201
|
Durica-Mitic S, Göpel Y, Amman F, Görke B. Adaptor protein RapZ activates endoribonuclease RNase E by protein-protein interaction to cleave a small regulatory RNA. RNA (NEW YORK, N.Y.) 2020; 26:1198-1215. [PMID: 32424019 PMCID: PMC7430671 DOI: 10.1261/rna.074047.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In Escherichia coli, endoribonuclease RNase E initiates degradation of many RNAs and represents a hub for post-transcriptional regulation. The tetrameric adaptor protein RapZ targets the small regulatory RNA GlmZ to degradation by RNase E. RapZ binds GlmZ through a domain located at the carboxyl terminus and interacts with RNase E, promoting GlmZ cleavage in the base-pairing region. When necessary, cleavage of GlmZ is counteracted by the homologous small RNA GlmY, which sequesters RapZ through molecular mimicry. In the current study, we addressed the molecular mechanism employed by RapZ. We show that RapZ mutants impaired in RNA-binding but proficient in binding RNase E are able to stimulate GlmZ cleavage in vivo and in vitro when provided at increased concentrations. In contrast, a truncated RapZ variant retaining RNA-binding activity but incapable of contacting RNase E lacks this activity. In agreement, we find that tetrameric RapZ binds the likewise tetrameric RNase E through direct interaction with its large globular domain within the catalytic amino terminus, independent of RNA. Although RapZ stimulates cleavage of at least one non-cognate RNA by RNase E in vitro, its activity is restricted to GlmZ in vivo as revealed by RNA sequencing, suggesting that certain features within the RNA substrate are also required for cleavage. In conclusion, RapZ boosts RNase E activity through interaction with its catalytic domain, which represents a novel mechanism of RNase E activation. In contrast, RNA-binding has a recruiting role, increasing the likelihood that productive RapZ/GlmZ/RNase E complexes form.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Fabian Amman
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Theoretical Biochemistry, University of Vienna, 1090 Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
202
|
McQuail J, Switzer A, Burchell L, Wigneshweraraj S. The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J Biol Chem 2020; 295:12355-12367. [PMID: 32532816 PMCID: PMC7458820 DOI: 10.1074/jbc.ra120.014107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in Escherichia coli specifically experiencing long-term nitrogen starvation. Using the ability of T7 phage to replicate in nitrogen-starved bacteria as a biological probe of E. coli cell function during nitrogen starvation, we demonstrate that Hfq foci have a role in the adaptive response of E. coli to long-term nitrogen starvation. We further show that Hfq foci formation does not depend on gene expression once nitrogen starvation has set in and occurs indepen-dently of the transcription factor N-regulatory protein C, which activates the initial adaptive response to N starvation in E. coli These results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.
Collapse
Affiliation(s)
- Josh McQuail
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Amy Switzer
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Lynn Burchell
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sivaramesh Wigneshweraraj
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
203
|
Irastortza-Olaziregi M, Amster-Choder O. RNA localization in prokaryotes: Where, when, how, and why. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1615. [PMID: 32851805 DOI: 10.1002/wrna.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Only recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species. This localization, which often overlaps with that of the encoded proteins, can be achieved either in a translation-dependent or translation-independent fashion. The latter implies that RNAs carry sequence-level features that determine their final localization with the aid of RNA-targeting factors. Localization of transcripts regulates their posttranscriptional fate by affecting their degradation and processing, translation efficiency, sRNA-mediated regulation, and/or propensity to undergo RNA modifications. By facilitating complex assembly and liquid-liquid phase separation, RNA localization is not only a consequence but also a driver of subcellular spatiotemporal complexity. We foresee that in the coming years the study of RNA localization in prokaryotes will produce important novel insights regarding the fundamental understanding of membrane-less subcellular organization and lead to practical outputs with biotechnological and therapeutic implications. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
204
|
S1 Domain RNA-Binding Protein CvfD Is a New Posttranscriptional Regulator That Mediates Cold Sensitivity, Phosphate Transport, and Virulence in Streptococcus pneumoniae D39. J Bacteriol 2020; 202:JB.00245-20. [PMID: 32601068 DOI: 10.1128/jb.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Posttranscriptional gene regulation often involves RNA-binding proteins that modulate mRNA translation and/or stability either directly through protein-RNA interactions or indirectly by facilitating the annealing of small regulatory RNAs (sRNAs). The human pathogen Streptococcus pneumoniae D39 (pneumococcus) does not encode homologs to RNA-binding proteins known to be involved in promoting sRNA stability and function, such as Hfq or ProQ, even though it contains genes for at least 112 sRNAs. However, the pneumococcal genome contains genes for other RNA-binding proteins, including at least six S1 domain proteins: ribosomal protein S1 (rpsA), polynucleotide phosphorylase (pnpA), RNase R (rnr), and three proteins with unknown functions. Here, we characterize the function of one of these conserved, yet uncharacterized, S1 domain proteins, SPD_1366, which we have renamed CvfD (conserved virulence factor D), since loss of the protein results in attenuation of virulence in a murine pneumonia model. We report that deletion of cvfD impacts the expression of 144 transcripts, including the pst1 operon, encoding phosphate transport system 1 in S. pneumoniae We further show that CvfD posttranscriptionally regulates the PhoU2 master regulator of the pneumococcal dual-phosphate transport system by binding phoU2 mRNA and impacting PhoU2 translation. CvfD not only controls expression of phosphate transporter genes but also functions as a pleiotropic regulator that impacts cold sensitivity and the expression of sRNAs and genes involved in diverse cellular functions, including manganese uptake and zinc efflux. Together, our data show that CvfD exerts a broad impact on pneumococcal physiology and virulence, partly by posttranscriptional gene regulation.IMPORTANCE Recent advances have led to the identification of numerous sRNAs in the major human respiratory pathogen S. pneumoniae However, little is known about the functions of most sRNAs or RNA-binding proteins involved in RNA biology in pneumococcus. In this paper, we characterize the phenotypes and one target of the S1 domain RNA-binding protein CvfD, a homolog of general stress protein 13 identified, but not extensively characterized, in other Firmicutes species. Pneumococcal CvfD is a broadly pleiotropic regulator, whose absence results in misregulation of divalent cation homeostasis, reduced translation of the PhoU2 master regulator of phosphate uptake, altered metabolism and sRNA amounts, cold sensitivity, and attenuation of virulence. These findings underscore the critical roles of RNA biology in pneumococcal physiology and virulence.
Collapse
|
205
|
Envelope Stress and Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System. J Bacteriol 2020; 202:JB.00272-20. [PMID: 32571967 DOI: 10.1128/jb.00272-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses a type three secretion system (T3SS) encoded on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. The SPI1 T3SS is regulated by numerous environmental and physiological signals, integrated to either activate or repress invasion. Transcription of hilA, encoding the transcriptional activator of the SPI1 structural genes, is activated by three AraC-like regulators, HilD, HilC, and RtsA, that act in a complex feed-forward loop. Deletion of bamB, encoding a component of the β-barrel assembly machinery, causes a dramatic repression of SPI1, but the mechanism was unknown. Here, we show that partially defective β-barrel assembly activates the RcsCDB regulon, leading to decreased hilA transcription. This regulation is independent of RpoE activation. Though Rcs has been previously shown to repress SPI1 when disulfide bond formation is impaired, we show that activation of Rcs in a bamB background is dependent on the sensor protein RcsF, whereas disulfide bond status is sensed independently. Rcs decreases transcription of the flagellar regulon, including fliZ, the product of which indirectly activates HilD protein activity. Rcs also represses hilD, hilC, and rtsA promoters by an unknown mechanism. Both dsbA and bamB mutants have motility defects, though this is simply regulatory in a bamB background; motility is restored in the absence of Rcs. Effector secretion assays show that repression of SPI1 in a bamB background is also regulatory; if expressed, the SPI1 T3SS is functional in a bamB background. This emphasizes the sensitivity of SPI1 regulation to overall envelope homeostasis.IMPORTANCE Salmonella causes worldwide foodborne illness, leading to massive disease burden and an estimated 600,000 deaths per year. Salmonella infects orally and invades intestinal epithelial cells using a type 3 secretion system that directly injects effector proteins into host cells. This first step in invasion is tightly regulated by a variety of inputs. In this work, we demonstrate that Salmonella senses the functionality of outer membrane assembly in determining regulation of invasion machinery, and we show that Salmonella uses distinct mechanisms to detect specific perturbations in envelope assembly.
Collapse
|
206
|
El Hamoui O, Yadav I, Radiom M, Wien F, Berret JF, van der Maarel JRC, Arluison V. Interactions between DNA and the Hfq Amyloid-like Region Trigger a Viscoelastic Response. Biomacromolecules 2020; 21:3668-3677. [PMID: 32786728 DOI: 10.1021/acs.biomac.0c00747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.
Collapse
Affiliation(s)
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Milad Radiom
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Jean-Francois Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | | | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France.,Université de Paris, F-75006 Paris, France
| |
Collapse
|
207
|
Snyder DT, Panczyk EM, Somogyi A, Kaplan DA, Wysocki V. Simple and Minimally Invasive SID Devices for Native Mass Spectrometry. Anal Chem 2020; 92:11195-11203. [PMID: 32700898 DOI: 10.1021/acs.analchem.0c01657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap. Despite the decrease in size and reduction in number of electrodes to 3 (from 10 to 12 in Gen 1 and ∼6 in Gen 2), we show sensitivity improvement in a variety of cases across all platforms while also maintaining SID capabilities across a wide mass and energy range. The coupling of SID, high resolution, and ion mobility is demonstrated for a variety of protein complexes of varying topologies.
Collapse
|
208
|
Abstract
Here, we describe SR7, a dual-function antisense RNA encoded on the Bacillus subtilis chromosome. This RNA was earlier described as SigB-dependent regulatory RNA S1136 and reported to reduce the amount of the small ribosomal subunit under ethanol stress. We found that the 5ʹ portion of SR7 encodes a small protein composed of 39 amino acids which we designated SR7P. It is translated from a 185 nt SigB-dependent mRNA under five different stress conditions and a longer SigB-independent RNA constitutively. About three-fold higher amounts of SR7P were detected in B. subtilis cells exposed to salt, ethanol, acid or heat stress. Co-elution experiments with SR7PC-FLAG and Far-Western blotting demonstrated that SR7P interacts with the glycolytic enzyme enolase. Enolase is a scaffolding component of the B. subtilis degradosome where it interacts with RNase Y and phosphofructokinase PfkA. We found that SR7P increases the amount of RNase Y bound to enolase without affecting PfkA. RNA does not bridge the SR7P-enolase-RNase Y interaction. In vitro-degradation assays with the known RNase Y substrates yitJ and rpsO mRNA revealed enhanced enzymatic activity of enolase-bound RNase Y in the presence of SR7P. Northern blots showed a major effect of enolase and a minor effect of SR7P on the half-life of rpsO mRNA indicating a fine-tuning role of SR7P in RNA degradation.
Collapse
Affiliation(s)
- Inam Ul Haq
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| |
Collapse
|
209
|
Pandey S, Gravel CM, Stockert OM, Wang CD, Hegner CL, LeBlanc H, Berry KE. Genetic identification of the functional surface for RNA binding by Escherichia coli ProQ. Nucleic Acids Res 2020; 48:4507-4520. [PMID: 32170306 PMCID: PMC7192607 DOI: 10.1093/nar/gkaa144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.
Collapse
Affiliation(s)
- Smriti Pandey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Oliver M Stockert
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Clara D Wang
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Courtney L Hegner
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.,Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
210
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
211
|
Kawano H, Suzuki-Minakuchi C, Sugiyama D, Watanabe N, Takahashi Y, Okada K, Nojiri H. A Novel Small RNA on the Pseudomonas putida KT2440 Chromosome Is Involved in the Fitness Cost Imposed by IncP-1 Plasmid RP4. Front Microbiol 2020; 11:1328. [PMID: 32655527 PMCID: PMC7324555 DOI: 10.3389/fmicb.2020.01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmids can provide advantageous traits to host bacteria, although they may impose a fitness cost. Chromosome-encoded factors are important for regulating the expression of genes on plasmids, and host chromosomes may differ in terms of their interactions with a given plasmid. Accordingly, differences in fitness cost loading and compensatory co-evolution may occur for various host chromosome/plasmid combinations. However, the mechanisms of compensatory evolution are highly divergent and require further insights. Here, we reveal novel evolutionally mechanisms of Pseudomonas putida KT2440 to improve the fitness cost imposed by the incompatibility P-1 (IncP-1) multidrug resistance plasmid RP4. A mixed culture of RP4-harboring and -free KT2440 cells was serially transferred every 24 h under non-selective conditions. Initially, the proportion of RP4-harboring cells decreased rapidly, but it immediately recovered, suggesting that the fitness of RP4-harboring strains improved during cultivation. Larger-sized colonies appeared during 144-h mixed culture, and evolved strains isolated from larger-sized colonies showed higher growth rates and fitness than those of the ancestral strain. Whole-genome sequencing revealed that evolved strains had one of two mutations in the same intergenic region of the chromosome. Based on the research of another group, this region is predicted to contain a stress-inducible small RNA (sRNA). Identification of the transcriptional start site in this sRNA indicated that one mutation occurred within the sRNA region, whereas the other was in its promoter region. Quantitative reverse-transcription PCR showed that the expression of this sRNA was strongly induced by RP4 carriage in the ancestral strain but repressed in the evolved strains. When the sRNA region was overexpressed in the RP4-free strain, the fitness decreased, and the colony size became smaller. Using transcriptome analysis, we also showed that the genes involved in amino acid metabolism and stress responses were differentially transcribed by overexpression of the sRNA region. These results indicate that the RP4-inducible chromosomal sRNA was responsible for the fitness cost of RP4 on KT2440 cells, where this sRNA is of key importance in host evolution toward rapid amelioration of the cost.
Collapse
Affiliation(s)
- Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Natsuki Watanabe
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yurika Takahashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
212
|
Effect of rpoE on the Non-coding RNA Expression Profiles of Salmonella enterica serovar Typhi under the Stress of Ampicillin. Curr Microbiol 2020; 77:2405-2412. [DOI: 10.1007/s00284-020-02055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
|
213
|
The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition. Nat Commun 2020; 11:2823. [PMID: 32499480 PMCID: PMC7272453 DOI: 10.1038/s41467-020-16650-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.
Collapse
|
214
|
Plugging Small RNAs into the Network. mSystems 2020; 5:5/3/e00422-20. [PMID: 32487744 PMCID: PMC8534730 DOI: 10.1128/msystems.00422-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small RNAs (sRNAs) have been discovered in every bacterium examined and have been shown to play important roles in the regulation of a diverse range of behaviors, from metabolism to infection. However, despite a wide range of available techniques for discovering and validating sRNA regulatory interactions, only a minority of these molecules have been well characterized. In part, this is due to the nature of posttranscriptional regulation: the activity of an sRNA depends on the state of the transcriptome as a whole, so characterization is best carried out under the conditions in which it is naturally active. In this issue of mSystems, Arrieta-Ortiz and colleagues (M. L. Arrieta-Ortiz, C. Hafemeister, B. Shuster, N. S. Baliga, et al., mSystems 5:e00057-20, 2020, https://doi.org/10.1128/mSystems.00057-20) present a network inference approach based on estimating sRNA activity across transcriptomic compendia. This shows promise not only for identifying new sRNA regulatory interactions but also for pinpointing the conditions in which these interactions occur, providing a new avenue toward functional characterization of sRNAs.
Collapse
|
215
|
Fan L, Hou F, Idris Muhammad A, Bilyaminu Ismail B, Lv R, Ding T, Liu D. Proteomic responses of spores of Bacillus subtilis to thermosonication involve large-scale alterations in metabolic pathways. ULTRASONICS SONOCHEMISTRY 2020; 64:104992. [PMID: 32018137 DOI: 10.1016/j.ultsonch.2020.104992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Thermosonication (TS) impacts numerous characteristics of spores, such as morphology, cell metabolism, and stress resistance. However, relevant mechanisms need to be clarified. In the present study, the effect of TS treatment on Bacillus subtilis spores was investigated at phenotypic and proteomic levels. The results showed that TS treatment induced significant changes to spores in growth kinetics and morphology. A total of 167 differentially expressed proteins (DEPs) were obtained after TS treatment at 6.67 W/mL and 80 °C. Among these proteins, 80 were up-regulated, whereas 87 were down-regulated. These DEPs were classed into 20 functional categories. Enrichment analysis of the proteome revealed that the major categories were associated with metabolic functions, including energy metabolic processes, amino acids biosynthesis and metabolism, translation and ribosomal protein. In summary, B. subtilis spores showed alteration primarily in the proteins that were associated with metabolism under TS treatment. These findings could be applied to the development and optimization of TS-based sporicidal treatment.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Furong Hou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruiling Lv
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
216
|
Denham EL. The Sponge RNAs of bacteria - How to find them and their role in regulating the post-transcriptional network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194565. [PMID: 32475775 DOI: 10.1016/j.bbagrm.2020.194565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
In bacteria small regulatory RNAs (sRNAs) interact with their mRNA targets through non-consecutive base-pairing. The loose base-pairing specificity allows sRNAs to regulate large numbers of genes, either affecting the stability and/or the translation of mRNAs. Mechanisms enabling post-transcriptional regulation of the sRNAs themselves have also been described involving so-called sponge RNAs. Sponge RNAs modulate free sRNA levels in the cell through RNA-RNA interactions that sequester ("soak up") the sRNA and/or promote degradation of the target sRNA or the sponge RNA-sRNA complex. The development of complex RNA sequencing strategies for the detection of RNA-RNA interactions has enabled identification of several sponge RNAs, as well as previously known regulatory RNAs able to act as both regulators and sponges. This review highlights techniques that have enabled the identification of these sponge RNAs, the origins of sponge RNAs and the mechanisms by which they function in the post-transcriptional network.
Collapse
Affiliation(s)
- Emma L Denham
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
217
|
Sonnleitner E, Pusic P, Wolfinger MT, Bläsi U. Distinctive Regulation of Carbapenem Susceptibility in Pseudomonas aeruginosa by Hfq. Front Microbiol 2020; 11:1001. [PMID: 32528439 PMCID: PMC7264166 DOI: 10.3389/fmicb.2020.01001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Carbapenems are often the antibiotics of choice to combat life threatening infections caused by the opportunistic human pathogen Pseudomonas aeruginosa. The outer membrane porins OprD and OpdP serve as entry ports for carbapenems. Here, we report that the RNA chaperone Hfq governs post-transcriptional regulation of the oprD and opdP genes in a distinctive manner. Hfq together with the recently described small regulatory RNAs (sRNAs) ErsA and Sr0161 is shown to mediate translational repression of oprD, whereas opdP appears not to be regulated by sRNAs. At variance, our data indicate that opdP is translationally repressed by a regulatory complex consisting of Hfq and the catabolite repression protein Crc, an assembly known to be key to carbon catabolite repression in P. aeruginosa. The regulatory RNA CrcZ, which is up-regulated during growth of P. aeruginosa on less preferred carbon sources, is known to sequester Hfq, which relieves Hfq-mediated translational repression of genes. The differential carbapenem susceptibility during growth on different carbon sources can thus be understood in light of Hfq-dependent oprD/opdP regulation and of the antagonizing function of the CrcZ RNA on Hfq regulatory complexes.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Petra Pusic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
218
|
Al-Husini N, Tomares DT, Pfaffenberger ZJ, Muthunayake NS, Samad MA, Zuo T, Bitar O, Aretakis JR, Bharmal MHM, Gega A, Biteen JS, Childers WS, Schrader JM. BR-Bodies Provide Selectively Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates. Mol Cell 2020; 78:670-682.e8. [PMID: 32343944 PMCID: PMC7245546 DOI: 10.1016/j.molcel.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here, we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA sequencing (RNA-seq). We find that long, poorly translated mRNAs, small RNAs, and antisense RNAs are the main substrates, while rRNA, tRNA, and other conserved non-coding RNAs (ncRNAs) are excluded from these bodies. BR-bodies stimulate the mRNA decay rate of enriched mRNAs, helping to reshape the cellular mRNA pool. We also observe that BR-body formation promotes complete mRNA decay, avoiding the buildup of toxic endo-cleaved mRNA decay intermediates. The combined selective permeability of BR-bodies for both enzymes and substrates together with the stimulation of the sub-steps of mRNA decay provide an effective organization strategy for bacterial mRNA decay.
Collapse
MESH Headings
- Caulobacter crescentus/genetics
- Caulobacter crescentus/growth & development
- Caulobacter crescentus/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Humans
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Organelles/genetics
- Organelles/metabolism
- Polyribonucleotide Nucleotidyltransferase/genetics
- Polyribonucleotide Nucleotidyltransferase/metabolism
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Stability
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Mohammad A Samad
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Obaidah Bitar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - James R Aretakis
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
219
|
Milojevic T, Weckwerth W. Molecular Mechanisms of Microbial Survivability in Outer Space: A Systems Biology Approach. Front Microbiol 2020; 11:923. [PMID: 32499769 PMCID: PMC7242639 DOI: 10.3389/fmicb.2020.00923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Since the dawn of space exploration, the survivability of terrestrial life in outer space conditions has attracted enormous attention. Space technology has enabled the development of advanced space exposure facilities to investigate in situ responses of microbial life to the stress conditions of space during interplanetary transfer. Significant progress has been made toward the understanding of the effects of space environmental factors, e.g., microgravity, vacuum and radiation, on microorganisms exposed to real and simulated space conditions. Of extreme importance is not only knowledge of survival potential of space-exposed microorganisms, but also the determination of mechanisms of survival and adaptation of predominant species to the extreme space environment, i.e., revealing the molecular machinery, which elicit microbial survivability and adaptation. Advanced technologies in -omics research have permitted genome-scale studies of molecular alterations of space-exposed microorganisms. A variety of reports show that microorganisms grown in the space environment exhibited global alterations in metabolic functions and gene expression at the transcriptional and translational levels. Proteomic, metabolomic and especially metabolic modeling approaches as essential instruments of space microbiology, synthetic biology and metabolic engineering are rather underrepresented. Here we summarized the molecular space-induced alterations of exposed microorganisms in terms of understanding the molecular mechanisms of microbial survival and adaptation to drastic outer space environment.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
220
|
Quendera AP, Seixas AF, Dos Santos RF, Santos I, Silva JPN, Arraiano CM, Andrade JM. RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria. Front Mol Biosci 2020; 7:78. [PMID: 32478092 PMCID: PMC7237705 DOI: 10.3389/fmolb.2020.00078] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces, promoting RNA strand interaction between a trans-encoding sRNA and its mRNA target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the existence of other RBPs involved in sRNA function. Along this line of thought, the global regulator CsrA was recently shown to facilitate the access of an sRNA to its target mRNA and may represent an additional factor involved in sRNA function. Ribonucleases (RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III, and PNPase appear to be the main players not only in sRNA turnover but also in sRNA processing. Here we review the current knowledge on the most important bacterial RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
Collapse
Affiliation(s)
- Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
221
|
Azam MS, Vanderpool CK. Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol 2020; 114:391-408. [PMID: 32291821 DOI: 10.1111/mmi.14514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.
Collapse
Affiliation(s)
- Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
222
|
Suelter CS, Hanson ND. OmpC regulation differs between ST131 and non-ST131 Escherichia coli clinical isolates and involves differential expression of the small RNA MicC. J Antimicrob Chemother 2020; 75:1151-1158. [PMID: 31998951 PMCID: PMC7177473 DOI: 10.1093/jac/dkz566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Virulence genes and the expression of resistance mechanisms undoubtedly play a role in the successful spread of the pandemic clone Escherichia coli ST131. Porin down-regulation is a chromosomal mechanism associated with antibiotic resistance. Translation of porin proteins can be impacted by modifications in mRNA half-life and the interaction among small RNAs (sRNAs), the porin transcript and the sRNA chaperone Hfq. Modifications in the translatability of porin proteins could impact the fitness and therefore the success of E. coli ST131 isolates in the presence of antibiotic. OBJECTIVES To identify differences in the translatability of OmpC and OmpF porins for different STs of E. coli by comparing steady-state RNA levels, mRNA half-life, regulatory sRNA expression and protein production. METHODS RNA expression was evaluated using real-time RT-PCR and OmpC mRNA half-life by northern blotting. OmpC, OmpF and Hfq protein levels were evaluated by immunoblotting. RESULTS Differences between ST131 and non-ST131 isolates included: (i) the level of OmpC RNA and protein produced with mRNA expression higher for ST131 but OmpC protein levels lower compared with non-ST131 isolates; (ii) OmpC mRNA half-life (21-30 min for ST131 isolates compared with <2-23 min for non-ST131 isolates); and (iii) levels of the sRNA MicC (2- to 120-fold for ST131 isolates compared with -4- to 70-fold for non-ST131 isolates). CONCLUSIONS Mechanisms involved in the translatability of porin proteins differed among different STs of E. coli. These differences could provide a selective advantage to ST131 E. coli when confronted with an antibiotic-rich environment.
Collapse
Affiliation(s)
- Corey S Suelter
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA.,Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, Omaha, NE, USA
| | - Nancy D Hanson
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA.,Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
223
|
Iosub IA, van Nues RW, McKellar SW, Nieken KJ, Marchioretto M, Sy B, Tree JJ, Viero G, Granneman S. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation. eLife 2020; 9:54655. [PMID: 32356726 PMCID: PMC7213987 DOI: 10.7554/elife.54655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
By shaping gene expression profiles, small RNAs (sRNAs) enable bacteria to efficiently adapt to changes in their environment. To better understand how Escherichia coli acclimatizes to nutrient availability, we performed UV cross-linking, ligation and sequencing of hybrids (CLASH) to uncover Hfq-associated RNA-RNA interactions at specific growth stages. We demonstrate that Hfq CLASH robustly captures bona fide RNA-RNA interactions. We identified hundreds of novel sRNA base-pairing interactions, including many sRNA-sRNA interactions and involving 3’UTR-derived sRNAs. We rediscovered known and identified novel sRNA seed sequences. The sRNA-mRNA interactions identified by CLASH have strong base-pairing potential and are highly enriched for complementary sequence motifs, even those supported by only a few reads. Yet, steady state levels of most mRNA targets were not significantly affected upon over-expression of the sRNA regulator. Our results reinforce the idea that the reproducibility of the interaction, not base-pairing potential, is a stronger predictor for a regulatory outcome.
Collapse
Affiliation(s)
- Ira Alexandra Iosub
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Stuart William McKellar
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Jule Nieken
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jai Justin Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
224
|
Widespread targeting of nascent transcripts by RsmA in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2020; 117:10520-10529. [PMID: 32332166 DOI: 10.1073/pnas.1917587117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.
Collapse
|
225
|
Bossi L, Figueroa-Bossi N, Bouloc P, Boudvillain M. Regulatory interplay between small RNAs and transcription termination factor Rho. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194546. [PMID: 32217107 DOI: 10.1016/j.bbagrm.2020.194546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
The largest and best studied group of regulatory small RNAs (sRNAs) in bacteria act by modulating translation or turnover of messenger RNAs (mRNAs) through base-pairing interactions that typically take place near the 5' end of the mRNA. This allows the sRNA to bind the complementary target sequence while the remainder of the mRNA is still being made, creating conditions whereby the action of the sRNA can extend to transcriptional steps, most notably transcription termination. Increasing evidence corroborates the existence of a functional interplay between sRNAs and termination factor Rho. Two general mechanisms have emerged. One mechanism operates in translated regions subjected to sRNA repression. By inhibiting ribosome binding co-transcriptionally, the sRNA uncouples translation from transcription, allowing Rho to bind the nascent RNA and promote termination. In the second mechanism, which functions in 5' untranslated regions, the sRNA antagonizes termination directly by interfering with Rho binding to the RNA or the subsequent translocation along the RNA. Here, we review the above literature in the context of other mechanisms that underlie the participation of Rho-dependent transcription termination in gene regulation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| |
Collapse
|
226
|
New sequencing methodologies reveal interplay between multiple RNA-binding proteins and their RNAs. Curr Genet 2020; 66:713-717. [PMID: 32193580 DOI: 10.1007/s00294-020-01066-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023]
Abstract
It is now established that base-pairing regulatory RNAs are key players in post-transcriptional regulatory networks where they affect the translation and/or stability of their target RNAs. In many cases, the base-pairing between two RNAs is facilitated by an RNA-binding protein (RBP) that serves as an RNA chaperone. Recent advances in sequencing methods have revealed the RNA populations bound by the RBPs, yielding insights valuable into regulatory networks. Further analyses of these networks can improve our understanding of the roles played by RBPs in the regulation of gene expression by regulatory RNAs, especially when multiple RBPs are involved. For example, using an RNA sequencing-based methodology that captures RNA-RNA pairs on RBP, an interplay between two RBPs in bacteria that compete on the same RNA-RNA pair was revealed. In this case, one protein promotes negative regulation of the target RNA, while the second protein can block this regulation. In this mini-review, I outline the exciting future directions that can be taken to deepen our understanding of the roles played by RBPs in post-transcriptional regulation, and discuss how the different sequencing methods can assist in deciphering the relationships among RBPs, and between the RBPs and the RNAs they bind. Having a more detailed picture of the RBPs-RNAs network will elucidate how bacteria can have nuanced control of gene expression, critical for survival in the varied environments in which bacteria live.
Collapse
|
227
|
Abstract
Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq's function is to stabilize sRNAs and to facilitate base-pairing with trans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogen Vibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq in V. cholerae are currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs in V. cholerae Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3' end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of the fabB 3'UTR, and, together with Hfq, inhibits the expression of two paralogous fadE mRNAs. The fabB and fadE genes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation in V. cholerae Our results provide the molecular basis for studies on Hfq in V. cholerae and highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.
Collapse
|
228
|
Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms 2020; 8:microorganisms8030384. [PMID: 32164262 PMCID: PMC7143759 DOI: 10.3390/microorganisms8030384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts.
Collapse
|
229
|
Romilly C, Hoekzema M, Holmqvist E, Wagner EGH. Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM. RNA Biol 2020; 17:872-880. [PMID: 32133913 PMCID: PMC7549644 DOI: 10.1080/15476286.2020.1733801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacteria can move by a variety of mechanisms, the best understood being flagella-mediated motility. Flagellar genes are organized in a three-tiered cascade allowing for temporally regulated expression that involves both transcriptional and post-transcriptional control. The class I operon encodes the master regulator FlhDC that drives class II gene transcription. Class II genes include fliA and flgM, which encode the Sigma factor σ28, required for class III transcription, and the anti-Sigma factor FlgM, which inhibits σ28 activity, respectively. The flhDC mRNA is regulated by several small regulatory RNAs (sRNAs). Two of these, the sequence-related OmrA and OmrB RNAs, inhibit FlhD synthesis. Here, we report on a second layer of sRNA-mediated control downstream of FhlDC in the flagella pathway. By mutational analysis, we confirm that a predicted interaction between the conserved 5ʹ seed sequences of OmrA/B and the early coding sequence in flgM mRNA reduces FlgM expression. Regulation is dependent on the global RNA-binding protein Hfq. In vitro experiments support a canonical mechanism: binding of OmrA/B prevents ribosome loading and decreases FlgM protein synthesis. Simultaneous inhibition of both FlhD and FlgM synthesis by OmrA/B complicated an assessment of how regulation of FlgM alone impacts class III gene transcription. Using a combinatorial mutation strategy, we were able to uncouple these two targets and demonstrate that OmrA/B-dependent inhibition of FlgM synthesis liberates σ28 to ultimately promote higher expression of the class III flagellin gene fliC.
Collapse
Affiliation(s)
- Cédric Romilly
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - Mirthe Hoekzema
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| |
Collapse
|
230
|
Liu W, Boudry P, Bohn C, Bouloc P. Staphylococcus aureus pigmentation is not controlled by Hfq. BMC Res Notes 2020; 13:63. [PMID: 32033621 PMCID: PMC7007678 DOI: 10.1186/s13104-020-4934-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
Objective The golden color of Staphylococcus aureus is due to the synthesis of carotenoid pigments. In Gram-negative bacteria, Hfq is a global posttranscriptional regulator, but its function in S. aureus remains obscure. The absence of Hfq in S. aureus was reported to correlate with production of carotenoid pigment leading to the conclusion that Hfq was a negative regulator of the yellow color. However, we reported the construction of hfq mutants in several S. aureus strains and never noticed any color change; we therefore revisited the question of Hfq implication in S. aureus pigmentation. Results The absence or accumulation of Hfq does not affect S. aureus pigmentation.
Collapse
Affiliation(s)
- Wenfeng Liu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pierre Boudry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Chantal Bohn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
231
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
232
|
Abstract
In light of the rising prevalence of antimicrobial resistance (AMR) and the slow pace of new antimicrobial development, there has been increasing interest in the development of adjuvants that improve or restore the effectiveness of existing drugs. Here, we use a novel small RNA (sRNA) screening approach to identify genes whose knockdown increases ciprofloxacin (CIP) sensitivity in a resistant strain of Escherichia coli 5000 sRNA constructs were initially screened on a gyrA S83L background, ultimately leading to 30 validated genes whose disruption reduces CIP resistance. This set includes genes involved in DNA replication, repair, recombination, efflux, and other regulatory systems. Our findings increase understanding of the functional interactions of DNA Gyrase, and may aid in the development of new therapeutic approaches for combating AMR.
Collapse
|
233
|
Biochemical Methods for the Study of the FinO Family of Bacterial RNA Chaperones. Methods Mol Biol 2020. [PMID: 31889248 DOI: 10.1007/978-1-0716-0231-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The FinO family of proteins constitutes a group of RNA chaperones that interacts with small RNAs (sRNAs) to regulate gene expression in many bacterial species. Here we describe detailed protocols for the biochemical analysis of the RNA chaperone activity of these proteins. Methods are described for preparation of RNA, RNA 5' end labeling with radioisotope and modified EMSA protocols to test the ability of these proteins to catalyze RNA strand exchange and RNA duplex formation.
Collapse
|
234
|
Hfq modulates global protein pattern and stress response in Bordetella pertussis. J Proteomics 2020; 211:103559. [DOI: 10.1016/j.jprot.2019.103559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
|
235
|
Parekh VJ, Niccum BA, Shah R, Rivera MA, Novak MJ, Geinguenaud F, Wien F, Arluison V, Sinden RR. Role of Hfq in Genome Evolution: Instability of G-Quadruplex Sequences in E. coli. Microorganisms 2019; 8:microorganisms8010028. [PMID: 31877879 PMCID: PMC7023247 DOI: 10.3390/microorganisms8010028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
Certain G-rich DNA repeats can form quadruplex in bacterial chromatin that can present blocks to DNA replication and, if not properly resolved, may lead to mutations. To understand the participation of quadruplex DNA in genomic instability in Escherichia coli (E. coli), mutation rates were measured for quadruplex-forming DNA repeats, including (G3T)4, (G3T)8, and a RET oncogene sequence, cloned as the template or nontemplate strand. We evidence that these alternative structures strongly influence mutagenesis rates. Precisely, our results suggest that G-quadruplexes form in E. coli cells, especially during transcription when the G-rich strand can be displaced by R-loop formation. Structure formation may then facilitate replication misalignment, presumably associated with replication fork blockage, promoting genomic instability. Furthermore, our results also evidence that the nucleoid-associated protein Hfq is involved in the genetic instability associated with these sequences. Hfq binds and stabilizes G-quadruplex structure in vitro and likely in cells. Collectively, our results thus implicate quadruplexes structures and Hfq nucleoid protein in the potential for genetic change that may drive evolution or alterations of bacterial gene expression.
Collapse
Affiliation(s)
- Virali J. Parekh
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Brittany A. Niccum
- Department of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, USA;
| | - Rachna Shah
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA; (R.S.); (M.A.R.)
| | - Marisa A. Rivera
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA; (R.S.); (M.A.R.)
| | - Mark J. Novak
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology; Rapid City, SD 57701, USA;
| | - Frederic Geinguenaud
- Plateforme CNanoMat & Inserm U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France;
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université de Paris, UFR Sciences du vivant, 35 rue Hélène Brion, 75205 Paris cedex, France
- Correspondence: (V.A.); (R.R.S.); Tel.: +1-605-394-1678 (R.R.S.)
| | - Richard R. Sinden
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
- Correspondence: (V.A.); (R.R.S.); Tel.: +1-605-394-1678 (R.R.S.)
| |
Collapse
|
236
|
Vibrio cholerae YaeO is a Structural Homologue of RNA Chaperone Hfq that Inhibits Rho-dependent Transcription Termination by Dissociating its Hexameric State. J Mol Biol 2019; 431:4749-4766. [PMID: 31628950 DOI: 10.1016/j.jmb.2019.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022]
Abstract
Rho-dependent transcription termination is a well-conserved process in bacteria. The Psu and YaeO proteins are the two established inhibitors of the ATP-dependent RNA helicase Rho protein of Escherichia coli. Here, we show a detailed sequence and phylogenetic analysis demonstrating that Vibrio cholerae YaeO (VcYaeO) is significantly distinct from its E. coli counterpart. VcYaeO induces significant growth defect on in vivo expression and inhibits in vitro functions of the V. cholerae Rho on directly binding to the latter. Through various biophysical techniques, we showed that interaction of VcYaeO disrupts the oligomeric state of the VcRho. Structure of VcYaeO solved at 1.75 Å resolution, the first crystal structure of a YaeO protein, demonstrates a beta-sandwich fold distinct from the NMR structure of the EcYaeO. Interestingly, VcYaeO structurally resembles the Hfq protein, and like the latter, it exhibits ssDNA/RNA-binding properties. Docking studies demonstrate probable interactions of VcYaeO with VcRho and mode of inhibition of RNA binding to Rho. We propose that VcYaeO inhibits the function of the Rho protein via disruption of the latter's hexameric assembly and also likely by sequestering the RNA from the Rho primarybinding sites.
Collapse
|
237
|
Cameron TA, Matz LM, Sinha D, De Lay NR. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments. Nucleic Acids Res 2019; 47:8821-8837. [PMID: 31329973 PMCID: PMC7145675 DOI: 10.1093/nar/gkz616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In many Gram-negative and some Gram-positive bacteria, small regulatory RNAs (sRNAs) that bind the RNA chaperone Hfq have a pivotal role in modulating virulence, stress responses, metabolism and biofilm formation. These sRNAs recognize transcripts through base-pairing, and sRNA–mRNA annealing consequently alters the translation and/or stability of transcripts leading to changes in gene expression. We have previously found that the highly conserved 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) has an indispensable role in paradoxically stabilizing Hfq-bound sRNAs and promoting their function in gene regulation in Escherichia coli. Here, we report that PNPase contributes to the degradation of specific short mRNA fragments, the majority of which bind Hfq and are derived from targets of sRNAs. Specifically, we found that these mRNA-derived fragments accumulate in the absence of PNPase or its exoribonuclease activity and interact with PNPase. Additionally, we show that mutations in hfq or in the seed pairing region of some sRNAs eliminated the requirement of PNPase for their stability. Altogether, our results are consistent with a model that PNPase degrades mRNA-derived fragments that could otherwise deplete cells of Hfq-binding sRNAs through pairing-mediated decay.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
238
|
Wien F, Martinez D, Le Brun E, Jones NC, Vrønning Hoffmann S, Waeytens J, Berbon M, Habenstein B, Arluison V. The Bacterial Amyloid-Like Hfq Promotes In Vitro DNA Alignment. Microorganisms 2019; 7:microorganisms7120639. [PMID: 31816864 PMCID: PMC6956100 DOI: 10.3390/microorganisms7120639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The Hfq protein is reported to be involved in environmental adaptation and virulence of several bacteria. In Gram-negative bacteria, Hfq mediates the interaction between regulatory noncoding RNAs and their target mRNAs. Besides these RNA-related functions, Hfq is also associated with DNA and is a part of the bacterial chromatin. Its precise role in DNA structuration is, however, unclear and whether Hfq plays a direct role in DNA-related processes such as replication or recombination is controversial. In previous works, we showed that Escherichia coli Hfq, or more precisely its amyloid-like C-terminal region (CTR), induces DNA compaction into a condensed form. In this paper, we evidence a new property for Hfq; precisely we show that its CTR influences double helix structure and base tilting, resulting in a strong local alignment of nucleoprotein Hfq:DNA fibers. The significance of this alignment is discussed in terms of chromatin structuration and possible functional consequences on evolutionary processes and adaptation to environment.
Collapse
Affiliation(s)
- Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, B1050 Bruxelles, Belgique;
- Laboratoire de Chimie Physique d’Orsay, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay 91400 Orsay, France
| | - Melanie Berbon
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Université de Paris, UFR Sciences du vivant, 35 rue Hélène Brion, 75205 Paris cedex, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| |
Collapse
|
239
|
Schachterle JK, Onsay DM, Sundin GW. Small RNA ArcZ Regulates Oxidative Stress Response Genes and Regulons in Erwinia amylovora. Front Microbiol 2019; 10:2775. [PMID: 31849909 PMCID: PMC6895013 DOI: 10.3389/fmicb.2019.02775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Erwinia amylovora, causative agent of fire blight disease of apple and pear trees, has evolved to use small RNAs for post-transcriptional regulation of virulence traits important for disease development. The sRNA ArcZ regulates several virulence traits, and to better understand its roles, we conducted a transcriptomic comparison of wild-type and ΔarcZ mutant E. amylovora. We found that ArcZ regulates multiple cellular processes including genes encoding enzymes involved in mitigating the threat of reactive oxygen species (katA, tpx, osmC), and that the ΔarcZ mutant has reduced catalase activity and is more susceptible to exogenous hydrogen peroxide. We quantified hydrogen peroxide production by apple leaves inoculated with E. amylovora and found that the while wild-type E. amylovora cells produce enough catalase to cope with defense peroxide, the ΔarcZ mutant is likely limited in virulence because of inability to cope with peroxide levels in host leaves. We further found that the ArcZ regulon overlaps significantly with the regulons of transcription factors involved in oxidative sensing including Fnr and ArcA. In addition, we show that ArcZ regulates arcA at the post-transcriptional level suggesting a role for this system in mediating adaptations to oxidative state, especially during disease development.
Collapse
Affiliation(s)
- Jeffrey K Schachterle
- Genetics Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Daphne M Onsay
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - George W Sundin
- Genetics Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
240
|
Morikawa K, Ushijima Y, Ohniwa RL, Miyakoshi M, Takeyasu K. What Happens in the Staphylococcal Nucleoid under Oxidative Stress? Microorganisms 2019; 7:microorganisms7120631. [PMID: 31795457 PMCID: PMC6956076 DOI: 10.3390/microorganisms7120631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
The evolutionary success of Staphylococcus aureus as an opportunistic human pathogen is largely attributed to its prominent abilities to cope with a variety of stresses and host bactericidal factors. Reactive oxygen species are important weapons in the host arsenal that inactivate phagocytosed pathogens, but S. aureus can survive in phagosomes and escape from phagocytic cells to establish infections. Molecular genetic analyses combined with atomic force microscopy have revealed that the MrgA protein (part of the Dps family of proteins) is induced specifically in response to oxidative stress and converts the nucleoid from the fibrous to the clogged state. This review collates a series of evidences on the staphylococcal nucleoid dynamics under oxidative stress, which is functionally and physically distinct from compacted Escherichia coli nucleoid under stationary phase. In addition, potential new roles of nucleoid clogging in the staphylococcal life cycle will be proposed.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Masatoshi Miyakoshi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| |
Collapse
|
241
|
Mai J, Rao C, Watt J, Sun X, Lin C, Zhang L, Liu J. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones. Nucleic Acids Res 2019; 47:4292-4307. [PMID: 30820540 PMCID: PMC6486639 DOI: 10.1093/nar/gkz149] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are the most abundant class of post-transcriptional regulators and have been well studied in Gram-negative bacteria. Little is known about the functions and mechanisms of sRNAs in high GC Gram-positive bacteria including Mycobacterium and Streptomyces. Here, we performed an in-depth study of 6C sRNA of Mycobacterium tuberculosis, which is conserved among high GC Gram-positive bacteria. Forty-seven genes were identified as possible direct targets of 6C sRNA and 15 of them were validated using an in vivo translational lacZ fusion system. We found that 6C sRNA plays a pleotropic role and regulates genes involved in various cellular processes, including DNA replication and protein secretion. Mapping the interactions of 6C sRNA with mRNA targets panD and dnaB revealed that the C-rich loops of 6C sRNA act as direct binding sites to mRNA targets. Unlike in Gram-negative bacteria where RNA binding proteins Hfq and ProQ are required, the interactions of 6C sRNA with mRNAs appear to be independent of RNA chaperones. Our findings suggest that the multiple G–C pairings between single stranded regions are sufficient to establish stable interactions between 6C sRNA and mRNA targets, providing a mechanism for sRNAs in high GC Gram-positive bacteria.
Collapse
Affiliation(s)
- Juntao Mai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xian Sun
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
242
|
Pagliuso A, Tham TN, Allemand E, Robertin S, Dupuy B, Bertrand Q, Bécavin C, Koutero M, Najburg V, Nahori MA, Tangy F, Stavru F, Bessonov S, Dessen A, Muchardt C, Lebreton A, Komarova AV, Cossart P. An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host Microbe 2019; 26:823-835.e11. [PMID: 31761719 PMCID: PMC6907008 DOI: 10.1016/j.chom.2019.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023]
Abstract
RNA-binding proteins (RBPs) perform key cellular activities by controlling the function of bound RNAs. The widely held assumption that RBPs are strictly intracellular has been challenged by the discovery of secreted RBPs. However, extracellular RBPs have been described in eukaryotes, while secreted bacterial RBPs have not been reported. Here, we show that the bacterial pathogen Listeria monocytogenes secretes a small RBP that we named Zea. We show that Zea binds a subset of L. monocytogenes RNAs, causing their accumulation in the extracellular medium. Furthermore, during L. monocytogenes infection, Zea binds RIG-I, the non-self-RNA innate immunity sensor, potentiating interferon-β production. Mouse infection studies reveal that Zea affects L. monocytogenes virulence. Together, our results unveil that bacterial RNAs can be present extracellularly in association with RBPs, acting as “social RNAs” to trigger a host response during infection. L. monocytogenes secretes an RNA-binding protein, Zea Zea binds and protects L. monocytogenes RNA, resulting in extracellular RNA accumulation During infection, Zea binds RIG-I and modulates RIG-I-dependent IFN response Zea plays a role in L. monocytogenes virulence in mice
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France.
| | - To Nam Tham
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Eric Allemand
- Unité de régulation épigénétique, Institut Pasteur, UMR3738 CNRS, Paris, France
| | - Stevens Robertin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, Université de Paris, Paris, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Christophe Bécavin
- Hub de bioinformatique et biostatistique - Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Unité mixte de Service et Recherche 3756 Institut Pasteur - Centre National de la Recherche Scientifique, Paris 75015, France
| | - Mikael Koutero
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Sergey Bessonov
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Andréa Dessen
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France; Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, SP, Brazil
| | - Christian Muchardt
- Unité de régulation épigénétique, Institut Pasteur, UMR3738 CNRS, Paris, France
| | - Alice Lebreton
- Équipe Infection et Devenir de l'ARN, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, PSL Université Paris, Paris 75005, France; INRA, IBENS, 75005 Paris, France
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France.
| |
Collapse
|
243
|
Bressin A, Schulte-Sasse R, Figini D, Urdaneta EC, Beckmann BM, Marsico A. TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs. Nucleic Acids Res 2019; 47:4406-4417. [PMID: 30923827 PMCID: PMC6511874 DOI: 10.1093/nar/gkz203] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, hundreds of novel RNA-binding proteins (RBPs) have been identified, leading to the discovery of novel RNA-binding domains. Furthermore, unstructured or disordered low-complexity regions of RBPs have been identified to play an important role in interactions with nucleic acids. However, these advances in understanding RBPs are limited mainly to eukaryotic species and we only have limited tools to faithfully predict RNA-binders in bacteria. Here, we describe a support vector machine-based method, called TriPepSVM, for the prediction of RNA-binding proteins. TriPepSVM applies string kernels to directly handle protein sequences using tri-peptide frequencies. Testing the method in human and bacteria, we find that several RBP-enriched tri-peptides occur more often in structurally disordered regions of RBPs. TriPepSVM outperforms existing applications, which consider classical structural features of RNA-binding or homology, in the task of RBP prediction in both human and bacteria. Finally, we predict 66 novel RBPs in Salmonella Typhimurium and validate the bacterial proteins ClpX, DnaJ and UbiG to associate with RNA in vivo.
Collapse
Affiliation(s)
- Annkatrin Bressin
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Roman Schulte-Sasse
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Davide Figini
- IRI Life Sciences, Humboldt University Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Erika C Urdaneta
- IRI Life Sciences, Humboldt University Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Benedikt M Beckmann
- IRI Life Sciences, Humboldt University Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.,Free University of Berlin, Takustrasse 9, 14195 Berlin, Germany.,Institute of Computational Biology (ICB), Helmholtz Zentrum Munich, Ingolstaedter Landstr. 1 85764 Neuherberg, Germany
| |
Collapse
|
244
|
Multidrug Resistance Regulators MarA, SoxS, Rob, and RamA Repress Flagellar Gene Expression and Motility in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00385-19. [PMID: 31501286 DOI: 10.1128/jb.00385-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via these transcription factors occurred through direct interactions with the flhDC promoter, particularly for MarA and Rob. Additionally, SoxS repressed flagellar gene expression via a posttranscriptional pathway, reducing flhDC translation. The roles of these transcription factors in reducing motility in the presence of salicylic acid were also elucidated, adding a genetic regulatory element to the response of S Typhimurium to this well-characterized chemorepellent. Integration of flagellar gene expression into the mar-sox-rob regulon in S Typhimurium contrasts with findings for closely related species such as Escherichia coli, providing an example of plasticity in the mar-sox-rob regulon throughout the Enterobacteriaceae family.IMPORTANCE The mar-sox-rob regulon is a large and highly conserved stress response network in the Enterobacteriaceae family. Although it is well characterized in E. coli, the extent of this regulon in related species is unclear. Here, the control of costly flagellar gene expression is connected to the mar-sox-rob regulon of S Typhimurium, contrasting with the E. coli regulon model. These findings demonstrate the flexibility of the mar-sox-rob regulon to accommodate novel regulatory targets, and they provide evidence for its broader regulatory role within this family of diverse bacteria.
Collapse
|
245
|
Reprogramming bacteria with RNA regulators. Biochem Soc Trans 2019; 47:1279-1289. [DOI: 10.1042/bst20190173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Abstract
The revolution of genomics and growth of systems biology urged the creation of synthetic biology, an engineering discipline aiming at recreating and reprogramming cellular functions for industrial needs. There has been a huge effort in synthetic biology to develop versatile and programmable genetic regulators that would enable the precise control of gene expression. Synthetic RNA components have emerged as a solution, offering a diverse range of programmable functions, including signal sensing, gene regulation and the modulation of molecular interactions. Owing to their compactness, structure and way of action, several types of RNA devices that act on DNA, RNA and protein have been characterized and applied in synthetic biology. RNA-based approaches are more ‘economical' for the cell, since they are generally not translated. These RNA-based strategies act on a much shorter time scale than transcription-based ones and can be more efficient than protein-based mechanisms. In this review, we explore these RNA components as building blocks in the RNA synthetic biology field, first by explaining their natural mode of action and secondly discussing how these RNA components have been exploited to rewire bacterial regulatory circuitry.
Collapse
|
246
|
Snyder DT, Panczyk E, Stiving AQ, Gilbert JD, Somogyi A, Kaplan D, Wysocki V. Design and Performance of a Second-Generation Surface-Induced Dissociation Cell for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Native Protein Complexes. Anal Chem 2019; 91:14049-14057. [PMID: 31584811 DOI: 10.1021/acs.analchem.9b03746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (m/z 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer. It also approximately doubles the useful mass range (from m/z 8000 to m/z 15 000) using a rectilinear ion trap with a smaller inscribed radius or triples it (to m/z 22 000) using a hexapole collision cell and yields a 3-10× increase in SID sensitivity. We demonstrate the increased mass range and sensitivity on a variety of model molecules spanning nearly 3 orders of magnitude in absolute mass and present examples where the high resolution of the FT-ICR is advantageous for deconvoluting overlapping SID fragments.
Collapse
Affiliation(s)
| | | | | | | | | | - Desmond Kaplan
- KapScience LLC , Tewksbury , Massachusetts 01876 , United States
| | | |
Collapse
|
247
|
Hill IT, Tallo T, Dorman MJ, Dove SL. Loss of RNA Chaperone Hfq Unveils a Toxic Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:e00232-19. [PMID: 31358608 PMCID: PMC6755729 DOI: 10.1128/jb.00232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hfq is an RNA chaperone that serves as a master regulator of bacterial physiology. Here we show that in the opportunistic pathogen Pseudomonas aeruginosa, the loss of Hfq can result in a dramatic reduction in growth in a manner that is dependent upon MexT, a transcription regulator that governs antibiotic resistance in this organism. Using a combination of chromatin immunoprecipitation with high-throughput sequencing and transposon insertion sequencing, we identify the MexT-activated genes responsible for mediating the growth defect of hfq mutant cells. These include a newly identified MexT-controlled gene that we call hilR We demonstrate that hilR encodes a small protein that is acutely toxic to wild-type cells when produced ectopically. Furthermore, we show that hilR expression is negatively regulated by Hfq, offering a possible explanation for the growth defect of hfq mutant cells. Finally, we present evidence that the expression of MexT-activated genes is dependent upon GshA, an enzyme involved in the synthesis of glutathione. Our findings suggest that Hfq can influence the growth of P. aeruginosa by limiting the toxic effects of specific MexT-regulated genes. Moreover, our results identify glutathione to be a factor important for the in vivo activity of MexT.IMPORTANCE Here we show that the conserved RNA chaperone Hfq is important for the growth of the opportunistic pathogen Pseudomonas aeruginosa We found that the growth defect of hfq mutant cells is dependent upon the expression of genes that are under the control of the transcription regulator MexT. These include a gene that we refer to as hilR, which we show is negatively regulated by Hfq and encodes a small protein that can be toxic when ectopically produced in wild-type cells. Thus, Hfq can influence the growth of P. aeruginosa by limiting the toxic effects of MexT-regulated genes, including one encoding a previously unrecognized small protein. We also show that MexT activity depends on an enzyme that synthesizes glutathione.
Collapse
Affiliation(s)
- Ian T Hill
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Tallo
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Dorman
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
248
|
Identification of protein-protein and ribonucleoprotein complexes containing Hfq. Sci Rep 2019; 9:14054. [PMID: 31575967 PMCID: PMC6773851 DOI: 10.1038/s41598-019-50562-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/06/2019] [Indexed: 11/08/2022] Open
Abstract
Hfq is a RNA-binding protein that plays a pivotal role in the control of gene expression in bacteria by stabilizing sRNAs and facilitating their pairing with multiple target mRNAs. It has already been shown that Hfq, directly or indirectly, interacts with many proteins: RNase E, Rho, poly(A)polymerase, RNA polymerase… In order to detect more Hfq-related protein-protein interactions we have used two approaches, TAP-tag combined with RNase A treatment to access the role of RNA in these complexes, and protein-protein crosslinking, which freezes protein-protein complexes formed in vivo. In addition, we have performed microscale thermophoresis to evaluate the role of RNA in some of the complexes detected and used far-western blotting to confirm some protein-protein interactions. Taken together, the results show unambiguously a direct interaction between Hfq and EF-Tu. However a very large number of the interactions of proteins with Hfq in E. coli involve RNAs. These RNAs together with the interacting protein, may play an active role in the formation of Hfq-containing complexes with previously unforeseen implications for the riboregulatory functions of Hfq.
Collapse
|
249
|
Lei L, Yang Y, Yang Y, Wu S, Ma X, Mao M, Hu T. Mechanisms by Which Small RNAs Affect Bacterial Activity. J Dent Res 2019; 98:1315-1323. [PMID: 31547763 DOI: 10.1177/0022034519876898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oral cavity contains a distinct habitat that supports diverse bacterial flora. Recent observations have provided additional evidence that sRNAs are key regulators of bacterial physiology and pathogenesis. These sRNAs have been divided into 5 functional groups: cis-encoded RNAs, trans-encoded RNAs, RNA regulators of protein activity, bacterial CRISPR (clustered regularly interspaced short palindromic repeat) RNAs, and a novel category of miRNA-size small RNAs (msRNAs). In this review, we discuss a critical group of key commensal and opportunistic oral pathogens. In general, supragingival bacterial sRNAs function synergistically to fine-tune the regulation of cellular processes and stress responses in adaptation to environmental changes. Particularly in the cariogenic bacteria Streptococcus mutans, both the antisense vicR RNA and msRNA1657 can impede the metabolism of bacterial exopolysaccharides, prevent biofilm formation, and suppress its cariogenicity. In Enterococcus faecalis, selected sRNAs control the expression of proteins involved in diverse cellular processes and stress responses. In subgingival plaques, sRNAs from periodontal pathogens can function as novel bacterial signaling molecules that mediate bacterial-human interactions in periodontal homeostasis. In Porphyromonas gingivalis, the expression profiles of putative sRNA101 and sRNA42 were found to respond to hemin availability after hemin starvation. Regarding Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), a major periodontal pathogen associated with aggressive periodontitis, the predicted sRNAs interact with several virulence genes, including those encoding leukotoxin and cytolethal distending toxin. Furthermore, in clinical isolates, these associated RNAs could be explored not only as potential biomarkers for oral disease monitoring but also as alternative types of regulators for drug design. Thus, this emerging subspecialty of bacterial regulatory RNAs could reshape our understanding of bacterial gene regulation from their key roles of endogenous regulatory RNAs to their activities in pathologic processes.
Collapse
Affiliation(s)
- L Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Y Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S Wu
- West China Hospital, Sichuan University, Chengdu, China
| | - X Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - M Mao
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - T Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
250
|
Shin GY, Schachterle JK, Shyntum DY, Moleleki LN, Coutinho TA, Sundin GW. Functional Characterization of a Global Virulence Regulator Hfq and Identification of Hfq-Dependent sRNAs in the Plant Pathogen Pantoea ananatis. Front Microbiol 2019; 10:2075. [PMID: 31572315 PMCID: PMC6749038 DOI: 10.3389/fmicb.2019.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
To successfully infect plant hosts, the collective regulation of virulence factors in a bacterial pathogen is crucial. Hfq is an RNA chaperone protein that facilitates the small RNA (sRNA) regulation of global gene expression at the post-transcriptional level. In this study, the functional role of Hfq in a broad host range phytopathogen Pantoea ananatis was determined. Inactivation of the hfq gene in P. ananatis LMG 2665T resulted in the loss of pathogenicity and motility. In addition, there was a significant reduction of quorum sensing signal molecule acyl-homoserine lactone (AHL) production and biofilm formation. Differential sRNA expression analysis between the hfq mutant and wild-type strains of P. ananatis revealed 276 sRNAs affected in their abundance by the loss of hfq at low (OD600 = 0.2) and high cell (OD600 = 0.6) densities. Further analysis identified 25 Hfq-dependent sRNAs, all showing a predicted Rho-independent terminator of transcription and mapping within intergenic regions of the P. ananatis genome. These included known sRNAs such as ArcZ, FnrS, GlmZ, RprA, RyeB, RyhB, RyhB2, Spot42, and SsrA, and 16 novel P. ananatis sRNAs. The current study demonstrated that Hfq is an important component of the collective regulation of virulence factors and sets a foundation for understanding Hfq-sRNA mediated regulation in the phytopathogen P. ananatis.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Divine Y Shyntum
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lucy N Moleleki
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| |
Collapse
|