201
|
Huang YY, Lu H, Liu S, Droz-Rosario R, Shen Z. Requirement of mouse BCCIP for neural development and progenitor proliferation. PLoS One 2012; 7:e30638. [PMID: 22292003 PMCID: PMC3265516 DOI: 10.1371/journal.pone.0030638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022] Open
Abstract
Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors.
Collapse
Affiliation(s)
- Yi-Yuan Huang
- The Cancer Institute of New Jersey, Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Huimei Lu
- The Cancer Institute of New Jersey, Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Stephany Liu
- The Cancer Institute of New Jersey, Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Roberto Droz-Rosario
- The Cancer Institute of New Jersey, Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Zhiyuan Shen
- The Cancer Institute of New Jersey, Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
202
|
Lee Y, Shull ERP, Frappart PO, Katyal S, Enriquez-Rios V, Zhao J, Russell HR, Brown EJ, McKinnon PJ. ATR maintains select progenitors during nervous system development. EMBO J 2012; 31:1177-89. [PMID: 22266795 DOI: 10.1038/emboj.2011.493] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/19/2011] [Indexed: 01/09/2023] Open
Abstract
The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR-Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.
Collapse
Affiliation(s)
- Dragony Fu
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer A. Calvo
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leona D Samson
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
204
|
A distinct response to endogenous DNA damage in the development of Nbs1-deficient cortical neurons. Cell Res 2012; 22:859-72. [PMID: 22212482 PMCID: PMC3343649 DOI: 10.1038/cr.2012.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microcephaly is a clinical characteristic for human nijmegen breakage syndrome (NBS, mutated in NBS1 gene), a chromosomal instability syndrome. However, the underlying molecular pathogenesis remains elusive. In the present study, we demonstrate that neuronal disruption of NBS (Nbn in mice) causes microcephaly characterized by the reduction of cerebral cortex and corpus callosum, recapitulating neuronal anomalies in human NBS. Nbs1-deficient neocortex shows accumulative endogenous DNA damage and defective activation of Ataxia telangiectasia and Rad3-related (ATR)-Chk1 pathway upon DNA damage. Notably, in contrast to massive apoptotic cell death in Nbs1-deficient cerebella, activation of p53 leads to a defective neuroprogenitor proliferation in neocortex, likely via specific persistent induction of hematopoietic zinc finger (Hzf) that preferentially promotes p53-mediated cell cycle arrest whilst inhibiting apoptosis. Moreover, Trp53 mutations substantially rescue the microcephaly in Nbs1-deficient mice. Thus, the present results reveal the first clue that developing neurons at different regions of brain selectively respond to endogenous DNA damage, and underscore an important role for Nbs1 in neurogenesis.
Collapse
|
205
|
Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet 2011; 7:e1002405. [PMID: 22174697 PMCID: PMC3234220 DOI: 10.1371/journal.pgen.1002405] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/17/2011] [Indexed: 12/11/2022] Open
Abstract
Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR–deficient Csa−/− and Csb−/− CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER–deficient Xpa−/− and Xpc−/− XP mice, but also occurred in XpdXPCS mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR–deficient mice are compatible with focal dysmyelination in CS patients. Both TCR–deficient and NER–deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa−/−, Csb−/−) or highly sporadic (Xpa−/−, Xpc−/−) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR–deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa−/− and Csb−/− TCR–deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR–deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival. Metabolism produces reactive oxygen species that damage our DNA and other cellular components, and as such it contributes to the aging process, including neuronal degeneration. Accordingly, genetic disorders associated with impaired DNA damage repair are frequently associated with premature onset of aging pathology in a variety of tissues, including the brain. This is well-illustrated by the progeroid DNA repair syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS), in which patients suffer from defects in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively. We have used a panel of XP and CS mice (including conditional double-mutant animals) to systematically investigate the impact of NER and TCR defects on neuronal degeneration. We have shown that, whereas a TCR defect causes white matter pathology, a NER defect can result in age related cumulative loss of neurons. These findings well match the neuropathology observed in CS and XP patients, underscoring the impact of spontaneous DNA damage in the onset of neuronal aging. Therefore, the XP and CS mouse models serve as valuable tools to delineate intervention strategies that combat age-associated pathology of the brain.
Collapse
|
206
|
Cardinale A, Racaniello M, Saladini S, De Chiara G, Mollinari C, de Stefano MC, Pocchiari M, Garaci E, Merlo D. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. J Biol Chem 2011; 287:2618-31. [PMID: 22139836 DOI: 10.1074/jbc.m111.276550] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulation of DNA damage and deficiency in DNA repair potentially contribute to the progressive neuronal loss in neurodegenerative disorders, including Alzheimer disease (AD). In multicellular eukaryotes, double strand breaks (DSBs), the most lethal form of DNA damage, are mainly repaired by the nonhomologous end joining pathway, which relies on DNA-PK complex activity. Both the presence of DSBs and a decreased end joining activity have been reported in AD brains, but the molecular player causing DNA repair dysfunction is still undetermined. β-Amyloid (Aβ), a potential proximate effector of neurotoxicity in AD, might exert cytotoxic effects by reactive oxygen species generation and oxidative stress induction, which may then cause DNA damage. Here, we show that in PC12 cells sublethal concentrations of aggregated Aβ(25-35) inhibit DNA-PK kinase activity, compromising DSB repair and sensitizing cells to nonlethal oxidative injury. The inhibition of DNA-PK activity is associated with down-regulation of the catalytic subunit DNA-PK (DNA-PKcs) protein levels, caused by oxidative stress and reversed by antioxidant treatment. Moreover, we show that sublethal doses of Aβ(1-42) oligomers enter the nucleus of PC12 cells, accumulate as insoluble oligomeric species, and reduce DNA-PK kinase activity, although in the absence of oxidative stress. Overall, these findings suggest that Aβ mediates inhibition of the DNA-PK-dependent nonhomologous end joining pathway contributing to the accumulation of DSBs that, if not efficiently repaired, may lead to the neuronal loss observed in AD.
Collapse
Affiliation(s)
- Alessio Cardinale
- Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome 00166, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
McKinnon PJ. ATM and the molecular pathogenesis of ataxia telangiectasia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:303-21. [PMID: 22035194 DOI: 10.1146/annurev-pathol-011811-132509] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ataxia telangiectasia (A-T) results from inactivation of the ATM protein kinase. DNA-damage signaling is a prime function of this kinase, although other roles have been ascribed to ATM. Identifying the primary ATM function(s) for tissue homeostasis is key to understanding how these functions contribute to the prevention of A-T-related pathology. In this regard, because A-T is primarily a neurodegenerative disease, it is essential to understand how ATM loss results in degenerative effects on the nervous system. In addition to delineating the biochemistry and cell biology of ATM, important insights into the molecular basis for neurodegeneration in A-T come from a spectrum of phenotypically related neurodegenerative diseases that directly result from DNA-repair deficiency. Together with A-T, these syndromes indicate that neurodegeneration can be caused by the failure to appropriately respond to DNA damage. This review focuses on defective DNA-damage signaling as the underlying cause of A-T.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
208
|
Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M. Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 2011; 122:481-93. [PMID: 21915754 DOI: 10.1007/s00401-011-0869-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 12/18/2022]
Abstract
Neurons are very sensitive to DNA damage induced by endogenous and exogenous genotoxic agents, as defective DNA repair can lead to neurodevelopmental disorders, brain tumors and neurodegenerative diseases with severe clinical manifestations. Understanding the impact of DNA damage/repair mechanisms on the nuclear organization, particularly on the regulation of transcription and cell cycle, is essential to know the pathophysiology of defective DNA repair syndromes. In this work, we study the nuclear architecture and spatiotemporal organization of chromatin compartments involved in the DNA damage response (DDR) in rat sensory ganglion neurons exposed to X-ray irradiation (IR). We demonstrate that the neuronal DDR involves the formation of two categories of DNA-damage processing chromatin compartments: transient, disappearing within the 1 day post-IR, and persistent, where unrepaired DNA is accumulated. Both compartments concentrate components of the DDR pathway, including γH2AX, pATM and 53BP1. Furthermore, DNA damage does not induce neuronal apoptosis but triggers the G0-G1 cell cycle phase transition, which is mediated by the activation of the ATM-p53 pathway and increased protein levels of p21 and cyclin D1. Moreover, the run on transcription assay reveals a severe inhibition of transcription at 0.5 h post-IR, followed by its rapid recovery over the 1 day post-IR in parallel with the progression of DNA repair. Therefore, the response of healthy neurons to DNA damage involves a transcription- and cell cycle-dependent but apoptosis-independent process. Furthermore, we propose that the segregation of unrepaired DNA in a few persistent chromatin compartments preserves genomic stability of undamaged DNA and the global transcription rate in neurons.
Collapse
Affiliation(s)
- Iñigo Casafont
- Departamento de Anatomía y Biología Celular, "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria, IFIMAV, Santander, Spain
| | | | | | | | | |
Collapse
|
209
|
MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 2011; 13:1325-34. [PMID: 21947081 DOI: 10.1038/ncb2342] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/11/2011] [Indexed: 12/13/2022]
Abstract
Primary microcephaly 1 is a neurodevelopmental disorder caused by mutations in the MCPH1 gene, whose product MCPH1 (also known as microcephalin and BRIT1) regulates DNA-damage response. Here we show that Mcph1 disruption in mice results in primary microcephaly, mimicking human MCPH1 symptoms, owing to a premature switching of neuroprogenitors from symmetric to asymmetric division. MCPH1-deficiency abrogates the localization of Chk1 to centrosomes, causing premature Cdk1 activation and early mitotic entry, which uncouples mitosis and the centrosome cycle. This misorients the mitotic spindle alignment and shifts the division plane of neuroprogenitors, to bias neurogenic cell fate. Silencing Cdc25b, a centrosome substrate of Chk1, corrects MCPH1-deficiency-induced spindle misalignment and rescues the premature neurogenic production in Mcph1-knockout neocortex. Thus, MCPH1, through its function in the Chk1-Cdc25-Cdk1 pathway to couple the centrosome cycle with mitosis, is required for precise mitotic spindle orientation and thereby regulates the progenitor division mode to maintain brain size.
Collapse
|
210
|
Caldecott KW, Bohr VA, McKinnon PJ. 3rd International Genome Dynamics in Neuroscience Conference: "DNA repair and neurological disease". Mech Ageing Dev 2011; 132:353-4. [PMID: 21820005 DOI: 10.1016/j.mad.2011.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
211
|
Abstract
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN USA
| | | |
Collapse
|
212
|
McNeill DR, Lin PC, Miller MG, Pistell PJ, de Souza-Pinto NC, Fishbein KW, Spencer RG, Liu Y, Pettan-Brewer C, Ladiges WC, Wilson DM. XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Res 2011; 39:7992-8004. [PMID: 21737425 PMCID: PMC3185405 DOI: 10.1093/nar/gkr280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated—weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity—HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.
Collapse
Affiliation(s)
- Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Ramkumar HL, Brooks BP, Cao X, Tamura D, DiGiovanna JJ, Kraemer KH, Chan CC. Ophthalmic manifestations and histopathology of xeroderma pigmentosum: two clinicopathological cases and a review of the literature. Surv Ophthalmol 2011; 56:348-61. [PMID: 21684361 PMCID: PMC3137889 DOI: 10.1016/j.survophthal.2011.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/24/2011] [Accepted: 03/01/2011] [Indexed: 11/22/2022]
Abstract
Xeroderma pigmentosum is a rare, autosomal recessive disease caused by a defect in DNA repair. Patients with xeroderma pigmentosum often have cutaneous and ocular sun sensitivity, freckle-like skin pigmentation, multiple skin and eye cancers, and, in some patients, progressive neurodegeneration. Xeroderma pigmentosum predominantly affects the ultraviolet (UV) exposed ocular surface, resulting in eyelid atrophy and cancers, corneal dryness, exposure keratopathy, and conjunctival tumors. We report the clinical history and ocular pathology of two white women who had xeroderma pigmentosum with neurological degeneration: Case 1 (died at age 44 years) and Case 2 (died at age 45 years). Case 1, with mutations in the XPA gene, had more than 180 basal cell carcinomas of her skin and eyelids and died from complications of neurodegeneration. Case 2, with mutations in the XPD gene, was sun-protected and had three skin cancers. She died from complications of neurodegeneration and pneumonia. Both patients had bilateral pinguecula, corneal pannus, and exposure keratopathy. Case 1 had bilateral optic atrophy, and Case 2 had bilateral peripheral retinal pigmentary degeneration. Both patients developed retinal gliosis. The ophthalmic manifestations and pathology of xeroderma pigmentosum are discussed and reviewed with respect to this report and other cases in the literature. These cases illustrate the role of DNA repair in protection of the eyes from UV damage and neurodegeneration of the retina.
Collapse
Affiliation(s)
- Hema L. Ramkumar
- Immunopathology Section, Laboratory of Immunology, Chevy Chase, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 20611, USA
| | - Brian P. Brooks
- Unit on Pediatric, Developmental and Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch; National Eye Institute, Peking University, Beijing, China
| | - Xiaoguang Cao
- Immunopathology Section, Laboratory of Immunology, Chevy Chase, MD, USA
- Department of Ophthalmology, People’s Hospital, Peking University, Beijing, China
| | - Deborah Tamura
- DNA Repair Section, Dermatology Branch, National Cancer Institute; National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - John J. DiGiovanna
- DNA Repair Section, Dermatology Branch, National Cancer Institute; National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Dermatology Branch, National Cancer Institute; National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, Chevy Chase, MD, USA
| |
Collapse
|
214
|
Opposite modifying effects of HR and NHEJ deficiency on cancer risk in Ptc1 heterozygous mouse cerebellum. Oncogene 2011; 30:4740-9. [PMID: 21602895 DOI: 10.1038/onc.2011.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterozygous Patched1 (Ptc1(+/-)) mice are prone to medulloblastoma (MB), and exposure of newborn mice to ionizing radiation dramatically increases the frequency and shortens the latency of MB. In Ptc1(+/-) mice, MB is characterized by loss of the normal remaining Ptc1 allele, suggesting that genome rearrangements may be key events in MB development. Recent evidence indicates that brain tumors may be linked to defects in DNA-damage repair processes, as various combinations of targeted deletions in genes controlling cell-cycle checkpoints, apoptosis and DNA repair result in MB in mice. Non-homologous end joining (NHEJ) and homologous recombination (HR) contribute to genome stability, and deficiencies in either pathway predispose to genome rearrangements. To test the role of defective HR or NHEJ in tumorigenesis, control and irradiated Ptc1(+/-) mice with two, one or no functional Rad54 or DNA-protein kinase catalytic subunit (DNA-PKcs) alleles were monitored for MB development. We also examined the effect of Rad54 or DNA-PKcs deletion on the processing of endogenous and radiation-induced double-strand breaks (DSBs) in neural precursors of the developing cerebellum, the cells of origin of MB. We found that, although HR and NHEJ collaborate in protecting cells from DNA damage and apoptosis, they have opposite roles in MB tumorigenesis. In fact, although Rad54 deficiency increased both spontaneous and radiation-induced MB development, DNA-PKcs disruption suppressed MB tumorigenesis. Together, our data provide the first evidence that Rad54-mediated HR in vivo is important for suppressing tumorigenesis by maintaining genomic stability.
Collapse
|
215
|
Chen M, Pereira-Smith OM, Tominaga K. Loss of the chromatin regulator MRG15 limits neural stem/progenitor cell proliferation via increased expression of the p21 Cdk inhibitor. Stem Cell Res 2011; 7:75-88. [PMID: 21621175 DOI: 10.1016/j.scr.2011.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/24/2011] [Accepted: 04/15/2011] [Indexed: 01/01/2023] Open
Abstract
Chromatin regulation is crucial for many biological processes such as transcriptional regulation, DNA replication, and DNA damage repair. We have found that it is also important for neural stem/progenitor cell (NSC) function and neurogenesis. Here, we demonstrate that expression of the cyclin-dependent kinase inhibitor p21 is specifically up-regulated in Mrg15 deficient NSCs. Knockdown of p21 expression by p21 shRNA results in restoration of cell proliferation. This indicates that p21 is directly involved in the growth defects observed in Mrg15 deficient NSCs. Activated p53 accumulates in Mrg15 deficient NSCs and this most likely accounts for the up-regulation of p21 expression in the cells. We observed decreased p53 and p21 levels and a concomitant increase in the percentage of BrdU positive cells in Mrg15 null cultures following expression of p53 shRNA. DNA damage foci, as indicated by immunostaining for γH2AX and 53BP1, are detectable in a sub-population of Mrg15 deficient NSC cultures under normal growing conditions and the majority of p21-positive cells are also positive for 53BP1 foci. Furthermore, Mrg15 deficient NSCs exhibit severe defects in DNA damage response following ionizing radiation. Our observations highlight the importance of chromatin regulation and DNA damage response in NSC function and maintenance.
Collapse
Affiliation(s)
- Meizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | |
Collapse
|
216
|
Chan F, Hauswirth WW, Wensel TG, Wilson JH. Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice. Nucleic Acids Res 2011; 39:5955-66. [PMID: 21478169 PMCID: PMC3152346 DOI: 10.1093/nar/gkr196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dominant mutations in the rhodopsin gene, which is expressed in rod photoreceptor cells, are a major cause of the hereditary-blinding disease, autosomal dominant retinitis pigmentosa. Therapeutic strategies designed to edit such mutations will likely depend on the introduction of double-strand breaks and their subsequent repair by homologous recombination or non-homologous end joining. At present, the break repair capabilities of mature neurons, in general, and rod cells, in particular, are undefined. To detect break repair, we generated mice that carry a modified human rhodopsin-GFP fusion gene at the normal mouse rhodopsin locus. The rhodopsin-GFP gene carries tandem copies of exon 2, with an ISceI recognition site situated between them. An ISceI-induced break can be repaired either by non-homologous end joining or by recombination between the duplicated segments, generating a functional rhodopsin-GFP gene. We introduced breaks using recombinant adeno-associated virus to transduce the gene encoding ISceI nuclease. We found that virtually 100% of transduced rod cells were mutated at the ISceI site, with ∼85% of the genomes altered by end joining and ∼15% by the single-strand annealing pathway of homologous recombination. These studies establish that the genomes of terminally differentiated rod cells can be efficiently edited in living organisms.
Collapse
Affiliation(s)
- Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
217
|
Abstract
Inflammation of the central nervous system is a prominent feature in many childhood neurodegenerative conditions, with various studies demonstrating the upregulation of the innate and adaptive immune system. Recent evidence also suggests that this inflammatory process can contribute to further neurodegeneration. Furthermore, immunosuppression in mouse models of a few lysosomal storage disorders has demonstrated that attenuation of this immune response can influence the clinical and neuropathological progression. However, there are significant challenges before this finding translates to patient care. Treating inflammation in neurodegenerative conditions requires the identification of the time point when inflammation becomes pathogenic, after which the safest therapeutic strategies are required to target the various components and confounders of inflammation. Nevertheless, as the progress made towards effective gene-, cellular-, and enzyme-based therapy in most of these disorders has been disappointing, treating pathogenic inflammation may offer the clinician another therapeutic strategy in managing these devastating disorders.
Collapse
Affiliation(s)
- Ming Lim
- Evelina Children's Hospital, Guy's and St Thomas' Hospital, London, UK.
| |
Collapse
|
218
|
Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci 2011; 36:262-71. [PMID: 21353781 DOI: 10.1016/j.tibs.2011.01.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/09/2023]
Abstract
The termini of DNA strand breaks induced by internal and external factors often require processing before missing nucleotides can be replaced by DNA polymerases and the strands rejoined by DNA ligases. Polynucleotide kinase/phosphatase (PNKP) serves a crucial role in the repair of DNA strand breaks by catalyzing the restoration of 5'-phosphate and 3'-hydroxyl termini. It participates in several DNA repair pathways through interactions with other DNA repair proteins, notably XRCC1 and XRCC4. Recent studies have highlighted the physiological importance of PNKP in maintaining the genomic stability of normal tissues, particularly developing neural cells, as well as enhancing the resistance of cancer cells to genotoxic therapeutic agents.
Collapse
|
219
|
Siebzehnrubl FA, Reynolds BA, Vescovi A, Steindler DA, Deleyrolle LP. The origins of glioma: E Pluribus Unum? Glia 2011; 59:1135-47. [DOI: 10.1002/glia.21143] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/17/2010] [Indexed: 01/19/2023]
|
220
|
Wood LM, Sankar S, Reed RE, Haas AL, Liu LF, McKinnon P, Desai SD. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One 2011; 6:e16422. [PMID: 21298066 PMCID: PMC3027683 DOI: 10.1371/journal.pone.0016422] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/15/2010] [Indexed: 01/12/2023] Open
Abstract
Ataxia Telangiectasia (A-T) is an inherited immunodeficiency disorder wherein mutation of the ATM kinase is responsible for the A-T pathogenesis. Although the precise role of ATM in A-T pathogenesis is still unclear, its function in responding to DNA damage has been well established. Here we demonstrate that in addition to its role in DNA repair, ATM also regulates proteasome-mediated protein turnover through suppression of the ISG15 pathway. This conclusion is based on three major pieces of evidence: First, we demonstrate that proteasome-mediated protein degradation is impaired in A-T cells. Second, we show that the reduced protein turnover is causally linked to the elevated expression of the ubiquitin-like protein ISG15 in A-T cells. Third, we show that expression of the ISG15 is elevated in A-T cells derived from various A-T patients, as well as in brain tissues derived from the ATM knockout mice and A-T patients, suggesting that ATM negatively regulates the ISG15 pathway. Our current findings suggest for the first time that proteasome-mediated protein degradation is impaired in A-T cells due to elevated expression of the ISG15 conjugation pathway, which could contribute to progressive neurodegeneration in A-T patients.
Collapse
Affiliation(s)
- Laurence M. Wood
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Surendran Sankar
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
| | - Ryan E. Reed
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
| | - Arthur L. Haas
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
| | - Leroy F. Liu
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
| | - Peter McKinnon
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Shyamal D. Desai
- Department of Biochemistry and Molecular Biology, Louisiana State University of Health Sciences Center-School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
221
|
de Waard MC, van der Pluijm I, Zuiderveen Borgesius N, Comley LH, Haasdijk ED, Rijksen Y, Ridwan Y, Zondag G, Hoeijmakers JHJ, Elgersma Y, Gillingwater TH, Jaarsma D. Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol 2010; 120:461-75. [PMID: 20602234 PMCID: PMC2923326 DOI: 10.1007/s00401-010-0715-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/25/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
Degeneration of motor neurons contributes to senescence-associated loss of muscle function and underlies human neurodegenerative conditions such as amyotrophic lateral sclerosis and spinal muscular atrophy. The identification of genetic factors contributing to motor neuron vulnerability and degenerative phenotypes in vivo are therefore important for our understanding of the neuromuscular system in health and disease. Here, we analyzed neurodegenerative abnormalities in the spinal cord of progeroid Ercc1Δ/− mice that are impaired in several DNA repair systems, i.e. nucleotide excision repair, interstrand crosslink repair, and double strand break repair. Ercc1Δ/− mice develop age-dependent motor abnormalities, and have a shortened life span of 6–7 months. Pathologically, Ercc1Δ/− mice develop widespread astrocytosis and microgliosis, and motor neuron loss and denervation of skeletal muscle fibers. Degenerating motor neurons in many occasions expressed genotoxic-responsive transcription factors p53 or ATF3, and in addition, displayed a range of Golgi apparatus abnormalities. Furthermore, Ercc1Δ/− motor neurons developed perikaryal and axonal intermediate filament abnormalities reminiscent of cytoskeletal pathology observed in aging spinal cord. Our findings support the notion that accumulation of DNA damage and genotoxic stress may contribute to neuronal aging and motor neuron vulnerability in human neuromuscular disorders.
Collapse
|
222
|
Cameroni E, Stettler K, Suter B. On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations. Cell Div 2010; 5:24. [PMID: 20840796 PMCID: PMC2949746 DOI: 10.1186/1747-1028-5-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/28/2022] Open
Abstract
Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Elisabetta Cameroni
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
223
|
|
224
|
Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. ACTA ACUST UNITED AC 2010; 189:23-39. [PMID: 20368616 PMCID: PMC2854379 DOI: 10.1083/jcb.200912163] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two domains of centrosomal protein CDK5RAP2, CNN1 and CNN2, link centrosomes to mitotic spindle poles. CNN1 lacking centrosomes are unable to recruit pericentriolar matrix components that mediate attachment to spindle poles. The centrosomal protein, CDK5RAP2, is mutated in primary microcephaly, a neurodevelopmental disorder characterized by reduced brain size. The Drosophila melanogaster homologue of CDK5RAP2, centrosomin (Cnn), maintains the pericentriolar matrix (PCM) around centrioles during mitosis. In this study, we demonstrate a similar role for CDK5RAP2 in vertebrate cells. By disrupting two evolutionarily conserved domains of CDK5RAP2, CNN1 and CNN2, in the avian B cell line DT40, we find that both domains are essential for linking centrosomes to mitotic spindle poles. Although structurally intact, centrosomes lacking the CNN1 domain fail to recruit specific PCM components that mediate attachment to spindle poles. Furthermore, we show that the CNN1 domain enforces cohesion between parental centrioles during interphase and promotes efficient DNA damage–induced G2 cell cycle arrest. Because mitotic spindle positioning, asymmetric centrosome inheritance, and DNA damage signaling have all been implicated in cell fate determination during neurogenesis, our findings provide novel insight into how impaired CDK5RAP2 function could cause premature depletion of neural stem cells and thereby microcephaly.
Collapse
Affiliation(s)
- Alexis R Barr
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, England, UK
| | | | | |
Collapse
|
225
|
DNA-PK promotes the survival of young neurons in the embryonic mouse retina. Cell Death Differ 2010; 17:1697-706. [PMID: 20448641 DOI: 10.1038/cdd.2010.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Programmed cell death is a crucial process in neural development that affects mature neurons and glial cells, as well as proliferating precursors and recently born neurons at earlier stages. However, the regulation of the early phase of neural cell death and its function remain relatively poorly understood. In mouse models defective in homologous recombination or nonhomologous end-joining (NHEJ), which are both DNA double-strand break (DSB) repair pathways, there is massive cell death during neural development, even leading to embryonic lethality. These observations suggest that natural DSBs occur frequently in the developing nervous system. In this study, we have found that several components of DSB repair pathways are activated in the developing mouse retina at stages that coincide with the onset of neurogenesis. In short-term organotypic retinal cultures, we confirmed that the repair pathways can be modulated pharmacologically. Indeed, inhibiting the DNA-dependent protein kinase (DNA-PK) catalytic subunit, which is involved in NHEJ, with NU7026 increased caspase-dependent cell death and selectively reduced the neuron population. This observation concurs with an increase in the number of apoptotic neurons found after NU7026 treatment, as also observed in the embryonic scid mouse retina, a mutant that lacks DNA-PK catalytic subunit activity. Therefore, our results implicate the generation of DSB and DNA-PK-mediated repair in neurogenesis in the developing retina.
Collapse
|
226
|
Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Allen K, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010; 42:245-9. [PMID: 20118933 PMCID: PMC2835984 DOI: 10.1038/ng.526] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/23/2009] [Indexed: 12/18/2022]
Abstract
Maintenance of DNA integrity is crucial for all cell types, but neurons are particularly sensitive to mutations in DNA repair genes, which lead to both abnormal development and neurodegeneration. We describe a previously unknown autosomal recessive disease characterized by microcephaly, early-onset, intractable seizures and developmental delay (denoted MCSZ). Using genome-wide linkage analysis in consanguineous families, we mapped the disease locus to chromosome 19q13.33 and identified multiple mutations in PNKP (polynucleotide kinase 3'-phosphatase) that result in severe neurological disease; in contrast, a splicing mutation is associated with more moderate symptoms. Unexpectedly, although the cells of individuals carrying this mutation are sensitive to radiation and other DNA-damaging agents, no such individual has yet developed cancer or immunodeficiency. Unlike other DNA repair defects that affect humans, PNKP mutations universally cause severe seizures. The neurological abnormalities in individuals with MCSZ may reflect a role for PNKP in several DNA repair pathways.
Collapse
Affiliation(s)
- Jun Shen
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Edward C. Gilmore
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christine A. Marshall
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Haddadin
- Department of Pathology, Cytogenetics Laboratory, Al-Bashir Hospital, Ministry of Health, Amman, Jordan
| | - John J. Reynolds
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Wafaa Eyaid
- Genetics & Endocrinology, Department of Pediatrics Mail Code 1510, King Fahad National Guard Hospital, King Abdul Aziz Medical City, Saudi Arabia
| | - Adria Bodell
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Allen
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Bernard S. Chang
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Grix
- Department of Medical Genetics, Kaiser-Permanente Point West Medical Offices, Sacramento, USA
| | - R. Sean Hill
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Meral Topcu
- Hacettepe University, Medical Faculty, Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Section of Pediatric Neurology, Sihhiye 06100, Ankara, Turkey
| | - Keith W. Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - A. James Barkovich
- Department of Radiology, Department of Neurology, and Department of Pediatrics, University of California at San Francisco, San Francisco, CA 94143-0628, USA
| | - Christopher A. Walsh
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
227
|
Hashimoto S, Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum Mol Genet 2009; 18:R224-30. [PMID: 19808800 DOI: 10.1093/hmg/ddp390] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair and also associated with various systemic symptoms. Approximately half of TTD patients exhibit photosensitivity, resulting from the defect in the nucleotide excision repair. Photosensitive TTD is due to mutations in three genes encoding XPB, XPD and p8/TTDA subunits of the DNA repair/transcription factor TFIIH. Mutations in these subunits disturb either the catalytic and/or the regulatory activity of the two XPB, XPD helicase/ATPases and consequently are defective in both, DNA repair and transcription. Moreover, mutations in any of these three TFIIH subunits also disturb the overall architecture of the TFIIH complex and its ability to transactivate certain nuclear receptor-responsive genes, explaining in part, some of the TTD phenotypes.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | | |
Collapse
|
228
|
The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat Neurosci 2009; 12:973-80. [PMID: 19633665 PMCID: PMC2831284 DOI: 10.1038/nn.2375] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
Defective responses to DNA single strand breaks underlie various neurodegenerative diseases. However, the exact role of this repair pathway during the development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor that is critical for the repair of DNA single strand breaks, we found a profound neuropathology that is characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the in vivo link between DNA single strand break repair and neurogenesis and highlight the diverse consequences of specific types of genotoxic stress in the nervous system.
Collapse
|
229
|
|