201
|
Arslan M, Asim M, Sattar H, Khan A, Thoppil Ali F, Zehra M, Talluri K. Role of Radiology in the Diagnosis and Treatment of Breast Cancer in Women: A Comprehensive Review. Cureus 2024; 16:e70097. [PMID: 39449897 PMCID: PMC11500669 DOI: 10.7759/cureus.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Breast cancer remains a leading cause of morbidity and mortality among women worldwide. Early detection and precise diagnosis are critical for effective treatment and improved patient outcomes. This review explores the evolving role of radiology in the diagnosis and treatment of breast cancer, highlighting advancements in imaging technologies and the integration of artificial intelligence (AI). Traditional imaging modalities such as mammography, ultrasound, and magnetic resonance imaging have been the cornerstone of breast cancer diagnostics, with each modality offering unique advantages. The advent of radiomics, which involves extracting quantitative data from medical images, has further augmented the diagnostic capabilities of these modalities. AI, particularly deep learning algorithms, has shown potential in improving diagnostic accuracy and reducing observer variability across imaging modalities. AI-driven tools are increasingly being integrated into clinical workflows to assist in image interpretation, lesion classification, and treatment planning. Additionally, radiology plays a crucial role in guiding treatment decisions, particularly in the context of image-guided radiotherapy and monitoring response to neoadjuvant chemotherapy. The review also discusses the emerging field of theranostics, where diagnostic imaging is combined with therapeutic interventions to provide personalized cancer care. Despite these advancements, challenges such as the need for large annotated datasets and the integration of AI into clinical practice remain. The review concludes that while the role of radiology in breast cancer management is rapidly evolving, further research is required to fully realize the potential of these technologies in improving patient outcomes.
Collapse
Affiliation(s)
| | - Muhammad Asim
- Emergency Medicine, Royal Free Hospital, London, GBR
| | - Hina Sattar
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Anita Khan
- Medicine, Khyber Girls Medical College, Peshawar, PAK
| | | | - Muneeza Zehra
- Internal Medicine, Karachi Medical and Dental College, Karachi, PAK
| | - Keerthi Talluri
- General Medicine, GSL (Ganni Subba Lakshmi garu) Medical College, Rajahmundry, IND
| |
Collapse
|
202
|
Makhloufi H, Pinon A, Champavier Y, Saliba J, Millot M, Fruitier-Arnaudin I, Liagre B, Chemin G, Mambu L. In Vitro Antiproliferative Activity of Echinulin Derivatives from Endolichenic Fungus Aspergillus sp. against Colorectal Cancer. Molecules 2024; 29:4117. [PMID: 39274965 PMCID: PMC11397142 DOI: 10.3390/molecules29174117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
The endolichenic fungus Aspergillus sp. was isolated from the lichen Xanthoparmelia conspersa harvested in France. Aspergillus sp. was grown on a solid culture medium to ensure the large-scale production of the fungus with a sufficient mass of secondary metabolites. The molecular network analysis of extracts and subfractions enabled the annotation of 22 molecules, guiding the purification process. The EtOAc extract displayed an antiproliferative activity of 3.2 ± 0.4 µg/mL at 48 h against human colorectal cancer cells (HT-29) and no toxicity at 30 µg/mL against human triple-negative breast cancer (TNBC) cells (MDA-MB-231) and human embryonic kidney (HEK293) non-cancerous cells. Among the five prenylated compounds isolated, of which four are echinulin derivatives, compounds 1 and 2 showed the most important activity, with IC50 values of 1.73 µM and 8.8 µM, respectively, against HT-29 cells.
Collapse
Affiliation(s)
- Hind Makhloufi
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Aline Pinon
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Yves Champavier
- Univ. Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, F-87025 Limoges, France
| | - Jennifer Saliba
- Laboratoire LIENSs, Université de La Rochelle, UMR CNRS 7266, F-17000 La Rochelle, France
| | - Marion Millot
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | | | - Bertrand Liagre
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Guillaume Chemin
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Lengo Mambu
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| |
Collapse
|
203
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
204
|
Zhu Y, Kim SN, Chen ZR, Will R, Zhong RD, Dammann P, Sure U. PDCD10 Is a Key Player in TMZ-Resistance and Tumor Cell Regrowth: Insights into Its Underlying Mechanism in Glioblastoma Cells. Cells 2024; 13:1442. [PMID: 39273014 PMCID: PMC11394141 DOI: 10.3390/cells13171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Overcoming temozolomide (TMZ)-resistance is a major challenge in glioblastoma therapy. Therefore, identifying the key molecular player in chemo-resistance becomes urgent. We previously reported the downregulation of PDCD10 in primary glioblastoma patients and its tumor suppressor-like function in glioblastoma cells. Here, we demonstrate that the loss of PDCD10 causes a significant TMZ-resistance during treatment and promotes a rapid regrowth of tumor cells after treatment. PDCD10 knockdown upregulated MGMT, a key enzyme mediating chemo-resistance in glioblastoma, accompanied by increased expression of DNA mismatch repair genes, and enabled tumor cells to evade TMZ-induced cell-cycle arrest. These findings were confirmed in independent models of PDCD10 overexpressing cells. Furthermore, PDCD10 downregulation led to the dedifferentiation of glioblastoma cells, as evidenced by increased clonogenic growth, the upregulation of glioblastoma stem cell (GSC) markers, and enhanced neurosphere formation capacity. GSCs derived from PDCD10 knockdown cells displayed stronger TMZ-resistance and regrowth potency, compared to their parental counterparts, indicating that PDCD10-induced stemness may independently contribute to tumor malignancy. These data provide evidence for a dual role of PDCD10 in tumor suppression by controlling both chemo-resistance and dedifferentiation, and highlight PDCD10 as a potential prognostic marker and target for combination therapy with TMZ in glioblastoma.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Zhong-Rong Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rainer Will
- Core Facility Cellular Tools, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Rong-De Zhong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
205
|
Joshi JN, Lerner AD, Scallo F, Grumet AN, Matteson P, Millonig JH, Valvezan AJ. mTORC1 activity oscillates throughout the cell cycle, promoting mitotic entry and differentially influencing autophagy induction. Cell Rep 2024; 43:114543. [PMID: 39067023 DOI: 10.1016/j.celrep.2024.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a master metabolic regulator that is active in nearly all proliferating eukaryotic cells; however, it is unclear whether mTORC1 activity changes throughout the cell cycle. We find that mTORC1 activity oscillates from lowest in mitosis/G1 to highest in S/G2. The interphase oscillation is mediated through the TSC complex but is independent of major known regulatory inputs, including Akt and Mek/Erk signaling. By contrast, suppression of mTORC1 activity in mitosis does not require the TSC complex. mTORC1 has long been known to promote progression through G1. We find that mTORC1 also promotes progression through S and G2 and is important for satisfying the Chk1/Wee1-dependent G2/M checkpoint to allow entry into mitosis. We also find that low mTORC1 activity in G1 sensitizes cells to autophagy induction in response to partial mTORC1 inhibition or reduced nutrient levels. Together, these findings demonstrate that mTORC1 is differentially regulated throughout the cell cycle, with important phase-specific consequences for proliferating cells.
Collapse
Affiliation(s)
- Jay N Joshi
- Molecular Biosciences Program, Rutgers University, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - Ariel D Lerner
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - Frank Scallo
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | | | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexander J Valvezan
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
206
|
Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y, Peng C. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review. Front Immunol 2024; 15:1446937. [PMID: 39257589 PMCID: PMC11384988 DOI: 10.3389/fimmu.2024.1446937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.
Collapse
Affiliation(s)
- Asghar Arshi
- Department of Biology, York University, Toronto, ON, Canada
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | | | - Masoud Dehghan Tezerjani
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Yeasin Ahmed
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
207
|
Yu G, Peng J, Li L, Yu W, He B, Xie B. The role and mechanisms of cordycepin in inhibiting cancer cells. Braz J Med Biol Res 2024; 57:e13889. [PMID: 39194034 DOI: 10.1590/1414-431x2024e13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
With the escalating incidence and mortality rates of cancer, there is an ever-growing emphasis on the research of anticancer drugs. Cordycepin, the primary nucleoside antibiotic isolated from Cordyceps militaris, has emerged as a remarkable agent for cancer prevention and treatment. Functioning as a natural targeted antitumor drug, cordycepin assumes an increasingly pivotal role in cancer therapy. This review elucidates the mechanisms of cordycepin in inhibiting tumor cell proliferation, inducing apoptosis, as well as its capabilities in suppressing angiogenesis and metastasis. Moreover, the immunomodulatory effects of cordycepin in cancer treatment are explored. Additionally, the current status, challenges, and future prospects of cordycepin application in clinical trials are briefly discussed. The objective is to provide a valuable reference for the utilization of cordycepin in cancer treatment.
Collapse
Affiliation(s)
- Gong Yu
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiahua Peng
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Li
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin Xie
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
208
|
Galán-Vidal J, García-Gaipo L, Molinuevo R, Dias S, Tsoi A, Gómez-Román J, Elder JT, Hochegger H, Gandarillas A. Sumo-regulatory SENP2 controls the homeostatic squamous mitosis-differentiation checkpoint. Cell Death Dis 2024; 15:596. [PMID: 39152119 PMCID: PMC11329632 DOI: 10.1038/s41419-024-06969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Squamous or epidermoid cancer arises in stratified epithelia but also is frequent in the non-epidermoid epithelium of the lung by unclear mechanisms. A poorly studied mitotic checkpoint drives epithelial cells bearing irreparable genetic damage into epidermoid differentiation. We performed an RNA-sequencing gene search to target unknown regulators of this response and selected the SUMO regulatory protein SENP2. Alterations of SENP2 expression have been associated with some types of cancer. We found the protein to be strongly localised to mitotic spindles of freshly isolated human epidermal cells. Primary cells rapidly differentiated after silencing SENP2 with specific shRNAs. Loss of SENP2 produced in synchronised epithelial cells delays in mitotic entry and exit and defects in chromosomal alignment. The results altogether strongly argue for an essential role of SENP2 in the mitotic spindle and hence in controlling differentiation. In addition, the expression of SENP2 displayed an inverse correlation with the immuno-checkpoint biomarker PD-L1 in a pilot collection of aggressive lung carcinomas. Consistently, metastatic head and neck cancer cells that do not respond to the mitosis-differentiation checkpoint were resistant to depletion of SENP2. Our results identify SENP2 as a novel regulator of the epithelial mitosis-differentiation checkpoint and a potential biomarker in epithelial cancer.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Rut Molinuevo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Samantha Dias
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Javier Gómez-Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008, Santander, Spain
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut national de la santé et de la recherche médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
209
|
Ma T, Wang X, Wang Y, Hao Y, Yang X, Yan X, Huang Q, Li Z, Cong B, Li D. Curcumin analogue AC17-loaded dissolvable microneedles activate FOXO3 and enhance localized drug delivery for oral squamous cell carcinoma treatment. Int J Pharm 2024; 661:124385. [PMID: 38925237 DOI: 10.1016/j.ijpharm.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Curcumin, a polyphenol extracted from turmeric, is a potential alternative for the treatment of oral squamous cell carcinoma (OSCC) due to its remarkable anticancer activity and low systemic toxicity. To further enhance the anticancer activity and bioavailability of curcumin, we synthesized a curcumin analogue, AC17, by modifying the benzene ring and methylene group of curcumin. A soluble hyaluronic acid microneedle patch (AC17@HAMN) was developed to ensure accurate and safe delivery of AC17 to tumor tissues. The inhibitory effect of AC17 on OSCC cells was stronger than that of curcumin and some common analogues. Transcriptome sequencing showed that the target genes of AC17 were mainly concentrated in apoptosis, cell cycle and cell senescence pathways. Among them, AC17 induces cell cycle arrest and inhibits cell proliferation mainly by activating FOXO3 signaling. With good penetration and dissolution properties, microneedles can deliver AC17 directly to the tumor site and show good anti-tumor effect. Moreover, AC17@HAMN showed good biosafety. In summary, AC17@HAMN offers high efficiency, minimal invasiveness, and few adverse reactions. This microneedle patch holds great promise for potential clinical applications, especially for the treatment of OSCC.
Collapse
Affiliation(s)
- Tengyu Ma
- School of Stomatology, Binzhou Medical University, Yantai 264003, China
| | - Xinxin Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Yaozhong Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Xinting Yang
- School of Stomatology, Binzhou Medical University, Yantai 264003, China
| | - Xin Yan
- Department of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Qihang Huang
- Department of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Zhuoran Li
- Stomatology Department of Jining Medical University, Jining 272067, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Dechao Li
- School of Stomatology, Binzhou Medical University, Yantai 264003, China; Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| |
Collapse
|
210
|
Chen YL, Chen YC, Suzuki A. ImmunoCellCycle-ID: A high-precision immunofluorescence-based method for cell cycle identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607961. [PMID: 39185179 PMCID: PMC11343203 DOI: 10.1101/2024.08.14.607961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The cell cycle is a fundamental process essential for cell proliferation, differentiation, and development. It consists of four major phases: G1, S, G2, and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play critical roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly, immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early S, late S, early G2, late G2, and each sub-stage of the M phase using fluorescence microscopy. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed substages of the cell cycle in a variety of cell lines.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
211
|
Joseph AG, Biji M, Murali VP, Sherin DR, Valsan A, Sukumaran VP, Radhakrishnan KV, Maiti KK. A comprehensive apoptotic assessment of niloticin in cervical cancer cells: a tirucallane-type triterpenoid from Aphanamixis polystachya (Wall.) Parker. RSC Med Chem 2024:d4md00318g. [PMID: 39246746 PMCID: PMC11378019 DOI: 10.1039/d4md00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Pharmacologically active small organic molecules derived from natural resources are prominent drug candidates due to their inherent structural diversity. Herein, we explored one such bioactive molecule, niloticin, which is a tirucallane-type triterpenoid isolated from the stem barks of Aphanamixis polystachya (Wall.) Parker. After initial screening with other isolated compounds from the same plant, niloticin demonstrated selective cytotoxicity against cervical cancer cells (HeLa) with an IC50 value of 11.64 μM. Whereas the compound exhibited minimal cytotoxicity in normal epithelial cell line MCF-10A, with an IC50 value of 83.31 μM. Subsequently, in silico molecular docking studies of niloticin based on key apoptotic proteins such as p53, Fas, FasL, and TNF β revealed striking binding affinity, reflecting docking scores of -7.2, -7.1, -6.8, and -7.2. Thus, the binding stability was evaluated through molecular dynamic simulation. In a downstream process, the apoptotic capability of niloticin was effectively validated through in vitro fluorimetric assays, encompassing nuclear fragmentation. Additionally, an insightful approach involving surface-enhanced Raman spectroscopy (SERS) re-establishes the occurrence of DNA cleavage during cellular apoptosis. Furthermore, niloticin was observed to induce apoptosis through both intrinsic and extrinsic pathways. This was evidenced by the upregulation of upstream regulatory molecules such as CD40 and TNF, which facilitate the activation of caspase 8. Concurrently, niloticin-induced p53 activation augmented the expression of proapoptotic proteins Bax and Bcl-2 and downregulation of IAPs, leading to the release of cytochrome C and subsequent activation of caspase 9. Therefore, the reflection of mitochondrial-mediated apoptosis is in good agreement with molecular docking studies. Furthermore, the anti-metastatic potential was evidenced by wound area closure and Ki67 expression patterns. This pivotal in vitro assessment confirms the possibility of niloticin being a potent anti-cancer drug candidate, and to the best of our knowledge, this is the first comprehensive anticancer assessment of niloticin in HeLa cells.
Collapse
Affiliation(s)
- Anuja Gracy Joseph
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mohanan Biji
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vishnu Priya Murali
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
| | - Daisy R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology Thiruvananthapuram-695317 India
| | - Alisha Valsan
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vimalkumar P Sukumaran
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kokkuvayil Vasu Radhakrishnan
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
| | - Kaustabh Kumar Maiti
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Chemical Sciences and Technology Division (CSTD), Organic Chemistry Section Industrial Estate Thiruvananthapuram 695019 India
| |
Collapse
|
212
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
213
|
Lázaro A, Bosque R, Marín S, Pérez-León R, Badia J, Baldomà L, Rodríguez L, Crespo M, Cascante M. Exploring the effect of the axial ligands on the anticancer activity of [C,N,N'] Pt(IV) cyclometallated compounds. Dalton Trans 2024; 53:13030-13043. [PMID: 39028273 DOI: 10.1039/d4dt01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of three novel [C,N,N'] Pt(IV) cyclometallated compounds containing hydroxo, dichloroacetato or trifluoroacetato axial ligands is reported. Compound [PtCl(OH)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (3) was prepared by the oxidative addition of hydrogen peroxide to [C,N,N'] Pt(II) cyclometallated compound [PtCl{(CH3)2N(CH2)2NCH(4-FC6H3)}] (1) and further the reaction of compound 3 with dichloroacetate or trifluoroacetate anhydrides led to the formation of the corresponding compounds [PtCl(CHCl2COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (4) and [PtCl(CF3COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (5). The properties of the new compounds along with those of the compound [PtCl3{(CH3)2N(CH2)2NCH(4-FC6H3)}] (2), including stability in aqueous media, reduction potential using cyclic voltammetry, cytotoxic activity against the HCT116 CRC cell line, DNA interaction, topoisomerase I and cathepsin inhibition, and computational studies involving reduction of the Pt(IV) compounds and molecular docking studies, are presented. Interestingly, the antiproliferative activity of these compounds against the HCT116 CRC cell line, which is in all cases higher than that of cisplatin, follows the same trend as the reduction potentials so that the most easily reduced compound 2 is the most potent. In contrast, according to the electrophoretic mobility and molecular docking studies, the efficacy of these compounds in binding to DNA is not related to their cytotoxicity. The most active compound 2 does not modify the DNA electrophoretic mobility while the less potent compound 3 is the most efficient in binding to DNA. Although compounds 2 and 3 have only a slight effect on cell cycle distribution and apoptosis induction, generation of ROS to a higher extent for the most easily reduced compound 2 was observed.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ramón Bosque
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
| | - Silvia Marín
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raúl Pérez-León
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
| | - Josefa Badia
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Margarita Crespo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Marta Cascante
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
214
|
Gonçalves GR, Teixeira T, Bezerra DP, Soares MBP, Silva VR, Santos LDS, Batista AA, Oliveira KM, Correa RS. Exploring the BSA- and DNA-binding, cytotoxicity, and cell cycle evaluation of ternary copper(II)/diimine complexes with N, N-dibenzyl- N'-benzoylthiourea as promising metallodrug candidates. Dalton Trans 2024; 53:12951-12961. [PMID: 38842058 DOI: 10.1039/d4dt01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Four new copper(II) complexes were synthesized and characterized with the general formula [Cu(N-N)(Th)(NO3)], where N-N corresponds to the N-heterocyclic ligands 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy), 4,7-diphenyl-1,10-phenanthroline (dpp), and 4,4-dimethyl-2,2'-bipyridine (dmbp) and Th represents the N,N-dibenzyl-N'-benzoylthiourea. Cytotoxic activities of the complexes against HCT116 (human colon carcinoma), HepG2 (human hepatocellular carcinoma), and non-tumor MRC-5 (human lung fibroblast) cells were investigated. The copper(II) complexes 1-4 were characterized by spectroscopic techniques while complexes 1 and 2 were studied using single-crystal X-ray diffraction as well. The complexes possessed a five-coordinated structure with one nitrate ligand as a monodentate at the axial position and two bidentate ligands N-heterocyclic and N,N-dibenzyl-N'-benzoylthiourea. The complexes showed promising IC50 values, ranging from 0.3 to 9.0 μM. Furthermore, interaction studies with biomolecules such as calf thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA), which can act as possible biological targets of the complexes, were carried out. The studies suggested that the compounds interact moderately with ct-DNA and BSA. Complexes 1, 2, and 4 did not lead to cell accumulation at any stage of the cell cycle but caused a significant increase in internucleosomal DNA fragmentation. Whereas, compound 3 caused cell cycle arrest in the S phase while doxorubicin caused cell cycle arrest in the G2/M phase. The effect of structural modifications on the metal compounds was correlated with their biological properties and it was concluded that an increase in biological activity occurred with increasing the extension of the diimine ligands. Thus, complex 3 was the most promising one.
Collapse
Affiliation(s)
- Guilherme R Gonçalves
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto - UFOP, CEP 35400-000, Ouro Preto, MG, Brazil.
| | - Tamara Teixeira
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto - UFOP, CEP 35400-000, Ouro Preto, MG, Brazil.
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz - Fundação Oswaldo Cruz (IGM-FIOCRUZ-BA), CEP 40296-710, Salvador, BA, Brazil
| | - Milena B P Soares
- Instituto Gonçalo Moniz - Fundação Oswaldo Cruz (IGM-FIOCRUZ-BA), CEP 40296-710, Salvador, BA, Brazil
| | - Valdenizia R Silva
- Instituto Gonçalo Moniz - Fundação Oswaldo Cruz (IGM-FIOCRUZ-BA), CEP 40296-710, Salvador, BA, Brazil
| | - Luciano de S Santos
- Instituto Gonçalo Moniz - Fundação Oswaldo Cruz (IGM-FIOCRUZ-BA), CEP 40296-710, Salvador, BA, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil
| | - Katia M Oliveira
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto - UFOP, CEP 35400-000, Ouro Preto, MG, Brazil.
- Instituto de Química, Universidade de Brasília - UnB, Campus Darcy Ribeiro, CEP 70910-900, Brasília, DF, Brazil
| | - Rodrigo S Correa
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto - UFOP, CEP 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
215
|
Huang H, Xie J, Wang F, Jiao S, Li X, Wang L, Liu D, Wang C, Wei X, Tan P, Tu P, Li J, Hu Z. Commiphora myrrha n-hexane extract suppressed breast cancer progression through induction of G0/G1 phase arrest and apoptotic cell death by inhibiting the Cyclin D1/CDK4-Rb signaling pathway. Front Pharmacol 2024; 15:1425157. [PMID: 39161904 PMCID: PMC11330881 DOI: 10.3389/fphar.2024.1425157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Background Breast cancer (BC) is one of the most frequently observed malignancies globally, yet drug development for BC has been encountering escalating challenges. Commiphora myrrha is derived from the dried resin of C. myrrha (T. Nees) Engl., and is widely adopted in China for treating BC. However, the anti-BC effect and underlying mechanism of C. myrrha remain largely unclear. Methods MTT assay, EdU assay, and colony formation were used to determine the effect of C. myrrha n-hexane extract (CMHE) on the proliferation of human BC cells. Cell cycle distribution and apoptosis were assessed via flow cytometry analysis. Moreover, metastatic potential was evaluated using wound-scratch assay and matrigel invasion assay. The 4T1 breast cancer-bearing mouse model was established to evaluate the anti-BC efficacy of CMHE in vivo. RNA-sequencing analysis, quantitative real-time PCR, immunoblotting, immunohistochemical analysis, RNA interference assay, and database analysis were conducted to uncover the underlying mechanism of the anti-BC effect of CMHE. Results We demonstrated the significant inhibition in the proliferative capability of BC cell lines MDA-MB-231 and MCF-7 by CMHE. Moreover, CMHE-induced G0/G1 phase arrest and apoptosis of the above two BC cell lines were also observed. CMHE dramatically repressed the metastatic potential of these two cells in vitro. Additionally, the administration of CMHE remarkably suppressed tumor growth in 4T1 tumor-bearing mice. No obvious toxic or side effects of CMHE administration in mice were noted. Furthermore, immunohistochemical (IHC) analysis demonstrated that CMHE treatment inhibited the proliferative and metastatic abilities of cancer cells, while also promoting apoptosis in the tumor tissues of mice. Based on RNA sequencing analysis, quantitative real-time PCR, immunoblotting, and IHC assay, the administration of CMHE downregulated Cyclin D1/CDK4-Rb signaling pathway in BC. Furthermore, RNA interference assay and database analysis showed that downregulated Cyclin D1/CDK4 signaling cascade participated in the anti-BC activity of CMHE. Conclusion CMHE treatment resulted in the suppression of BC cell growth through the stimulation of cell cycle arrest at the G0/G1 phase and the induction of apoptotic cell death via the inhibition of the Cyclin D1/CDK4-Rb pathway, thereby enhancing the anti-BC effect of CMHE. CMHE has potential anti-BC effects, particularly in those harboring aberrant activation of Cyclin D1/CDK4-Rb signaling.
Collapse
Affiliation(s)
- Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shungang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chaochao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
216
|
van den Berg PF, Yousif LI, Markousis-Mavrogenis G, Shi C, Bracun V, Tromp J, de Wit S, Appels Y, Screever EM, Aboumsallem JP, Ouwerkerk W, van Veldhuisen DJ, Silljé HHW, Voors AA, de Boer RA, Meijers WC. Hallmarks of cancer in patients with heart failure: data from BIOSTAT-CHF. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:47. [PMID: 39103886 PMCID: PMC11299300 DOI: 10.1186/s40959-024-00246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Within cardio-oncology, emerging epidemiologic studies have demonstrated a bi-directional relationship between heart failure (HF) and cancer. In the current study, we aimed to further explore this relationship and investigate the underlying pathophysiological pathways that connect these two disease entities. METHODS We conducted a post-hoc analysis in which we identified 24 Gene Ontology (GO) processes associated with the hallmarks of cancer based on 92 biomarkers in 1960 patients with HF. We performed Spearman's correlations and Cox-regression analyses to evaluate associations with HF biomarkers, severity and all-cause mortality. RESULTS Out of a total of 24 GO processes, 9 biological processes were significantly associated with adverse clinical outcome. Positive regulation of mononuclear cell proliferation demonstrated the highest hazard for reaching the clinical endpoint, even after adjusting for confounders: all-cause mortality HR 2.00 (95% CI 1.17-3.42), p = 0.012. In contrast, negative regulation of apoptotic process was consistently associated with a lower hazard of reaching the clinical outcome, even after adjusting for confounders: all-cause mortality HR 0.74 (95% CI 0.59-0.95), p = 0.016. All processes significantly correlated with HF biomarkers, renal function and HF severity. CONCLUSIONS In patients with HF, GO processes associated with hallmarks of cancer are associated with HF biomarkers, severity and all-cause mortality.
Collapse
Affiliation(s)
- P F van den Berg
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - L I Yousif
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - G Markousis-Mavrogenis
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - C Shi
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - V Bracun
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Tromp
- National Heart Centre Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - S de Wit
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Y Appels
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - E M Screever
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - J P Aboumsallem
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - W Ouwerkerk
- Department of Dermatology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - D J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - H H W Silljé
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - A A Voors
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - R A de Boer
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, Erasmus MC, Cardiovascular Institute, Thorax Center, Rotterdam, The Netherlands.
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, Rotterdam, 3000CA, The Netherlands.
| |
Collapse
|
217
|
Sui Y, Shen Z, Li X, Lu Y, Feng S, Ma R, Wu J, Jing C, Wang Z, Feng J, Cao H. Rupatadine-inhibited OTUD3 promotes DLBCL progression and immune evasion through deubiquitinating MYL12A and PD-L1. Cell Death Dis 2024; 15:561. [PMID: 39097608 PMCID: PMC11297949 DOI: 10.1038/s41419-024-06941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
The obstacle to effectively treating Diffuse Large B-cell Lymphoma (DLBCL) lies in the resistance observed toward standard therapies. Identifying therapeutic targets that prove effective for relapsed or refractory patients poses a significant challenge. OTUD3, a deubiquitinase enzyme, is overexpressed in DLBCL tissues. However, its role in DLBCL has not been investigated. Our study has brought to light the multifaceted impact of OTUD3 in DLBCL. Not only does it enhance cell survival through the deubiquitination of MYL12A, but it also induces CD8+ T cell exhaustion within the local environment by deubiquitinating PD-L1. Our findings indicate that the OTUD3 inhibitor, Rupatadine, exerts its influence through competitive binding with OTUD3. This operation diminishes the deubiquitination of both MYL12A and PD-L1 by OTUD3. This research unveils the central and oncogenic role of OTUD3 in DLBCL and highlights the potential clinical application value of the OTUD3 inhibitor, Rupatadine. These findings contribute valuable insights into addressing the challenges of resistant DLBCL cases and offer a promising avenue for further clinical exploration.
Collapse
Affiliation(s)
- Ying Sui
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ziyang Shen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoyou Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ya Lu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - SiTong Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Changwen Jing
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhuo Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Haixia Cao
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
218
|
Liu J, Ma J, Wen J, Zhou X. A Cell Cycle-Aware Network for Data Integration and Label Transferring of Single-Cell RNA-Seq and ATAC-Seq. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401815. [PMID: 38887194 PMCID: PMC11336957 DOI: 10.1002/advs.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Indexed: 06/20/2024]
Abstract
In recent years, the integration of single-cell multi-omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non-single omics perspective, but it still suffers many challenges, such as omics-variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single-cell RNA-seq data, but it is not clear how it will work on the integrated single-cell multi-omics data. Here, a cell cycle-aware network (CCAN) is developed to remove cell cycle effects from the integrated single-cell multi-omics data while keeping the cell type-specific variations. This is the first computational model to study the cell-cycle effects in the integration of single-cell multi-omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA-seq datasets from different protocols, integrating paired and unpaired scRNA-seq and scATAC-seq data, accurately transferring cell type labels from scRNA-seq to scATAC-seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data.
Collapse
Affiliation(s)
- Jiajia Liu
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Jian Ma
- Department of Electronic Information and Computer EngineeringThe Engineering & Technical College of Chengdu University of TechnologyLeshanSichuan614000China
| | - Jianguo Wen
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Xiaobo Zhou
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
- McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTX77030USA
- School of DentistryThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
219
|
Dubey R, Makhija R, Sharma A, Sahu A, Asati V. Unveiling the promise of pyrimidine-modified CDK inhibitors in cancer treatment. Bioorg Chem 2024; 149:107508. [PMID: 38850781 DOI: 10.1016/j.bioorg.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Cyclin-dependent kinases (CDKs) constitute a vital family of protein-serine kinases, pivotal in regulating various cellular processes such as the cell cycle, metabolism, proteolysis, and neural functions. Dysregulation or overexpression of CDK kinases is directly linked to the development of cancer. However, the currently approved CDK inhibitors by the US FDA, such as palbociclib, ribociclib, Trilaciclib, Abemaciclib, etc., although effective, exhibit limited specificity and often lead to undesirable adverse effects. First and second-generation CDK inhibitors have not gained significant clinical interaction due to their high toxicity and lack of specificity. To address these challenges, a combined approach is being employed in the quest for newer CDK inhibitors aimed at mitigating toxicity and side effects associated with CDKIs. The discovery of therapeutic agents selectively targeting tumorous cells, such as CDK inhibitors, has demonstrated promise in treating various cancers, including breast cancer. Extensive literature reviews have facilitated the development of novel CDK inhibitors by combining medicinally preferred pyrimidine derivatives with other heterocyclic rings. Pyrimidine derivatives substituted with pyrazole, imidazole, benzamide, benzene sulfonamide, indole carbohydrazide, and other privileged heterocyclic rings have shown encouraging efficacy in inhibiting cyclin-dependent kinase activity. This review provides comprehensive data, including structure-activity relationship (SAR), anticancer activity, and kinetics studies of potent compounds. Additionally, molecular docking studies with compounds under clinical trial and patents filed on pyrimidine based CDK inhibitors in cancer treatment are included. This review serves as a valuable resource for further development of CDK kinase inhibitors for cancer treatment, offering insights into their efficacy, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Makhija
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Adarsh Sahu
- Amity Institute of Pharmacy, Amity University Jaipur (Rajasthan), India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
220
|
Yan P, Wang G, Huang M, Liu Z, Dai C, Hu B, Gu M, Deng Z, Liu R, Wang X, Liu T. Combinatorial Biosynthesis Creates a Novel Aglycone Polyether with High Potency and Low Side Effects Against Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404668. [PMID: 38935027 PMCID: PMC11348059 DOI: 10.1002/advs.202404668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Polyethers play a crucial role in the development of anticancer drugs. To enhance the anticancer efficacy and reduce the toxicity of these compounds, thereby advancing their application in cancer treatment, herein, guided by the structure-activity relationships of aglycone polyethers, novel aglycone polyethers are rationally redesigned with potentially improved efficacy and reduced toxicity against tumors. To realize the biosynthesis of the novel aglycone polyethers, the gene clusters and the post-polyketide synthase tailoring pathways for aglycone polyethers endusamycin and lenoremycin are identified and subjected to combinatorial biosynthesis studies, resulting in the creation of a novel aglycone polyether termed End-16, which demonstrates significant potential for treating bladder cancer (BLCA). End-16 demonstrates the ability to suppress the proliferation, migration, invasion, and cellular protrusions formation of BLCA cells, as well as induce cell cycle arrest in the G1 phase in vitro. Notably, End-16 exhibits superior inhibitory activity and fewer side effects against BLCA compared to the frontline anti-BLCA drug cisplatin in vivo, thereby warranting further preclinical studies. This study highlights the significant potential of integrating combinatorial biosynthesis strategies with rational design to create unnatural products with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Pan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Gang Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteFrontier Science Center of Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Minjian Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Wuhan Hesheng Technology Co., LtdWuhan430074China
| | - Zhen Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Chong Dai
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Ben Hu
- Precision Cancer Diagnostic CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Zixin Deng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Ran Liu
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xinghuan Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Biological RepositoriesHuman Genetic Resource Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteFrontier Science Center of Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Wuhan Hesheng Technology Co., LtdWuhan430074China
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
- Department of UrologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| |
Collapse
|
221
|
Xu Z, Wang L, Hu H. Current scenario of fused pyrimidines with in vivo anticancer therapeutic potential. Arch Pharm (Weinheim) 2024; 357:e2400202. [PMID: 38752780 DOI: 10.1002/ardp.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Li Wang
- Zhumadian Agriculture International Cooperation and Exchange Center, Zhumadian, Henan, People's Republic of China
| | - Hongyan Hu
- Zhumadian Aquatic Technology Promotion Station, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
222
|
Li K, Hong Y, Yu Y, Xie Z, Lv D, Wang C, Xie T, Chen H, Chen Z, Zeng J, Zhao S. NAT10 Promotes Prostate Cancer Growth and Metastasis by Acetylating mRNAs of HMGA1 and KRT8. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310131. [PMID: 38922788 PMCID: PMC11348116 DOI: 10.1002/advs.202310131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.
Collapse
Affiliation(s)
- Kang‐Jing Li
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Yaying Hong
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yu‐Zhong Yu
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyue Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dao‐Jun Lv
- Department of UrologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Chong Wang
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Tao Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenan471934P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Jianwen Zeng
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Shan‐Chao Zhao
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhou510900China
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510500China
| |
Collapse
|
223
|
Moraes B, Gomes H, Saramago L, Braz V, Parizi LF, Braz G, da Silva Vaz I, Logullo C, Moraes J. Aurora kinase as a putative target to tick control. Parasitology 2024; 151:983-991. [PMID: 39542861 PMCID: PMC11770520 DOI: 10.1017/s003118202400101x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 11/17/2024]
Abstract
Aurora kinases (AURK) play a central role in controlling cell cycle in a wide range of organisms. They belong to the family of serine-threonine kinase proteins. Their role in the cell cycle includes, among others, the entry into mitosis, maturation of the centrosome and formation of the mitotic spindle. In mammals, 3 isoforms have been described: A, B and C, which are distinguished mainly by their function throughout the cell cycle. Two aurora kinase coding sequences have been identified in the transcriptome of the cattle tick Rhipicephalus microplus (Rm-AURKA and Rm-AURKB) containing the aurora kinase-specific domain. For both isoforms, the highest number of AURK coding transcripts is found in ovaries. Based on deduced amino acid sequences, it was possible to identify non-conserved threonine residues which are essential to AURK functions in vertebrates and which are not present in R. microplus sequences. A pan AURK inhibitor (CCT137690) caused cell viability decline in the BME26 tick embryonic cell line. In silico docking assay showed an interaction between Aurora kinase and CCT137690 with exclusive interaction sites in Rm-AURKA. The characterization of exclusive regions of the enzyme will enable new studies aimed at promoting species-specific enzymatic inhibition in ectoparasites.
Collapse
Affiliation(s)
- Bruno Moraes
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Helga Gomes
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Luiz Saramago
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Valdir Braz
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gloria Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
224
|
Hua M, Zhai X, Chen Y, Yin D. METTL3-mediated m6A modification of CDCA7 mRNA promotes COAD progression. Pathol Res Pract 2024; 260:155437. [PMID: 38959625 DOI: 10.1016/j.prp.2024.155437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) represents a frequent malignant tumor of the digestive system with high mortality and poor prognosis. As a prevalent internal mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) has been reported to participate in tumor malignancy. This study is designed to explore the role and mechanism of Methyltransferase-like 3 (METTL3) in the progression of COAD. METHODS In this research, the GEPIA database was applied to analyze the relationship between COAD and cell division cycle-associated protein 7 (CDCA7) or METTL3. Cell viability, cell cycle progression, apoptosis, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry, transwell assays. The glycolysis level was detected via specific kits. CDCA7, E-cadherin, N-cadherin, and METTL3 protein levels were determined by western blot assay. The biological role of CDCA7 on COAD tumor growth was examined by the xenograft tumor model in vivo. After RBPsuite analysis, the interaction between METTL3 and CDCA7 was verified by methylated RNA immunoprecipitation (MeRIP). RESULTS METTL3 and CDCA7 were highly expressed in COAD tissues and cells. Furthermore, the silencing of CDCA7 hindered COAD cell proliferation, migration, invasion, glycolysis, EMT, and promoted apoptosis in vitro, as well as retarded tumor growth in vivo. At the molecular level, METTL3 might enhance the stability of CDCA7 mRNA via m6A methylation. CONCLUSION METTL3 contributes to the malignant progression of COAD cells partly by regulating the stability of CDCA7 mRNA, providing a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Mei Hua
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Xiaolu Zhai
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Dian Yin
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China.
| |
Collapse
|
225
|
Yang H, Zhu Z, Long C, Niu F, Zhou J, Chen S, Ye M, Peng S, Zhang X, Chen Y, Wei L, Wang H, Liu D, Yao M, Zhang X, Zhang B. Quantitative and Qualitative Parameters of DCE-MRI Predict CDKN2A/B Homozygous Deletion in Gliomas. Acad Radiol 2024; 31:3355-3365. [PMID: 38443208 DOI: 10.1016/j.acra.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
RATIONALE AND OBJECTIVES Homozygous deletion (HD) of CDKN2A/B holds important prognostic value in gliomas. This study aimed to explore the predictive potential of conventional MRI characteristics combined with dynamic contrast-enhanced MRI parameters in predicting CDKN2A/B HD status in gliomas. MATERIALS AND METHODS Preoperative MRI data of 105 patients (69 without CDKN2A/B HD, and 36 with CDKN2A/B homozygous deletion) with gliomas were retrospectively collected. Conventional MRI features and dynamic contrast-enhanced-MRI qualitative parameter time-intensity curve type, quantitative parameters Ktrans, Kep, Ve, Vp, and iAUC were obtained. Logistic regression models for prediction of CDKN2A/B HD status were constructed in all types of gliomas and both subtypes of IDH-mutant and IDH-wild gliomas. RESULTS Multivariate analysis for all patients demonstrated that age (OR=1.103, p = 0.002) and Ktrans (OR=1.051, p < 0.001) independently predicted CDKN2A/B HD. In IDH-mutant subgroup, multivariate analysis results indicated that Ktrans (OR=1.098, p = 0.031) emerged as autonomous predictors of CDKN2A/B HD. In IDH-wild subgroup, age (OR=1.111, p = 0.002) and Ktrans (OR=1.032, p = 0.001) were independent predictors of CDKN2A/B HD according to the multivariate analysis. The areas under the receiver operating characteristic curve of the corresponding models were 0.90, 0.95 and 0.84, respectively. CONCLUSION Ktrans can serve as valuable predictive parameters for identifying CDKN2A/B HD status in all types of gliomas and both subtypes of IDH-mutant and IDH-wild gliomas. These findings provide a foundation for precise preoperative non-invasive diagnosis and personalized treatment approaches for glioma patients.
Collapse
Affiliation(s)
- Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Long
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siqi Peng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xue Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ying Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China; Institute of brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
226
|
Peng X, Huang X, Zhang S, Zhang N, Huang S, Wang Y, Zhong Z, Zhu S, Gao H, Yu Z, Yan X, Tao Z, Dai Y, Zhang Z, Chen X, Wang F, Claret FX, Elkabets M, Ji N, Zhong Y, Kong D. Sequential Inhibition of PARP and BET as a Rational Therapeutic Strategy for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307747. [PMID: 38896791 PMCID: PMC11321613 DOI: 10.1002/advs.202307747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Naixin Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Haiwang Gao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xiaotong Yan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhennan Tao
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Yuxiang Dai
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjin300020China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Francois X. Claret
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Ning Ji
- National Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of PharmacyTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
227
|
Ferreira-Silva GÁ, Rodrigues DA, Pressete CG, Caixeta ES, Gamero AMC, Miyazawa M, Hanemann JAC, Fraga CAM, Aissa AF, Ionta M. Selective inhibition of HDAC6 by N-acylhydrazone derivative reduces the proliferation and induces senescence in carcinoma hepatocellular cells. Toxicol In Vitro 2024; 99:105884. [PMID: 38945376 DOI: 10.1016/j.tiv.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.
Collapse
Affiliation(s)
| | - Daniel Alencar Rodrigues
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | - Angel Mauricio Castro Gamero
- Human Genetics Laboratory, Institute of Natural Science, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, 37130-001 MG, Brazil
| | | | - Carlos Alberto Manssour Fraga
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
228
|
Sachdeva A, Roy A, Gupta MK, Mandal S. Pharmacological inhibition of protein kinase D2/Aurora kinase A signalling axis suppresses G2/M cell cycle progression and proliferation of epithelial ovarian cancer cells. Pathol Res Pract 2024; 260:155390. [PMID: 38878668 DOI: 10.1016/j.prp.2024.155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 08/09/2024]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy with poor prognosis and patient survival outcome. Protein kinase D2 (PKD2) belongs to Ca++/calmodulin-dependent serine/threonine kinase family and its aberrant expression is associated with many cellular and physiological functions associated with tumorigenesis including cell proliferation. We show that PKD2 is activated during G2/M cell cycle transition and its catalytic inactivation by small molecule inhibitor CRT0066101 or genetic knockdown caused suppression of EOC cell proliferation followed by a delay into mitotic entry. Our RNASeq analysis of PKD2-inactivated EOC cells revealed significant downregulation of genes associated with cell cycle including Aurora kinase A, a critical mitotic regulator. Mechanistically, PKD2 positively regulated Aurora kinase A stability at both transcriptional and post-translational levels by interfering with the function of Fbxw7, drove G2/M cell cycle transition and EOC cell proliferation. Moreover, pharmacological inhibition of Aurora kinase A by small molecule CD532 or its shRNA-mediated genetic knockdown suppressed EOC cell proliferation, induced G2/M cell cycle arrest and mitotic catastrophe followed by apoptosis. Taken together, our results indicated that PKD2 positively regulates Aurora kinase A during G2/M cell cycle entry and pharmacological targeting of PKD2/Aurora kinase A signalling axis could serve as a novel therapeutic intervention against a lethal pathology like EOC.
Collapse
Affiliation(s)
- Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| | - Manoj Kumar Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
229
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Lycorine (Lycoris radiata)-a unique natural medicine on breast cancer. J Cell Mol Med 2024; 28:e70032. [PMID: 39175104 PMCID: PMC11341274 DOI: 10.1111/jcmm.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer among women worldwide. Lycorine (Lycoris radiata), a small molecule derived from the traditional Chinese herb Amaryllidaceae plants, has appeared potential effect on inhibiting the growth of cancer cells and inducing apoptosis in various types of cancer with minor side effects. To discuss the therapeutic effects and molecular mechanisms of lycorine on BC established by lycorine-treated S180 tumour-bearing mice in vivo. Furthermore, both the mitotic and microtubule assembly dynamics genes were performed by qPCR assays, and the protein expression associated with mitotic arrest was investigated by western blot. Lycorine was demonstrated to reduce sarcoma growth of S180 tumour-bearing mice and inhibit the proliferation of MCF-7 cells in concentration-dependent manner. Moreover, lycorine induced M phase cell cycle arrest via interfering with the mitotic apparatus regulated the expression of 20 genes and 15 proteins in cell cycle progression. Furthermore, this study confirmed that the potential effect of lycorine on BC might be mediated by cell cycle arrest in M phase for the first time. These results would be the consequence of exploitation of lycorine as a potential drug for BC therapy, however further preclinical and clinical studies are still needed.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Bing Wang
- School of Food EngineeringHarbin University of CommerceHarbinChina
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Yan Zhao
- Department of Medical ImagingThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| |
Collapse
|
230
|
Salnikov L. Cell autocloning as a pathway to their real rejuvenation. FRONTIERS IN AGING 2024; 5:1429156. [PMID: 39136004 PMCID: PMC11317467 DOI: 10.3389/fragi.2024.1429156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
The article gives a brief description of geroprotection and rejuvenation methods known to date, presenting their main mechanisms and limitations. To overcome the main limitations of the process of rejuvenation, it is possible to use a process called "cell autocloning." The principle of the proposed method of rejuvenation is as follows: a periodic process of autocloning of the cell nucleus is initiated in the cellular genome with the formation of one unstable daughter copy and its subsequent self-elimination. In this case, the process of cell division stops in the phase of nuclei divergence without subsequent physical separation of the cell itself. This is especially important for postmitotic cells, where the looping of the "unidirectional" line of the ontogenesis program into a "ring" will mean their transition into renewable cells. The prototype for autocloning mechanisms could be the already known ways in which cells adapt to the increasing amount of their damage over time. These are polyploidy and asymmetric cell division, relying on which it is possible to obtain a renewable process of cell nuclei division, when only the original nucleus remains as a result of division. Although this is not a simple task, there are possible pathways to its solution using approaches that can suggest modern knowledge from the field of molecular and cell biology and genetics. The realization of such a goal will require a lot of work, but the expected result justifies it.
Collapse
|
231
|
Lv C, Wang Y, Kong L, Guo J, Chen X, Guo F, Dong Z, Li Z, Yang X, Yang M, Yang W, Li F, Zhang H. Securinine inhibits carcinogenesis in gastric cancer by targeting AURKA-β-catenin/Akt/STAT3 and the cell cycle pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155735. [PMID: 38810557 DOI: 10.1016/j.phymed.2024.155735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Gastric cancer (GC) is difficult to treat with currently available treatments. Securinine (SCR) has a lengthy history of use in the treatment of disorders of the nervous system, and its anticancer potential has been gaining attention in recent years. The aim of this study was to explore the repressive effect of SCR on GC and its fundamental mechanism. METHODS The efficacy of SCR in GC cells was detected by MTT assays. Colony formation, flow cytometry and Transwell assays were used to assess the changes in the proliferation, apoptosis, cell cycle distribution, migration and invasion of GC cells after treatment. AGS (human gastric carcinoma cell)-derived xenografts were used to observe the effect of SCR on tumor growth in vivo. The molecular mechanism of action of SCR in GC was explored via RNA sequencing, bioinformatics analysis, Western blotting, molecular docking, and immunohistochemistry. RESULTS SCR was first discovered to inhibit the proliferation, migration, and invasion of GC cells while initiating apoptosis and cell cycle arrest in vitro. It was also established that SCR has excellent anticancer effects in vivo. Interestingly, AURKA acts as a crucial target of SCR, and AURKA expression can be blocked by SCR. Moreover, this study revealed that SCR suppresses the cell cycle and the β-catenin/Akt/STAT3 pathways, which were previously reported to be regulated by AURKA. CONCLUSION SCR exerts a notable anticancer effect on GC by targeting AURKA and blocking the cell cycle and β-catenin/Akt/STAT3 pathway. Thus, SCR is a promising pharmacological option for the treatment of GC.
Collapse
Affiliation(s)
- Caixia Lv
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Yun Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China; Department of Orthopedics, The Second People's Hospital of Changzhi, Changzhi, PR China
| | - Luke Kong
- Basic Medical College, Shanxi Medical University, Taiyuan, PR China; Department of Medical Laboratory, Jincheng People's Hospital, Jincheng, PR China
| | - Jianghong Guo
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China; Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, PR China
| | - Xiaoxia Chen
- Department of Medicine, Shanxi Renan Hospital, Taiyuan, PR China
| | - Fengtao Guo
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Zhuanxia Dong
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Zhiyuan Li
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, PR China
| | - Mudan Yang
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China
| | - Wenhui Yang
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China.
| | - Feng Li
- Central Laboratory, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, PR China.
| | - Huanhu Zhang
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; Shanxi University of Chinese Medicine, Jin Zhong, PR China.
| |
Collapse
|
232
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
233
|
Wu L, Zhang Y, Hong X, Wu M, Wang L, Yan X. Deciphering the Relationship between Cell Growth and Cell Cycle in Individual Escherichia coli Cells by Flow Cytometry. Anal Chem 2024. [PMID: 39015018 DOI: 10.1021/acs.analchem.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Accurate coordination of chromosome replication and cell division is essential for cellular processes, yet the regulatory mechanisms governing the bacterial cell cycle remain contentious. The lack of quantitative data connecting key cell cycle players at the single-cell level across large samples hinders consensus. Employing high-throughput flow cytometry, we quantitatively correlated the expression levels of key cell cycle proteins (FtsZ, MreB, and DnaA) with DNA content in individual bacteria. Our findings reveal distinct correlations depending on the chromosome number (CN), specifically whether CN ≤2 or ≥4, unveiling a mixed regulatory scenario in populations where CN of 2 or 4 coexist. We observed function-dependent regulations for these key proteins across nonoverlapping division cycles and various nutrient conditions. Notably, a logarithmic relationship between total protein content and replication origin number across nutrient conditions suggests a unified mechanism governing cell cycle progression, confirming the applicability of Schaechter's growth law to cells with CN ≥4. For the first time, we established a proportional relationship between the synthesis rates of key cell cycle proteins and chromosome dynamics in cells with CN ≥4. Drug experiments highlighted CN 2 and 4 as pivotal turning points influencing cellular resource allocation. This high-throughput, single-cell analysis provides interconnected quantitative insights into key molecular events, facilitating a predictive understanding of the relationship between cell growth and cell cycle.
Collapse
Affiliation(s)
- Lina Wu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuzhen Zhang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xinyi Hong
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingkai Wu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liangan Wang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
234
|
Aati S, Aati HY, El-Shamy S, Khanfar MA, A.Naeim MA, Hamed AA, Rateb ME, Hassan HM, Aboseada MA. Green synthesized extracts/Au complex of Phyllospongia lamellosa: Unrevealing the anti-cancer and anti-bacterial potentialities, supported by metabolomics and molecular modeling. Heliyon 2024; 10:e34000. [PMID: 39071630 PMCID: PMC11283168 DOI: 10.1016/j.heliyon.2024.e34000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The anti-cancer and anti-bacterial potential of the Red Sea sponge Phyllospongia lamellosa in its bulk (crude extracts) and gold nanostructure (loaded on gold nanaoparticles) were investigated. Metabolomics analysis was conducted, and subsequently, molecular modeling studies were conducted to explore and anticipate the P. lamellosa secondary metabolites and their potential target for their various bioactivities. The chloroformic extract (CE) and ethyl acetate extract (EE) of the P. lamellosa predicted to include bioactive lipophilic and moderately polar metabolites, respectively, were used to synthesize gold nanoparticles (AuNPs). The prepared AuNPs were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-vis spectrophotometric analyses. The cytotoxic activities were tested against MCF-7, MDB-231, and MCF-10A. Moreover, the anti-bacterial, antifungal, and anti-biofilm activity were assessed. Definite classes of metabolites were identified in CE (terpenoids) and EE (brominated phenyl ethers and sulfated fatty amides). Molecular modeling involving docking and molecular dynamics identified Protein-tyrosine phosphatase 1B (PTP1B) as a potential target for the anti-cancer activities of terpenoids. Moreover, CE exhibited the most powerful activity against breast cancer cell lines, matching our molecular modeling study. On the other hand, only EE was demonstrated to possess powerful anti-bacterial and anti-biofilm activity against Escherichia coli. In conclusion, depending on their bioactive metabolites, P. lamellosa-derived extracts, after being loaded on AuNPs, could be considered anti-cancer, anti-bacterial, and anti-biofilm bioactive products. Future work should be completed to produce drug leads.
Collapse
Affiliation(s)
- Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Sherine El-Shamy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohammad A. Khanfar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| | | | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mahmoud A. Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
235
|
Jagtap YA, Kumar P, Dubey AR, Kinger S, Choudhary A, Karmakar S, Lal G, Kumar A, Kumar A, Prasad A, Mishra A. Acetaminophen induces mitochondrial apoptosis through proteasome dysfunctions. Life Sci 2024; 349:122732. [PMID: 38768775 DOI: 10.1016/j.lfs.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acetaminophen is a known antipyretic and non-opioid analgesic for mild pain and fever. Numerous studies uncover their hidden chemotherapeutics applications, including chronic cancer pain management. Acetaminophen also represents an anti-proliferative effect in some cancer cells. Few studies also suggest that the use of Acetaminophen can trigger apoptosis and impede cellular growth. However, Acetaminophen's molecular potential and precise mechanism against improper cellular proliferation and use as an effective anti-proliferative agent still need to be better understood. Here, our current findings show that Acetaminophen induces proteasomal dysfunctions, resulting in aberrant protein accumulation and mitochondrial abnormalities, and consequently induces cell apoptosis. We observed that the Acetaminophen treatment leads to improper aggregation of ubiquitylated expanded polyglutamine proteins, which may be due to the dysfunctions of proteasome activities. Our in-silico analysis suggests the interaction of Acetaminophen and proteasome. Furthermore, we demonstrated the accumulation of proteasome substrates and the depletion of proteasome activities after treating Acetaminophen in cells. Acetaminophen induces proteasome dysfunctions and mitochondrial abnormalities, leading to pro-apoptotic morphological changes and apoptosis successively. These results suggest that Acetaminophen can induce cell death and may retain a promising anti-proliferative effect. These observations can open new possible molecular strategies in the near future for developing and designing specific and effective proteasome inhibitors, which can be helpful in conjugation with other anti-tumor drugs for their better efficiency.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
236
|
Abdelmegeed H, Abdel Ghany LMA, Youssef A, El-Etrawy AAS, Ryad N. Exploring the antitumor potential of novel quinoline derivatives via tubulin polymerization inhibition in breast cancer; design, synthesis and molecular docking. RSC Adv 2024; 14:22092-22112. [PMID: 39005243 PMCID: PMC11240139 DOI: 10.1039/d4ra04371e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
A series of quinoline derivatives was designed and synthesized as novel tubulin inhibitors targeting the colchicine binding site. All the rationalized compounds 3a-e, 4a-e, 5a-e, and 6a-e have been chosen for screening their cytotoxic activity against 60 cell lines by NCI. Compounds 3b, 3c, 4c, 5c and 6c demonstrated the most notable antitumor activity against almost all cell lines. Compound 4c emerged as the most potent compound as an antiproliferative agent. This compound was subsequently chosen for five-dose testing and it exhibited remarkable broad-spectrum efficacy with strong antitumor activity against several cell lines. Compound 4c significantly induced cell cycle arrest in MDA-MB-231 cells at G2 and M phases where the cell population increased dramatically to 22.84% compared to the untreated cells at 10.42%. It also increased the population in MDA-MB-231 cells at both early and late stages of apoptosis. Compound 4c can successfully inhibit tubulin polymerization with an IC50 value of 17 ± 0.3 μM. The β-tubulin mRNA levels were notably reduced in MDA-MB-231 cells treated with compound 4c which is similar to the effect observed with colchicine treatment. Docking studies revealed that compound 4c interacted well with crucial amino acids in the active site.
Collapse
Affiliation(s)
- Heba Abdelmegeed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Giza 12622 Egypt
| | - Lina M A Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| | - Amira Youssef
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| | - Abd-Allah S El-Etrawy
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
- Department of Chemistry, Basic Science, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| | - Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| |
Collapse
|
237
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 PMCID: PMC11809619 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
238
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
239
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
240
|
Phongsuwichetsak C, Suksrichavalit T, Chatupheeraphat C, Eiamphungporn W, Yainoy S, Yamkamon V. Diospyros rhodocalyx Kurz induces mitochondrial-mediated apoptosis via BAX, Bcl-2, and caspase-3 pathways in LNCaP human prostate cancer cell line. PeerJ 2024; 12:e17637. [PMID: 38966207 PMCID: PMC11223595 DOI: 10.7717/peerj.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Chayisara Phongsuwichetsak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thummaruk Suksrichavalit
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Information, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
241
|
Charlton PV, O'Reilly D, Philippou Y, Rao SR, Lamb ADG, Mills IG, Higgins GS, Hamdy FC, Verrill C, Buffa FM, Bryant RJ. Molecular analysis of archival diagnostic prostate cancer biopsies identifies genomic similarities in cases with progression post-radiotherapy, and those with de novo metastatic disease. Prostate 2024; 84:977-990. [PMID: 38654435 PMCID: PMC11253896 DOI: 10.1002/pros.24715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin-fixed paraffin-embedded (FFPE) prostate biopsies from cohorts with post-radiotherapy (RT) long-term clinical follow-up has been limited. Utilizing parallel sequencing modalities, we performed a proof-of-principle sequencing analysis of historical diagnostic FFPE prostate biopsies. We compared patients with (i) stable PCa (sPCa) postprimary or salvage RT, (ii) progressing PCa (pPCa) post-RT, and (iii) de novo metastatic PCa (mPCa). METHODS A cohort of 19 patients with diagnostic prostate biopsies (n = 6 sPCa, n = 5 pPCa, n = 8 mPCa) and mean 4 years 10 months follow-up (diagnosed 2009-2016) underwent nucleic acid extraction from demarcated malignancy. Samples underwent 3'RNA sequencing (3'RNAseq) (n = 19), nanoString analysis (n = 12), and Illumina 850k methylation (n = 8) sequencing. Bioinformatic analysis was performed to coherently identify differentially expressed genes and methylated genomic regions (MGRs). RESULTS Eighteen of 19 samples provided useable 3'RNAseq data. Principal component analysis (PCA) demonstrated similar expression profiles between pPCa and mPCa cases, versus sPCa. Coherently differentially methylated probes between these groups identified ~600 differentially MGRs. The top 50 genes with increased expression in pPCa patients were associated with reduced progression-free survival post-RT (p < 0.0001) in an external cohort. CONCLUSIONS 3'RNAseq, nanoString and 850k-methylation analyses are each achievable from historical FFPE diagnostic pretreatment prostate biopsies, unlocking the potential to utilize large cohorts of historic clinical samples. Profiling similarities between individuals with pPCa and mPCa suggests biological similarities and historical radiological staging limitations, which warrant further investigation.
Collapse
Affiliation(s)
- Philip Vincent Charlton
- Department of OncologyUniversity of OxfordOxfordUK
- Department of OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Yiannis Philippou
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Srinivasa Rao Rao
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Alastair David Gordon Lamb
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | | | - Geoff Stuart Higgins
- Department of OncologyUniversity of OxfordOxfordUK
- Department of OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Freddie Charles Hamdy
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Clare Verrill
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Department of PathologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Richard John Bryant
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
242
|
Jiang L, Zhang Z, Luo Z, Li L, Yuan S, Cui M, He K, Xiao J. Rupatadine inhibits colorectal cancer cell proliferation through the PIP5K1A/Akt/CDK2 pathway. Biomed Pharmacother 2024; 176:116826. [PMID: 38838507 DOI: 10.1016/j.biopha.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3β pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhibo Zhang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhaofeng Luo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luan Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shengtao Yuan
- China Pharmaceutical University, Nanjing 210000, China
| | - Min Cui
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
243
|
Liu Y, Li Z, Zhang J, Liu W, Guan S, Zhan Y, Fang Y, Li Y, Deng H, Shen Z. DYNLL1 accelerates cell cycle via ILF2/CDK4 axis to promote hepatocellular carcinoma development and palbociclib sensitivity. Br J Cancer 2024; 131:243-257. [PMID: 38824222 PMCID: PMC11263598 DOI: 10.1038/s41416-024-02719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Disorder of cell cycle represents as a major driver of hepatocarcinogenesis and constitutes an attractive therapeutic target. However, identifying key genes that respond to cell cycle-dependent treatments still facing critical challenges in hepatocellular carcinoma (HCC). Increasing evidence indicates that dynein light chain 1 (DYNLL1) is closely related to cell cycle progression and plays a critical role in tumorigenesis. In this study, we explored the role of DYNLL1 in the regulation of cell cycle progression in HCC. METHODS We analysed clinical specimens to assess the expression and predictive value of DYNLL1 in HCC. The oncogenic role of DYNLL1 was determined by gain or loss-of-function experiments in vitro, and xenograft tumour, liver orthotopic, and DEN/CCl4-induced mouse models in vivo. Mass spectrometry analysis, RNA sequencing, co-immunoprecipitation assays, and forward and reverse experiments were performed to clarify the mechanism by which DYNLL1 activates the interleukin-2 enhancer-binding factor 2 (ILF2)/CDK4 signalling axis. Finally, the sensitivity of HCC cells to palbociclib and sorafenib was assessed by apoptosis, cell counting kit-8, and colony formation assays in vitro, and xenograft tumour models and liver orthotopic models in vivo. RESULTS DYNLL1 was significantly higher in HCC tissues than that in normal liver tissues and closely related to the clinicopathological features and prognosis of patients with HCC. Importantly, DYNLL1 was identified as a novel hepatocarcinogenesis gene from both in vitro and in vivo evidence. Mechanistically, DYNLL1 could interact with ILF2 and facilitate the expression of ILF2, then ILF2 could interact with CDK4 mRNA and delay its degradation, which in turn activates downstream G1/S cell cycle target genes CDK4. Furthermore, palbociclib, a selective CDK4/6 inhibitor, represents as a promising therapeutic strategy for DYNLL1-overexpressed HCC, alone or particularly in combination with sorafenib. CONCLUSIONS Our work uncovers a novel function of DYNLL1 in orchestrating cell cycle to promote HCC development and suggests a potential synergy of CDK4/6 inhibitor and sorafenib for the treatment of HCC patients, especially those with increased DYNLL1.
Collapse
Affiliation(s)
- Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jinchao Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Wei Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenyuan Guan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yizhi Zhan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
244
|
Ji Q, Ma F, Zhang X, Liu Y, Wang P, Li M. Hsa_circ_0005320 affects cell proliferation and the cell cycle via the IGF2BP3/CDK2 axis in bladder cancer. Cell Signal 2024; 119:111154. [PMID: 38565412 DOI: 10.1016/j.cellsig.2024.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs), which are covalently closed non-coding RNAs, are frequently dysregulated in cancer. However, their precise role in bladder cancer (BCa) remains largely unknown. METHODS Expression of hsa_circ_0005320 in tissues and cell lines was detected using quantitative real-time PCR. Proliferation and colony forming capacity of BCa cells were assessed using Cell Counting Kit-8, ethynyl-labeled deoxyuridine, and colony formation assays. The cell cycle was analyzed using flow cytometry. Protein expression of insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) and cyclin dependent kinase 2 (CDK2) was examined using western blots. The binding of RNA and protein was validated using RNA immunoprecipitation. Additionally, xenograft tumor models were established to validate the function of hsa_circ_0005320 in vivo. RESULTS We screened hsa_circ_0005320 from previous high-throughput sequencing and found that it was highly expressed in BCa tissues and associated with tumor differentiation and depth of invasion in BCa patients. Through functional experiments, we demonstrated that hsa_circ_0005320 promoted cell proliferation and regulated the cell cycle. Mechanistically, hsa_circ_0005320 interacted with and upregulated the expression of IGF2BP3, which binds to and enhances the stability of CDK2 mRNA. Furthermore, knockdown of hsa_circ_0005320 resulted in a reduction in tumor burden in vivo. CONCLUSIONS Collectively, these findings highlight the pro-oncogenic role of hsa_circ_0005320 in BCa through the IGF2BP3/CDK2 axis, providing valuable insights into the mechanism of circRNAs in tumor progression.
Collapse
Affiliation(s)
- Quansong Ji
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feilu Ma
- Teaching Center for Basic Medical Experiment of China Medical University, Shen yang, Liaoning, China
| | - Xiling Zhang
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yili Liu
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingshan Li
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
245
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
246
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
247
|
Leu YL, Cheng SF, Wang TH, Feng CH, Chen YJ, Hsieh YC, Lan YH, Chen CC. Increasing DNA damage sensitivity through corylin-mediated inhibition of homologous recombination. Biomed Pharmacother 2024; 176:116864. [PMID: 38865847 DOI: 10.1016/j.biopha.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.
Collapse
Affiliation(s)
- Yann-Lii Leu
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Shu-Fang Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Chun-Hao Feng
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yu-Ju Chen
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA
| | - Yu-Hsuan Lan
- Department of Pharmacy, College of Pharmacy, China Medical University, No.100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - Chin-Chuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Healthy Aging Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC.
| |
Collapse
|
248
|
Yang Y, Shao X, Li Z, Zhang L, Yang B, Jin B, Hu X, Qu X, Che X, Liu Y. Prognostic heterogeneity of Ki67 in non-small cell lung cancer: A comprehensive reappraisal on immunohistochemistry and transcriptional data. J Cell Mol Med 2024; 28:e18521. [PMID: 39021279 PMCID: PMC11255407 DOI: 10.1111/jcmm.18521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
In the present study, the debatable prognostic value of Ki67 in patients with non-small cell lung cancer (NSCLC) was attributed to the heterogeneity between lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). Based on meta-analyses of 29 studies, a retrospective immunohistochemical cohort of 1479 patients from our center, eight transcriptional datasets and a single-cell datasets with 40 patients, we found that high Ki67 expression suggests a poor outcome in LUAD, but conversely, low Ki67 expression indicates worse prognosis in LUSC. Furthermore, low proliferation in LUSC is associated with higher metastatic capacity, which is related to the stronger epithelial-mesenchymal transition potential, immunosuppressive microenvironment and angiogenesis. Finally, nomogram model incorporating clinical risk factors and Ki67 expression outperformed the basic clinical model for the accurate prognostic prediction of LUSC. With the largest prognostic assessment of Ki67 from protein to mRNA level, our study highlights that Ki67 also has an important prognostic value in NSCLC, but separate evaluation of LUAD and LUSC is necessary to provide more valuable information for clinical decision-making in NSCLC.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xinye Shao
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
| | - Zhi Li
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Lingyun Zhang
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
| | - Bowen Yang
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Bo Jin
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of GeriatricsThe First Hospital of China Medical UniversityShenyangChina
| | - Xiujuan Qu
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaofang Che
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
| | - Yunpeng Liu
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
- Clinical Cancer Research Center of ShenyangThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
249
|
Zhen AX, Kang KA, Piao MJ, Madushan Fernando PDS, Lakmini Herath HMU, Hyun JW. Protective effects of astaxanthin on particulate matter 2.5‑induced senescence in HaCaT keratinocytes via maintenance of redox homeostasis. Exp Ther Med 2024; 28:275. [PMID: 38800049 PMCID: PMC11117106 DOI: 10.3892/etm.2024.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) imposes a heavy burden on the skin and respiratory system of human beings, causing side effects such as aging, inflammation and cancer. Astaxanthin (ATX) is a well-known antioxidant widely used for its anti-inflammatory and anti-aging properties. However, few studies have investigated the protective effects of ATX against PM2.5-induced senescence in HaCaT cells. In the present study, the levels of reactive oxygen species (ROS) and antioxidant enzymes were measured after treatment with PM2.5. The results revealed that PM2.5 generated excessive ROS and reduced the translocation of nuclear factor erythroid 2-related factor 2 (NRF2), subsequently reducing the expression of antioxidant enzymes. However, pretreatment with ATX reversed the ROS levels as well as the expression of antioxidant enzymes. In addition, ATX protected cells from PM2.5-induced DNA damage and rescued PM2.5-induced cell cycle arrest. The levels of senescence-associated phenotype markers, such as interleukin-1β, matrix metalloproteinases, and β-galactosidase, were increased by exposure to PM2.5, however these effects were reversed by ATX. After interfering with NRF2 mRNA expression and exposing cells to PM2.5, the levels of ROS and β-galactosidase were higher compared with siControl RNA cells exposed to PM2.5. However, ATX inhibited ROS and β-galactosidase levels in both the siControl RNA and the siNRF2 RNA groups. Thus, ATX protects HaCaT keratinocytes from PM2.5-induced senescence by partially inhibiting excessive ROS generation via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Ao Xuan Zhen
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
250
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|