201
|
Imachi H, Tasumi E, Takaki Y, Hoshino T, Schubotz F, Gan S, Tu TH, Saito Y, Yamanaka Y, Ijiri A, Matsui Y, Miyazaki M, Morono Y, Takai K, Hinrichs KU, Inagaki F. Cultivable microbial community in 2-km-deep, 20-million-year-old subseafloor coalbeds through ~1000 days anaerobic bioreactor cultivation. Sci Rep 2019; 9:2305. [PMID: 30783143 PMCID: PMC6381156 DOI: 10.1038/s41598-019-38754-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022] Open
Abstract
Recent explorations of scientific ocean drilling have revealed the presence of microbial communities persisting in sediments down to ~2.5 km below the ocean floor. However, our knowledge of these microbial populations in the deep subseafloor sedimentary biosphere remains limited. Here, we present a cultivation experiment of 2-km-deep subseafloor microbial communities in 20-million-year-old lignite coalbeds using a continuous-flow bioreactor operating at 40 °C for 1029 days with lignite particles as the major energy source. Chemical monitoring of effluent samples via fluorescence emission-excitation matrices spectroscopy and stable isotope analyses traced the transformation of coalbed-derived organic matter in the dissolved phase. Hereby, the production of acetate and 13C-depleted methane together with the increase and transformation of high molecular weight humics point to an active lignite-degrading methanogenic community present within the bioreactor. Electron microscopy revealed abundant microbial cells growing on the surface of lignite particles. Small subunit rRNA gene sequence analysis revealed that diverse microorganisms grew in the bioreactor (e.g., phyla Proteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Bacteroidetes, Spirochaetes, Tenericutes, Ignavibacteriae, and SBR1093). These results indicate that activation and adaptive growth of 2-km-deep microbes was successfully accomplished using a continuous-flow bioreactor, which lays the groundwork to explore networks of microbial communities of the deep biosphere and their physiologies.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tatsuhiko Hoshino
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Kochi, 783-8502, Japan
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
| | - Shuchai Gan
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
| | - Tzu-Hsuan Tu
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Institute of Oceanography, National Taiwan University, Taipei, 106, Taiwan
| | - Yumi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Akira Ijiri
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yohei Matsui
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yuki Morono
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Kochi, 783-8502, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
| | - Fumio Inagaki
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Kochi, 783-8502, Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, Kanagawa, 236-0001, Japan
| |
Collapse
|
202
|
Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ. Engineering microbial consortia by division of labor. Microb Cell Fact 2019; 18:35. [PMID: 30736778 PMCID: PMC6368712 DOI: 10.1186/s12934-019-1083-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
During microbial applications, metabolic burdens can lead to a significant drop in cell performance. Novel synthetic biology tools or multi-step bioprocessing (e.g., fermentation followed by chemical conversions) are therefore needed to avoid compromised biochemical productivity from over-burdened cells. A possible solution to address metabolic burden is Division of Labor (DoL) via natural and synthetic microbial consortia. In particular, consolidated bioprocesses and metabolic cooperation for detoxification or cross feeding (e.g., vitamin C fermentation) have shown numerous successes in industrial level applications. However, distributing a metabolic pathway among proper hosts remains an engineering conundrum due to several challenges: complex subpopulation dynamics/interactions with a short time-window for stable production, suboptimal cultivation of microbial communities, proliferation of cheaters or low-producers, intermediate metabolite dilution, transport barriers between species, and breaks in metabolite channeling through biosynthesis pathways. To develop stable consortia, optimization of strain inoculations, nutritional divergence and crossing feeding, evolution of mutualistic growth, cell immobilization, and biosensors may potentially be used to control cell populations. Another opportunity is direct integration of non-bioprocesses (e.g., microbial electrosynthesis) to power cell metabolism and improve carbon efficiency. Additionally, metabolic modeling and 13C-metabolic flux analysis of mixed culture metabolism and cross-feeding offers a computational approach to complement experimental research for improved consortia performance.
Collapse
Affiliation(s)
- Garrett W Roell
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Jian Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Rhiannon R Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Mattheos A Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA.
| |
Collapse
|
203
|
Akay A, Hess H. Deep Learning: Current and Emerging Applications in Medicine and Technology. IEEE J Biomed Health Inform 2019; 23:906-920. [PMID: 30676989 DOI: 10.1109/jbhi.2019.2894713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Machine learning is enabling researchers to analyze and understand increasingly complex physical and biological phenomena in traditional fields such as biology, medicine, and engineering and emerging fields like synthetic biology, automated chemical synthesis, and biomanufacturing. These fields require new paradigms toward understanding increasingly complex data and converting such data into medical products and services for patients. The move toward deep learning and complex modeling is an attempt to bridge the gap between acquiring massive quantities of complex data, and converting such data into practical insights. Here, we provide an overview of the field of machine learning, its current applications and needs in traditional and emerging fields, and discuss an illustrative attempt at using deep learning to understand swarm behavior of molecular shuttles.
Collapse
|
204
|
Bradley JA, Amend JP, LaRowe DE. Survival of the fewest: Microbial dormancy and maintenance in marine sediments through deep time. GEOBIOLOGY 2019; 17:43-59. [PMID: 30248245 PMCID: PMC6585783 DOI: 10.1111/gbi.12313] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 06/01/2023]
Abstract
Microorganisms buried in marine sediments are known to endure starvation over geologic timescales. However, the mechanisms of how these microorganisms cope with prolonged energy limitation is unknown and therefore yet to be captured in a quantitative framework. Here, we present a novel mathematical model that considers (a) the physiological transitions between the active and dormant states of microorganisms, (b) the varying requirement for maintenance power between these phases, and (c) flexibility in the provenance (i.e., source) of energy from exogenous and endogenous catabolism. The model is applied to sediments underlying the oligotrophic South Pacific Gyre where microorganisms endure ultra-low fluxes of energy for tens of millions of years. Good fits between model simulations and measurements of cellular carbon and organic carbon concentrations are obtained and are interpreted as follows: (a) the unfavourable microbial habitat in South Pacific Gyre sediments triggers rapid mortality and a transition to dormancy; (b) there is minimal biomass growth, and organic carbon consumption is dominated by catabolism to support maintenance activities rather than new biomass synthesis; (c) the amount of organic carbon that microorganisms consume for maintenance activities is equivalent to approximately 2% of their carbon biomass per year; and (d) microorganisms must rely solely on exogenous rather than endogenous catabolism to persist in South Pacific Gyre sediments over long timescales. This leads us to the conclusion that under oligotrophic conditions, the fitness of an organism is determined by its ability to simply stay alive, rather than to grow. This modelling framework is designed to be flexible for application to other sites and habitats, and thus serves as a new quantitative tool for determining the habitability of and an ultimate limit for life in any environment.
Collapse
Affiliation(s)
- James A. Bradley
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Jan P. Amend
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCalifornia
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Douglas E. LaRowe
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
205
|
|
206
|
Abstract
We propose a model whereby microscopic tunnels form in basalt glass in response to a natural proton flux from seawater into the glass. This flux is generated by the alteration of the glass as protons from water replace cations in the glass. In our proton gradient model, cells are gateways through which protons enter and alter the glass and through which cations leave the glass. In the process, tunnels are formed, and cells derive energy from the proton and ion fluxes. Proton flux from seawater into basalt glass would have occurred on Earth as soon as water accumulated on the surface and would have preceded biological redox catalysis. Tunnels in modern basalts are similar to tunnels in Archean basalts, which may be our earliest physical evidence of life. Proton gradients like those described in this paper certainly exist on other planetary bodies where silicate rocks are exposed to acidic to slightly alkaline water.
Collapse
Affiliation(s)
- Martin R Fisk
- 1 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University , Corvallis, Oregon, USA
| | - Radu Popa
- 2 Department of Biological Sciences, University of Southern California , Los Angeles, California, USA
| | - David Wacey
- 3 Centre for Microscopy, Characterisation and Analysis, The University of Western Australia , Perth, Australia
| |
Collapse
|
207
|
Shin J, Song Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK. Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2018; 24:1839-1855. [PMID: 30249742 PMCID: PMC6239172 DOI: 10.1261/rna.068239.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/20/2018] [Indexed: 05/09/2023]
Abstract
Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5'-untranslated regions (5'-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5'-UTR were found. Interestingly, acetogenesis genes contained longer 5'-UTR with lower RNA-folding free energy than other genes, revealing that the 5'-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5'-UTRs is necessary for cold-adaptive acetogenesis.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Rip Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
208
|
Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India. Sci Rep 2018; 8:17459. [PMID: 30498254 PMCID: PMC6265293 DOI: 10.1038/s41598-018-35940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Scientific deep drilling at Koyna, western India provides a unique opportunity to explore microbial life within deep biosphere hosted by ~65 Myr old Deccan basalt and Archaean granitic basement. Characteristic low organic carbon content, mafic/felsic nature but distinct trend in sulfate and nitrate concentrations demarcates the basaltic and granitic zones as distinct ecological habitats. Quantitative PCR indicates a depth independent distribution of microorganisms predominated by bacteria. Abundance of dsrB and mcrA genes are relatively higher (at least one order of magnitude) in basalt compared to granite. Bacterial communities are dominated by Alpha-, Beta-, Gammaproteobacteria, Actinobacteria and Firmicutes, whereas Euryarchaeota is the major archaeal group. Strong correlation among the abundance of autotrophic and heterotrophic taxa is noted. Bacteria known for nitrite, sulfur and hydrogen oxidation represent the autotrophs. Fermentative, nitrate/sulfate reducing and methane metabolising microorganisms represent the heterotrophs. Lack of shared operational taxonomic units and distinct clustering of major taxa indicate possible community isolation. Shotgun metagenomics corroborate that chemolithoautotrophic assimilation of carbon coupled with fermentation and anaerobic respiration drive this deep biosphere. This first report on the geomicrobiology of the subsurface of Deccan traps provides an unprecedented opportunity to understand microbial composition and function in the terrestrial, igneous rock-hosted, deep biosphere.
Collapse
|
209
|
Metatranscriptomes Reveal That All Three Domains of Life Are Active but Are Dominated by Bacteria in the Fennoscandian Crystalline Granitic Continental Deep Biosphere. mBio 2018; 9:mBio.01792-18. [PMID: 30459191 PMCID: PMC6247080 DOI: 10.1128/mbio.01792-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A newly designed sampling apparatus was used to fix RNA under in situ conditions in the deep continental biosphere and benchmarks a strategy for deep biosphere metatranscriptomic sequencing. This apparatus enabled the identification of active community members and the processes they carry out in this extremely oligotrophic environment. This work presents for the first time evidence of eukaryotic, archaeal, and bacterial activity in two deep subsurface crystalline rock groundwaters from the Äspö Hard Rock Laboratory with different depths and geochemical characteristics. The findings highlight differences between organic carbon-fed shallow communities and carbon dioxide- and hydrogen-fed old saline waters. In addition, the data reveal a large portion of uncharacterized microorganisms, as well as the important role of candidate phyla in the deep biosphere, but also the disparity in microbial diversity when using standard microbial 16S rRNA gene amplification versus the large unknown portion of the community identified with unbiased metatranscriptomes. The continental subsurface is suggested to contain a significant part of the earth’s total biomass. However, due to the difficulty of sampling, the deep subsurface is still one of the least understood ecosystems. Therefore, microorganisms inhabiting this environment might profoundly influence the global nutrient and energy cycles. In this study, in situ fixed RNA transcripts from two deep continental groundwaters from the Äspö Hard Rock Laboratory (a Baltic Sea-influenced water with a residence time of <20 years, defined as “modern marine,” and an “old saline” groundwater with a residence time of thousands of years) were subjected to metatranscriptome sequencing. Although small subunit (SSU) rRNA gene and mRNA transcripts aligned to all three domains of life, supporting activity within these community subsets, the data also suggested that the groundwaters were dominated by bacteria. Many of the SSU rRNA transcripts grouped within newly described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored. Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies that were carried out by multiple taxa in the modern marine water that is fed by organic carbon from the surface. In contrast, the carbon dioxide- and hydrogen-fed old saline water with a residence time of thousands of years predominantly showed the potential to carry out translation. This suggested these cells were active, but waiting until an energy source episodically becomes available.
Collapse
|
210
|
Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crystalline bedrock has been chosen for deep geologic long-term storage of used nuclear fuel in Finland. The risks generated by the deep subsurface microbial communities in these disposal sites need to be well characterised in advance to ensure safety. Deep subsurface microbial communities in a steady state are unlikely to contribute to known risk factors, such as corrosion or gas production. However, the construction of the geological final-disposal facility, bedrock disturbances, and hydraulic gradients cause changes that affect the microbial steady-state. To study the induced metabolism of deep microbial communities in changing environmental conditions, the activating effect of different electron donors and acceptors were measured with redox sensing fluorescent dyes (5-Cyano-2,3-ditolyl tetrazolium chloride, CTC and RedoxSensor™ Green, RSG). Fluids originating from two different fracture zones of the Finnish disposal site in Olkiluoto were studied. These fracture fluids were very dissimilar both chemically and in terms of bacterial and archaeal diversity. However, the microbial communities of both fracture fluids were activated, especially with acetate, which indicates the important role of acetate as a preferred electron donor for Olkiluoto deep subsurface communities.
Collapse
|
211
|
Johnson TB, Mach C, Grove R, Kelly R, Van Cott K, Blum P. Secretion and fusion of biogeochemically active archaeal membrane vesicles. GEOBIOLOGY 2018; 16:659-673. [PMID: 30019522 DOI: 10.1111/gbi.12306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Microbes belonging to the genus Metallosphaera oxidize sulfidic minerals. These organisms thrive at temperature extremes and are members of the archaeal phylum Crenarchaeota. Because they can employ a lithoautotrophic metabolism, energy availability likely limits their activity raising questions about how they conduct biogeochemical activity. Vesicles are membrane encapsulated structures produced by all biological lineages but using very different mechanisms. Across the Crenarchaeota, it has been proposed that a eukaryotic-like Endosomal Sorting Complex Required for Transport system promotes formation of these structures but in response to unknown signals and for undefined purposes. To address such questions, Metallosphaera sedula vesicle formation and function were studied under lithoautotrophic conditions. Energy deprivation was evaluated and found to stimulate vesicle synthesis while energy excess repressed vesicle formation. Purified vesicles adhered rapidly to the primary copper ore, chalcopyrite, and formed compact monolayers. These vesicle monolayers catalyzed iron oxidation and solubilization of mineralized copper in a time-dependent process. As these activities were membrane associated, their potential transfer by vesicle fusion to M. sedula cells was examined. Fluorophore-loaded vesicles rapidly transferred fluorescence under environmentally relevant conditions. Vesicles from a related archaeal species were also capable of fusion; however, this process was species-specific as vesicles from different species were incapable of fusion. In addition, vesicles produced by a copper-resistant M. sedula cell line transferred copper extrusion capacity along with improved viability over mutant M. sedula cells lacking copper transport proteins. Membrane vesicles may therefore play a role in modulating energy-related traits in geochemical environments by fusion-mediated protein delivery.
Collapse
Affiliation(s)
- Tyler B Johnson
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Collin Mach
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Ryan Grove
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Robert Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Kevin Van Cott
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Paul Blum
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| |
Collapse
|
212
|
Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, Rodríguez N, Bird L, Lincoln SA, Tornos F, Prieto-Ballesteros O, Freeman KH, Pieper DH, Timmis KN, Amils R, Parro V. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci U S A 2018; 115:10702-10707. [PMID: 30275328 PMCID: PMC6196553 DOI: 10.1073/pnas.1808176115] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present molecular, microscopic, and metagenomic evidence that cyanobacteria predominate in deep subsurface rock samples from the Iberian Pyrite Belt Mars analog (southwestern Spain). Metagenomics showed the potential for a hydrogen-based lithoautotrophic cyanobacterial metabolism. Collectively, our results suggest that they may play an important role as primary producers within the deep-Earth biosphere. Our description of this previously unknown ecological niche for cyanobacteria paves the way for models on their origin and evolution, as well as on their potential presence in current or primitive biospheres in other planetary bodies, and on the extant, primitive, and putative extraterrestrial biospheres.
Collapse
Affiliation(s)
- Fernando Puente-Sánchez
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain;
| | - Alejandro Arce-Rodríguez
- Institute of Microbiology, Technical University Braunschweig, D-38023 Braunschweig, Germany
- Microbial Interactions and Processes Group, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Monike Oggerin
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Miriam García-Villadangos
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Nuria Rodríguez
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Laurence Bird
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Sara A Lincoln
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Fernando Tornos
- Instituto de Geociencias, CSIC-Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Olga Prieto-Ballesteros
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Dietmar H Pieper
- Microbial Interactions and Processes Group, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, D-38023 Braunschweig, Germany
| | - Ricardo Amils
- Department of Planetology and Habitability, Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
213
|
Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME JOURNAL 2018; 13:250-262. [PMID: 30194429 DOI: 10.1038/s41396-018-0273-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022]
Abstract
Methane in the seabed is mostly oxidized to CO2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate-methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO2 by sulfate reduction. This previously unrecognized "cryptic" methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.
Collapse
|
214
|
Drake H, Whitehouse MJ, Heim C, Reiners PW, Tillberg M, Hogmalm KJ, Dopson M, Broman C, Åström ME. Unprecedented 34 S-enrichment of pyrite formed following microbial sulfate reduction in fractured crystalline rocks. GEOBIOLOGY 2018; 16:556-574. [PMID: 29947123 DOI: 10.1111/gbi.12297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
In the deep biosphere, microbial sulfate reduction (MSR) is exploited for energy. Here, we show that, in fractured continental crystalline bedrock in three areas in Sweden, this process produced sulfide that reacted with iron to form pyrite extremely enriched in 34 S relative to 32 S. As documented by secondary ion mass spectrometry (SIMS) microanalyses, the δ34 Spyrite values are up to +132‰V-CDT and with a total range of 186‰. The lightest δ34 Spyrite values (-54‰) suggest very large fractionation during MSR from an initial sulfate with δ34 S values (δ34 Ssulfate,0 ) of +14 to +28‰. Fractionation of this magnitude requires a slow MSR rate, a feature we attribute to nutrient and electron donor shortage as well as initial sulfate abundance. The superheavy δ34 Spyrite values were produced by Rayleigh fractionation effects in a diminishing sulfate pool. Large volumes of pyrite with superheavy values (+120 ± 15‰) within single fracture intercepts in the boreholes, associated heavy average values up to +75‰ and heavy minimum δ34 Spyrite values, suggest isolation of significant amounts of isotopically light sulfide in other parts of the fracture system. Large fracture-specific δ34 Spyrite variability and overall average δ34 Spyrite values (+11 to +16‰) lower than the anticipated δ34 Ssulfate,0 support this hypothesis. The superheavy pyrite found locally in the borehole intercepts thus represents a late stage in a much larger fracture system undergoing Rayleigh fractionation. Microscale Rb-Sr dating and U/Th-He dating of cogenetic minerals reveal that most pyrite formed in the early Paleozoic era, but crystal overgrowths may be significantly younger. The δ13 C values in cogenetic calcite suggest that the superheavy δ34 Spyrite values are related to organotrophic MSR, in contrast to findings from marine sediments where superheavy pyrite has been proposed to be linked to anaerobic oxidation of methane. The findings provide new insights into MSR-related S-isotope systematics, particularly regarding formation of large fractions of 34 S-rich pyrite.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Christine Heim
- Department of Geobiology, Geoscience Centre Göttingen of the Georg-August University, Göttingen, Germany
| | - Peter W Reiners
- Department of Geosciences, University of Arizona, Tucson, Arizona
| | - Mikael Tillberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - K Johan Hogmalm
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mark Dopson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
215
|
Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. mSystems 2018; 3:e00055-18. [PMID: 30273414 PMCID: PMC6156271 DOI: 10.1128/msystems.00055-18] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
To describe a microbe's physiology, including its metabolism, environmental roles, and growth characteristics, it must be grown in a laboratory culture. Unfortunately, many phylogenetically novel groups have never been cultured, so their physiologies have only been inferred from genomics and environmental characteristics. Although the diversity, or number of different taxonomic groups, of uncultured clades has been studied well, their global abundances, or numbers of cells in any given environment, have not been assessed. We quantified the degree of similarity of 16S rRNA gene sequences from diverse environments in publicly available metagenome and metatranscriptome databases, which we show have far less of the culture bias present in primer-amplified 16S rRNA gene surveys, to those of their nearest cultured relatives. Whether normalized to scaffold read depths or not, the highest abundances of metagenomic 16S rRNA gene sequences belong to phylogenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface, soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents, nonhuman hosts, snow, and bioreactors (22% to 87% uncultured genera to classes and 0% to 64% uncultured phyla). The exceptions were human and human-associated environments, which were dominated by cultured genera (45% to 97%). We estimate that uncultured genera and phyla could comprise 7.3 × 1029 (81%) and 2.2 × 1029 (25%) of microbial cells, respectively. Uncultured phyla were overrepresented in metatranscriptomes relative to metagenomes (46% to 84% of sequences in a given environment), suggesting that they are viable. Therefore, uncultured microbes, often from deeply phylogenetically divergent groups, dominate nonhuman environments on Earth, and their undiscovered physiologies may matter for Earth systems. IMPORTANCE In the past few decades, it has become apparent that most of the microbial diversity on Earth has never been characterized in laboratory cultures. We show that these unknown microbes, sometimes called "microbial dark matter," are numerically dominant in all major environments on Earth, with the exception of the human body, where most of the microbes have been cultured. We also estimate that about one-quarter of the population of microbial cells on Earth belong to phyla with no cultured relatives, suggesting that these never-before-studied organisms may be important for ecosystem functions. Author Video: An author video summary of this article is available.
Collapse
Affiliation(s)
- Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew D. Steen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Joshua Ladau
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Junqi Yin
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Lonnie Crosby
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
216
|
Hoshino T, Inagaki F. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. ISME JOURNAL 2018; 13:227-231. [PMID: 30116037 PMCID: PMC6298964 DOI: 10.1038/s41396-018-0253-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Subseafloor sedimentary environments harbor a remarkable number of microorganisms that constitute anaerobic and aerobic microbial ecosystems beneath the ocean margins and open-ocean gyres, respectively. Microbial biomass and diversity richness generally decrease with increasing sediment depth and burial time. However, there has been a long-standing debate over the contribution and distribution of Archaea in the subseafloor sedimentary biosphere. Here we show the global quantification of archaeal and bacterial 16S rRNA genes in 221 sediment core samples obtained from diverse oceanographic settings through scientific ocean drilling using microfluidic digital PCR. We estimated that archaeal cells constitute 37.3% of the total microbial cells (40.0% and 12.8% in the ocean margin and open-ocean sites, respectively), corresponding to 1.1 × 1029 cells on Earth. In addition, the relative abundance of archaeal 16S rRNA genes generally decreased with the depth of water in the overlying sedimentary habitat, suggesting that Archaea may be more sensitive to nutrient quality and quantity supplied from the overlying ocean.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan. .,Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, 236-0001, Japan.
| |
Collapse
|
217
|
Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
218
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
219
|
Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol 2018; 16:671-683. [DOI: 10.1038/s41579-018-0046-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
220
|
Oyetunde T, Bao FS, Chen JW, Martin HG, Tang YJ. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnol Adv 2018; 36:1308-1315. [DOI: 10.1016/j.biotechadv.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
|
221
|
Ijiri A, Inagaki F, Kubo Y, Adhikari RR, Hattori S, Hoshino T, Imachi H, Kawagucci S, Morono Y, Ohtomo Y, Ono S, Sakai S, Takai K, Toki T, Wang DT, Yoshinaga MY, Arnold GL, Ashi J, Case DH, Feseker T, Hinrichs KU, Ikegawa Y, Ikehara M, Kallmeyer J, Kumagai H, Lever MA, Morita S, Nakamura KI, Nakamura Y, Nishizawa M, Orphan VJ, Røy H, Schmidt F, Tani A, Tanikawa W, Terada T, Tomaru H, Tsuji T, Tsunogai U, Yamaguchi YT, Yoshida N. Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. SCIENCE ADVANCES 2018; 4:eaao4631. [PMID: 29928689 PMCID: PMC6007163 DOI: 10.1126/sciadv.aao4631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Microbial life inhabiting subseafloor sediments plays an important role in Earth's carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm-3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated.
Collapse
Affiliation(s)
- Akira Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - Yusuke Kubo
- Center for Deep Earth Exploration, JAMSTEC, Yokohama 236-0001, Japan
| | - Rishi R. Adhikari
- Department of Earth and Environmental Sciences, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Shohei Hattori
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Hiroyuki Imachi
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Shinsuke Kawagucci
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Yoko Ohtomo
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Ken Takai
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Tomohiro Toki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - David T. Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcos Y. Yoshinaga
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Gail L. Arnold
- Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Juichiro Ashi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
| | - David H. Case
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomas Feseker
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Yojiro Ikegawa
- Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Minoru Ikehara
- Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Jens Kallmeyer
- Department of Earth and Environmental Sciences, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Hidenori Kumagai
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Mark A. Lever
- Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Sumito Morita
- Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | | | - Yuki Nakamura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
| | - Manabu Nishizawa
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hans Røy
- Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Frauke Schmidt
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Atsushi Tani
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wataru Tanikawa
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | | | - Hitoshi Tomaru
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Takeshi Tsuji
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research, Department of Earth Resources Engineering, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhiko T. Yamaguchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
222
|
Møller MH, Glombitza C, Lever MA, Deng L, Morono Y, Inagaki F, Doll M, Su CC, Lomstein BA. D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin. Front Microbiol 2018; 9:967. [PMID: 29867871 PMCID: PMC5963217 DOI: 10.3389/fmicb.2018.00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated the impact of temperature on the microbial turnover of organic matter (OM) in a hydrothermal vent system in Guaymas Basin, by calculating microbial bio- and necromass turnover times based on the culture-independent D:L-amino acid model. Sediments were recovered from two stations near hydrothermal mounds (<74°C) and from one cold station (<9°C). Cell abundance at the two hydrothermal stations dropped from 108 to 106 cells cm-3 within ∼5 m of sediment depth resulting in a 100-fold lower cell number at this depth than at the cold site where numbers remained constant at 108 cells cm-3 throughout the recovered sediment. There were strong indications that the drop in cell abundance was controlled by decreasing OM quality. The quality of the sedimentary OM was determined by the diagenetic indicators %TAAC (percentage of total organic carbon present as amino acid carbon), %TAAN (percentage of total nitrogen present as amino acid nitrogen), aspartic acid:β-alanine ratios, and glutamic acid:γ-amino butyric acid ratios. All parameters indicated that the OM became progressively degraded with increasing sediment depth, and the OM in the hydrothermal sediment was more degraded than in the uniformly cold sediment. Nonetheless, the small community of microorganisms in the hydrothermal sediment demonstrated short turnover times. The modeled turnover times of microbial bio- and necromass in the hydrothermal sediments were notably faster (biomass: days to months; necromass: up to a few hundred years) than in the cold sediments (biomass: tens of years; necromass: thousands of years), suggesting that temperature has a significant influence on the microbial turnover rates. We suggest that short biomass turnover times are necessary for maintance of essential cell funtions and to overcome potential damage caused by the increased temperature.The reduced OM quality at the hyrothemal sites might thus only allow for a small population size of microorganisms.
Collapse
Affiliation(s)
- Mikkel H Møller
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Clemens Glombitza
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,National Aeronautics and Space Administration-Ames Research Center, Moffett Field, CA, United States
| | - Mark A Lever
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Longhui Deng
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Mechthild Doll
- Faculty of Geosciences (FB 05), University of Bremen, Bremen, Germany
| | - Chin-Chia Su
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Bente A Lomstein
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
223
|
Egbert MD, Pérez-Mercader J. Methods for Measuring Viability and Evaluating Viability Indicators. ARTIFICIAL LIFE 2018; 24:106-118. [PMID: 29664348 DOI: 10.1162/artl_a_00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Life and other dissipative structures involve nonlinear dynamics that are not amenable to conventional analysis. Advances are being made in theory, modeling, and simulation techniques, but we do not have general principles for designing, controlling, stabilizing, or eliminating these systems. There is thus a need for tools that can transform high-level descriptions of these systems into useful guidance for their modification and design. In this article we introduce new methods for quantifying the viability of dissipative structures. We then present an information-theoretical approach for evaluating the quality of viability indicators, measurable quantities that covary with, and thus can be used to predict or influence, a system's viability.
Collapse
Affiliation(s)
- Matthew D Egbert
- Department of Earth and Planetary Sciences, Harvard University; and Department of Computer Science, University of Auckland.
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University; and Santa Fe Institute.
| |
Collapse
|
224
|
Graw MF, D'Angelo G, Borchers M, Thurber AR, Johnson JE, Zhang C, Liu H, Colwell FS. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea. Front Microbiol 2018; 9:729. [PMID: 29696012 PMCID: PMC5905238 DOI: 10.3389/fmicb.2018.00729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics.
Collapse
Affiliation(s)
- Michael F Graw
- College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR, United States
| | - Grace D'Angelo
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Matthew Borchers
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Andrew R Thurber
- College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR, United States.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Joel E Johnson
- Department of Earth Sciences, University of New Hampshire, Durham, NH, United States
| | - Chuanlun Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Haodong Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
225
|
Pellerin A, Wenk CB, Halevy I, Wing BA. Sulfur Isotope Fractionation by Sulfate-Reducing Microbes Can Reflect Past Physiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4013-4022. [PMID: 29505248 DOI: 10.1021/acs.est.7b05119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfur (S) isotope fractionation by sulfate-reducing microorganisms is a direct manifestation of their respiratory metabolism. This fractionation is apparent in the substrate (sulfate) and waste (sulfide) produced. The sulfate-reducing metabolism responds to variability in the local environment, with the response determined by the underlying genotype, resulting in the expression of an "isotope phenotype". Sulfur isotope phenotypes have been used as a diagnostic tool for the metabolic activity of sulfate-reducing microorganisms in the environment. Our experiments with Desulfovibrio vulgaris Hildenborough (DvH) grown in batch culture suggest that the S isotope phenotype of sulfate respiring microbes may lag environmental changes on time scales that are longer than generational. When inocula from different phases of growth are assayed under the same environmental conditions, we observed that DvH exhibited different net apparent fractionations of up to -9‰. The magnitude of fractionation was weakly correlated with physiological parameters but was strongly correlated to the age of the initial inoculum. The S isotope fractionation observed between sulfate and sulfide showed a positive correlation with respiration rate, contradicting the well-described negative dependence of fractionation on respiration rate. Quantitative modeling of S isotope fractionation shows that either a large increase (≈50×) in the abundance of sulfate adenylyl transferase (Sat) or a smaller increase in sulfate transport proteins (≈2×) is sufficient to account for the change in fractionation associated with past physiology. Temporal transcriptomic studies with DvH imply that expression of sulfate permeases doubles over the transition from early exponential to early stationary phase, lending support to the transport hypothesis proposed here. As it is apparently maintained for multiple generations (≈1-6) of subsequent growth in the assay environment, we suggest that this fractionation effect acts as a sort of isotopic "memory" of a previous physiological and environmental state. Whatever its root cause, this physiological hysteresis effect can explain variations in fractionations observed in many environments. It may also enable new insights into life at energetic limits, especially if its historical footprint extends deeper than generational.
Collapse
Affiliation(s)
- André Pellerin
- Center for Geomicrobiology, Department of Bioscience , Aarhus University , Ny Munkegade 114 , Aarhus C 8000 , Denmark
| | - Christine B Wenk
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Boswell A Wing
- Geological Sciences , University of Colorado Boulder , UCB 399, Boulder , Colorado 80309-0399 , United States
| |
Collapse
|
226
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
227
|
Kanno N, Matsuura K, Haruta S. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris. Microbes Environ 2018. [PMID: 29540639 PMCID: PMC5877347 DOI: 10.1264/jsme2.me17143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD+/NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.
Collapse
Affiliation(s)
- Nanako Kanno
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
228
|
Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42:205-231. [PMID: 29177446 PMCID: PMC5972617 DOI: 10.1093/femsre/fux056] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy-the cyanobacterial lineage.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
229
|
Bradley JA, Amend JP, LaRowe DE. Bioenergetic Controls on Microbial Ecophysiology in Marine Sediments. Front Microbiol 2018; 9:180. [PMID: 29487581 PMCID: PMC5816797 DOI: 10.3389/fmicb.2018.00180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Marine sediments constitute one of the most energy-limited habitats on Earth, in which microorganisms persist over extraordinarily long timescales with very slow metabolisms. This habitat provides an ideal environment in which to study the energetic limits of life. However, the bioenergetic factors that can determine whether microorganisms will grow, lie dormant, or die, as well as the selective environmental pressures that determine energetic trade-offs between growth and maintenance activities, are not well understood. Numerical models will be pivotal in addressing these knowledge gaps. However, models rarely account for the variable physiological states of microorganisms and their demand for energy. Here, we review established modeling constructs for microbial growth rate, yield, maintenance, and physiological state, and then provide a new model that incorporates all of these factors. We discuss this new model in context with its future application to the marine subsurface. Understanding the factors that regulate cell death, physiological state changes, and the provenance of maintenance energy (i.e., endogenous versus exogenous metabolism), is crucial to the design of this model. Further, measurements of growth rate, growth yield, and basal metabolic activity will enable bioenergetic parameters to be better constrained. Last, biomass and biogeochemical rate measurements will enable model simulations to be validated. The insight provided from the development and application of new microbial modeling tools for marine sediments will undoubtedly advance the understanding of the minimum power required to support life, and the ecophysiological strategies that organisms utilize to cope under extreme energy limitation for extended periods of time.
Collapse
Affiliation(s)
- James A Bradley
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
230
|
Fowler AC, Winstanley HF. Microbial dormancy and boom-and-bust population dynamics under starvation stress. Theor Popul Biol 2018; 120:114-120. [PMID: 29447840 DOI: 10.1016/j.tpb.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/20/2018] [Accepted: 02/05/2018] [Indexed: 11/16/2022]
Abstract
We propose a model for the growth of microbial populations in the presence of a rate-limiting nutrient which accounts for the switching of cells to a dormant phase at low densities in response to decreasing concentration of a putative biochemical signal. We then show that in conditions of nutrient starvation, self-sustained oscillations can occur, thus providing a natural explanation for such phenomena as plankton blooms. However, unlike results of previous studies, the microbial population minima do not become unrealistically small, being buffered during minima by an increased dormant phase population. We also show that this allows microbes to survive in extreme environments for very long periods, consistent with observation. The mechanism provides a natural vehicle for other such sporadic outbreaks, such as viral epidemics.
Collapse
Affiliation(s)
- A C Fowler
- MACSI, University of Limerick, Limerick, Ireland; OCIAM, University of Oxford, Oxford, UK.
| | | |
Collapse
|
231
|
Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. THE ISME JOURNAL 2018; 12:495-507. [PMID: 29087380 PMCID: PMC5776465 DOI: 10.1038/ismej.2017.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/26/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023]
Abstract
Dissimilatory sulfate reduction (DSR) has been a key process influencing the global carbon cycle, atmospheric composition and climate for much of Earth's history, yet the energy metabolism of sulfate-reducing microbes remains poorly understood. Many organisms, particularly sulfate reducers, live in low-energy environments and metabolize at very low rates, requiring specific physiological adaptations. We identify one such potential adaptation-the electron carriers selected for survival under energy-limited conditions. Employing a quantitative biochemical-isotopic model, we find that the large S isotope fractionations (>55‰) observed in a wide range of natural environments and culture experiments at low respiration rates are only possible when the standard-state Gibbs free energy (ΔG'°) of all steps during DSR is more positive than -10 kJ mol-1. This implies that at low respiration rates, only electron carriers with modestly negative reduction potentials are involved, such as menaquinone, rubredoxin, rubrerythrin or some flavodoxins. Furthermore, the constraints from S isotope fractionation imply that ferredoxins with a strongly negative reduction potential cannot be the direct electron donor to S intermediates at low respiration rates. Although most sulfate reducers have the genetic potential to express a variety of electron carriers, our results suggest that a key physiological adaptation of sulfate reducers to low-energy environments is to use electron carriers with modestly negative reduction potentials.
Collapse
Affiliation(s)
- Christine B Wenk
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
232
|
Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. SCIENCE ADVANCES 2018; 4:eaao5682. [PMID: 29464208 PMCID: PMC5815863 DOI: 10.1126/sciadv.aao5682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/12/2018] [Indexed: 05/22/2023]
Abstract
Bacterial reduction of oxidized sulfur species (OSS) is critical for energy production in anaerobic marine subsurfaces. In organic-poor sediments, H2 has been considered as a major energy source for bacterial respiration. We identified outer-membrane cytochromes (OMCs) that are broadly conserved in sediment OSS-respiring bacteria and enable cells to directly use electrons from insoluble minerals via extracellular electron transport. Biochemical, transcriptomic, and microscopic analyses revealed that the identified OMCs were highly expressed on the surface of cells and nanofilaments in response to electron donor limitation. This electron uptake mechanism provides sufficient but minimum energy to drive the reduction of sulfate and other OSS. These results suggest a widespread mechanism for survival of OSS-respiring bacteria via electron uptake from solid minerals in energy-poor marine sediments.
Collapse
Affiliation(s)
- Xiao Deng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenneth H. Nealson
- Department of Earth and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kazuhito Hashimoto
- Interfacial Energy Conversion Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Okamoto
- Interfacial Energy Conversion Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Corresponding author.
| |
Collapse
|
233
|
Marshall IP, Karst SM, Nielsen PH, Jørgensen BB. Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. Mar Genomics 2018; 37:58-68. [DOI: 10.1016/j.margen.2017.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
|
234
|
Escudero C, Vera M, Oggerin M, Amils R. Active microbial biofilms in deep poor porous continental subsurface rocks. Sci Rep 2018; 8:1538. [PMID: 29367593 PMCID: PMC5784017 DOI: 10.1038/s41598-018-19903-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 11/24/2022] Open
Abstract
Deep continental subsurface is defined as oligotrophic environments where microorganisms present a very low metabolic rate. To date, due to the energetic cost of production and maintenance of biofilms, their existence has not been considered in poor porous subsurface rocks. We applied fluorescence in situ hybridization techniques and confocal laser scanning microscopy in samples from a continental deep drilling project to analyze the prokaryotic diversity and distribution and the possible existence of biofilms. Our results show the existence of natural microbial biofilms at all checked depths of the Iberian Pyrite Belt (IPB) subsurface and the co-occurrence of bacteria and archaea in this environment. This observation suggests that multi-species biofilms may be a common and widespread lifestyle in subsurface environments.
Collapse
Affiliation(s)
- Cristina Escudero
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Av Vicuña Mackenna, 4860, Santiago, Chile
| | - Monike Oggerin
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
235
|
Shoemaker WR, Lennon JT. Evolution with a seed bank: The population genetic consequences of microbial dormancy. Evol Appl 2018; 11:60-75. [PMID: 29302272 PMCID: PMC5748526 DOI: 10.1111/eva.12557] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dormancy is a bet‐hedging strategy that allows organisms to persist through conditions that are suboptimal for growth and reproduction by entering a reversible state of reduced metabolic activity. Dormancy allows a population to maintain a reservoir of genetic and phenotypic diversity (i.e., a seed bank) that can contribute to the long‐term survival of a population. This strategy can be potentially adaptive and has long been of interest to ecologists and evolutionary biologists. However, comparatively little is known about how dormancy influences the fundamental evolutionary forces of genetic drift, mutation, selection, recombination, and gene flow. Here, we investigate how seed banks affect the processes underpinning evolution by reviewing existing theory, implementing novel simulations, and determining how and when dormancy can influence evolution as a population genetic process. We extend our analysis to examine how seed banks can alter macroevolutionary processes, including rates of speciation and extinction. Through the lens of population genetic theory, we can understand the extent that seed banks influence the evolutionary dynamics of microorganisms as well as other taxa.
Collapse
Affiliation(s)
| | - Jay T Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
236
|
|
237
|
Brady AL, Goordial J, Sun HJ, Whyte LG, Slater GF. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers. GEOBIOLOGY 2018; 16:62-79. [PMID: 29076278 DOI: 10.1111/gbi.12263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/01/2017] [Indexed: 05/28/2023]
Abstract
Cryptoendolithic lichens and cyanobacteria living in porous sandstone in the high-elevation McMurdo Dry Valleys are purported to be among the slowest growing organisms on Earth with cycles of death and regrowth on the order of 103 -104 years. Here, organic biomarker and radiocarbon analysis were used to better constrain ages and carbon sources of cryptoendoliths in University Valley (UV; 1,800 m.a.s.l) and neighboring Farnell Valley (FV; 1,700 m.a.s.l). Δ14 C was measured for membrane component phospholipid fatty acids (PLFA) and glycolipid fatty acids, as well as for total organic carbon (TOC). PLFA concentrations indicated viable cells comprised a minor (<0.5%) component of TOC. TOC Δ14 C values ranged from -272‰ to -185‰ equivalent to calibrated ages of 1,100-2,550 years old. These ages may be the result of fractional preservation of biogenic carbon and/or sudden large-scale community death and extended period(s) of inactivity prior to slow recolonization and incorporation of 14 C-depleted fossil material. PLFA Δ14 C values were generally more modern than the corresponding TOC and varied widely between sites; the FV PLFA Δ14 C value (+40‰) was consistent with modern atmospheric CO2 , while UV values ranged from -199‰ to -79‰ (calibrated ages of 1,665-610 years). The observed variability in PLFA Δ14 C depletions is hypothesized to reflect variations in the extent of fixation of modern atmospheric CO2 and the preservation and recycling of older organic carbon by the community in various stages of sandstone recolonization. PLFA profiles and microbial community compositions as determined by molecular genetic characterizations and microscopy differed between the two valleys (e.g., predominance of biomarker 18:2 [>50%] in FV compared to UV), representing microbial communities that may reflect distinct stages of sandstone recolonization and/or environmental conditions. It is thus proposed that Dry Valley cryptoendolithic microbial communities are faster growing than previously estimated.
Collapse
Affiliation(s)
- A L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - H J Sun
- Desert Research Institute, Las Vegas, NV, USA
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - G F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
238
|
Abstract
Mathematical modeling is a very powerful tool for understanding natural phenomena. Such a tool carries its own assumptions and should always be used critically. In this chapter, we highlight the key ingredients and steps of modeling and focus on their biological interpretation. In particular, we discuss the role of theoretical principles in writing models. We also highlight the meaning and interpretation of equations. The main aim of this chapter is to facilitate the interaction between biologists and mathematical modelers. We focus on the case of cell proliferation and motility in the context of multicellular organisms.
Collapse
Affiliation(s)
- Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris, 7 Diderot, 75205, Paris Cedex 13, France. .,Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), UMR 8590, Paris, France.
| |
Collapse
|
239
|
Kempes CP, Wolpert D, Cohen Z, Pérez-Mercader J. The thermodynamic efficiency of computations made in cells across the range of life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160343. [PMID: 29133443 PMCID: PMC5686401 DOI: 10.1098/rsta.2016.0343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
Biological organisms must perform computation as they grow, reproduce and evolve. Moreover, ever since Landauer's bound was proposed, it has been known that all computation has some thermodynamic cost-and that the same computation can be achieved with greater or smaller thermodynamic cost depending on how it is implemented. Accordingly an important issue concerning the evolution of life is assessing the thermodynamic efficiency of the computations performed by organisms. This issue is interesting both from the perspective of how close life has come to maximally efficient computation (presumably under the pressure of natural selection), and from the practical perspective of what efficiencies we might hope that engineered biological computers might achieve, especially in comparison with current computational systems. Here we show that the computational efficiency of translation, defined as free energy expended per amino acid operation, outperforms the best supercomputers by several orders of magnitude, and is only about an order of magnitude worse than the Landauer bound. However, this efficiency depends strongly on the size and architecture of the cell in question. In particular, we show that the useful efficiency of an amino acid operation, defined as the bulk energy per amino acid polymerization, decreases for increasing bacterial size and converges to the polymerization cost of the ribosome. This cost of the largest bacteria does not change in cells as we progress through the major evolutionary shifts to both single- and multicellular eukaryotes. However, the rates of total computation per unit mass are non-monotonic in bacteria with increasing cell size, and also change across different biological architectures, including the shift from unicellular to multicellular eukaryotes.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
| | - David Wolpert
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Beyond Center, Arizona State University, Tempe, AZ 85287, USA
| | - Zachary Cohen
- Department of Biology, University of Illinois, Urbana Champagne, Urbana, IL 61801, USA
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
240
|
Heuer V, Inagaki F, Morono Y, Kubo Y, Maeda L, Bowden S, Cramm M, Henkel S, Hirose T, Homola K, Hoshino T, Ijiri A, Imachi H, Kamiya N, Kaneko M, Lagostina L, Manners H, McClelland HL, Metcalfe K, Okutsu N, Pan D, Raudsepp M, Sauvage J, Schubotz F, Spivack A, Tonai S, Treude T, Tsang MY, Viehweger B, Wang D, Whitaker E, Yamamoto Y, Yang K. Expedition 370 summary. PROCEEDINGS OF THE INTERNATIONAL OCEAN DISCOVERY PROGRAM 2017. [DOI: 10.14379/iodp.proc.370.101.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
241
|
Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Appl Environ Microbiol 2017; 83:AEM.01547-17. [PMID: 28939599 DOI: 10.1128/aem.01547-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022] Open
Abstract
Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community.
Collapse
|
242
|
|
243
|
Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc Natl Acad Sci U S A 2017; 114:E9206-E9215. [PMID: 29078310 PMCID: PMC5676895 DOI: 10.1073/pnas.1707525114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
Collapse
|
244
|
Zinke LA, Mullis MM, Bird JT, Marshall IPG, Jørgensen BB, Lloyd KG, Amend JP, Kiel Reese B. Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:528-536. [PMID: 28836742 DOI: 10.1111/1758-2229.12578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Microbial life in the deep subsurface biosphere is taxonomically and metabolically diverse, but it is vigorously debated whether the resident organisms are thriving (metabolizing, maintaining cellular integrity and expressing division genes) or just surviving. As part of Integrated Ocean Drilling Program Expedition 347: Baltic Sea Paleoenvironment, we extracted and sequenced RNA from organic carbon-rich, nutrient-replete and permanently anoxic sediment. In stark contrast to the oligotrophic subsurface biosphere, Baltic Sea Basin samples provided a unique opportunity to understand the balance between metabolism and other cellular processes. Targeted sequencing of 16S rRNA transcripts showed Atribacteria (an uncultured phylum) and Chloroflexi to be among the dominant and the active members of the community. Metatranscriptomic analysis identified methane cycling, sulfur cycling and halogenated compound utilization as active in situ respiratory metabolisms. Genes for cellular maintenance, cellular division, motility and antimicrobial production were also transcribed. This indicates that microbial life in deep subsurface Baltic Sea Basin sediments was not only alive, but thriving.
Collapse
Affiliation(s)
- Laura A Zinke
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Megan M Mullis
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Jordan T Bird
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, USA
| | | | | | - Karen G Lloyd
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| |
Collapse
|
245
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
246
|
Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. THE ISME JOURNAL 2017; 11:1949-1963. [PMID: 28574490 PMCID: PMC5563950 DOI: 10.1038/ismej.2017.59] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.
Collapse
Affiliation(s)
- Esther Singer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael Wagner
- University of Vienna, Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
247
|
Griko YV, Rask JC, Raychev R. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/space.2016.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuri V. Griko
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Jon C. Rask
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
- KBRwyle, Moffett Field, California
| | - Raycho Raychev
- Space Challenges Program, EnduroSat, Inc., Sofia, Bulgaria
| |
Collapse
|
248
|
Labonté JM, Lever MA, Edwards KJ, Orcutt BN. Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank. Front Microbiol 2017; 8:1434. [PMID: 28824568 PMCID: PMC5539551 DOI: 10.3389/fmicb.2017.01434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae). These variations occur in relation to the type of sediment (clays versus carbonate-rich) and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.
Collapse
Affiliation(s)
- Jessica M Labonté
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Department of Marine Biology, Texas A&M University at Galveston, GalvestonTX, United States
| | - Mark A Lever
- Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark.,Environmental Systems Science, ETH ZürichZurich, Switzerland
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California, Los AngelesCA, United States
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
249
|
Yu T, Liang Q, Niu M, Wang F. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:374-382. [PMID: 28419783 DOI: 10.1111/1758-2229.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The archaeal phylum Bathyarchaeota, which is composed of a large number of diverse lineages, is widespread and abundant in marine sediments. Environmental factors that control the distribution, abundance and evolution of this largely diversified archaeal phylum are currently unclear. In this study, a new pair of specific primers that target the major marine subgroups of bathyarchaeotal 16S rRNA genes was designed and evaluated to investigate the distribution and abundance of Bathyarchaeota in marine sediments. The abundance of Bathyarchaeota along two sediment cores from the deep-sea sediments of South China Sea (SCS, each from the Dongsha and Shenhu area) was determined. A strong correlation was found between the bathyarchaeotal abundance and the content of total organic carbon (TOC), suggesting an important role of Bathyarchaeota in organic matter remineralisation in the sediments of SCS. Furthermore, diversity analysis revealed that subgroups Bathy-2, Bathy-8 and Bathy-10 were dominant bathyarchaeotal members of the deep-sea sediments in the SCS. Bathy-8 was found predominantly within the reducing and deeper sediment layers, while Bathy-10 occurred preferentially in the oxidizing and shallower sediment layers. Our study lays a foundation for the further understanding of the ecological functions and niche differentiation of the important but not well-understood sedimentary archaeal group.
Collapse
Affiliation(s)
- Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyong Liang
- Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510070, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
250
|
McCully AL, LaSarre B, McKinlay JB. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism. Environ Microbiol 2017; 19:3538-3550. [PMID: 28654212 DOI: 10.1111/1462-2920.13847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
Abstract
Nutrient cross-feeding can stabilize microbial mutualisms, including those important for carbon cycling in nutrient-limited anaerobic environments. It remains poorly understood how nutrient limitation within natural environments impacts mutualist growth, cross-feeding levels and ultimately mutualism dynamics. We examined the effects of nutrient limitation within a mutualism using theoretical and experimental approaches with a synthetic anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli and R. palustris resemble an anaerobic food web by cross-feeding essential carbon (organic acids) and nitrogen (ammonium) respectively. Organic acid cross-feeding stemming from E. coli fermentation can continue in a growth-independent manner during nitrogen limitation, while ammonium cross-feeding by R. palustris is growth-dependent. When ammonium cross-feeding was limited, coculture trends changed yet coexistence persisted under both homogenous and heterogenous conditions. Theoretical modelling indicated that growth-independent fermentation was crucial to sustain cooperative growth under conditions of low nutrient exchange. In contrast to stabilization at most cell densities, growth-independent fermentation inhibited mutualistic growth when the E. coli cell density was adequately high relative to that of R. palustris. Thus, growth-independent fermentation can conditionally stabilize or destabilize a mutualism, indicating the potential importance of growth-independent metabolism for nutrient-limited mutualistic communities.
Collapse
Affiliation(s)
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|