201
|
Pei P, Chen Y, Sun C, Fan Y, Yang Y, Liu X, Lu L, Zhao M, Zhang H, Zhao D, Liu X, Zhang F. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. NATURE NANOTECHNOLOGY 2021; 16:1011-1018. [PMID: 34112994 DOI: 10.1038/s41565-021-00922-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/30/2021] [Indexed: 05/05/2023]
Abstract
Persistent luminescence is not affected by background autofluorescence, and thus holds the promise of high-contrast bioimaging. However, at present, persistent luminescent materials for in vivo imaging are mainly bulk crystals characterized by a non-uniform size and morphology, inaccessible core-shell structures and short emission wavelengths. Here we report a series of X-ray-activated, lanthanide-doped nanoparticles with an extended emission lifetime in the second near-infrared window (NIR-II, 1,000-1,700 nm). Core-shell engineering enables a tunable NIR-II persistent luminescence, which outperforms NIR-II fluorescence in signal-to-noise ratios and the accuracy of in vivo multiplexed encoding and multilevel encryption, as well as in resolving mouse abdominal vessels, tumours and ureters in deep tissue (~2-4 mm), with up to fourfold higher signal-to-noise ratios and a threefold greater sharpness. These rationally designed nanoparticles also allow the high-contrast multiplexed imaging of viscera and multimodal NIR-II persistent luminescence-magnetic resonance-positron emission tomography imaging of murine tumours.
Collapse
Affiliation(s)
- Peng Pei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, Baoding, China.
| | - Xuan Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Lingfei Lu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.
| |
Collapse
|
202
|
Sun Z, Huang H, Zhang R, Yang X, Yang H, Li C, Zhang Y, Wang Q. Activatable Rare Earth Near-Infrared-II Fluorescence Ratiometric Nanoprobes. NANO LETTERS 2021; 21:6576-6583. [PMID: 34304558 DOI: 10.1021/acs.nanolett.1c01962] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rational design of efficient lanthanide-doped down-shifting nanoparticles (DSNPs) has attracted tremendous attention. However, energy loss was inevitable in the multiple Ln3+ doping systems owing to complex energy migration processes. Here, an efficient NaErF4@NaYF4@NaYF4:10%Nd@NaYF4 DSNP was tactfully designed, in which a buffer layer of NaYF4 was modulated to restrict the interionic energy migration between Er3+ and Nd3+; meanwhile, the surface defects were passivated by an outermost layer of NaYF4. Therefore, the as-prepared DSNPs exhibited two intensive near-infrared-II fluorescence emissions of 1525 nm from Er3+ and 1060 nm from doped Nd3+ under 808 nm excitation. Further, a novel ratiometric nanoprobe NaErF4@NaYF4@NaYF4:10%Nd@NaYF4@A1094 was fabricated by coupling an organic dye of A1094 onto the DSNP surface to quench the 1060 nm emission by the efficient Förster resonance energy transfer, while emission at 1525 nm retained. Thereafter, these activatable ratiometric nanoprobes were used for rapid and sensitive detection of peroxynitrite (ONOO-) in vivo.
Collapse
Affiliation(s)
- Ziqiang Sun
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haoying Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rong Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
203
|
Li R, Fang X, Ren J, Chen B, Yuan X, Pan X, Zhang P, Zhang L, Tu D, Fang Z, Chen X, Ju Q. The effect of surface-capping oleic acid on the optical properties of lanthanide-doped nanocrystals. NANOSCALE 2021; 13:12494-12504. [PMID: 34105534 DOI: 10.1039/d0nr08488c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid development of nanotechnology has placed a higher demand on the synthesis of nanomaterials. Benefiting from its capability to keep nanoparticles away from aggregation, oleic acid (OA) has been routinely utilized as a capping agent in the synthesis of monodisperse nanocrystals. To satisfy downstream biological applications, hydrophobic OA capping on the surface should be removed or coated, but scarce attention has been paid to its influence on the optical properties of nanocrystals. In this work, the effect of surface-capping OA has been systematically explored on the optical properties of lanthanide-doped upconversion and downshifting nanocrystals, respectively. The emission intensity and lifetime of emissive lanthanides have been compared between OA-capped and ligand-free nanocrystals either in solid state or in colloidal solution. In solid state, surface-capping OA can significantly influence both emission intensity and radiative transition possibility of emissive lanthanides. However, in colloidal solution, a distinct variation between OA-capped and ligand-free nanocrystals is observed. Besides, the effect of OA on the luminescence dynamics of lanthanides with different energy gaps (emitting level to the next-lower-energy level) has been investigated in colloidal solution. The possible mechanism for the effect of OA on the optical properties of lanthanide-doped nanocrystals has been further proposed.
Collapse
Affiliation(s)
- Renfu Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Du Y, Liu X, Zhu S. Near-Infrared-II Cyanine/Polymethine Dyes, Current State and Perspective. Front Chem 2021; 9:718709. [PMID: 34395384 PMCID: PMC8358314 DOI: 10.3389/fchem.2021.718709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
The development of near-infrared-II (NIR-II) fluorescence imaging has implemented real-time detection of biological cells, tissues and body, monitoring the disease processes and even enabling the direct conduct of surgical procedures. NIR-II fluorescence imaging provides better imaging contrast and penetration depth, benefiting from the reducing photon scattering, light absorption and autofluorescence. The majority of current NIR-II fluorophores suffer from uncontrollable emission wavelength and low quantum yields issues, impeding the clinical translation of NIR-II bioimaging. By lengthening the polymethine chain, tailoring heterocyclic modification and conjugating electron-donating groups, cyanine dyes have been proved to be ideal NIR-II fluorophores with both tunable emission and brightness. However, a simpler and faster method for synthesizing NIR-II dyes with longer wavelengths and better stability still needs to be explored. This minireview will outline the recent progress of cyanine dyes with NIR-II emission, particularly emphasizing their pharmacokinetic enhancement and potential clinical translation.
Collapse
Affiliation(s)
- Yijing Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Xiangping Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
205
|
Selvaggio G, Weitzel M, Oleksiievets N, Oswald TA, Nißler R, Mey I, Karius V, Enderlein J, Tsukanov R, Kruss S. Photophysical properties and fluorescence lifetime imaging of exfoliated near-infrared fluorescent silicate nanosheets. NANOSCALE ADVANCES 2021; 3:4541-4553. [PMID: 36133471 PMCID: PMC9419235 DOI: 10.1039/d1na00238d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 05/04/2023]
Abstract
The layered silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) emit as bulk materials bright and stable fluorescence in the near-infrared (NIR), which is of high interest for (bio)photonics due to minimal scattering, absorption and phototoxicity in this spectral range. So far the optical properties of nanosheets (NS) of these silicates are poorly understood. Here, we exfoliate them into monodisperse nanosheets, report their physicochemical properties and use them for (bio)photonics. The approach uses ball milling followed by tip sonication and centrifugation steps to exfoliate the silicates into NS with lateral size and thickness down to ≈ 16-27 nm and 1-4 nm, respectively. They emit at ≈ 927 nm (EB-NS), 953 nm (HB-NS) and 924 nm (HP-NS), and single NS can be imaged in the NIR. The fluorescence lifetimes decrease from ≈ 30-100 μs (bulk) to 17 μs (EB-NS), 8 μs (HB-NS) and 7 μs (HP-NS), thus enabling lifetime-encoded multicolor imaging both on the microscopic and the macroscopic scale. Finally, remote imaging through tissue phantoms reveals the potential for bioimaging. In summary, we report a procedure to gain monodisperse NIR fluorescent silicate nanosheets, determine their size-dependent photophysical properties and showcase the potential for NIR photonics.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Physical Chemistry II, Bochum University Bochum 44801 Germany
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Milan Weitzel
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Nazar Oleksiievets
- Third Institute of Physics, University of Göttingen Göttingen 37077 Germany
| | - Tabea A Oswald
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Robert Nißler
- Physical Chemistry II, Bochum University Bochum 44801 Germany
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Volker Karius
- Department of Sedimentology and Environmental Geology, Geoscience Center, University of Göttingen Göttingen 37077 Germany
| | - Jörg Enderlein
- Third Institute of Physics, University of Göttingen Göttingen 37077 Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Germany
| | - Roman Tsukanov
- Third Institute of Physics, University of Göttingen Göttingen 37077 Germany
| | - Sebastian Kruss
- Physical Chemistry II, Bochum University Bochum 44801 Germany
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems Duisburg 47057 Germany
| |
Collapse
|
206
|
de Oliveira Lima K, Dos Santos LF, Galvão R, Tedesco AC, de Souza Menezes L, Gonçalves RR. Single Er 3+, Yb 3+: KGd 3F 10 Nanoparticles for Nanothermometry. Front Chem 2021; 9:712659. [PMID: 34368084 PMCID: PMC8333619 DOI: 10.3389/fchem.2021.712659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Among several optical non-contact thermometry methods, luminescence thermometry is the most versatile approach. Lanthanide-based luminescence nanothermometers may exploit not only downshifting, but also upconversion (UC) mechanisms. UC-based nanothermometers are interesting for biological applications: they efficiently convert near-infrared radiation to visible light, allowing local temperatures to be determined through spectroscopic investigation. Here, we have synthesized highly crystalline Er3+, Yb3+ co-doped upconverting KGd3F10 nanoparticles (NPs) by the EDTA-assisted hydrothermal method. We characterized the structure and morphology of the obtained NPs by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and dynamic light scattering. Nonlinear spectroscopic studies with the Er3+, Yb3+: KGd3F10 powder showed intense green and red emissions under excitation at 980 and 1,550 nm. Two- and three-photon processes were attributed to the UC mechanisms under excitation at 980 and 1,550 nm. Strong NIR emission centered at 1,530 nm occurred under low 980-nm power densities. Single NPs presented strong green and red emissions under continuous wave excitation at 975.5 nm, so we evaluated their use as primary nanothermometers by employing the Luminescence Intensity Ratio technique. We determined the temperature felt by the dried NPs by integrating the intensity ratio between the thermally coupled 2H11/2→4I15/2 and 4S3/2→4I15/2 levels of Er3+ ions in the colloidal phase and at the single NP level. The best thermal sensitivity of a single Er3+, Yb3+: KGd3F10 NP was 1.17% at the single NP level for the dry state at 300 K, indicating potential application of this material as accurate nanothermometer in the thermal range of biological interest. To the best of our knowledge, this is the first promising thermometry based on single KGd3F10 particles, with potential use as biomarkers in the NIR-II region.
Collapse
Affiliation(s)
- Karmel de Oliveira Lima
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz Fernando Dos Santos
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo Galvão
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Claudio Tedesco
- Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rogéria Rocha Gonçalves
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
207
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
208
|
Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A Promising NIR-II Fluorescent Sensor for Peptide-Mediated Long-Term Monitoring of Kidney Dysfunction. Angew Chem Int Ed Engl 2021; 60:15809-15815. [PMID: 33876514 DOI: 10.1002/anie.202103071] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Indexed: 01/06/2023]
Abstract
Kidney disease is usually "silent" at the early stage but can lead to severe kidney failure later on. The development of bioimaging probes with rapid distribution and long-term retention in the kidney is significant for the precise diagnosis of renal diseases. Here, a strategy for the peptide-mediated delivery and long-term accumulation (>48 h) of second near-infrared window (NIR-II) fluorophores into the kidney is demonstrated. It is shown that both the hepatic-cleared organic molecules and fast renal-cleared ultrasmall nanoparticles can be retained in the kidney after conjugation to the peptide with high polarity. Moreover, a ROS-responsive activatable bilateral NIR-II sensor was designed based on the kidney targeting peptide, which enables both in vivo long-term kidney monitoring and in vitro urine analysis. The capability of the peptide-based sensor to detect early kidney injury and report on kidney dysfunctional progression is particularly crucial for chemotherapy regimen optimization and timely renoprotective intervention during medication.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Pei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
209
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
210
|
Liu Y, Zhu X, Wei Z, Feng W, Li L, Ma L, Li F, Zhou J. Customized Photothermal Therapy of Subcutaneous Orthotopic Cancer by Multichannel Luminescent Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008615. [PMID: 34121241 DOI: 10.1002/adma.202008615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a potentially advanced strategy for highly precise cancer treatment. Tumor-microenvironment-activatable agents provide useful tools for PTT, but their photothermal conversion capacities vary and cannot be evaluated in vivo; thus, a general PTT prescription does not work with individual activatable agents. Here, glutathione (GSH)-activatable nanocomposites, silicomolybdate-functionalized NaLuF4 :Yb,Er@NaLuF4 @NaLuF4 :Nd are prepared, for customized PTT of subcutaneous orthotopic cancer. By simultaneously determining intratumoral GSH concentration and the amount of accumulated agent using multiple orthogonal luminescent emissions of nanocomposites, near-infrared absorbance of photothermal conversion agents is evaluated in vivo, based on the optimized irradiating prescriptions (irradiating power density and time) established. This allows customized PTT of each individual case with high efficacy and viability. This work also includes a method for investigating individual intratumoral variation, and the development of the next generation of customized nanomedicine for efficacious PTT of subcutaneous orthotopic cancer.
Collapse
Affiliation(s)
- Yuxin Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
- Department of Biomolecular System, Max-Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| | - Xingjun Zhu
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zheng Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wei Feng
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Luoyuan Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Liyi Ma
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Fuyou Li
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jing Zhou
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
211
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
212
|
Chu B, Wang A, Cheng L, Chen R, Shi H, Song B, Dong F, Wang H, He Y. Ex vivo and in vivo fluorescence detection and imaging of adenosine triphosphate. J Nanobiotechnology 2021; 19:187. [PMID: 34158076 PMCID: PMC8220756 DOI: 10.1186/s12951-021-00930-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ex vivo and in vivo detection and imaging of adenosine triphosphate (ATP) is critically important for the diagnosis and treatment of diseases, which still remains challenges up to present. Results We herein demonstrate that ATP could be fluorescently detected and imaged ex vivo and in vivo. In particular, we fabricate a kind of fluorescent ATP probes, which are made of titanium carbide (TC) nanosheets modified with the ROX-tagged ATP-aptamer (TC/Apt). In the constructed TC/Apt, TC shows superior quenching efficiency against ROX (e.g., ~ 97%). While in the presence of ATP, ROX-tagged aptamer is released from TC surface, leading to the recovery of fluorescence of ROX under the 545-nm excitation. Consequently, a wide dynamic range from 1 μM to 1.5 mM ATP and a high sensitivity with a limit of detection (LOD) down to 0.2 μM ATP can be readily achieved by the prepared TC/Apt. We further demonstrate that the as-prepared TC/Apt probe is feasible for accurate discrimination of ATP in different samples including living cells, body fluids (e.g., mouse serum, mouse urine and human serum) and mouse tumor models. Conclusions Fluorescence detection and imaging of ATP could be readily achieved in living cells, body fluids (e.g., urine and serum), as well as mouse tumor model through a new kind of fluorescent ATP nanoprobes, offering new powerful tools for the treatment of diseases related to abnormal fluctuation of ATP concentration.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00930-4.
Collapse
Affiliation(s)
- Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ajun Wang
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Liang Cheng
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huayi Shi
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Fenglin Dong
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
213
|
Lee G, Mun J, Choi H, Han S, Hahn SK. Multispectral upconversion nanoparticles for near infrared encoding of wearable devices. RSC Adv 2021; 11:21897-21903. [PMID: 35480786 PMCID: PMC9036338 DOI: 10.1039/d1ra03572j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Individual recognition technology such as iris recognition and bar coding has been extensively investigated for non-face-to-face authorization. However, there are still strong unmet needs for facile, rapid, and robust individual recognition. Here, we developed multispectral transparent films of upconversion nanoparticles (UCNPs) for near-infrared (NIR) encoding of wearable devices including contact lenses and patch devices. A multispectral UCNP film in a contact lens showed various luminescence colors of patterns under 980 nm NIR light irradiation and each color could be assigned to a specific code by RGB value analysis. The encoded film of UCNPs in the contact lens was successfully decoded by the RGB value analysis with a charge coupled digital (CCD) camera. Furthermore, the UCNP barcode film could be applied in the form of attachable barcode patches onto various substrates like porcine skin and paper currency. Taken together, we could confirm the feasibility of multispectral UCNP transparent films as a facile individual recognition platform for non-face-to-face authorization. Multispectral transparent films of upconversion nanoparticles are developed for near-infrared encoding of wearable devices including contact lenses and patch devices.![]()
Collapse
Affiliation(s)
- Gibum Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| |
Collapse
|
214
|
Yang K, Liu T, Zhang XD. Bandgap Engineering and Near-Infrared-II Optical Properties of Monolayer MoS 2: A First-Principle Study. Front Chem 2021; 9:700250. [PMID: 34222202 PMCID: PMC8253311 DOI: 10.3389/fchem.2021.700250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The fluorescence-based optical imaging in the second near-infrared region (NIR-II, 1,000-1,700 nm) has broad applications in the biomedical field, but it is still difficult to find new NIR-II fluorescence materials in the two dimension. As a crucial characteristic of the electronic structure, the band structure determines the fundamental properties of two-dimensional materials, such as their optical excitations and electronic transportation. Therefore, we calculated the electronic structures and optical properties of different crystalline phases (1T phase and 2H phase) of pure monolayer MoS2 films and found that the 1T phase has better absorption and thus better fluorescence in the NIR-II window. However, its poor stability makes the 1T-phase MoS2 less useful in vivo bioimaging. By introducing vacancy defects and doping with foreign atoms, we successfully tuned the bandgap of the monolayer 2H-MoS2 and activated it in the NIR-II. Our results show that by engineering the vacancy defects, the bandgap of the 2H phase can be tailored to around 1 eV, and there are three candidates of vacancy structures that exhibit strong absorption in the NIR-II.
Collapse
Affiliation(s)
- Ke Yang
- Department of Physics and Center for Joint Quantum Studies, School of Science, Tianjin University, Tianjin, China
| | - Tianyu Liu
- Department of Physics and Center for Joint Quantum Studies, School of Science, Tianjin University, Tianjin, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
215
|
Feng Q, Zheng W, Pu J, Chen Q, Shao W. NIR-II Upconversion Photoluminescence of Er 3+ Doped LiYF 4 and NaY(Gd)F 4 Core-Shell Nanoparticles. Front Chem 2021; 9:690833. [PMID: 34136466 PMCID: PMC8201074 DOI: 10.3389/fchem.2021.690833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of colloidal nano-materials with high efficiency, stability, and non-toxicity in the near infrared-II range is beneficial for biological diagnosis and therapy. Rare earth doped nanoparticles are ideal luminescent agents for bio-applications in the near infrared-II range due to the abundant energy level distribution. Among them, both excitation and emission range of Er3+ ions can be tuned into second biological window range. Herein, we report the synthesis of ∼15 nm LiYF4, NaYF4, and NaGdF4 nanoparticles doped with Er3+ ions and their core-shell structures. The luminescent properties are compared, showing that Er3+ ions with single-doped LiYF4 and NaYF4 nanoparticles generate stronger luminescence than Er3+ ions with doped NaGdF4, despite the difference in relative intensity at different regions. By epitaxial growth an inert homogeneous protective layer, the surface luminescence of the core-shell structure is further enhanced by about 5.1 times, 6.5 times, and 167.7 times for LiYF4, NaYF4, and NaGdF4, respectively. The excellent luminescence in both visible and NIR range of these core-shell nanoparticles makes them potential candidate for bio-applications.
Collapse
Affiliation(s)
- Qilong Feng
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| | - Wenjing Zheng
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jie Pu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| | - Qiaoli Chen
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| | - Wei Shao
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
216
|
Han S, Yi Z, Zhang J, Gu Q, Liang L, Qin X, Xu J, Wu Y, Xu H, Rao A, Liu X. Photon upconversion through triplet exciton-mediated energy relay. Nat Commun 2021; 12:3704. [PMID: 34140483 PMCID: PMC8211736 DOI: 10.1038/s41467-021-23967-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Exploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay. Compared with gadolinium-based systems, this energy relay is less dependent on excitation power and enhances the emission intensity of Tb3+ by 158-fold. Mechanistic investigations reveal that emission enhancement is attributable to strong coupling between lanthanides and surface molecules, which enables fast triplet generation (<100 ps) and subsequent near-unity triplet transfer efficiency from surface ligands to lanthanides. Moreover, the energy relay approach supports long-distance energy transfer and allows upconversion modulation in microstructures. These findings enhance fundamental understanding of energy transfer at molecule-nanoparticle interfaces and open exciting avenues for developing hybrid, high-performance optical materials.
Collapse
Affiliation(s)
- Sanyang Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiangbin Zhang
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Qifei Gu
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Liangliang Liang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yiming Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, China.
| | - Akshay Rao
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
| |
Collapse
|
217
|
Liu Q, Zhong Y, Su Y, Zhao L, Peng J. Real-Time Imaging of Hepatic Inflammation Using Hydrogen Sulfide-Activatable Second Near-Infrared Luminescent Nanoprobes. NANO LETTERS 2021; 21:4606-4614. [PMID: 34014668 DOI: 10.1021/acs.nanolett.1c00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sensing and visualized monitoring of hydrogen sulfide (H2S) in vivo is crucial to understand its physiological and pathological roles in human health and diseases. Common methods for H2S detection require the destruction of the biosamples and are not suitable to be applied in vivo. In this Communication, we report a "turn-on" second near-infrared (NIR-II) luminescent approach for sensitive, real-time, and in situ H2S detection, which is based on the absorption competition between the H2S-responsive chromophores (compound 1) and the NIR-II luminescent lanthanide nanoparticles. Specifically, the luminescence was suppressed by compound 1 due to the competitive absorption of the incident light. In the presence of H2S, the compound 1 was bleached to recover the luminescence. Thanks to the deep tissue penetration depth and the low absorbance/scattering on biological samples of the NIR-II nanoprobes, the monitoring of the endogenous H2S in lipopolysaccharide-induced liver inflammation was achieved, which is unattainable by the conventional histopathological and serological approaches.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yang Zhong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
218
|
Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A Promising NIR‐II Fluorescent Sensor for Peptide‐Mediated Long‐Term Monitoring of Kidney Dysfunction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Peng Pei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
219
|
Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln 3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021; 20:3531-3578. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
The food safety issue has gradually become the focus of attention in modern society. The presence of food contaminants poses a threat to human health and there are a number of interesting researches on the detection of food contaminants. Upconversion nanoparticles (UCNPs) are superior to other fluorescence materials, considering the benefits of large anti-Stokes shifts, high chemical stability, non-autofluorescence, good light penetration ability, and low toxicity. These properties render UCNPs promising candidates as luminescent labels in biodetection, which provides opportunities as a sensitive, accurate, and rapid detection method. This paper intended to review the research progress of food contaminants detection by UCNPs-based sensors. We have proposed the key criteria for UCNPs in the detection of food contaminants. Additionally, it highlighted the construction process of the UCNPs-based sensors, which includes the synthesis and modification of UCNPs, selection of the recognition elements, and consideration of the detection principle. Moreover, six kinds of food contaminants detected by UCNPs technology in the past 5 years have been summarized and discussed fairly. Last but not least, it is outlined that UCNPs have great potential to be applied in food safety detection and threw new insight into the challenges ahead.
Collapse
Affiliation(s)
- Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
220
|
Wang M, Li H, Huang B, Chen S, Cui R, Sun Z, Zhang M, Sun T. An Ultra-Stable, Oxygen-Supply Nanoprobe Emitting in Near-Infrared-II Window to Guide and Enhance Radiotherapy by Promoting Anti-Tumor Immunity. Adv Healthc Mater 2021; 10:e2100090. [PMID: 33885213 DOI: 10.1002/adhm.202100090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Currently, radiotherapy (RT) is the main method for cancer treatment. However, the hypoxic environment of solid tumors is likely to cause resistance or failure of RT. Moreover, high-dose radiation may cause side effects to surrounding normal tissues. In this study, a new type of nanozyme is developed by doping Mn (II) ions into Ag2 Se quantum dots (QDs) emitting in the second near-infrared window (NIR-II, 1000-1700 nm). Through the catalysis of Mn (II) ions, the nanozymes can trigger the rapid decomposition of H2 O2 and produce O2 . Conjugated with tumor-targeting arginine-glycine-aspartate (RGD) tripeptides and polyethylene glycol (PEG) molecules, the nanozymes are then constructed into in vivo nanoprobes for NIR-II imaging-guided RT of tumors. Owing to the radiosensitive activity of the element Ag, the nanoprobes can promote radiation energy deposition. The specific tumor-targeting and NIR-II emitting abilities of the nanoprobes facilitate the precise tumor localization, which enables precise RT with low side effects. Moreover, their ultra-stability in the living body ensures that the nanoprobes continuously produce oxygen and relieve the hypoxia of tumors to enhance RT efficacy. Guided by real-time and high-clarity imaging, the nanoprobe-mediated RT promotes anti-tumor immunity, which significantly inhibits the growth of tumors or even cures them completely.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology Wuhan 430070 P.R. China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 P.R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P.R. China
| | - Song Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P.R. China
| | - Zhi‐Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 P.R. China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology Wuhan 430070 P.R. China
| |
Collapse
|
221
|
Zheng B, Zhong D, Xie T, Zhou J, Li W, Ilyas A, Lu Y, Zhou M, Deng R. Near-infrared photosensitization via direct triplet energy transfer from lanthanide nanoparticles. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
222
|
Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev 2021; 173:141-163. [PMID: 33774116 DOI: 10.1016/j.addr.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Optical imaging has played a vital role in development of biomedicine and image-guided theragnostic. Nevertheless, the clinical translation of optical molecular imaging for deep-tissue visualization is still limited by poor signal-to-background ratio and low penetration depth owing to light scattering and tissue autofluorescence. Hence, to facilitate precise diagnosis and accurate surgery excision in clinical practices, the responsive optical probes (ROPs) are broadly designed for specific reaction with biological analytes or disease biomarkers via chemical/physical interactions for photoacoustic and second near-infrared fluorescence (NIR-II, 900-1700 nm) fluorescence imaging. Herein, the recent advances in the development of ROPs including molecular design principles, activated mechanisms and treatment responses for photoacoustic and NIR-II fluorescence imaging are reviewed. Furthermore, the present challenges and future perspectives of ROPs for deep-tissue imaging are also discussed.
Collapse
|
223
|
An NIR dual-emitting/absorbing inorganic compact pair: A self-calibrating LRET system for homogeneous virus detection. Biosens Bioelectron 2021; 190:113369. [PMID: 34098357 DOI: 10.1016/j.bios.2021.113369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Many conventional optical biosensing systems use a single responsive signal in the visible light region. This limits their practical applications, as the signal can be readily perturbed by various external environmental factors. Herein, a near-infrared (NIR)-based self-calibrating luminescence resonance energy transfer (LRET) system was developed for background-free detection of analytes in homogeneous sandwich-immunoassays. The inorganic LRET pair was comprised of NIR dual-emitting lanthanide-doped nanoparticles (LnNPs) as donors and NIR-absorbing LnNPs as acceptors, which showed a narrow absorption peak (800 nm) and long-term stability, enabling stable LRET with a built-in self-calibrating signal. Screened single-chain variable fragments (scFvs) were used as target avian influenza virus (AIV)-binding antibodies to increase the LRET efficiency in sandwich-immunoassays. The compact sensor platform successfully detected AIV nucleoproteins with a 0.38 pM limit of detection in buffer solution and 64 clinical samples. Hence, inorganic LnNP pairs may be effective for self-calibrating LRET systems in the background-free NIR region.
Collapse
|
224
|
Maddahfar M, Wen S, Hosseinpour Mashkani SM, Zhang L, Shimoni O, Stenzel M, Zhou J, Fazekas de St Groth B, Jin D. Stable and Highly Efficient Antibody-Nanoparticles Conjugation. Bioconjug Chem 2021; 32:1146-1155. [PMID: 34011146 DOI: 10.1021/acs.bioconjchem.1c00192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional ligands and polymers have frequently been used to yield target-specific bio-nanoconjugates. Herein, we provide a systematic insight into the effect of the chain length of poly(oligo (ethylene glycol) methyl ether acrylate) (POEGMEA) containing polyethylene glycol on the colloidal stability and antibody-conjugation efficiency of nanoparticles. We employed Reversible Addition-Fragmentation Chain Transfer (RAFT) to design diblock copolymers composed of 7 monoacryloxyethyl phosphate (MAEP) units and 6, 13, 35, or 55 OEGMEA units. We find that when the POEGMEA chain is short, the polymer cannot effectively stabilize the nanoparticles, and when the POEGMEA chain is long, the nanoparticles cannot be efficiently conjugated to antibody. In other words, the majority of the carboxylic groups in larger POEGMEA chains are inaccessible to further chemical modification. We demonstrate that the polymer containing 13 OEGMEA units can effectively bind up to 64% of the antibody molecules, while the binding efficiency drops to 50% and 0% for the polymer containing 35 and 55 OEGMEA units. Moreover, flow cytometry assay statistically shows that about 9% of the coupled antibody retained its activity to recognize B220 biomarkers on the B cells. This work suggests a library of stabile, specific, and bioactive lanthanide-doped nanoconjugates for flow cytometry and mass cytometry application.
Collapse
Affiliation(s)
- Mahnaz Maddahfar
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Ramaciotti Facility for Human Systems Biology and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lin Zhang
- School of Chemistry/Cluster for Advanced Macromolecular Design (CAMD) University of New South Wales Kensington, Sydney, New South Wales 2052, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Martina Stenzel
- School of Chemistry/Cluster for Advanced Macromolecular Design (CAMD) University of New South Wales Kensington, Sydney, New South Wales 2052, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
225
|
Jiang H, Li J, Shi C, Ming J, Zhang D, Zhuang R, Guo Z, Zhang X. Versatile fluorinated Pd@Au nanoplates doped with yttrium for tumor theranostics. Biomater Sci 2021; 9:3507-3515. [PMID: 33949459 DOI: 10.1039/d1bm00173f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the emerging modalities of magnetic resonance imaging (MRI), 19F MRI is highly conducive for the specific detection and imaging of deep-seated tumors, with negligible background. However, most 19F MRI probe designs are constructed with organic CF3, which contains rich fluorine atoms, and few of the fluorine-containing groups are equipped with therapeutic function. Herein, we designed a versatile 19F MRI-based theranostic nanoplatform, FY-Pd@Au nano-metallacages (FY-Pd@Au NCs), which not only serve as a 19F MRI/CT/PAI contrast agent, but also produce reactive oxygen species (ROS) by type I photodynamic therapy (PDT) pathway, as well as heat for photothermal therapy (PTT), under the single NIR laser irradiation. Overall, this work successfully built a theranostics nanoplatform based on 19F MRI.
Collapse
Affiliation(s)
- Hailong Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Deliang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
226
|
Kamimura M. Recent Progress of Near-Infrared Fluorescence in vivo Bioimaging in the Second and Third Biological Window. ANAL SCI 2021; 37:691-697. [PMID: 33455967 DOI: 10.2116/analsci.20scr11] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Near-infrared (NIR) fluorescence bioimaging using above to 1000 nm wavelength region is a promising analytical method on visualizing deep tissues. As compared to the short-wavelength ultraviolet (UV: < 400 nm) or visible (VIS: 400 - 700 nm) region, which results in an extremely low absorption or scattering of biomolecules and water in the body, NIR light passes through the tissues. Various fluorescent probes that emit NIR emission in the second (1100 - 1400 nm) or third (1550 - 1800 nm) biological windows have been developed and used for NIR in vivo imaging. Single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth doped ceramic nanoparticles (RED-CNPs), and organic dye-based probes have been proposed by many researchers, and are used to successfully visualize the bloodstream, organs, and disease-affected regions, such as cancer. NIR imaging in the second and third biological windows is an effective analytical method on visualizing deep tissues.
Collapse
Affiliation(s)
- Masao Kamimura
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| |
Collapse
|
227
|
Nexha A, Carvajal JJ, Pujol MC, Díaz F, Aguiló M. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications. NANOSCALE 2021; 13:7913-7987. [PMID: 33899861 DOI: 10.1039/d0nr09150b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of lanthanide-doped non-contact luminescent nanothermometers with accuracy, efficiency and fast diagnostic tools attributed to their versatility, stability and narrow emission band profiles has spurred the replacement of conventional contact thermal probes. The application of lanthanide-doped materials as temperature nanosensors, excited by ultraviolet, visible or near infrared light, and the generation of emissions lying in the biological window regions, I-BW (650 nm-950 nm), II-BW (1000 nm-1350 nm), III-BW (1400 nm-2000 nm) and IV-BW (centered at 2200 nm), are notably growing due to the advantages they present, including reduced phototoxicity and photobleaching, better image contrast and deeper penetration depths into biological tissues. Here, the different mechanisms used in lanthanide ion-doped nanomaterials to sense temperature in these biological windows for biomedical and other applications are summarized, focusing on factors that affect their thermal sensitivity, and consequently their temperature resolution. Comparing the thermometric performance of these nanomaterials in each biological window, we identified the strategies that allow boosting of their sensing properties.
Collapse
Affiliation(s)
- Albenc Nexha
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
228
|
Zhu Z, Sun Y, Ma T, Tian D, Zhu J. Luminescence lifetime imaging of ultra-long room temperature phosphorescence on a smartphone. Anal Bioanal Chem 2021; 413:3291-3297. [PMID: 33772340 DOI: 10.1007/s00216-021-03266-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
Luminescence lifetime imaging plays an important role in distinguishing the luminescence decay rates in time-resolved luminescence imaging. However, traditional imaging instruments used for detecting lifetimes within milliseconds would be time-consuming when imaging ultra-long luminescence lifetimes over subseconds. Herein, we present an accessible and simple optical system for detecting lifetimes of persistent luminescence. A smartphone integrated with a UV LED, a dichroic mirror, and a lens was used for recording the persistent luminescence. With only a few seconds of data acquisition, a luminescence lifetime image could be processed from the video by exponential fitting of the gray level of each pixel to the delay time. Since this approach only requires single excitation, no synchronous control is needed, greatly simplifying the apparatus and saving the cost. The apparatus was successfully used for ultra-long luminescence lifetime imaging of mouse tissue dyed with a persistent luminescence molecule. This miniaturized apparatus exhibits huge potentiality in time-resolved luminescence imaging for luminescence study and biological detection.
Collapse
Affiliation(s)
- Zece Zhu
- Wuhan National Lab for Optoelectronics and Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ye Sun
- Wuhan National Lab for Optoelectronics and Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Teng Ma
- Wuhan National Lab for Optoelectronics and Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Di Tian
- Wuhan National Lab for Optoelectronics and Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Hubei Key Lab of Biomass Fibers and Eco-dyeing & Finishing, Department of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430073, Hubei, China.
| | - Jintao Zhu
- Wuhan National Lab for Optoelectronics and Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
229
|
Sun B, Hettie KS, Zhu S. Near-infrared Fluorophores for Thrombosis Diagnosis and Therapy. ADVANCED THERAPEUTICS 2021; 4:2000278. [PMID: 33997270 PMCID: PMC8115206 DOI: 10.1002/adtp.202000278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Thrombosis is an adverse physiological event wherein the resulting thrombus and thrombus-induced diseases collectively result in high morbidity and mortality rates. Currently, nano-medicines that incorporate fluorophores emitting in the near-infrared-I (NIR-I, 700-900 nm) spectral region into their systems have been adopted to afford thrombosis theranostics. However, several unsolved problems such as limited penetration depth and image quality severely impede further applications of such nano-medicine systems. Fortunately, the ability to incorporate fluorophores emitting in the NIR-II (1000-1700 nm) window into nano-medicine systems can unambiguously identify biological processes with high signal-to-noise, deep tissue penetration depth, and high image resolution. Considering the inherently favorable properties of NIR-II fluorophores, we believe such have enormous potential to quickly become incorporated into nano-medicine systems for thrombosis theranostics. In this review, we i) discuss the development of NIR fluorescence as an imaging modality and fluorescent agents; ii) comprehensively summarize the recent development of NIR-I fluorophore-based nano-medicine systems for thrombosis theranostics; iii) highlight the state-of-the-art NIR-II fluorophores that have been designed for the specific purpose of affording thrombotic diagnosis; iv) speculate on possible forward avenues for the use of NIR-II fluorophores towards thrombosis diagnosis and therapy; and v) discuss the potential for their clinical translation.
Collapse
Affiliation(s)
- Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
230
|
Gong L, Shan X, Zhao XH, Tang L, Zhang XB. Activatable NIR-II Fluorescent Probes Applied in Biomedicine: Progress and Perspectives. ChemMedChem 2021; 16:2426-2440. [PMID: 33780139 DOI: 10.1002/cmdc.202100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/18/2022]
Abstract
With the advantage of inherent responsiveness that can change the spectroscopic signals from "off" to "on" state in responding to targets (e. g. biological analytes/microenvironmental factors), activatable fluorescent probes have attracted extensive attention and made significant progress in the field of bioimaging and biosensing. Due to the high depth of tissue penetration, minimal tissue damage and negligible background signal at longer wavelengths, the development of second near-infrared window (NIR-II) fluorescent materials provides a new opportunity to develop activable fluorescent probes. Here, we summarized properties, advantages and disadvantages of mainly NIR-II fluorophores (such as rare earth-doped nanoparticles, quantum dots, single-walled carbon nanotubes, small molecule dyes, conjugated polymers and gold nanoclusters), then overviewed current role and development of activatable NIR-II fluorescent probes (AFPs) for biomedical applications including biosensing, bioimaging and therapeutic. The potential challenges and perspectives of AFPs in deep-tissue imaging and clinical application are also discussed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiuzhi Shan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xu-Hua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
231
|
Abstract
Detecting fluorescence in the second near-infrared window (NIR-II) up to ∼1,700 nm has emerged as a novel in vivo imaging modality with high spatial and temporal resolution through millimeter tissue depths. Imaging in the NIR-IIb window (1,500-1,700 nm) is the most effective one-photon approach to suppressing light scattering and maximizing imaging penetration depth, but relies on nanoparticle probes such as PbS/CdS containing toxic elements. On the other hand, imaging the NIR-I (700-1,000 nm) or NIR-IIa window (1,000-1,300 nm) can be done using biocompatible small-molecule fluorescent probes including US Food and Drug Administration-approved dyes such as indocyanine green (ICG), but has a caveat of suboptimal imaging quality due to light scattering. It is highly desired to achieve the performance of NIR-IIb imaging using molecular probes approved for human use. Here, we trained artificial neural networks to transform a fluorescence image in the shorter-wavelength NIR window of 900-1,300 nm (NIR-I/IIa) to an image resembling an NIR-IIb image. With deep-learning translation, in vivo lymph node imaging with ICG achieved an unprecedented signal-to-background ratio of >100. Using preclinical fluorophores such as IRDye-800, translation of ∼900-nm NIR molecular imaging of PD-L1 or EGFR greatly enhanced tumor-to-normal tissue ratio up to ∼20 from ∼5 and improved tumor margin localization. Further, deep learning greatly improved in vivo noninvasive NIR-II light-sheet microscopy (LSM) in resolution and signal/background. NIR imaging equipped with deep learning could facilitate basic biomedical research and empower clinical diagnostics and imaging-guided surgery in the clinic.
Collapse
|
232
|
Luo T, Zhou T, Qu J. Lifetime Division Multiplexing by Multilevel Encryption Algorithm. ACS NANO 2021; 15:6257-6265. [PMID: 33625205 DOI: 10.1021/acsnano.0c09177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric, multilevel, switchable, and reversible encryption is realized by algorithm encryption, which plays an important role in encryption technology. Fluorescence lifetime encryption is currently not executed by an algorithm. It is well-known that the short fluorescence lifetime (τ1), long fluorescence lifetime (τ2), amplitude-weighted average fluorescence lifetime (τm), and intensity-weighted average fluorescence lifetime (τi) can be obtained using a double exponential fitting, and then these four lifetime parameters can be considered as four lifetime algorithms. Therefore, we propose that the acquisition of these four fluorescence lifetimes can be regarded as further dividing the lifetime by different algorithms and optimizing lifetime multiplexing. Moreover, the four lifetime algorithms of τ1, τm, τ2, and τi can be switched between each other and can be used to perform asymmetric, multilevel, and reversible lifetime encryption to effectively increase the difficulties of anticounterfeiting.
Collapse
Affiliation(s)
- Teng Luo
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ting Zhou
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
233
|
Ziniuk R, Yakovliev A, Li H, Chen G, Qu J, Ohulchanskyy TY. Real-Time Imaging of Short-Wave Infrared Luminescence Lifetimes for Anti-counterfeiting Applications. Front Chem 2021; 9:659553. [PMID: 33981673 PMCID: PMC8107396 DOI: 10.3389/fchem.2021.659553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Rare-earth doped nanoparticles (RENPs) have been widely used for anti-counterfeiting and security applications due to their light frequency conversion features: they are excited at one wavelength, and they display spectrally narrow and distinguished luminescence peaks either at shorter wavelengths (i.e., frequency/energy upconversion) or at longer wavelengths (frequency/energy downconversion). RENPs with a downconversion (DC) photoluminescence (PL) in short-wave infrared (SWIR) spectral range (~1,000–1,700 nm) have recently been introduced to anti-counterfeiting applications, allowing for multilevel protection based on PL imaging through opaque layers, due to a lesser scattering of SWIR PL emission. However, as the number and spectral positions of the discrete PL bands exhibited by rare-earth ions are well-known, it is feasible to replicate luminescence spectra from RENPs, which results in a limited anti-counterfeiting security. Alternatively, lifetime of PL from RENPs can be used for encoding, as it can be finely tuned in broad temporal range (i.e., from microseconds to milliseconds) by varying type of dopants and their content in RENPs, along with the nanoparticle morphology and size. Nevertheless, the current approach to decoding and imaging the RENP luminescence lifetimes requires multiple steps and is highly time-consuming, precluding practical applications of PL lifetime encoding for anti-counterfeiting. Herein, we report the use of a rapid lifetime determination (RLD) technique to overcome this issue and introduce real-time imaging of SWIR PL lifetime for anti-counterfeiting applications. NaYF4:20% Yb, x% Er (x = 0, 2, 20, 80)@NaYF4 core@shell RENPs were synthesized and characterized, revealing DC PL in SWIR region, with maximum at ~1,530 nm and PL lifetimes ranging from 3.2 to 6 ms. Imaging of the nanoparticles with different lifetimes was performed by the developed time-gated imaging system engaging RLD method and the precise manipulation of the delay between the excitation pulses and camera gating windows. Moreover, it is shown that imaging and decrypting can be performed at a high rate (3–4 fps) in a cyclic manner, thus allowing for real-time temporal decoding. We believe that the demonstrated RLD-based fast PL lifetime imaging approach can be employed in other applications of photoluminescent RENPs.
Collapse
Affiliation(s)
- Roman Ziniuk
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Artem Yakovliev
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Photonics and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
234
|
Liu J, Wang Q, Sang X, Hu H, Li S, Zhang D, Liu C, Wang Q, Zhang B, Wang W, Song F. Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1037. [PMID: 33921613 PMCID: PMC8072723 DOI: 10.3390/nano11041037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Lanthanide materials have great applications in optical communication, biological fluorescence imaging, laser, and so on, due to their narrow emission bandwidths, large Stokes' shifts, long emission lifetimes, and excellent photo-stability. However, the photon absorption cross-section of lanthanide ions is generally small, and the luminescence efficiency is relatively low. The effective improvement of the lanthanide-doped materials has been a challenge in the implementation of many applications. The local surface plasmon resonance (LSPR) effect of plasmonic nanoparticles (NPs) can improve the luminescence in different aspects: excitation enhancement induced by enhanced local field, emission enhancement induced by increased radiative decay, and quenching induced by increased non-radiative decay. In addition, plasmonic NPs can also regulate the energy transfer between two close lanthanide ions. In this review, the properties of the nanocomposite systems of lanthanide material and plasmonic NPs are presented, respectively. The mechanism of lanthanide materials regulated by plasmonic NPs and the scientific and technological discoveries of the luminescence technology are elaborated. Due to the large gap between the reported enhancement and the theoretical enhancement, some new strategies applied in lanthanide materials and related development in the plasmonic enhancing luminescence are presented.
Collapse
Affiliation(s)
- Jinhua Liu
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Qingru Wang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Xu Sang
- School of Physics, Nankai University, Tianjin 300071, China; (X.S.); (H.H.)
| | - Huimin Hu
- School of Physics, Nankai University, Tianjin 300071, China; (X.S.); (H.H.)
| | - Shuhong Li
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Dong Zhang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Cailong Liu
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Qinglin Wang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Bingyuan Zhang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Wenjun Wang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Feng Song
- School of Physics, Nankai University, Tianjin 300071, China; (X.S.); (H.H.)
| |
Collapse
|
235
|
Xu J, Dong Z, Asbahi M, Wu Y, Wang H, Liang L, Ng RJH, Liu H, Vallée RAL, Yang JKW, Liu X. Multiphoton Upconversion Enhanced by Deep Subwavelength Near-Field Confinement. NANO LETTERS 2021; 21:3044-3051. [PMID: 33687219 DOI: 10.1021/acs.nanolett.1c00232] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient generation of anti-Stokes emission within nanometric volumes enables the design of ultracompact, miniaturized photonic devices for a host of applications. Many subwavelength crystals, such as metal nanoparticles and two-dimensional layered semiconductors, have been coupled with plasmonic nanostructures for augmented anti-Stokes luminescence through multiple-harmonic generation. However, their upconversion process remains inefficient due to their intrinsic low absorption coefficients. Here, we demonstrate on-chip, site-specific integration of lanthanide-activated nanocrystals within gold nanotrenches of sub-25 nm gaps via bottom-up self-assembly. Coupling of upconversion nanoparticles to subwavelength gap-plasmon modes boosts 3.7-fold spontaneous emission rates and enhances upconversion by a factor of 100 000. Numerical investigations reveal that the gap-mode nanocavity confines incident excitation radiation into nanometric photonic hotspots with extremely high field intensity, accelerating multiphoton upconversion processes. The ability to design lateral gap-plasmon modes for enhanced frequency conversion may hold the potential to develop on-chip, background-free molecular sensors and low-threshold upconversion lasers.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Mohamed Asbahi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Yiming Wu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Hao Wang
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Liangliang Liang
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Ray Jia Hong Ng
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Hailong Liu
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | | | - Joel K W Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xiaogang Liu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin, University International Campus of Tianjin University, Fuzhou 350207, P.R. China
| |
Collapse
|
236
|
Collet G, Hrvat A, Eliseeva SV, Besnard C, Kovalenko A, Petoud S. A near-infrared emitting MOF: controlled encapsulation of a fluorescein sensitizer at the time of crystal growth. Chem Commun (Camb) 2021; 57:3351-3354. [PMID: 33661250 DOI: 10.1039/d0cc08234a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a near-infrared (NIR) emitting lanthanide-based metal-organic framework (MOF) in which Yb3+ are sensitized by fluorescein (FL) as a low energy absorbing chromophore (FL@CD-MOF-161). The unique design of CD-MOF-161 allows for the entrapment of FL molecules in its pores during the synthesis and crystal growth, ensuring the efficient loading and spreading of chromophores within the crystal volume.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre de Biophysique Moléculaire (CBM), CNRS UPR4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
237
|
Zhang X, An L, Tian Q, Lin J, Yang S. Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. J Mater Chem B 2021; 8:4738-4747. [PMID: 32124909 DOI: 10.1039/d0tb00030b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) absorption and fluorescent agents have attracted great attention because they can overcome the penetration limitation of the first near-infrared window (NIR-I, 750-1000 nm). However, these always "on" agents face the severe problem of being susceptible to retention and phagocytosis by the reticuloendothelial system after intravenous administration, which results in signal interference during diagnosis and side effects during treatment. Accordingly, tumor microenvironment-responsive smart agents (smart NIR-II agents), whose imaging and therapeutic functions can only be triggered in tumors, can overcome this limitation. Thus, NIR-II smart agents, which exhibit a combined response to the tumor microenvironment and NIR-II, make full use of the advantages of both triggers and improve the precision diagnosis and effective treatment of cancer. This review summarizes the recent advances in tumor microenvironment-activated NIR-II agents for tumor diagnosis and treatment, including smart NIR-II fluorescence imaging, photoacoustic imaging, photothermal therapy and photodynamic therapy. Finally, the challenges and perspectives of NIR-II smart agents for tumor diagnosis and treatment are proposed.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
238
|
Wu Y, Xu J, Qin X, Xu J, Liu X. Dynamic upconversion multicolour editing enabled by molecule-assisted opto-electrochemical modulation. Nat Commun 2021; 12:2022. [PMID: 33795669 PMCID: PMC8016979 DOI: 10.1038/s41467-021-22387-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Controlling nonlinear optical signals electrically offers many opportunities for technological developments. Lanthanide-activated nanoparticles have recently emerged as leading platforms for nonlinear upconversion of infra-red excitation within nanometric volumes. However, manipulation of upconversion emission is restricted to varying percentages of component materials, nanocrystal structure, and optical pumping conditions. Here, we report temporal modulation of anti-Stokes luminescence by coupling upconversion nanoparticles with an electrochemically responsive molecule. By electrically tailoring orbital energy levels of the molecules anchored on nanoparticle surfaces, we demonstrate reversible control of molecular absorption, resulting in dynamic colour editing of anti-Stokes luminescence at single-particle resolution. Moreover, we show that a programmable logic gate array based on opto-electrochemical modulation can be constructed to convert information-encrypted electrical signals into visible patterns with millisecond photonic readout. These findings offer insights into precise control of anti-Stokes luminescence, while enabling a host of applications from low-threshold infrared logic switches to multichannel, high-fidelity photonic circuits.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Jun Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
- Institute of Materials Research and Engineering, A*STAR, Singapore, Singapore.
| |
Collapse
|
239
|
|
240
|
Yang X, Maleki A, Lipey NA, Zheng X, Santiago M, Connor M, Sreenivasan VKA, Dawes JM, Lu Y, Zvyagin AV. Lifetime-Engineered Ruby Nanoparticles (Tau-Rubies) for Multiplexed Imaging of μ-Opioid Receptors. ACS Sens 2021; 6:1375-1383. [PMID: 33660984 DOI: 10.1021/acssensors.1c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To address the growing demand for simultaneous imaging of multiple biomarkers in highly scattering media such as organotypic cell cultures, we introduce a new type of photoluminescent nanomaterial termed "tau-ruby" composed of ruby nanocrystals (Al2O3:Cr3+) with tunable emission lifetime. The lifetime tuning range from 2.4 to 3.2 ms was achieved by varying the Cr3+ dopant concentration from 0.8% to 0.2%, affording facile implementation of background-free detection. We developed inexpensive scalable production of tau-ruby characterized by bright emission, narrow spectrum (693 ± 2 nm), and virtually unlimited photostability upon excitation with affordable excitation/detection sources, noncytotoxic and insensitive to microenvironmental fluctuations. By functionalizing the surface of tau-rubies with targeting antibodies, we obtained different biomarkers suitable for multiplexed lifetime imaging. As a proof of principle, three tau-ruby bioprobes, characterized by three mean lifetimes, were deployed to label three μ-opioid receptor species expressed on transfected cancer cells, each fused to a unique epitope, so that three types of cells were lifetime-encoded. Robust decoding of photoluminescent signals that report on each cell type was achieved by using a home-built lifetime imaging system and resulted in high-contrast multiplexed lifetime imaging of the cells.
Collapse
Affiliation(s)
- Xiaohong Yang
- Key Laboratory for Ecological Metallurgy of Multimetallic Minerals, Ministry of Education, School of Metallurgy, Northeastern University, Shenyang, 110819, China
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| | - Alireza Maleki
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| | - Nikolay A. Lipey
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University, Moscow, 115409, Russia
| | - Xianlin Zheng
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Marina Santiago
- Faculty of Medicine, Macquarie University, Sydney, 2109, Australia
| | - Mark Connor
- Faculty of Medicine, Macquarie University, Sydney, 2109, Australia
| | - Varun K. A. Sreenivasan
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, New South Wales 2052, Australia
- Institute of Human Genetics, University of Lübeck, 23568 Lübeck, Germany
| | - Judith M. Dawes
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yiqing Lu
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Andrei V. Zvyagin
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
241
|
Pham KY, Wang LC, Hsieh CC, Hsu YP, Chang LC, Su WP, Chien YH, Yeh CS. 1550 nm excitation-responsive upconversion nanoparticles to establish dual-photodynamic therapy against pancreatic tumors. J Mater Chem B 2021; 9:694-709. [PMID: 33367451 DOI: 10.1039/d0tb02655g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The second near-infrared biological window b (NIR-IIb, 1500-1700 nm) is recently considered as the promising region for deeper tissue penetration. Herein, a nanocarrier for 1550 nm light-responsive dual-photodynamic therapy (PDT) is developed to efficiently boost singlet oxygen (1O2) generation. The dual-photosensitizers (PSs), rose bengal (RB) and chlorin e6 (Ce6), are carried by the silica-coated core-shell LiYbF4:Er@LiGdF4 upconversion nanoparticles (UCNPs), forming UCNP/RB,Ce6. Following 1550 nm laser irradiation, the upconversion emission of UCNP/RB,Ce6 in both green (∼550 nm) and red (∼670 nm) colors is fully utilized to activate RB and Ce6, respectively. The simultaneous triggering of dual-PS generates an abundant amount of 1O2 resulting in boosted PDT efficacy. This dual-PDT nanocarrier presents an enhanced anticancer effect under single dose treatment in comparison with the single-PS ones from in vitro and in vivo treatments. The marriage between the boosted dual-PDT and 1550 nm light excitation is anticipated to provide a new avenue for non-invasive therapy.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Zhang Y, Zhao M, Fang J, Ye S, Wang A, Zhao Y, Cui C, He L, Shi H. Smart On-Site Immobilizable Near-Infrared II Fluorescent Nanoprobes for Ultra-Long-Term Imaging-Guided Tumor Surgery and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12857-12865. [PMID: 33705097 DOI: 10.1021/acsami.0c22555] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate diagnosis and efficient treatment of tumors are highly significant in battling cancer. Near-infrared II (NIR-II) fluorescence imaging shows big promise for deep tumor visualization in living systems due to high temporal and spatial resolution and deep tissue penetration capability, whereas the development of efficient NIR-II probes for tumor theranostics still faces a huge challenge. Herein, we have designed and constructed intelligent mPEG5000-PCL3000-encapsulated NIR-II nanoprobe ZM1068-NPs that showed great chemical stability and excellent biocompatibility. With the merits of the strong fluorescence in the NIR-II region and prominent optical-thermal conversion efficiency, this probe was successfully used for NIR-II imaging-guided surgery and photothermal therapy of breast carcinoma in living mice. More notably, it was for the first time found that ZM1068 dyes could be covalently on-site-immobilized within tumors through the thiol-chlor nucleophilic substitution reaction, resulting in improved tumor accumulation and retention time. We thus envision that this probe may provide an attractive means for precise cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Lei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| |
Collapse
|
243
|
Abstract
Near-infrared (NIR) luminescent materials have emerged as a growing field of interest, particularly for imaging and optics applications in biology, chemistry, and physics. However, the development of materials for this and other use cases has been hindered by a range of issues that prevents their widespread use beyond benchtop research. This review explores emerging trends in some of the most promising NIR materials and their applications. In particular, we focus on how a more comprehensive understanding of intrinsic NIR material properties might allow researchers to better leverage these traits for innovative and robust applications in biological and physical sciences.
Collapse
Affiliation(s)
- Christopher T. Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
244
|
Fan S, Zhang Y, Tan H, Xue C, He Y, Wei X, Zha Y, Niu J, Liu Y, Cheng Y, Cui D. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. NANOSCALE 2021; 13:5383-5399. [PMID: 33666213 DOI: 10.1039/d0nr08831e] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early diagnosis of tumors is crucial in selecting appropriate treatment options to achieve the desired therapeutic effect, but it is difficult to accurately diagnose cancer by a single imaging modality due to technical constraints. Therefore, we synthesized a type of Fe3O4 nanoparticle with manganese dioxide grown on the surface and then prepared it by loading photosensitive drugs and traditional Chinese medicine monomers to create an integrated diagnosis/treatment multifunctional nanoplatform: Fe3O4@MnO2-celastrol (CSL)/Ce6. This nanoplatform can have full advantage of the tumor microenvironment (TME) characteristics of hypoxia (hypoxia), acidic pH (acidosis), and increased levels of reactive oxygen species (e.g., H2O2), even outside the TME. Specific imaging and drug release can also enhance tumor therapy by adjusting the hypoxic state of the TME to achieve the combined effect of chemotherapy (CT) and photodynamic therapy (PDT). Moreover, the obtained Fe3O4@MnO2-CSL/Ce6 has H2O2- and pH-sensitive biodegradation and can release the anticancer drug celastrol (CSL) and photosensitizer Ce6 in TME and simultaneously generate O2 and Mn2+. Therefore, the "dual response" synergistic strategy also confers specific drug release on nanomaterials, relieves tumor hypoxia and antioxidant capacity, and achieves significant optimization of CT and PDT. Furthermore, the resulting Mn2+ ions and Fe3O4 nanoparticles can be used for T1/T2 magnetic resonance imaging on tumor-bearing mice, and the released Ce6 can simultaneously provide fluorescence imaging functions. Therefore, Fe3O4@MnO2-CSL/Ce6 realized the synergistic treatment of PDT and CT under multimodal near-infrared fluorescence/photoacoustic (photoacoustic) imaging monitoring, showing its great potential in the accurate medical treatment of tumors.
Collapse
Affiliation(s)
- Shanshan Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.
| | - Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huanshan Road, Shanghai 200030, P.R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200011, P.R. China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yu He
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiangyu Wei
- Department of Radiology, Shu Guang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yingsheng Cheng
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China. and Shanghai University of Medicine and Health Sciences, Shanghai 201318 and P.R. China; Shanghai Fengxian District Central Hospital; Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201400, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| |
Collapse
|
245
|
Huang R, Liu S, Huang J, Liu H, Hu Z, Tao L, Zhou B. Tunable upconversion of holmium sublattice through interfacial energy transfer for anti-counterfeiting. NANOSCALE 2021; 13:4812-4820. [PMID: 33634799 DOI: 10.1039/d0nr09068a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photon upconversion is a fascinating phenomenon that can convert low-energy photons to high-energy photons efficiently. However, most previous relevant research has been focused on upconversion systems with a sufficiently low lanthanide emitter concentration, such as 2 mol% for Er3+ in an Er-Yb coupled system. Realizing the upconversion from lanthanide heavily doped systems in particular, the emitter sublattice is still a challenge. Here, we report a mechanistic strategy to achieve the intense upconversion of the holmium sublattice in a core-shell-based nanostructure design through interfacial energy transfer channels. This design allowed a spatial separation of Ho3+ and sensitizers (e.g., Yb3+) into different regions and unwanted back energy transfers between them could then be minimized. By taking advantage of the dual roles of Yb3+ as both a migrator and energy trapper, a gradual color change from red to yellowish green was achievable upon 808 nm excitation, which could be further markedly enhanced by surface attaching indocyanine green dyes to facilitate the harvesting of the incident excitation energy. Moreover, emission colors could be tuned by applying non-steady state excitation. Such a fine-tunable color behavior holds great promise in anti-counterfeiting. Our results present a facile but effective conceptual model for the upconversion of the holmuim sublattice, which is helpful for the development of a new class of luminescent materials toward frontier applications.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Huiming Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zhiyong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- School of Materials and Energy, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
246
|
Guan M, Zhu S, Li S. Recent Progress in Nanomedicine for Melanoma Theranostics With Emphasis on Combination Therapy. Front Bioeng Biotechnol 2021; 9:661214. [PMID: 33777924 PMCID: PMC7991305 DOI: 10.3389/fbioe.2021.661214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Melanoma is an aggressive type of skin cancer with increasing incidence and high mortality rates worldwide. However, there is still a lack of efficient and resolutive treatment strategies, particularly in clinical settings. Currently, nanomedicine, an emerging area in the medical field, is being widely investigated in small animal models to afford melanoma theranostics. However, several problems, such as tumor heterogeneity, and drug resistance treatment with a single therapy, remain unresolved. Previous reviews have primarily focused on monotherapy for melanoma in the context of nanomedicine. In this review article, we summarize the recent progress in the application of nanomedicine for melanoma treatment, with particular attention to combination therapy based on nanomedicine to achieve optimized therapeutic output for melanoma treatment. In addition, we also highlight the fluorescence-guided strategies for intraoperative melanoma detection, especially in the near-infrared imaging window with greatly improved imaging contrast and penetration depth.
Collapse
Affiliation(s)
- Mengqi Guan
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
247
|
Lv R, Wang Y, Lin B, Peng X, Liu J, Lü WD, Tian J. Targeted Luminescent Probes for Precise Upconversion/NIR II Luminescence Diagnosis of Lung Adenocarcinoma. Anal Chem 2021; 93:4984-4992. [PMID: 33705098 DOI: 10.1021/acs.analchem.1c00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this research, the antibody of the searched hub genes has been proposed to combine with a rare-earth composite for an upconversion luminescence (UCL) and downconversion (DCL) NIR-II imaging strategy for the diagnosis of lung adenocarcinoma (LUAD). Weighted gene co-expression network analysis is used to search the most relevant hub genes, and the required top genes that contribute to tumorigenesis (negative: CLEC3B, MFAP4, PECAM1, and FHL1; positive: CCNB2, CDCA5, HMMR, and TOP2A) are identified and validated by survival analysis and transcriptional and translational results. Meanwhile, fluorescence imaging probes (NaYF4:Yb,Er,Eu@NaYF4:Nd, denoted as NYF:Eu NPs) with multimodal optical imaging properties of downconversion and upconversion luminescence in the visible region and luminescence in the near infrared II region are designed with various uniform sizes and enhanced penetration and sensitivity. Finally, when the NYF:Eu NP probe is combined with antibodies of these chosen positive hub genes (such as, TOP2A and CCNB2), the in vitro and in vivo animal experiments (flow cytometry, cell counting kit-8 assay using A549 cells, and in vivo immunohistochemistry IHC microscopy images of LUAD from patient cases) indicate that the designed nanoprobes can be excellently used as a targeted optical probe for future accurate diagnosis and surgery navigation of LUAD in contrast with other cancer cells and normal cells. This strategy of antibodies combined with optical probes provides a dual-modal luminescence imaging method for precise medicine.
Collapse
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Xiangrong Peng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Jun Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
248
|
Umezawa M, Haruki M, Yoshida M, Kamimura M, Soga K. Effects of Processing pH on Emission Intensity of Over-1000 nm Near-Infrared Fluorescence of Dye-Loaded Polymer Micelle with Polystyrene Core. ANAL SCI 2021; 37:485-490. [PMID: 33342927 DOI: 10.2116/analsci.20scp09] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluorescence imaging using the over-thousand-nanometer (OTN) near-infrared (NIR) light is an emerging method for an in vivo imaging analysis of deep tissues without physical sectioning. Polymer micelle nanoparticles (PNPs) composed of organic polymers encapsulating an OTN-NIR fluorescent dye, IR-1061, in their hydrophobic core are expected to be biocompatible probes. Because IR-1061 quickly quenches due to the vibration of polar hydroxyl bonding in its surroundings, the influence of hydroxyl ions should be minimized. Herein, we investigated the effect of the hydrogen ion concentration during the preparation process using IR-1061 and an organic polymer, poly(ethylene glycol)-block-polystyrene (PEG-b-PSt), on the emission properties of the obtained OTN-PNPs. The OTN-PNP has a hydrodynamic diameter of 20 - 30 nm and emits 1110-nm fluorescence that is applicable to angiography. The loading efficiency of IR-1061 in the OTN-PNPs increased when prepared in an aqueous solution with a low hydroxyl ion concentration. In this solution (pH 3.0), highly emissive OTN-PNPs was obtained with IR-1061 at lower nominal concentrations. Decreasing the hydroxyl ion concentration during the preparation process yields highly emissive OTN-PNPs, which may improve the in vivo imaging analysis of biological phenomena in deep tissues.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Mae Haruki
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Moe Yoshida
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| |
Collapse
|
249
|
Liang Y, Liu K, Wu X, Lou Q, Sui L, Dong L, Yuan K, Shan C. Lifetime-Engineered Carbon Nanodots for Time Division Duplexing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003433. [PMID: 33747738 PMCID: PMC7967062 DOI: 10.1002/advs.202003433] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Optical multiplexing attracts considerable attention in the field of information encryption, optical probe, and time-resolved bioimaging. However, the optical multiplexing based on rare-earth nanoparticles suffers from heavy metal elements and relatively short lifetimes; sophisticated facilities are thus needed. Herein, time division duplexing based on eco-friendly carbon nanodots (CNDs) with manipulative luminescence lifetimes is demonstrated. In a single green color emission channel, the luminescence lifetimes of the CNDs can be manipulated from nanosecond level to second level by introducing water, while the lifetime of the CNDs confined by a silica shell stays. Time division duplexing based on the CNDs and CNDs@silica with distinct lifetimes is realized and spatio-temporal overlapping information is thus resolved. High-level information encryption using the time division duplexing technology is realized. This work may promise the potential applications of CNDs in multi-lifetime channels biological imaging, high-density information storage, and anti-counterfeiting.
Collapse
Affiliation(s)
- Ya‐Chuan Liang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
| | - Kai‐Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
| | - Xue‐Ying Wu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
| | - Lai‐Zhi Sui
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
| | - Kai‐Jun Yuan
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Chong‐Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
250
|
Hu X, Chen Z, Jin AJ, Yang Z, Gan D, Wu A, Ao H, Huang W, Fan Q. Rational Design of All-Organic Nanoplatform for Highly Efficient MR/NIR-II Imaging-Guided Cancer Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007566. [PMID: 33666345 PMCID: PMC10439760 DOI: 10.1002/smll.202007566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Organic theranostic nanomedicine has precision multimodel imaging capability and concurrent therapeutics under noninvasive imaging guidance. However, the rational design of desirable multifunctional organic theranostics for cancer remains challenging. Rational engineering of organic semiconducting nanomaterials has revealed great potential for cancer theranostics largely owing to their intrinsic diversified biophotonics, easy fabrication of multimodel imaging platform, and desirable biocompatibility. Herein, a novel all-organic nanotheranostic platform (TPATQ-PNP NPs) is developed by exploiting the self-assembly of a semiconducting small molecule (TPATQ) and a new synthetic high-density nitroxide radical-based amphiphilic polymer (PNP). The nitroxide radicals act as metal-free magnetic resonance imaging agent through shortened longitudinal relaxation times, and the semiconducting molecules enable ultralow background second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging. The as-prepared TPATQ-PNP NPs can light up whole blood vessels of mice and show precision tumor-locating ability with synergistic (MR/NIR-II) imaging modalities. The semiconducting molecules also undergo highly effective photothermal conversion in the NIR region for cancer photothermal therapy guided by complementary tumor diagnosis. The designed multifunctional organic semiconducting self-assembly provides new insights into the development of a new platform for cancer theranostics.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Albert J Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen Yang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deqiang Gan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Aifang Wu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|