201
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 where 1308=1308 or not 3176=8140-- fmnx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
202
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 having 2903=4259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
203
|
|
204
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 9876=9876#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
205
|
|
206
|
|
207
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 3512=3512-- oniq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
208
|
|
209
|
|
210
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 2016=9936-- tbsf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
211
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and make_set(3433=7054,7054)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
212
|
|
213
|
|
214
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 where 4062=4062 and 5081=5081-- ilyf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
215
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and make_set(2734=2878,2878)# lcij] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
216
|
|
217
|
|
218
|
|
219
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 having 4867=4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
220
|
|
221
|
|
222
|
|
223
|
|
224
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 5081=5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
225
|
Thompson P, Lakshminarayanan V, Supekar NT, Bradley JM, Cohen PA, Wolfert MA, Gendler SJ, Boons GJ. Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chem Commun (Camb) 2015; 51:10214-7. [PMID: 26022217 DOI: 10.1039/c5cc02199e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A strategy for the linear synthesis of a sialylated glycolipopeptide cancer vaccine candidate has been developed using a strategically designed sialyl-Tn building block and microwave-assisted solid-phase peptide synthesis. The glycolipopeptide elicited potent humoral and cellular immune responses. T-cells primed by such a vaccine candidate could be restimulated by tumor-associated MUC1.
Collapse
Affiliation(s)
- Pamela Thompson
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Shimabukuro-Vornhagen A, Schlößer HA, Gryschok L, Malcher J, Wennhold K, Garcia-Marquez M, Herbold T, Neuhaus LS, Becker HJ, Fiedler A, Scherwitz P, Koslowsky T, Hake R, Stippel DL, Hölscher AH, Eidt S, Hallek M, Theurich S, von Bergwelt-Baildon MS. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 2015; 5:4651-64. [PMID: 25026291 PMCID: PMC4148088 DOI: 10.18632/oncotarget.1701] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: A precise understanding of the mechanisms by which human immune cell subsets affect tumor biology will be critical for successful treatment of cancer using immunotherapeutic approaches. Recent evidence suggests that B cells can both promote and inhibit the development and progression of tumors. The aim of this study was to characterize the composition of the B-cell infiltrates in colorectal cancers (CRC) in order to gain further insight into the role of B cells in CRC. Experimental Design: In this study we characterized B-cell subsets in primary tumors (n=38), metastases (n=6) and blood (n=46) of 51 patients with a diagnosis of CRC and blood of 10 healthy controls. B-cell subsets were analyzed by flow cytometry or immunohistochemistry. Results: Peripheral blood of CRC patients contained a higher percentage of memory B cells than that of age-matched healthy controls. Furthermore, the percentage of B cells within tumors was higher than that in the peripheral blood of CRC patients while metastases were typically devoid of tumor-infiltrating B cells. Tumor-associated B cells were enriched for activated and terminally differentiated B cells. Relevant proportions of regulatory B cells could only be detected in advanced cancer and metastases. Conclusion: B cells constitute a significant proportion of the immune infiltrate in CRC. The B-cell infiltrate of primary CRC is characterized by an accumulation of terminally differentiated memory B cells or plasma cells suggestive of a specific immune response against the tumor. However advanced tumors and metastases are also infiltrated by a considerable number of regulatory B cells.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany. This authors contributed equally to this work
| | - Hans A Schlößer
- Cologne Interventional Immunology, University of Cologne, Germany. Department of General, Visceral and Cancer Surgery, University of Cologne, Germany. This authors contributed equally to this work
| | - Luise Gryschok
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Joke Malcher
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, University of Cologne, Germany
| | | | - Till Herbold
- Cologne Interventional Immunology, University of Cologne, Germany. Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Laura S Neuhaus
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Hans J Becker
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Anne Fiedler
- Cologne Interventional Immunology, University of Cologne, Germany
| | | | | | - Roland Hake
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Dirk L Stippel
- Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Arnulf H Hölscher
- Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Sebastian Eidt
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
227
|
Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochem J 2014; 463:93-102. [PMID: 25000122 DOI: 10.1042/bj20140060] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OPN (osteopontin) is a multiphosphorylated extracellular glycoprotein, which has important roles in bone remodelling, inflammation and cancer metastasis. OPN regulates cell spreading and adhesion primarily through its association with several integrins such as αvβ3, and its phosphorylation affects these processes. However, the mechanism by which OPN O-glycosylation affects these processes is not completely understood. In the present study, we demonstrated that OPN O-glycosylation self-regulates its biological activities and also affects its phosphorylation status. We prepared two recombinant OPNs, WT (wild-type)-OPN and mutant OPN (ΔO-OPN), which lacks five O-glycosylation sites at a threonine/proline-rich region. O-glycan defects in OPN increased its phosphorylation level, as observed by dephosphorylation assays. Moreover, compared with WT-OPN, ΔO-OPN exhibited enhanced cell spreading and adhesion activities and decreased associations with β1 integrins. This suggested that defects in O-glycans in OPN altered these activities, and that β1 integrins have a less important role in adhesion to ΔO-OPN. The cell-adhesion activity of dephosphorylated ΔO-OPN was higher than the cell-adhesion activities of ΔO-OPN and dephosphorylated WT-OPN. This suggested that some of the phosphorylation in ΔO-OPN caused by O-glycan defects and O-glycans of OPN suppressed the OPN cell-adhesion activity. Thus functional activities of OPN can be determined by the combined glycosylation and phosphorylation statuses and not by either status alone.
Collapse
|
228
|
Aiming at the sweet side of cancer: Aberrant glycosylation as possible target for personalized-medicine. Cancer Lett 2014; 352:102-12. [DOI: 10.1016/j.canlet.2013.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 01/26/2023]
|
229
|
Carrascal MA, Severino PF, Guadalupe Cabral M, Silva M, Ferreira JA, Calais F, Quinto H, Pen C, Ligeiro D, Santos LL, Dall'Olio F, Videira PA. Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol Oncol 2014; 8:753-65. [PMID: 24656965 DOI: 10.1016/j.molonc.2014.02.008] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/15/2022] Open
Abstract
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn(+) bladder cancer cells, had an immature phenotype (MHC-II(low), CD80(low) and CD86(low)) and were unresponsive to further maturation stimuli. When contacting with STn(+) cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn(+) cancer cells were not activated and showed a FoxP3(high) IFN-γ(low) phenotype. Blockade of STn antigens and of STn(+) glycoprotein, CD44 and MUC1, in STn(+) cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn(+) glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Collapse
Affiliation(s)
- Mylène A Carrascal
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo F Severino
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M Guadalupe Cabral
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana Silva
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Alexandre Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Fernando Calais
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Hermínia Quinto
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Dário Ligeiro
- Centro de Histocompatibilidade do Sul, Lisboa, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Fabio Dall'Olio
- Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paula A Videira
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
230
|
Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol 2014; 4:28. [PMID: 24592356 PMCID: PMC3923139 DOI: 10.3389/fonc.2014.00028] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor-cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor-cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors – lectins. In this review, we will discuss current concepts how tumor-cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually all hematopoietic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis.
Collapse
Affiliation(s)
- Irina Häuselmann
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich , Zürich , Switzerland
| | - Lubor Borsig
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich , Zürich , Switzerland
| |
Collapse
|
231
|
Kruger TE, Miller AH, Godwin AK, Wang J. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol 2014; 89:330-41. [PMID: 24071501 PMCID: PMC3946954 DOI: 10.1016/j.critrevonc.2013.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.
Collapse
Affiliation(s)
- Thomas E Kruger
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew H Miller
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
232
|
Matsushita T, Takada W, Igarashi K, Naruchi K, Miyoshi R, Garcia-Martin F, Amano M, Hinou H, Nishimura SI. A straightforward protocol for the preparation of high performance microarray displaying synthetic MUC1 glycopeptides. Biochim Biophys Acta Gen Subj 2013; 1840:1105-16. [PMID: 24246952 DOI: 10.1016/j.bbagen.2013.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/07/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human serum MUC1 peptide fragments bearing aberrant O-glycans are secreted from columnar epithelial cell surfaces and known as clinically important serum biomarkers for the epithelial carcinoma when a specific monoclonal antibody can probe disease-relevant epitopes. Despite the growing importance of MUC1 glycopeptides as biomarkers, the precise epitopes of most anti-MUC1 monoclonal antibodies remains unclear. METHODS A novel protocol for the fabrication of versatile microarray displaying peptide/glycopeptide library was investigated for the construction of highly sensitive and accurate epitope mapping assay of various anti-MUC1 antibodies. RESULTS Selective imine-coupling between aminooxy-functionalized methacrylic copolymer with phosphorylcholine unit and synthetic MUC1 glycopeptides-capped by a ketone linker at N-terminus provided a facile and seamless protocol for the preparation of glycopeptides microarray platform. It was demonstrated that anti-KL-6 monoclonal antibody shows an extremely specific and strong binding affinity toward MUC1 fragments carrying sialyl T antigen (Neu5Acα2,3Galβ1,3GalNAcα1→) at Pro-Asp-Thr-Arg motif when compared with other seven anti-MUC1 monoclonal antibodies such as VU-3D1, VU-12E1, VU-11E2, Ma552, VU-3C6, SM3, and DF3. The present microarray also uncovered the occurrence of IgG autoantibodies in healthy human sera that bind specifically with sialyl T antigen attached at five potential O-glycosylation sites of MUC1 tandem repeats. CONCLUSION We established a straightforward strategy toward the standardized microarray platform allowing highly sensitive and accurate epitope mapping analysis by reducing the background noise due to nonspecific protein adsorption. GENERAL SIGNIFICANCE The present approach would greatly accelerate the discovery research of new class autoantibodies as well as the development of therapeutic mAbs reacting specifically with disease-relevant epitopes.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan
| | | | | | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan
| | - Maho Amano
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan.
| |
Collapse
|
233
|
Pinho SS, Carvalho S, Marcos-Pinto R, Magalhães A, Oliveira C, Gu J, Dinis-Ribeiro M, Carneiro F, Seruca R, Reis CA. Gastric cancer: adding glycosylation to the equation. Trends Mol Med 2013; 19:664-76. [DOI: 10.1016/j.molmed.2013.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 12/17/2022]
|
234
|
Lima L, Severino PF, Silva M, Miranda A, Tavares A, Pereira S, Fernandes E, Cruz R, Amaro T, Reis CA, Dall'Olio F, Amado F, Videira PA, Santos L, Ferreira JA. Response of high-risk of recurrence/progression bladder tumours expressing sialyl-Tn and sialyl-6-T to BCG immunotherapy. Br J Cancer 2013; 109:2106-14. [PMID: 24064971 PMCID: PMC3798967 DOI: 10.1038/bjc.2013.571] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022] Open
Abstract
Background: High risk of recurrence/progression bladder tumours is treated with Bacillus Calmette-Guérin (BCG) immunotherapy after complete resection of the tumour. Approximately 75% of these tumours express the uncommon carbohydrate antigen sialyl-Tn (Tn), a surrogate biomarker of tumour aggressiveness. Such changes in the glycosylation of cell-surface proteins influence tumour microenvironment and immune responses that may modulate treatment outcome and the course of disease. The aim of this work is to determine the efficiency of BCG immunotherapy against tumours expressing sTn and sTn-related antigen sialyl-6-T (s6T). Methods: In a retrospective design, 94 tumours from patients treated with BCG were screened for sTn and s6T expression. In vitro studies were conducted to determine the interaction of BCG with high-grade bladder cancer cell line overexpressing sTn. Results: From the 94 cases evaluated, 36 had recurrence after BCG treatment (38.3%). Treatment outcome was influenced by age over 65 years (HR=2.668; (1.344–5.254); P=0.005), maintenance schedule (HR=0.480; (0.246–0.936); P=0.031) and multifocallity (HR=2.065; (1.033–4.126); P=0.040). sTn or s6T expression was associated with BCG response (P=0.024; P<0.0001) and with increased recurrence-free survival (P=0.001). Multivariate analyses showed that sTn and/or s6T were independent predictive markers of recurrence after BCG immunotherapy (HR=0.296; (0.148–0.594); P=0.001). In vitro studies demonstrated higher adhesion and internalisation of the bacillus to cells expressing sTn, promoting cell death. Conclusion: s6T is described for the first time in bladder tumours. Our data strongly suggest that BCG immunotherapy is efficient against sTn- and s6T-positive tumours. Furthermore, sTn and s6T expression are independent predictive markers of BCG treatment response and may be useful in the identification of patients who could benefit more from this immunotherapy.
Collapse
Affiliation(s)
- L Lima
- 1] Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal [2] Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal [3] Nucleo de Investigação em Farmácia-Centro de Investigação em Saúde e Ambiente (CISA), Health School of the Polytechnic Institute of Porto, Porto, Portugal [4] LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Ibrahim NK, Murray JL, Zhou D, Mittendorf EA, Sample D, Tautchin M, Miles D. Survival Advantage in Patients with Metastatic Breast Cancer Receiving Endocrine Therapy plus Sialyl Tn-KLH Vaccine: Post Hoc Analysis of a Large Randomized Trial. J Cancer 2013; 4:577-84. [PMID: 23983823 PMCID: PMC3753533 DOI: 10.7150/jca.7028] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022] Open
Abstract
Background: A multicenter, double blinded, randomized phase III trial of the therapeutic cancer vaccine sialy1-Tn (STn) conjugated to keyhole-limpet Hemocyanin (KLH) was completed in an international cohort of 1,028 women with metastatic breast cancer who had nonprogressive disease or no evidence of disease after first-line chemotherapy (ClinicalTrials.gov, (NCT00003638). STn-KLH was safe and relatively well tolerated but did not affect time to progression (TTP) or overall survival (OS) duration. The purpose of this post hoc analysis was to explore whether patients who received concurrent endocrine therapy and STn-KLH had a TTP or OS benefit. Methods: A retrospective, blinded review of the data from the phase III trial of STn-KLH was performed to ensure that strata assignments were appropriate. We then studied the effect of concomitant endocrine therapy and STn-KLH or KLH on TTP and OS in the cohort described above. We also assessed the TTP and OS by antibody responses in patients who received endocrine therapy. Results: The women treated with concomitant endocrine therapy, a pre-stratified subset comprising approximately one-third of the original study population, and STn-KLH had longer TTP and OS than the control group of women who received KLH alone. Moreover, of the women who received endocrine therapy, those who had a median or greater antibody response (titer >1:320 toward ovine sub maxillary mucin) to the STn-KLH vaccine had significantly longer median OS than those who had a below-median antibody response. Conclusion: Adding STn-KLH to endocrine therapy may improve clinical outcomes with few adverse effects for women with metastatic breast cancer.
Collapse
Affiliation(s)
- Nuhad K Ibrahim
- 1. Departments of Breast Medical Oncology (NKI, JLM), Melanoma Medical Oncology (DZ), and Surgical Oncology (EAM), The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | |
Collapse
|
236
|
Almeida A, Ferreira JA, Teixeira F, Gomes C, Cordeiro MNDS, Osório H, Santos LL, Reis CA, Vitorino R, Amado F. Challenging the limits of detection of sialylated Thomsen-Friedenreich antigens by in-gel deglycosylation and nano-LC-MALDI-TOF-MS. Electrophoresis 2013; 34:2337-41. [DOI: 10.1002/elps.201300148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Andreia Almeida
- Department of Chemistry, Mass Spectrometry Centre; QOPNA; University of Aveiro; Campus de Santiago; Aveiro; Portugal
| | | | - Filipe Teixeira
- REQUIMTE, Department of Chemistry and Biochemistry; Faculty of Sciences, University of Porto; Portugal
| | - Catarina Gomes
- Institute of Molecular Pathology and Immunology; University of Porto (IPATIMUP); Porto; Portugal
| | - M. Natália D. S. Cordeiro
- REQUIMTE, Department of Chemistry and Biochemistry; Faculty of Sciences, University of Porto; Portugal
| | | | | | | | - Rui Vitorino
- Department of Chemistry, Mass Spectrometry Centre; QOPNA; University of Aveiro; Campus de Santiago; Aveiro; Portugal
| | | |
Collapse
|
237
|
Abstract
Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 982A 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
238
|
Ferreira JA, Videira PA, Lima L, Pereira S, Silva M, Carrascal M, Severino PF, Fernandes E, Almeida A, Costa C, Vitorino R, Amaro T, Oliveira MJ, Reis CA, Dall'Olio F, Amado F, Santos LL. Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours. Mol Oncol 2013; 7:719-31. [PMID: 23567325 DOI: 10.1016/j.molonc.2013.03.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022] Open
Abstract
Little is known on the expression of the tumour-associated carbohydrate antigen sialyl-Tn (STn), in bladder cancer. We report here that 75% of the high-grade bladder tumours, presenting elevated proliferation rates and high risk of recurrence/progression expressed STn. However, it was mainly found in non-proliferative areas of the tumour, namely in cells invading the basal and muscle layers. STn was also found in tumour-adjacent mucosa, which suggests its dependence on a field effect of the tumour. Furthermore, it was not expressed by the normal urothelium, demonstrating the cancer-specific nature of this antigen. STn expression correlated with that of sialyltransferase ST6GalNAc.I, its major biosynthetic enzyme. The stable expression of ST6GalNAc.I in the bladder cancer cell line MCR induced STn expression and a concomitant increase of cell motility and invasive capability. Altogether, these results indicate for the first time a link between STn expression and malignancy in bladder cancer. Hence, therapies targeting STn may constitute new treatment approaches for these tumours.
Collapse
Affiliation(s)
- José Alexandre Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2012; 2:435-66. [PMID: 24970145 PMCID: PMC4030860 DOI: 10.3390/biom2040435] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022] Open
Abstract
Sialyl-Tn antigen (STn) is a short O-glycan containing a sialic acid residue α2,6-linked to GalNAcα-O-Ser/Thr. The biosynthesis of STn is mediated by a specific sialyltransferase termed ST6GalNAc I, which competes with O-glycans elongating glycosyltransferases and prevents cancer cells from exhibiting longer O-glycans. While weakly expressed by fetal and normal adult tissues, STn is expressed by more than 80% of human carcinomas and in all cases, STn detection is associated with adverse outcome and decreased overall survival for the patients. Because of its pan-carcinoma expression associated with an adverse outcome, an anti-cancer vaccine, named Theratope, has been designed towards the STn epitope. In spite of the great enthusiasm around this immunotherapy, Theratope failed on Phase III clinical trial. However, in lieu of missing this target, one should consider to revise the Theratope design and the actual facts. In this review, we highlight the many lessons that can be learned from this failure from the immunological standpoint, as well as from the drug design and formulation and patient selection. Moreover, an irrefutable knowledge is arising from novel immunotherapies targeting other carbohydrate antigens and STn carrier proteins, such as MUC1, that will warrantee the future development of more successful anti-STn immunotherapy strategies.
Collapse
Affiliation(s)
- Sylvain Julien
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| | - Paula A Videira
- CEDOC, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
240
|
Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol 2012; 39:323-39. [PMID: 22595055 PMCID: PMC3356994 DOI: 10.1053/j.seminoncol.2012.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic cancer vaccines are a unique treatment modality in that they initiate a dynamic process of activating the host immune system, which can then be exploited by concurrent or subsequent therapies. The addition of immunotherapy to standard-of-care cancer therapies has shown evidence of efficacy in preclinical models and in the clinical setting. This review examines the preclinical and clinical interactions between vaccine-mediated tumor-specific immune responses and local radiation, systemic chemotherapy, or select small molecule inhibitors, as well as the potential synergy between these modalities.
Collapse
Affiliation(s)
- James W Hodge
- Recombinant Vaccine Group, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
241
|
Induction of IgM, IgA and IgE Antibodies in Colorectal Cancer Patients Vaccinated with a Recombinant CEA Protein. J Clin Immunol 2012; 32:855-65. [DOI: 10.1007/s10875-012-9662-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
242
|
Abstract
The development of carbohydrate based anti-cancer vaccines is of high current interests. Herein, the latest development in this exciting field is reviewed. After a general introduction about tumor associated carbohydrate antigens and immune responses, the review is focused on the various strategies that have been developed to enhance the immunogenecity of these antigens. The results from animal studies and clinical trials are presented.
Collapse
Affiliation(s)
- Zhaojun Yin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
243
|
Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci U S A 2011; 109:261-6. [PMID: 22171012 DOI: 10.1073/pnas.1115166109] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mucin MUC1 is typically aberrantly glycosylated by epithelial cancer cells manifested by truncated O-linked saccharides. The resultant glycopeptide epitopes can bind cell surface major histocompatibility complex (MHC) molecules and are susceptible to recognition by cytotoxic T lymphocytes (CTLs), whereas aberrantly glycosylated MUC1 protein on the tumor cell surface can be bound by antibodies to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Efforts to elicit CTLs and IgG antibodies against cancer-expressed MUC1 have not been successful when nonglycosylated MUC1 sequences were used for vaccination, probably due to conformational dissimilarities. Immunizations with densely glycosylated MUC1 peptides have also been ineffective due to impaired susceptibility to antigen processing. Given the challenges to immuno-target tumor-associated MUC1, we have identified the minimum requirements to consistently induce CTLs and ADCC-mediating antibodies specific for the tumor form of MUC1 resulting in a therapeutic response in a mouse model of mammary cancer. The vaccine is composed of the immunoadjuvant Pam(3)CysSK(4), a peptide T(helper) epitope and an aberrantly glycosylated MUC1 peptide. Covalent linkage of the three components was essential for maximum efficacy. The vaccine produced CTLs, which recognized both glycosylated and nonglycosylated peptides, whereas a similar nonglycosylated vaccine gave CTLs which recognized only nonglycosylated peptide. Antibodies elicited by the glycosylated tripartite vaccine were significantly more lytic compared with the unglycosylated control. As a result, immunization with the glycosylated tripartite vaccine was superior in tumor prevention. Besides its own aptness as a clinical target, these studies of MUC1 are likely predictive of a covalent linking strategy applicable to many additional tumor-associated antigens.
Collapse
|
244
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
245
|
Cancer vaccines. Any future? Arch Immunol Ther Exp (Warsz) 2011; 59:249-59. [PMID: 21644030 DOI: 10.1007/s00005-011-0129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
The idea that vaccination can be used to fight cancer is not new. Approximately 100 years ago, researchers attempted to stimulate a tumor-specific, therapeutic immune response to tumors by injecting patients with cells and extracts from their own tumors, or tumors of the same type from different individuals. During the last decade, great efforts have been made to develop immunotherapeutic approaches for the treatment of malignant diseases as alternatives to traditional chemo- and radiotherapy. A quintessential goal of immunotherapy in cancer is treatment with vaccines that elicit potent anti-tumor immune responses without side effects. In this article, we have attempted to review some of the most problematic issues facing the development of cancer vaccines. With the prospect of immunosuppression, an ill-designed cancer vaccine can be more harmful than a no-benefit therapy. We have noted that "immunoediting" and "immunodominance" are the premier setbacks in peptide-based vaccines and therefore it appears necessary not only to manipulate the activity of a vast number of principal components but also to finely tune their concentrations in time and space. In the face of all these quandaries, it is at least doubtful that any reliable anti-cancer vaccine strategy will emerge in the near future.
Collapse
|
246
|
Pre- and post-translational regulation of osteopontin in cancer. J Cell Commun Signal 2011; 5:111-22. [PMID: 21516514 DOI: 10.1007/s12079-011-0130-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 12/15/2022] Open
Abstract
Osteopontin (OPN) is a matricellular protein that binds to a number of cell surface receptors including integrins and CD44. It is expressed in many tissues and secreted into body fluids including blood, milk and urine. OPN plays important physiological roles in bone remodeling, immune response and inflammation. It is also a tumour-associated protein, and elevated OPN levels are associated with tumour formation, progression and metastasis. Research has revealed a promising role for OPN as a cancer biomarker. OPN is subject to alternative splicing, as well as post-translational modifications such as phosphorylation, glycosylation and proteolytic cleavage. Functional differences have been revealed for different isoforms and post-translational modifications. The pattern of isoform expression and post-translational modification is cell-type specific and may influence the potential role of OPN in malignancy and as a cancer biomarker.
Collapse
|
247
|
Yang F, Zheng XJ, Huo CX, Wang Y, Zhang Y, Ye XS. Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem Biol 2011; 6:252-9. [PMID: 21121644 DOI: 10.1021/cb100287q] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The abnormal glycans expressed on the surface of tumor cells, known as tumor-associated carbohydrate antigens, increase the chance to develop carbohydrate-based anticancer vaccines. However, carbohydrate antigens pose certain difficulties, and the major drawback is their weak immunogenicity. To tackle this problem, numerous structurally modified STn antigens were designed and synthesized in this work. These synthetic antigens were screened in vitro by using competitive ELISA method, and the antigens with positive response were conjugated to the protein carrier for vaccination. The vaccination results on mice showed that some fluorine-containing modifications on the STn antigen can significantly increase the anti-STn IgG titers and improve the ratios of anti-STn IgG/IgM. The antisera can recognize the tumor cells expressing the native STn antigen.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Yue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Ye Zhang
- School of Basic Medical Sciences
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| |
Collapse
|
248
|
Van Elssen CHMJ, Clausen H, Germeraad WTV, Bennet EP, Menheere PP, Bos GMJ, Vanderlocht J. Flow cytometry-based assay to evaluate human serum MUC1-Tn antibodies. J Immunol Methods 2010; 365:87-94. [PMID: 21194532 DOI: 10.1016/j.jim.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/22/2010] [Accepted: 12/13/2010] [Indexed: 01/27/2023]
Abstract
Mucin-1 (MUC1) is a heavily O-glycosylated, transmembrane protein that is expressed on the apical surface of most secretory epithelia. In malignantly transformed epithelia, MUC1 has lost its apical distribution, is underglycosylated and is secreted into the circulation. Due to the underglycosylation of MUC1, cancer-specific MUC1-Tn/STn antigens, which are highly immunogenic, become exposed. We aimed at developing a system that allows detection of antibodies directed to the native form of MUC1 and the underglycosylated MUC1-Tn epitopes. To this end, we made use of the Chinese Hamster Ovary (CHO) ldlD cell line stably transfected with MUC1. This cell line has a glycosylation defect, which can be reversed by addition of different monosaccharides to the cell culture and enables the production of cells expressing the MUC1-Tn glycoforms. After validation with glycospecific antibodies, the CHO-ldlD MUC1 system was used to detect serum MUC1 and MUC1-Tn antibodies. Using this system, we could confirm the presence of MUC1-Tn antibodies in the serum of a patient vaccinated with a truncated MUC1 peptide. This indicates that the CHO-ldlD MUC1 system represents a flow cytometry-based technique to detect antibodies binding to the underglycosylated MUC1 protein. This cellular system is complementary to the previously published methods to detect MUC1 serum antibodies, since the antibodies to the native protein are evaluated and therefore it can be effectively used for MUC1 antibody monitoring in vaccination studies as well as for functional assays.
Collapse
|
249
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
250
|
Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 2010; 12:204. [PMID: 20550729 PMCID: PMC2917018 DOI: 10.1186/bcr2577] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed.
Collapse
Affiliation(s)
- Aurélie Cazet
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|