201
|
Despins CA, Brown SD, Robinson AV, Mungall AJ, Allen-Vercoe E, Holt RA. Modulation of the Host Cell Transcriptome and Epigenome by Fusobacterium nucleatum. mBio 2021; 12:e0206221. [PMID: 34700376 PMCID: PMC8546542 DOI: 10.1128/mbio.02062-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023] Open
Abstract
Fusobacterium nucleatum is a ubiquitous opportunistic pathogen with an emerging role as an oncomicrobe in colorectal cancer and other cancer settings. F. nucleatum can adhere to and invade host cells in a manner that varies across F. nucleatum strains and host cell phenotypes. Here, we performed pairwise cocultures between three F. nucleatum strains and two immortalized primary host cell types (human colonic epithelial [HCE] cells and human carotid artery endothelial [HCAE] cells) followed by transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to investigate transcriptional and epigenetic host cell responses. We observed that F. nucleatum-induced host cell transcriptional modulation involves strong upregulation of genes related to immune migration and inflammatory processes, such as TNF, CXCL8, CXCL1, and CCL20. Furthermore, we identified genes strongly upregulated in a cell line-specific manner. In HCE cells, overexpressed genes included UBD and DUOX2/DUOXA2, associated with p53 degradation-mediated proliferation and intestinal reactive oxygen species (ROS) production, respectively. In HCAE cells, overexpressed genes included EFNA1 and LIF, two genes commonly upregulated in colorectal cancer and associated with poor patient outcomes, and PTGS2 (COX2), a gene associated with the protective effect of aspirin in the colorectal cancer setting. Interestingly, we also observed downregulation of numerous histone modification genes upon F. nucleatum exposure. We used the ChIP-seq data to annotate chromatin states genome wide and found significant chromatin remodeling following F. nucleatum exposure in HCAE cells, with increased frequencies of active enhancer and low-signal/quiescent states. Thus, our results highlight increased inflammation and chemokine gene expression as conserved host cell responses to F. nucleatum exposure and extensive host cell epigenomic changes specific to host cell type. IMPORTANCE Fusobacterium nucleatum is a bacterium normally found in the healthy oral cavity but also has an emerging role in colorectal cancer and other cancer settings. The host-microbe interactions of F. nucleatum and its involvement in tumor initiation, progression, and treatment resistance are not fully understood. We explored host cell changes that occur in response to F. nucleatum. We identified key genes differentially expressed in response to various conditions of F. nucleatum exposure and determined that the conserved host cell response to F. nucleatum was dominated by increased inflammation and chemokine gene expression. Additionally, we found extensive host cell epigenomic changes as a novel aspect of host modulation associated with F. nucleatum exposure. These results extend our understanding of F. nucleatum as an emerging pathogen and highlight the importance of considering strain heterogeneity and host cell phenotypic variation when exploring pathogenic mechanisms of F. nucleatum.
Collapse
Affiliation(s)
- Cody A. Despins
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Scott D. Brown
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Avery V. Robinson
- Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew J. Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
202
|
Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:327. [PMID: 34656142 PMCID: PMC8520212 DOI: 10.1186/s13046-021-02128-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
The efficacy of cancer immunotherapy largely depends on the tumor microenvironment, especially the tumor immune microenvironment. Emerging studies have claimed that microbes reside within tumor cells and immune cells, suggesting that these microbes can impact the state of the tumor immune microenvironment. For the first time, this review delineates the landscape of intra-tumoral microbes and their products, herein defined as the tumor microbe microenvironment. The role of the tumor microbe microenvironment in the tumor immune microenvironment is multifaceted: either as an immune activator, inhibitor, or bystander. The underlying mechanisms include: (I) the presentation of microbial antigens by cancer cells and immune cells, (II) microbial antigens mimicry shared with tumor antigens, (III) microbe-induced immunogenic cell death, (IV) microbial adjuvanticity mediated by pattern recognition receptors, (V) microbe-derived metabolites, and (VI) microbial stimulation of inhibitory checkpoints. The review further suggests the use of potential modulation strategies of the tumor microbe microenvironment to enhance the efficacy and reduce the adverse effects of checkpoint inhibitors. Lastly, the review highlights some critical questions awaiting to be answered in this field and provides possible solutions. Overall, the tumor microbe microenvironment modulates the tumor immune microenvironment, making it a potential target for improving immunotherapy. It is a novel field facing major challenges and deserves further exploration.
Collapse
Affiliation(s)
- Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lingjuan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Die Hu
- Xiangya Medical College, Central South University, Changsha, 410013, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
203
|
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021; 184:5309-5337. [PMID: 34624224 DOI: 10.1016/j.cell.2021.09.020] [Citation(s) in RCA: 836] [Impact Index Per Article: 209.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Unprecedented advances have been made in cancer treatment with the use of immune checkpoint blockade (ICB). However, responses are limited to a subset of patients, and immune-related adverse events (irAEs) can be problematic, requiring treatment discontinuation. Iterative insights into factors intrinsic and extrinsic to the host that impact ICB response and toxicity are critically needed. Our understanding of the impact of host-intrinsic factors (such as the host genome, epigenome, and immunity) has evolved substantially over the past decade, with greater insights on these factors and on tumor and immune co-evolution. Additionally, we are beginning to understand the impact of acute and cumulative exposures-both internal and external to the host (i.e., the exposome)-on host physiology and response to treatment. Together these represent the current day hallmarks of response, resistance, and toxicity to ICB. Opportunities built on these hallmarks are duly warranted.
Collapse
Affiliation(s)
- Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beth A Helmink
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
204
|
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021; 39:1317-1341. [PMID: 34506740 DOI: 10.1016/j.ccell.2021.08.006] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The human microbiome constitutes a complex multikingdom community that symbiotically interacts with the host across multiple body sites. Host-microbiome interactions impact multiple physiological processes and a variety of multifactorial disease conditions. In the past decade, microbiome communities have been suggested to influence the development, progression, metastasis formation, and treatment response of multiple cancer types. While causal evidence of microbial impacts on cancer biology is only beginning to be unraveled, enhanced molecular understanding of such cancer-modulating interactions and impacts on cancer treatment are considered of major scientific importance and clinical relevance. In this review, we describe the molecular pathogenic mechanisms shared throughout microbial niches that contribute to the initiation and progression of cancer. We highlight advances, limitations, challenges, and prospects in understanding how the microbiome may causally impact cancer and its treatment responsiveness, and how microorganisms or their secreted bioactive metabolites may be potentially harnessed and targeted as precision cancer therapeutics.
Collapse
Affiliation(s)
- Nyssa Cullin
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Camila Azevedo Antunes
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| |
Collapse
|
205
|
Batool S, Bin-T-Abid D, Batool H, Shahid S, Saleem M, Khan AU, Hamid A, Mahmood MS, Ashraf NM. Development of multi-epitope vaccine constructs for non-small cell lung cancer (NSCLC) against USA human leukocyte antigen background: an immunoinformatic approach toward future vaccine designing. Expert Opin Biol Ther 2021; 21:1525-1533. [PMID: 34547976 DOI: 10.1080/14712598.2021.1981285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The design of peptide-based vaccines for cancer is a promising immunotherapy that can induce a cancer-specific cytotoxic response in tumor cells. METHODS Herein, we used the immunoinformatic approach in designing a multi-epitope vaccine targeting G-protein coupled receptor 87 (GPCR-87), cystine/glutamate transporter (SLC7A11), Immunoglobulin binding protein 1 (IGBP1), and thioredoxin domain-containing protein 5 (TXNDC5), which can potentially contribute to NSCLC. The MHC-I and MHC-II epitopes selected for the fusion construct were evaluated for their antigenic and non-allergenic natures via VaxiJen and AllerTop. RESULTS A total of five epitopes, four class-I (FIFYLKNIV, CRYTSVLFY, RYLKVVKPF, and RQAKIQRYK), and one class-II (NQVRGYPTLLWFRDG), having combined USA population coverage of 100%, were used to make ten possible multi-epitope fusion constructs. In these constructs, PADRE, a universal T-helper epitope, and RSO9, a TLR4 agonist, were fused as adjuvants. The molecular docking analysis revealed that two constructs were showing significant binding affinities toward HLA-A*02:01, the most prevalent HLA allele in USA. Moreover, MD simulations marked one construct as a promising therapeutic candidate. CONCLUSION The multi-epitope vaccine constructs designed using immunogenic, and non-allergenic peptides of NSCLS tumor-associated proteins are likely to pose significant therapeutic efficacies in cancer immunotherapy due to their high binding affinities toward HLA molecules.
Collapse
Affiliation(s)
- Sana Batool
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.,School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Duaa Bin-T-Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hina Batool
- Department of Life Science, School of Science, University of Management Technology, Lahore, Pakistan
| | - Saher Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Azmat Ullah Khan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat Pakistan
| | | | - Malik Siddique Mahmood
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, Nur International University, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat Pakistan
| |
Collapse
|
206
|
Carroll CSE, Andrew ER, Malik L, Elliott KF, Brennan M, Meyer J, Hintze A, Almonte AA, Lappin C, MacPherson P, Schulte KM, Dahlstrom JE, Tamhane R, Neeman T, Herbert EW, Orange M, Yip D, Allavena R, Fahrer AM. Simple and effective bacterial-based intratumoral cancer immunotherapy. J Immunother Cancer 2021; 9:jitc-2021-002688. [PMID: 34531247 PMCID: PMC8449973 DOI: 10.1136/jitc-2021-002688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We describe intratumoral injection of a slow-release emulsion of killed mycobacteria (complete Freund's adjuvant (CFA)) in three preclinical species and in human cancer patients. METHODS Efficacy and safety were tested in mammary tumors in mice, in mastocytomas in mice and dogs, and in equine melanomas. In mice, survival, tumor growth, and tumor infiltration by six immune cell subsets (by flow cytometry) were investigated and analyzed using Cox proportional hazards, a random slopes model, and a full factorial model, respectively. Tumor growth and histology were investigated in dogs and horses, as well as survival and tumor immunohistochemistry in dogs. Tumor biopsies were taken from human cancer patients on day 5 (all patients) and day 28 (some patients) of treatment and analyzed by histology. CT scans are provided from one patient. RESULTS Significantly extended survival was observed in mouse P815 and 4T1 tumor models. Complete tumor regressions were observed in all three non-human species (6/186 (3%) of mouse mastocytomas; 3/14 (21%) of canine mastocytomas and 2/11 (18%) of equine melanomas). Evidence of systemic immune responses (regression of non-injected metastases) was also observed. Analysis of immune cells infiltrating mastocytoma tumors in mice showed that early neutrophil infiltration was predictive of treatment benefit. Analysis of the site of mastocytoma regression in dogs weeks or months after treatment demonstrated increased B and T cell infiltrates. Thus, activation of the innate immune system alone may be sufficient for regression of some injected tumors, followed by activation of the acquired immune system which can mediate regression of non-injected metastases. Finally, we report on the use of CFA in 12 human cancer patients. Treatment was well tolerated. CT scans showing tumor regression in a patient with late-stage renal cancer are provided. CONCLUSION Our data demonstrate that intratumoral injection of CFA has major antitumor effects in a proportion of treated animals and is safe for use in human cancer patients. Further trials in human cancer patients are therefore warranted. Our novel treatment provides a simple and inexpensive cancer immunotherapy, immediately applicable to a wide range of solid tumors, and is suitable to patients in developing countries and advanced care settings.
Collapse
Affiliation(s)
- Christina S E Carroll
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Erin R Andrew
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Laeeq Malik
- Department of Medical Oncology, Canberra Hospital, Canberra, Australian Capital Territory, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathryn F Elliott
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Moira Brennan
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - James Meyer
- Adelaide Plains Equine Clinic, Gawler, South Australia, Australia
| | | | - Andrew A Almonte
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cassandra Lappin
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Philip MacPherson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Klaus-Martin Schulte
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jane E Dahlstrom
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,ACT Pathology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Rohit Tamhane
- Canberra Imaging Group, Canberra, Australian Capital Territory, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | - Desmond Yip
- Department of Medical Oncology, Canberra Hospital, Canberra, Australian Capital Territory, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Aude M Fahrer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
207
|
An Y, Zhang W, Liu T, Wang B, Cao H. The intratumoural microbiota in cancer: new insights from inside. Biochim Biophys Acta Rev Cancer 2021; 1876:188626. [PMID: 34520804 DOI: 10.1016/j.bbcan.2021.188626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The human body harbors a vast array of microbiota that modulates host pathophysiological processes and modifies the risk of diseases including cancer. With the advent of metagenomic sequencing studies, the intratumoural microbiota has been found as a component of the tumor microenvironment, imperceptibly affecting the tumor progression and response to current antitumor treatments. The underlying carcinogenic mechanisms of intratumoural microbiota, mainly including inducing DNA damages, activating oncogenic signaling pathways and suppressing the immune response, differ significantly in varied organs and are not fully understood. Some native or genetically engineered microbial species can specifically accumulate and replicate within tumors to initiate antitumor immunity, which will be conducive to pursue precise cancer therapies. In this review, we summarized the community characteristics and therapeutic potential of intratumoural microbiota across diverse tumor types. It may provide new insights for a better understanding of tumor biology and hint at the significance of manipulating intratumoural microbiota.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
208
|
Lu H, Wang Q, Liu W, Wen Z, Li Y. Precision strategies for cancer treatment by modifying the tumor-related bacteria. Appl Microbiol Biotechnol 2021; 105:6183-6197. [PMID: 34402938 DOI: 10.1007/s00253-021-11491-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Research on the roles of the bacteria in tumor development and progression is a rapidly emerging field. Increasing evidence links bacteria with the modification of the tumor immune microenvironment, which greatly influences the antitumor response. In view of the individual immune effects of various bacteria in various tumors, developing personalized bacteria-modulating therapy may be a key to successful antitumor treatment. This review emphasizes the critical role of the bacteria in immune regulation, including both the tumor bacteria and gut bacteria. Aiming at tumor-related bacteria, we focus on various precise modulation strategies and discuss their impact and potential for tumor suppression. Finally, engineered bacteria with tumor-targeting ability could achieve precise delivery of various payloads into tumors, acting as a precision tool. Therefore, a precise tumor-related bacteria therapy may be a promising approach to suppress the development of tumors, as well as an adjuvant therapy to improve the antitumor efficacy of other approaches. KEY POINTS: • The mini-review updates the knowledge on complex effect of bacteria in TME. • Insight into the interaction and adjustment of bacteria in gut for TME. • Prospects and limitations of bacteria-related personalized therapy in the clinical anticancer therapy.
Collapse
Affiliation(s)
- Huazhen Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
209
|
Derosa L, Routy B, Desilets A, Daillère R, Terrisse S, Kroemer G, Zitvogel L. Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology? Cancer Discov 2021; 11:2396-2412. [PMID: 34400407 DOI: 10.1158/2159-8290.cd-21-0236] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
The cancer-immune dialogue subject to immuno-oncological intervention is profoundly influenced by microenvironmental factors. Indeed, the mucosal microbiota-and more specifically, the intestinal ecosystem-influences the tone of anticancer immune responses and the clinical benefit of immunotherapy. Antibiotics blunt the efficacy of immune checkpoint inhibitors (ICI), and fecal microbial transplantation may restore responsiveness of ICI-resistant melanoma. Here, we review the yin and yang of intestinal bacteria at the crossroads between the intestinal barrier, metabolism, and local or systemic immune responses during anticancer therapies. We discuss diagnostic tools to identify gut dysbiosis and the future prospects of microbiota-based therapeutic interventions. SIGNIFICANCE: Given the recent proof of concept of the potential efficacy of fecal microbial transplantation in patients with melanoma primarily resistant to PD-1 blockade, it is timely to discuss how and why antibiotics compromise the efficacy of cancer immunotherapy, describe the balance between beneficial and harmful microbial species in play during therapies, and introduce the potential for microbiota-centered interventions for the future of immuno-oncology.
Collapse
Affiliation(s)
- Lisa Derosa
- Gustave Roussy Cancer Campus, Villejuif, France. .,Université Paris-Saclay, Ile-de-France, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Antoine Desilets
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | | | - Safae Terrisse
- Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Ile-de-France, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Ile-de-France, France.,EverImmune, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Equipe Labellisée-Ligue contre le Cancer, Université de Paris, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France. .,Université Paris-Saclay, Ile-de-France, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Cancer Medicine Department, Gustave Roussy, Villejuif, France.,EverImmune, Gustave Roussy Cancer Campus, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
210
|
|
211
|
Purcell AW. Is the Immunopeptidome Getting Darker?: A Commentary on the Discussion around Mishto et al., 2019. Front Immunol 2021; 12:720811. [PMID: 34326850 PMCID: PMC8315041 DOI: 10.3389/fimmu.2021.720811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
212
|
Targeting butyrophilins for cancer immunotherapy. Trends Immunol 2021; 42:670-680. [PMID: 34253468 DOI: 10.1016/j.it.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Vγ9Vδ2+ T cells form part of the innate immune repertoire and are activated by phosphorylated antigens produced by many bacteria and tumors. They have long been suggested as promising targets for anti-tumor therapies, but clinical trials so far have not shown major successes. Several recent discoveries could help to overcome these shortfalls, such as those leading to an improved understanding of the role of butyrophilin molecules BTN2A1 and BTN3A1, in Vγ9Vδ2+ T cell activation. Moreover, we propose that studies suggesting the presence of live bacteria in a variety of tumors (tumor microbiome), indicate that the latter might be harnessed as a source of high affinity bacterial phosphoantigen to trigger or enhance anti-tumor immune responses.
Collapse
|
213
|
Nagler A, Kalaora S, Barbolin C, Gangaev A, Ketelaars SLC, Alon M, Pai J, Benedek G, Yahalom-Ronen Y, Erez N, Greenberg P, Yagel G, Peri A, Levin Y, Satpathy AT, Bar-Haim E, Paran N, Kvistborg P, Samuels Y. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep 2021; 35:109305. [PMID: 34166618 PMCID: PMC8185308 DOI: 10.1016/j.celrep.2021.109305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
The human leukocyte antigen (HLA)-bound viral antigens serve as an immunological signature that can be selectively recognized by T cells. As viruses evolve by acquiring mutations, it is essential to identify a range of presented viral antigens. Using HLA peptidomics, we are able to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides presented by highly prevalent HLA class I (HLA-I) molecules by using infected cells as well as overexpression of SARS-CoV-2 genes. We find 26 HLA-I peptides and 36 HLA class II (HLA-II) peptides. Among the identified peptides, some are shared between different cells and some are derived from out-of-frame open reading frames (ORFs). Seven of these peptides were previously shown to be immunogenic, and we identify two additional immunoreactive peptides by using HLA multimer staining. These results may aid the development of the next generation of SARS-CoV-2 vaccines based on presented viral-specific antigens that span several of the viral genes.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Steven L C Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joy Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yagel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Pia Kvistborg
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
214
|
Pingili AK, Chaib M, Sipe LM, Miller EJ, Teng B, Sharma R, Yarbro JR, Asemota S, Al Abdallah Q, Mims TS, Marion TN, Daria D, Sekhri R, Hamilton AM, Troester MA, Jo H, Choi HY, Hayes DN, Cook KL, Narayanan R, Pierre JF, Makowski L. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep 2021; 35:109285. [PMID: 34161764 PMCID: PMC8574993 DOI: 10.1016/j.celrep.2021.109285] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) has improved outcomes in some cancers. A major limitation of ICB is that most patients fail to respond, which is partly attributable to immunosuppression. Obesity appears to improve immune checkpoint therapies in some cancers, but impacts on breast cancer (BC) remain unknown. In lean and obese mice, tumor progression and immune reprogramming were quantified in BC tumors treated with anti-programmed death-1 (PD-1) or control. Obesity augments tumor incidence and progression. Anti-PD-1 induces regression in lean mice and potently abrogates progression in obese mice. BC primes systemic immunity to be highly responsive to obesity, leading to greater immunosuppression, which may explain greater anti-PD-1 efficacy. Anti-PD-1 significantly reinvigorates antitumor immunity despite persistent obesity. Laminin subunit beta-2 (Lamb2), downregulated by anti-PD-1, significantly predicts patient survival. Lastly, a microbial signature associated with anti-PD-1 efficacy is identified. Thus, anti-PD-1 is highly efficacious in obese mice by reinvigorating durable antitumor immunity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ajeeth K Pingili
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Laura M Sipe
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Emily J Miller
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bin Teng
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rahul Sharma
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnathan R Yarbro
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sarah Asemota
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tahliyah S Mims
- Department of Pediatrics, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tony N Marion
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Deidre Daria
- Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhika Sekhri
- Department of Pathology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heejoon Jo
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hyo Young Choi
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - D Neil Hayes
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Katherine L Cook
- Department of Surgery, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ramesh Narayanan
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joseph F Pierre
- Department of Pediatrics, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Liza Makowski
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
215
|
Taylor HB, Klaeger S, Clauser KR, Sarkizova S, Weingarten-Gabbay S, Graham DB, Carr SA, Abelin JG. MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies. Mol Cell Proteomics 2021; 20:100116. [PMID: 34146720 PMCID: PMC8327157 DOI: 10.1016/j.mcpro.2021.100116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Immunotherapies have emerged to treat diseases by selectively modulating a patient's immune response. Although the roles of T and B cells in adaptive immunity have been well studied, it remains difficult to select targets for immunotherapeutic strategies. Because human leukocyte antigen class II (HLA-II) peptides activate CD4+ T cells and regulate B cell activation, proliferation, and differentiation, these peptide antigens represent a class of potential immunotherapy targets and biomarkers. To better understand the molecular basis of how HLA-II antigen presentation is involved in disease progression and treatment, systematic HLA-II peptidomics combined with multiomic analyses of diverse cell types in healthy and diseased states is required. For this reason, MS-based innovations that facilitate investigations into the interplay between disease pathologies and the presentation of HLA-II peptides to CD4+ T cells will aid in the development of patient-focused immunotherapies.
Collapse
Affiliation(s)
- Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
216
|
Wang T, Zhang H, Zhou Y, Shi J. Extrachromosomal circular DNA: a new potential role in cancer progression. J Transl Med 2021; 19:257. [PMID: 34112178 PMCID: PMC8194206 DOI: 10.1186/s12967-021-02927-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is considered a circular DNA molecule that exists widely in nature and is independent of conventional chromosomes. eccDNA can be divided into small polydispersed circular DNA (spcDNA), telomeric circles (t-circles), microDNA, and extrachromosomal DNA (ecDNA) according to its size and sequence. Multiple studies have shown that eccDNA is the product of genomic instability, has rich and important biological functions, and is involved in the occurrence of many diseases, including cancer. In this review, we focus on the discovery history, formation process, characteristics, and physiological functions of eccDNAs; the potential functions of various eccDNAs in human cancer; and the research methods employed to study eccDNA.
Collapse
Affiliation(s)
- Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
217
|
Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Front Immunol 2021; 12:670286. [PMID: 34135898 PMCID: PMC8200823 DOI: 10.3389/fimmu.2021.670286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular immunotherapy with chimeric antigen receptor (CAR)-T cells (CARTs) represents a breakthrough in the treatment of hematologic malignancies. CARTs are genetically engineered hybrid receptors that combine antigen-specificity of monoclonal antibodies with T cell function to direct patient-derived T cells to kill malignant cells expressing the target (tumor) antigen. CARTs have been introduced into clinical medicine as CD19-targeted CARTs for refractory and relapsed B cell malignancies. Despite high initial response rates, current CART therapies are limited by a long-term loss of antitumor efficacy, the occurrence of toxicities, and the lack of biomarkers for predicting therapy and toxicity outcomes. In the past decade, the gut microbiome of mammals has been extensively studied and evidence is accumulating that human health, apart from our own genome, largely depends on microbes that are living in and on the human body. The microbiome encompasses more than 1000 bacterial species who collectively encode a metagenome that guides multifaceted, bidirectional host-microbiome interactions, primarily through the action of microbial metabolites. Increasing knowledge has been accumulated on the role of the gut microbiome in T cell-driven anticancer immunotherapy. It has been shown that antibiotics, dietary components and gut microbes reciprocally affect the efficacy and toxicity of allogeneic hematopoietic cell transplantation (allo HCT) as the prototype of T cell-based immunotherapy for hematologic malignancies, and that microbiome diversity metrics can predict clinical outcomes of allo HCTs. In this review, we will provide a comprehensive overview of the principles of CD19-CART immunotherapy and major aspects of the gut microbiome and its modulators that impact antitumor T cell transfer therapies. We will outline i) the extrinsic and intrinsic variables that can contribute to the complex interaction of the gut microbiome and host in CART immunotherapy, including ii) antibiotic administration affecting loss of colonization resistance, expansion of pathobionts and disturbed mucosal and immunological homeostasis, and ii) the role of specific gut commensals and their microbial virulence factors in host immunity and inflammation. Although the role of the gut microbiome in CART immunotherapy has only been marginally explored so far, this review may open a new chapter and views on putative connections and mechanisms.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Roman Rohrbach
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michael Schmitt
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christoph K Stein-Thoeringer
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Klinik fuer Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Germany
| |
Collapse
|
218
|
Juanes-Velasco P, Landeira-Viñuela A, Acebes-Fernandez V, Hernández ÁP, Garcia-Vaquero ML, Arias-Hidalgo C, Bareke H, Montalvillo E, Gongora R, Fuentes M. Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics Characterization in Oncology and Infections. Front Cell Infect Microbiol 2021; 11:642583. [PMID: 34123866 PMCID: PMC8195621 DOI: 10.3389/fcimb.2021.642583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to many diseases such as cancer, auto-immune or infectious diseases. Individual genetic variation may help to explain different immune responses to microorganisms across a population. HLA typing can be fast and inexpensive; however, deciphering peptides loaded on MHC-I and II which are presented to T cells, require the design and development of high-sensitivity methodological approaches and subsequently databases. Hence, these novel strategies and databases could help in the generation of vaccines using these potential immunogenic peptides and in identifying high-risk HLA types to be prioritized for vaccination programs. Herein, the recent developments and approaches, in this field, focusing on the identification of immunogenic peptides have been reviewed and the next steps to promote their translation into biomedical and clinical practice are discussed.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Vanessa Acebes-Fernandez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Ángela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Marina L. Garcia-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Halin Bareke
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
219
|
Sepich-Poore GD, Carter H, Knight R. Intratumoral bacteria generate a new class of therapeutically relevant tumor antigens in melanoma. Cancer Cell 2021; 39:601-603. [PMID: 33974857 DOI: 10.1016/j.ccell.2021.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional repertoire of intratumoral microorganisms and their local effects on the host remain poorly characterized. By revealing potentially immunogenic bacterial peptides on melanoma cells, a Nature paper provides evidence that intratumoral bacteria can directly modulate antitumor immune responses, and it details a new class of therapeutically relevant, non-human tumor antigens.
Collapse
Affiliation(s)
| | - Hannah Carter
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
220
|
Perreault C, Thibault P, Kroemer G. A bacterium-derived, cancer-associated immunopeptidome. Oncoimmunology 2021; 10:1918373. [PMID: 33996268 PMCID: PMC8096325 DOI: 10.1080/2162402x.2021.1918373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Claude Perreault
- Institute for Research in Immunology and Cancer, Université De Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université De Montréal, Montréal, Canada
| | - Guido Kroemer
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, Inserm U1138, Centre De Recherche Des Cordeliers, Institut Universitaire De France, Paris, France
- Pôle De Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
221
|
Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, Mengel J, Ribeiro Castello-Branco LR, Pinho RT. Bacillus Calmette-Guérin Immunotherapy for Cancer. Vaccines (Basel) 2021; 9:vaccines9050439. [PMID: 34062708 PMCID: PMC8147207 DOI: 10.3390/vaccines9050439] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG), an attenuated vaccine from Mycobacterium bovis, was initially developed as an agent for vaccination against tuberculosis. BCG proved to be the first successful immunotherapy against established human bladder cancer and other neoplasms. The use of BCG has been shown to induce a long-lasting antitumor response over all other forms of treatment against intermediate, non-invasive muscle bladder cancer Several types of tumors may now be treated by releasing the immune response through the blockade of checkpoint inhibitory molecules, such as CTLA-4 and PD-1. In addition, Toll-Like Receptor (TLR) agonists and BCG are used to potentiate the immune response against tumors. Studies concerning TLR-ligands combined with BCG to treat melanoma have demonstrated efficacy in treating mice and patients This review addresses several interventions using BCG on neoplasms, such as Leukemia, Bladder Cancer, Lung Cancer, and Melanoma, describing treatments and antitumor responses promoted by this attenuated bacillus. Of essential importance, BCG is described recently to participate in an adequate microbiome, establishing an effective response during cell-target therapy when combined with anti-PD-1 antibody, which stimulates T cell responses against the melanoma. Finally, trained immunity is discussed, and reprogramming events to shape innate immune responses are addressed.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
- Correspondence:
| | - Maiara Bonfim
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
| | - Periela da Silva Vasconcelos Sousa
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Laboratory of Molecular Virology and Marine Biotechnology, Fluminense Federal University, Niteroi, RJ 24220-008, Brazil
| | - José Mengel
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Faculty of Medicine of Petropolis, UNIFASE, Petropolis, RJ 25680-120, Brazil
| | | | - Rosa Teixeira Pinho
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
| |
Collapse
|
222
|
|
223
|
Abstract
The opposing roles of innate and adaptive immune cells in suppressing or supporting cancer initiation, progression, metastasis and response to therapy has been long debated. The mechanisms by which different monocyte and T cell subtypes affect and modulate cancer have been extensively studied. However, the role of B cells and their subtypes have remained elusive, perhaps partially due to their heterogeneity and range of actions. B cells can produce a variety of cytokines and present tumor-derived antigens to T cells in combination with co-stimulatory or inhibitory ligands based on their phenotype. Unlike most T cells, B cells can be activated by innate immune stimuli, such as endotoxin. Furthermore, the isotype and specificity of the antibodies produced by plasma cells regulate distinct immune responses, including opsonization, antibody-mediated cellular cytotoxicity (ADCC) and complement activation. B cells are shaped by the tumor environment (TME), with the capability to regulate the TME in return. In this review, we will describe the mechanisms of B cell action, including cytokine production, antigen presentation, ADCC, opsonization, complement activation and how they affect tumor development and response to immunotherapy. We will also discuss how B cell fate within the TME is affected by tumor stroma, microbiome and metabolism.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA; Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|