISPR/Cas9 activity, we generated an HDAd5/35++ vector that expressed two anti-CRISPR (Acr) peptides (AcrII4 and AcrII2) capable of binding to the CRISPR/Cas9 complex (HDAd-Acr). CD34+ cells that were sequentially infected with HDAd-CRISPR and HDAd-Acr engrafted at a significantly higher rate. Target site disruption frequencies in engrafted human cells were similar to those in pre-transplantation CD34+ cells, indicating that genome-edited primitive HSCs survived. In vitro differentiated HSCs isolated from transplanted mice demonstrated increased γ-globin expression as a result of genome editing. Our data indicate that the HDAd-Acr vector can be used as a tool to reduce HSC cytotoxicity of the CRISPR/Cas9 complex.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
234
|
Huang CH, Lee KC, Doudna JA. Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends Cancer 2018; 4:499-512. [PMID: 29937048 PMCID: PMC6299457 DOI: 10.1016/j.trecan.2018.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
Cancer is a complex disease caused by combinations of cellular genetic alterations and heterogeneous microenvironments. The use of the robust and programmable CRISPR-Cas systems has greatly improved genome editing for precision cancer modeling and enabled multiplexed genetic manipulation for cancer treatment and mutation detection. In this review, we outline the current CRISPR-Cas toolkit, and discuss the promises and hurdles in translating this revolutionary technology into effective and safe clinical applications for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Chun-Hao Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ko-Chuan Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
235
|
Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, Smits WK. Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Front Microbiol 2018; 9:1242. [PMID: 29946308 PMCID: PMC6005852 DOI: 10.3389/fmicb.2018.01242] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Fecal microbiota transplantation has proven to be an effective treatment for infections with the gram-positive enteropathogen Clostridium difficile. Despite its effectiveness, the exact mechanisms that underlie its success are largely unclear. In this review, we highlight the pleiotropic effectors that are transferred during fecal microbiota transfer and relate this to the C. difficile lifecycle. In doing so, we show that it is likely that multiple factors contribute to the elimination of symptoms of C. difficile infections after fecal microbiota transplantation.
Collapse
Affiliation(s)
- Amoe Baktash
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Bastian V H Hornung
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen Corver
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ed J Kuijper
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
236
|
Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S. CRISPR-Cas antimicrobials: Challenges and future prospects. PLoS Pathog 2018; 14:e1006990. [PMID: 29902258 PMCID: PMC6001953 DOI: 10.1371/journal.ppat.1006990] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Elizabeth Pursey
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - David Sünderhauf
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
| | - Stineke van Houte
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
| |
Collapse
|
237
|
Asija K, Teschke CM. Lessons from bacteriophages part 2: A saga of scientific breakthroughs and prospects for their use in human health. PLoS Pathog 2018; 14:e1006970. [PMID: 29772006 PMCID: PMC5957327 DOI: 10.1371/journal.ppat.1006970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kunica Asija
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
238
|
Hullahalli K, Rodrigues M, Nguyen UT, Palmer K. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. mBio 2018; 9:e00414-18. [PMID: 29717009 PMCID: PMC5930301 DOI: 10.1128/mbio.00414-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis, since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this "CRISPR tolerance." We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense.IMPORTANCE CRISPR-Cas has provided a powerful toolkit to manipulate bacteria, resulting in improved genetic manipulations and novel antimicrobials. These powerful applications rely on the premise that CRISPR-Cas chromosome targeting, which leads to double-stranded DNA breaks, is lethal. In this study, we show that chromosomal CRISPR targeting in Enterococcus faecalis is transiently nonlethal. We uncover novel phenotypes associated with this "CRISPR tolerance" and, after determining its genetic basis, develop a genome-editing platform in E. faecalis with negligible off-target effects. Our findings reveal a novel strategy exploited by a bacterial pathogen to cope with CRISPR-induced conflicts to more readily accept DNA, and our robust CRISPR editing platform will help simplify genetic modifications in this organism.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Marinelle Rodrigues
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Uyen Thy Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
239
|
He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M, Makarova KS, Koonin EV, Brodersen DE, Peng X. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat Microbiol 2018; 3:461-469. [PMID: 29507349 PMCID: PMC11249088 DOI: 10.1038/s41564-018-0120-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022]
Abstract
Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR-Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in Sulfolobus islandicus LAL14/1 that carries functional CRISPR-Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR-Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric αβ-sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins.
Collapse
Affiliation(s)
- Fei He
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lan B Van
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anders L Kjeldsen
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Dedola
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Ditlev E Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Xu Peng
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
240
|
Abstract
Bacteria are under constant predation from viruses, called bacteriophages (phages). This threat has driven the evolution of multiple defense systems, including the CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR associated genes) immune pathway. Phages are not passive bystanders in their CRISPR-mediated demise, however, as many have developed potent protein inhibitors of the bacterial adaptive immune system. Here, I review the work that led to the discovery of many distinct "anti-CRISPR" proteins. Furthermore, I outline how understanding their mechanisms of action has provided a suite of specific and high-affinity reagents to modulate and study CRISPR-Cas applications.
Collapse
Affiliation(s)
- Joseph Bondy-Denomy
- Department of Microbiology & Immunology, Quantitative Biosciences Institute, University of California, San Francisco , San Francisco, California 94143, United States
| |
Collapse
|
241
|
Guha TK, Edgell DR. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Int J Mol Sci 2017; 18:ijms18122565. [PMID: 29186020 PMCID: PMC5751168 DOI: 10.3390/ijms18122565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023] Open
Abstract
Breakthroughs in the development of programmable site-specific nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases (MNs), and most recently, the clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (including Cas9) have greatly enabled and accelerated genome editing. By targeting double-strand breaks to user-defined locations, the rates of DNA repair events are greatly enhanced relative to un-catalyzed events at the same sites. However, the underlying biology of each genome-editing nuclease influences the targeting potential, the spectrum of off-target cleavages, the ease-of-use, and the types of recombination events at targeted double-strand breaks. No single genome-editing nuclease is optimized for all possible applications. Here, we focus on the diversity of nuclease domains available for genome editing, highlighting biochemical properties and the potential applications that are best suited to each domain.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|