201
|
Huang H, Xu Y, Luo G, Xie Z, Ming W. Molecular Dynamics Study of Laser Interaction with Nanoparticles in Liquids and Its Potential Application. NANOMATERIALS 2022; 12:nano12091524. [PMID: 35564233 PMCID: PMC9105410 DOI: 10.3390/nano12091524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022]
Abstract
Laser interaction with nanoparticles in liquid is the fundamental theoretical basis for many applications but it is still challenging to observe this nanoscale phenomenon within a few nanoseconds in liquid by experiment. The successful implementation of the two-temperature method integrated with molecular dynamics (TTM-MD) in laser interaction with bulk material has shown great potential in providing a panoramic view of the laser interaction with the nanoparticles. However, the current TTM-MD model has to divide the system into cubic cells, which leads to mistakes near the nanoparticle’s surface. We introduce the latest model, which performs the TTM-MD on each individual cluster instead of the cubic cells, and its high-performance parallel cluster analysis algorithm to update the cluster size. The cluster-based TTM-MD revealed the nanoparticle formation mechanism of laser fragmentation in liquid (LFL) and facilitated the study of laser fluence’s effect on the size distribution. In addition to LFL, this model is promising to be implemented in the laser thermal therapy of tumors, laser melting in liquid (LML), etc. Although cluster-based TTM-MD has proven to be a powerful tool for studying laser interaction with nanoparticles, a few challenges and future developments for the cluster-based TTM-MD, especially the ionization induced by femtosecond, are also discussed.
Collapse
Affiliation(s)
- Hao Huang
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yingjie Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Guofu Luo
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
- Correspondence: (G.L.); (W.M.)
| | - Zhuobin Xie
- Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China;
| | - Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
- Correspondence: (G.L.); (W.M.)
| |
Collapse
|
202
|
Rahman TU, Anwar MR, Zeb MA, Liaqat W. Green synthesis, characterization, antibacterial activity of metal nanoparticles and composite oxides using leaves extract of Ocimum basilicum L. Microsc Res Tech 2022; 85:2857-2865. [PMID: 35460328 DOI: 10.1002/jemt.24134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles plays a key role in the development of novel antibacterial substances against various pathogenic microorganisms. These nanoparticles due to their smaller size could be very effective as they can improve the antibacterial activity through lysis of bacterial cell wall. In the present research work, ZnO, MgO, NiO, AlO nanoparticles, and MgNiO, and AlZnO composite oxides were synthesized by green method from Ocimum basilicum leaves extract. The nanoparticles formed were evaluated using FTIR, XRD, EDX, and SEM to confirm the formation of NPs and to determine the morphology, elemental composition, shape and size, composition, and nature of bonds present in the NPs. Further, the NPs were tested for their antibacterial activity. In particular, ZnO NPs showed a good inhibitory effect against Pseudomonas aeruginosa with 20 mm zone of inhibition. Hence, the process reported herein could be optimized for large-scale preparation of NPs.
Collapse
Affiliation(s)
- Taj Ur Rahman
- Department of Chemistry, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | | | | | - Wajiha Liaqat
- Department of Chemistry, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| |
Collapse
|
203
|
Chen XY, Yung LYL, Tan PH, Bay BH. Harnessing the Immunogenic Potential of Gold Nanoparticle-Based Platforms as a Therapeutic Strategy in Breast Cancer Immunotherapy: A Mini Review. Front Immunol 2022; 13:865554. [PMID: 35432376 PMCID: PMC9008216 DOI: 10.3389/fimmu.2022.865554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains the most common malignancy among women worldwide. Although the implementation of mammography has dramatically increased the early detection rate, conventional treatments like chemotherapy, radiation therapy, and surgery, have significantly improved the prognosis for breast cancer patients. However, about a third of treated breast cancer patients are known to suffer from disease recurrences and progression to metastasis. Immunotherapy has recently gained traction due to its ability to establish long-term immune surveillance, and response for the prevention of disease recurrence and extension of patient survival. Current research findings have revealed that gold nanoparticles can enhance the safety and efficacy of cancer immunotherapy, through their unique intrinsic properties of good biocompatibility, durability, convenient surface modification, as well as enhanced permeability and retention effect. Gold nanoparticles are also able to induce innate immune responses through the process of immunogenic cell death, which can lead to the establishment of lasting adaptive immunity. As such gold nanoparticles are considered as good candidates for next generation immunotherapeutic strategies. This mini review gives an overview of gold nanoparticles and their potential applications in breast cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Lin-Yue Lanry Yung
- Department of Biomolecular and Chemical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
204
|
Penelas MJ, Arenas GF, Trabadelo F, Soler-Illia GJAA, Moya SE, Angelomé PC, Hoppe CE. Importance of the Structural and Physicochemical Properties of Silica Nanoshells in the Photothermal Effect of Silica-Coated Au Nanoparticles Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3876-3886. [PMID: 35302776 DOI: 10.1021/acs.langmuir.2c00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, monodisperse silica-coated gold nanoparticles (NPs) were synthesized and used for obtaining aqueous colloidal dispersions with an optimum relationship between colloidal stability and photothermal activity. The idea behind this design was to produce systems with the advantages of the presence of a silica shell (biocompatibility, potential for surface modification, and protecting effect) with a minimal loss of optical and thermal properties. With this aim, the photothermal properties of NPs with silica shells of different thicknesses were analyzed under conditions of high radiation extinction. By using amorphous, gel-like silica coatings, thicknesses higher than 40 nm could be obtained without an important loss of the light absorption capacity of the colloids and with a significant photothermal response even at low NP concentrations. The effects produced by changes in the solvent and in the NP concentration were also analyzed. The results show that the characteristics of the shell control both, the photothermal effect and the optical properties of the colloidal dispersions. As the presence of a silica shell strongly enhances the possibilities of adding cargo molecules or probes, these colloids can be considered of high interest for biomedical therapies, sensing applications, remote actuation, and other technological applications.
Collapse
Affiliation(s)
- M Jazmín Penelas
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, B7606BWV Mar del Plata, Buenos Aires, Argentina
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de Mayo 1021, San Martín, B1650 Buenos Aires, Argentina
| | - Gustavo F Arenas
- Laboratorio LASER, ICYTE, UNMdP-CONICET, Av. J. B. Justo 4302, B7608FDQ Mar del Plata, Buenos Aires, Argentina
| | - Fernando Trabadelo
- Laboratorio de Electrónica, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET,Av. Cristóbal Colón 10850, B7606BWV, Mar del Plata, Buenos Aires, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de Mayo 1021, San Martín, B1650 Buenos Aires, Argentina
| | - Sergio E Moya
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Paula C Angelomé
- Gerencia Química & INN, CAC, CNEA-CONICET, Av. General Paz 1499, 1650, San Martín, Buenos Aires, Argentina
| | - Cristina E Hoppe
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, B7606BWV Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
205
|
Shah AS, Surnar B, Kolishetti N, Dhar S. Intersection of Inorganic Chemistry and Nanotechnology for the Creation of New Cancer Therapies. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:283-296. [PMID: 37091880 PMCID: PMC10117633 DOI: 10.1021/accountsmr.1c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since its discovery in 1965, the inorganic drug cisplatin has become a mainstay of cancer therapies and has inspired many platinum (Pt)-based compounds to solve various issues of toxicity and limitations associated with the original cisplatin. However, many of these drugs/prodrugs continue to be plagued by an array of side effects, limited circulation, and half-life and off-target effects. To solve this issue, we have constructed an array of platinum-based prodrugs on a Pt(IV) skeleton, which provides more favorable geometry and hydrophobicity, easier functionalization, and ultimately better targeting abilities. Each of these Pt(IV) prodrugs aims to either combine cisplatin with other agents for a combination therapeutic effect or improve the targeting of cisplatin itself, all for the more effective treatment of specific cancers. Our developed prodrugs include Platin-A, which combines cisplatin with the anti-inflammatory agent aspirin, Platin-M, which is functionalized with a mitochondria-targeting moiety, and Platin-B and Platin-Cbl, which combine cisplatin with components to combat cellular resistance to chemotherapy. At the same time, however, we recognize the crucial role of nanotechnology in improving the efficacy of cisplatin prodrugs and other inorganic compounds for the treatment of cancers. We describe several key benefits provided by nanomedicine that vastly improve the reach and utility of cisplatin prodrugs, including the ability of biodegradable polymeric nanoparticles (NPs) to deliver these agents with precision to the mitochondria, transport drugs across the blood-brain barrier, and target cisplatin prodrugs to specific cancers using various ligands. In addition, we highlight our progress in the engineering of innovative new polymers to improve the release patterns, pharmacokinetics, and dosages of cancer therapies. In this Account, we aim to describe the growing need for collaboration between the fields of inorganic chemistry and nanotechnology and how new advancements can not only improve on traditional chemotherapeutic agents but also expand their reach to entirely new subsets of cancers. In addition to detailing the design and principles behind our modifications of cisplatin and the efficacy of these new prodrugs against aggressive, cisplatin-resistant, or metastatic cancers, we also shed light on nanotechnology's essential role in protecting inorganic drugs and the human body from one another for more effective disease treatment without the off-target effects with which it is normally associated. We hope that this perspective into the important intersection between inorganic medicinal chemistry and nanotechnology will inspire future research on cisplatin prodrugs and other inorganic agents, innovative polymer and NP design, and the ways in which these two fields can greatly advance cancer treatment.
Collapse
Affiliation(s)
- Anuj S Shah
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Bapurao Surnar
- Department of Biochemistry and Molecular Biology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nagesh Kolishetti
- Department of Immunology & Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
206
|
Reddy VS, Agarwal B, Ye Z, Zhang C, Roy K, Chinnappan A, Narayan RJ, Ramakrishna S, Ghosh R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1082. [PMID: 35407200 PMCID: PMC9000490 DOI: 10.3390/nano12071082] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Biosensors have potentially revolutionized the biomedical field. Their portability, cost-effectiveness, and ease of operation have made the market for these biosensors to grow rapidly. Diabetes mellitus is the condition of having high glucose content in the body, and it has become one of the very common conditions that is leading to deaths worldwide. Although it still has no cure or prevention, if monitored and treated with appropriate medication, the complications can be hindered and mitigated. Glucose content in the body can be detected using various biological fluids, namely blood, sweat, urine, interstitial fluids, tears, breath, and saliva. In the past decade, there has been an influx of potential biosensor technologies for continuous glucose level estimation. This literature review provides a comprehensive update on the recent advances in the field of biofluid-based sensors for glucose level detection in terms of methods, methodology and materials used.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Bhawana Agarwal
- Department of Chemical Engineering, BITS Pilani-Hyderabad Campus, Hyderabad 500078, India;
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| |
Collapse
|
207
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
208
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
209
|
Ain NU, Abdul Nasir J, Khan Z, Butler IS, Rehman Z. Copper sulfide nanostructures: synthesis and biological applications. RSC Adv 2022; 12:7550-7567. [PMID: 35424661 PMCID: PMC8982292 DOI: 10.1039/d1ra08414c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few years, considerable attention has been paid to biomedical applications of copper sulfide nanostructures owing to their enhanced physiochemical and pharmacokinetics characteristics in comparison to gold, silver, and carbon nanomaterials. The small-sized Cu x S y nanoparticles have the advantage to absorb efficiently in the near-infrared region (NIR) above 700 nm and the absorption can be tuned by altering their stoichiometries. Moreover, their easy removal through the kidneys overpowers the issue of toxicity caused by many inorganic substances. The low cost and selectivity further add to the advantages of Cu x S y nanostructures as electrode materials in comparison to relatively expensive materials such as silver and gold nanoparticles. This review is mainly focused on the synthesis and biomedical applications of Cu x S y nanostructures. The first part summarizes the various synthetic routes used to produce Cu x S y nanostructures with varying morphologies, while the second part targets the recent progress made in the application of small-sized Cu x S y nanostructures as biosensors, and their analysis and uses in the cure of cancer. Photoacoustic imaging and other cancer treatment applications are discussed. Research on Cu x S y nanostructures will continue to increase over the next few decades, and great opportunities lie ahead for potential biomedical applications of Cu x S y nanostructures.
Collapse
Affiliation(s)
- Noor Ul Ain
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Zaibunisa Khan
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Ian S Butler
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montreal Quebec Canada H3A 0B8
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
210
|
Synthesis and Characterization of Biodegradable Poly(butyl cyanoacrylate) for Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14050998. [PMID: 35267821 PMCID: PMC8912508 DOI: 10.3390/polym14050998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(butyl cyanoacrylate) (PBCA) is a biodegradable and biocompatible homopolymer which is used as a carrier matrix for drug delivery systems in the pharmaceutical industry. Typically, polymerization is carried out under aqueous conditions and results in molecular weights are mostly lower than 3000 g/mol due to the instability of the high molecular weight PBCA. However, the stability of polymer excipients is a major prerequisite for drug product development in the pharmaceutical industry. In this work, a reliable polymer synthesis strategy for PBCA was designed to control the molecular weight in a nonaqueous polymerization environment. The anionic polymerization process and the impact of key synthesis parameters were investigated. The results confirmed that the previously postulated depolymerization–repolymerization process (DPRP) in the literature can be used to tailor the molecular weight of PBCA. The amount of sodium methoxide present during the polymerization proved to be the key parameter to control the DPRP and the molecular weight as desired. In addition, it was discovered that end-capping the PBCA chain suppressed the DPRP and prevented monomer release by depriving the PBCA of its living character. Thus, neat PBCA polymer with varying molecular weights determined by Advanced Polymer Chromatography™ as well as end-capped PBCA were synthesized, and the improvement of the chemical and shelf-life stability were confirmed using NMR.
Collapse
|
211
|
Biosynthesis of Gold Nanoparticles Mediated by Andaliman Fruit Water Extract and Its Application as Antioxidants. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.2.56-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plant extract-mediated green synthesis of gold nanoparticles (AuNPs) is currently gaining significant interest in the field of nanotechnology. In this study, AuNPs were synthesized using an aqueous extract of Andaliman fruit (Zanthoxylum acanthopodium DC.). The formation of AuNPs was confirmed by observing the color change of the solution from clear to cherry red. The reaction parameters, namely the extract concentration and the ratio of the mixture of the extract with HAuCl4 solution, were optimized for the AuNPs biosynthesis. The gold nanoparticles were characterized using a UV-Vis spectrophotometer, SEM-EDS, and particle size analyzer. The characterization suggested that AuNPs had a maximum wavelength ranging of 540–559 nm, with spherical crystals morphology where the highest component was gold at 36.01% and the size below 100 nm on average. The antioxidant activity of the synthesized AuNPs was determined using the DPPH method. It showed that the highest free radical scavenging activity was 83%, given by 20 ppm AuNPs.
Collapse
|
212
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
213
|
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. NANOSCALE RESEARCH LETTERS 2022; 17:27. [PMID: 35171358 PMCID: PMC8850533 DOI: 10.1186/s11671-022-03668-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Glioblastoma is the most aggressive cerebral tumor in adults. However, the current pharmaceuticals in GBM treatment are mainly restricted to few chemotherapeutic drugs and have limited efficacy. Therefore, various nanoscale biomaterials that possess distinct structure and unique property were constructed as vehicles to precisely deliver molecules with potential therapeutic effect. In this review, nanoparticle drug delivery systems including CNTs, GBNs, C-dots, MOFs, Liposomes, MSNs, GNPs, PMs, Dendrimers and Nanogel were exemplified. The advantages and disadvantages of these nanoparticles in GBM treatment were illustrated.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang Jiangxi, 330006, China.
| |
Collapse
|
214
|
Kurokawa H, Taninaka A, Yoshitomi T, Shigekawa H, Matsui H. Near-Infrared Light Irradiation of Porphyrin-Modified Gold Nanoparticles Promotes Cancer-Cell-Specific Cytotoxicity. Molecules 2022; 27:molecules27041238. [PMID: 35209026 PMCID: PMC8879323 DOI: 10.3390/molecules27041238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
The use of nanoparticles has been investigated as a new cancer treatment. These can induce specific cytotoxicity in cancer cells. In particular, Au nanoparticles (AuNPs) have unique characteristics. The maximum absorption spectrum of AuNPs can be adjusted to modify their size or shape to absorb near-infrared light that can penetrate into tissue without photodamage. Thus, the combination of AuNPs and near-infrared light can be used to treat cancer in deep-seated organs. To obtain effective cancer-specific accumulation of AuNPs, we focused on porphyrin and synthesized a porphyrin-attached Au compound: Au-HpD. In this study, we investigated whether Au-HpD possesses cancer-specific accumulation and cytotoxicity. Intracellular Au-HpD accumulation was higher in cancer cells than in normal cells. In order to analyze the cytotoxicity induced by Au-HpD, cancer cells and normal cells were co-cultured in the presence of Au-HpD; then, they were subjected to 870 nm laser irradiation. We observed that, after laser irradiation, cancer cells showed significant morphological changes, such as chromatin condensation and nuclear fragmentation indicative of cell apoptosis. This strong effect was not observed when normal cells were irradiated. Moreover, cancer cells underwent cell apoptosis with combination therapy.
Collapse
Affiliation(s)
- Hiromi Kurokawa
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
- MoBiol Technologies Corporation, Tsukuba 305-0031, Japan
- Correspondence:
| | - Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan; (A.T.); (H.S.)
- TAKANO Co., Ltd., Nagano 399-4301, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan;
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan; (A.T.); (H.S.)
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| |
Collapse
|
215
|
Yu Q, Peng T, Zhang J, Liu X, Pan Y, Ge D, Zhao L, Rosei F, Zhang J. Cu 2-x S x Capped AuCu Nanostars for Efficient Plasmonic Photothermal Tumor Treatment in the Second Near-Infrared Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103174. [PMID: 34914183 DOI: 10.1002/smll.202103174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/19/2021] [Indexed: 05/05/2023]
Abstract
Plasmonic nanohybrids are promising photo energy conversion materials in photoelectronics and biomedicine, due to their unique surface plasmon resonance (SPR). Au and Cu2-x Sx nanostructures with strong SPR in the near-infrared (NIR) spectral region are classic plasmonic systems used to convert NIR photons into heat for photothermal therapy (PTT). The rational design of the Au/Cu2-x Sx nanohybrids is expected to induce better photothermal conversion; however, the construction of such hybrids via wet-chemistry methods with a well-controlled interfacial structure is still challenging. Here, the synthesis of an AuCu Star/Cu2-x Sx nanohybrid is reported, where the Cu2-x Sx components are selectively grown on the AuCu nanostar tips to form "caps". The spatial formation of the Cu2-x Sx caps on star tips is mainly governed by surfactant concentration, tip curvature, and experimental manipulation. The nanohybrids show low cytotoxicity and superior photothermal conversion efficiency, enabling robust PTT to kill cancer cells in the second NIR window. Numerical simulation reveals that the coupling of Cu2-x Sx on nanostar tips generates strong interfacial electric field, improving photothermal conversion. Moreover, the spatial separation structure favors the continuous flow of hot charge carriers to produce active radicals, further promoting the tumor treatment effect.
Collapse
Affiliation(s)
- Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Tingyu Peng
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jinfeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaoxuan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ye Pan
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, No. 31 Ji'nan Road, Dongying, Shandong, 257034, P. R. China
| | - Long Zhao
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
216
|
Prasad S, Gupta M. Solvation of gold nanoparticles passivated with functionalized alkylthiols: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
217
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
218
|
Clemente E, Martinez-Moro M, Trinh DN, Soliman MG, Spencer DIR, Gardner RA, Kotsias M, Sánchez Iglesias A, Moya S, Monopoli MP. Probing the glycans accessibility in the nanoparticle biomolecular corona. J Colloid Interface Sci 2022; 613:563-574. [PMID: 35066229 DOI: 10.1016/j.jcis.2021.11.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
HYPOTHESIS Following blood administration, the pristine surface of nanoparticles (NPs) associates with biomolecules from the surrounding environment forming the so-called "biomolecular corona". It is well accepted that the biomolecular corona dramatically affects the NP fate in the biological medium while the pristine surface is no longer available for binding. Recent studies have shown that the glycans associated with the proteins forming the corona have a role in the NP interaction with macrophages, but the glycan identities remain unknown. We aim here to identify the glycan composition of the biomolecular corona and to assess the role of these glycans in the interaction of the proteins from the corona with glycan binding biomolecules, such as lectins. EXPERIMENTS In this study, we have characterized the biomolecular corona of citrate stabilised gold NPs after exposure of the NPs to blood plasma at two different plasma concentrations, mimicking the in vitro and in vivo conditions. We have extensively characterized the biomolecular corona using HILIC chromatography and shotgun proteomics. Following this, a lectin binding assay was carried out using Dynamic Light Scattering (DLS) and Fluorescence Correlation Spectroscopy (FCS) to assess whether proteins with known affinity towards specific glycans would bind to the corona. FINDINGS Our findings highlighted that the protein corona composition is dependent on the exposing conditions. However, under both plasma concentrations, the biantennary sialylated glycans (A2G2S2) are enriched. DLS and FCS confirmed that the glycans are accessible for binding as the corona interacts with lectins with known affinity towards terminal sialic acids and the enzymatic removal of the glycans leads to a decrease in lectin affinity. This study shows for the first time that the glycans are present in the corona and that they could potentially be responsible for the modulation of NP biological processes as they can directly engage with glycan binding receptors that are highly expressed in an organism.
Collapse
Affiliation(s)
- Eva Clemente
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland
| | - Marta Martinez-Moro
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Duong N Trinh
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland; Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Daniel I R Spencer
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Richard A Gardner
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | | | - Ana Sánchez Iglesias
- Bionanoplasmonics Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Sergio Moya
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain.
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland.
| |
Collapse
|
219
|
Iyer S, Yadav R, Agarwal S, Tripathi S, Agarwal R. Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clin Microbiol Rev 2022; 35:e0012321. [PMID: 34788128 PMCID: PMC8597982 DOI: 10.1128/cmr.00123-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral pathogens like influenza and coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to millions of deaths. Vaccinations are, to date, the best and most economical way to control such outbreaks and have been highly successful for several pathogens. Currently used vaccines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk reversion to virulence or confer inadequate immunity. The recent trend of using potent biomolecules like DNA, RNA, and protein antigenic components to synthesize vaccines for diseases has shown promising results. Still, it remains challenging to translate due to their high susceptibility to degradation during storage and after delivery. Advances in bioengineering technology for vaccine design have made it possible to control the physicochemical properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formulations, and more robust immunogenicity. Bioengineering techniques and materials have been used to synthesize several potent vaccines, approved or in trials, against coronavirus disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respiratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as the use of polymeric particles, liposomes, and virus-like particles in vaccine development against influenza and coronaviruses and the feasibility of adopting these technologies for clinical use.
Collapse
Affiliation(s)
- Shalini Iyer
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rajesh Yadav
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Smriti Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
220
|
Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan S, Liu D, Liu W. The Applications of Gold Nanoparticles in the Diagnosis and Treatment of Gastrointestinal Cancer. Front Oncol 2022; 11:819329. [PMID: 35127533 PMCID: PMC8807688 DOI: 10.3389/fonc.2021.819329] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the morbidity and mortality of gastrointestinal cancer have remained high in China. Due to the deep location of the gastrointestinal organs, such as gastric cancer, the early symptoms of cancer are not obvious. It is generally discovered at an advanced stage with distant metastasis and lymph node infiltration, making it difficult to cure. Therefore, there is a significant need for novel technologies that can effectively diagnose and treat gastrointestinal cancer, ultimately reducing its mortality. Gold nanoparticles (GNPs), a type of nanocarrier with unique optical properties and remarkable biocompatibility, have the potential to influence the fate of cancer by delivering drugs, nucleic acids to cancer cells and tissues. As a safe and reliable visualization agent, GNPs can track drugs and accurately indicate the location and boundaries of cancer, opening up new possibilities for cancer treatment. In addition, GNPs have been used in photodynamic therapy to deliver photosensitizers, as well as in combination with photothermal therapy. Therefore, GNPs can be used as a safe and effective nanomaterial in the treatment and diagnosis of gastrointestinal cancer.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chenyu Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
221
|
An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics 2022; 14:pharmaceutics14020224. [PMID: 35213957 PMCID: PMC8875260 DOI: 10.3390/pharmaceutics14020224] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery to the brain has been one of the toughest challenges researchers have faced to develop effective treatments for brain diseases. Owing to the blood–brain barrier (BBB), only a small portion of administered drug can reach the brain. A consequence of that is the need to administer a higher dose of the drug, which, expectedly, leads to a variety of unwanted side effects. Research in a variety of different fields has been underway for the past couple of decades to address this very serious and frequently lethal problem. One area of research that has produced optimistic results in recent years is nanomedicine. Nanomedicine is the science birthed by fusing the fields of nanotechnology, chemistry and medicine into one. Many different types of nanomedicine-based drug-delivery systems are currently being studied for the sole purpose of improved drug delivery to the brain. This review puts together and briefly summarizes some of the major breakthroughs in this crusade. Inorganic nanoparticle-based drug-delivery systems, such as gold nanoparticles and magnetic nanoparticles, are discussed, as well as some organic nanoparticulate systems. Amongst the organic drug-delivery nanosystems, polymeric micelles and dendrimers are discussed briefly and solid polymeric nanoparticles are explored in detail.
Collapse
|
222
|
Adnan M, Oh KK, Husen A, Wang MH, Alle M, Cho DH. Microwave-Assisted Synchronous Nanogold Synthesis Reinforced by Kenaf Seed and Decoding Their Biocompatibility and Anticancer Activity. Pharmaceuticals (Basel) 2022; 15:111. [PMID: 35215224 PMCID: PMC8876769 DOI: 10.3390/ph15020111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The combination of green-nanotechnology and biology may contribute to anticancer therapy. In this regard, using gold nanoparticles (GNPs) as therapeutic molecules can be a promising strategy. Herein, we proposed a novel biocompatible nanogold constructed by simply microwave-heating (MWI) Au3+ ions and kenaf seed (KS) extract within a minute. The phytoconstituents of KS extract have been utilized for safe synthesis of gold nanoparticles (KS@GNPs). The biogenic KS@GNPs were characterized by UV-vis Spectra, TEM, HR-TEM, XRD, FTIR, DLS, EDX, and SEAD techniques. The legitimacy and toxicity concern of KS@GNPs were tested against RAW 264.7 and NIH3T3 cell lines. The anticancer efficacy was verified using LN-229 cells. The pathways of KS@GNPs synthesis were optimized by varying the KS concentration (λmax 528 nm), gold salt amount (λmax 524 nm), and MWI times (λmax 522 nm). TEM displayed spherical shape and narrow size distribution (5-19.5 nm) of KS@GNPs, whereas DLS recorded Z-average size of 121.7 d·nm with a zeta potential of -33.7 mV. XRD and SAED ring patterns confirmed the high crystallinity and crystalline face centered cubic structure of gold. FTIR explored OH functional group involved in Au3+ ions reduction followed by GNPs stabilization. KS@GNPs exposure to RAW 264.7 and NIH3T3 cell lines did not induce toxicity while dose-dependent overt cell toxicity and reduced cell viability (26.6%) was observed in LN-229 cells. Moreover, the IC50 (18.79 µg/mL) treatment to cancer cell triggered cellular damages, excessive ROS generation, and apoptosis. Overall, this research exploits a sustainable method of KS@GNPs synthesis and their anticancer therapy.
Collapse
Affiliation(s)
- Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.-K.O.)
| | - Ki-Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.-K.O.)
| | - Azamal Husen
- School of Public Health, Wolaita Sodo University, Wolaita Sodo 138, Ethiopia;
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.-K.O.)
| | - Madhusudhan Alle
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.-K.O.)
| |
Collapse
|
223
|
Oziri OJ, Wang Y, Watanabe T, Uno S, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato SI, Miura Y, Yamamoto T. PEGylation of silver nanoparticles by physisorption of cyclic poly(ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity. NANOSCALE ADVANCES 2022; 4:532-545. [PMID: 36132700 PMCID: PMC9417676 DOI: 10.1039/d1na00720c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 05/17/2023]
Abstract
Silver nanoparticles (AgNPs) are practically valuable in biological applications. However, no steady PEGylation has been established, which is essential for internal use in humans or animals. In this study, cyclic PEG (c-PEG) without any chemical inhomogeneity is physisorbed onto AgNPs to successfully PEGylate and drastically enhance the dispersion stability against physiological conditions, white light, and high temperature. In contrast, linear HO-PEG-OH and MeO-PEG-OMe do not confer stability to AgNPs, and HS-PEG-OMe, which is often used for gold nanoparticles, sulfidates the surface to considerably degrade the properties. TEM shows an essentially intact nanostructure of c-PEG-physisorbed AgNPs even after heating at 95 °C, while complete disturbance is observed for other AgNPs. Molecular weight- and concentration-dependent stabilization by c-PEG is investigated, and DLS and ζ-potential measurements prove the formation of a c-PEG layer on the surface of AgNPs. Furthermore, c-PEG-physisorbed AgNPs exhibit persistent antimicrobial activity and cytotoxicity.
Collapse
Affiliation(s)
| | - Yubo Wang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Shuya Uno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Shin-Ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsutacho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
224
|
He X, Chen F, Chang Z, Waqar K, Hu H, Zheng X, Wang Y, Dong WF, Yang C. Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection. CHEM REC 2022; 22:e202100287. [PMID: 35020240 DOI: 10.1002/tcr.202100287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Indexed: 12/16/2022]
Abstract
The integration of silver nanoparticles (Ag NPs) with mesoporous silica nanoparticles (MSNs) protects the former from aggregation and promotes the controlled release of silver ions, resulting in therapeutic significance on cancer and infection. The unique size, shape, pore structure and silver distribution of silver mesoporous silica nanoparticles (Ag-MSNs) embellish them with the potential to perform combined imaging and therapeutic actions via modulating optical and drug release properties. Here, we comprehensively review the recent progress in the fabrication and application of Ag-MSNs for combination therapies for cancer and infection. We first elaborate on the fabrication of star-shaped structure, core-shell structure, and Janus structure Ag-MSNs. We then highlight Ag-MSNs as a multifunctional nanoplatform to surface-enhanced Raman scattering-based detection, non-photo-based cancer theranostics and photo-based cancer theranostics. In addition, we detail Ag-MSNs for combined antibacterial therapy via drug delivery and phototherapy. Overall, we summarize the challenges and future perspectives of Ag-MSNs that make them promising for diagnosis and therapy of cancer and infection.
Collapse
Affiliation(s)
- Xuan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kasim Waqar
- Department of Biomedical Engineering, Columbia University, New York, New York, 10025, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, 10025, USA
| | - Xiao Zheng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yingshuai Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
225
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
226
|
Chen Z, Zhang F, Li Y, Shan J, Lu Y, Liu Q. Bio-electron transfer modulated localized surface plasmon resonance biosensing with charge density monitoring. Biosens Bioelectron 2022; 201:113956. [PMID: 34998117 DOI: 10.1016/j.bios.2021.113956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
The analysis of reactant at different regions of the bioreaction interface is significant for the study on the influence of interface condition on bioreaction. In this study, we proposed a localized surface plasmon resonance (LSPR) biosensing platform for local charge density monitoring and corresponding analytes detection based on the bio-electron transfer modulation of plasmon resonance. Core-shell nanocomposites of polyaniline coated gold nanoparticles were synthesized for the enhanced sensitivity of plasmon resonance to applied electric potential. Tin-doped indium oxide (ITO) substrates modified with the nanocomposites were used as LSPR chip for optical and electrochemical measurements simultaneously. The charge sensitivity of LSPR was verified with external electric potential modulation theoretically and experimentally. Through layer-by-layer self-assembly immobilization of glucose oxidase (GOD) on the LSPR chips, the charge transfer monitoring during the bioreaction of glucose catalysis was further demonstrated based on the bio-electron transfer modulation of LSPR. By equivalent circuit method, the charge density of the LSPR chip were detected with optical extinction peak shifts, and the limit of detection was about 0.51 μC/cm2. This bio-electron transfer modulated LSPR provides a promising approach for the detection of spatial charge densities and the evaluation of bioreaction substances at different region of single chip.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yaru Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jianzhen Shan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, PR China.
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, PR China
| |
Collapse
|
227
|
Kaur G, Thimes RL, Camden JP, Jenkins DM. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem Commun (Camb) 2022; 58:13188-13197. [DOI: 10.1039/d2cc05183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Improved stability and higher degree of synthetic tunability has allowed N-heterocyclic carbenes to supplant thiols as ligands for gold surface functionalization. This review article summarizes the basic science and applications of NHCs on gold.
Collapse
Affiliation(s)
- Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
228
|
Yang C, Jiang W, Yu Y, Zhang H, Cai C, Shen Q. Anisotropic Plasmonic Pd-Tipped Au Nanorods for Near-Infrared Light-Activated Photoacoustic Imaging Guided Photothermal-Photodynamic Cancer Therapy. J Mater Chem B 2022; 10:2028-2037. [DOI: 10.1039/d2tb00002d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of photothermal therapy (PTT) and photodynamic therapy (PDT) has become a promising cancer treatment method. Herein, anisotropic metal hetero-nanostructure Pd-tipped Au nanorods (PTA NRs) were fabricated, which exhibit...
Collapse
|
229
|
Wei D, Yang H, Zhang Y, Zhang X, Wang J, Wu X, Chang J. Nano-Traditional Chinese Medicine: a promising strategy and its recent advances. J Mater Chem B 2022; 10:2973-2994. [DOI: 10.1039/d2tb00225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional Chinese medicine(TCM) has been applied to the prevention and treatment of numerous diseases and has an irreplaceable role of rehabilitation and health care. However, the application of TCM is...
Collapse
|
230
|
Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_11-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
231
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
232
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
233
|
Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
234
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2531-2571. [PMID: 35369682 PMCID: PMC8956152 DOI: 10.1007/s10311-022-01425-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 05/09/2023]
Abstract
Because many engineered nanoparticles are toxic, there is a need for methods to fabricate safe nanoparticles such as plant-based nanoparticles. Indeed, plant extracts contain flavonoids, amino acids, proteins, polysaccharides, enzymes, polyphenols, steroids, and reducing sugars that facilitate the reduction, formation, and stabilization of nanoparticles. Moreover, synthesizing nanoparticles from plant extracts is fast, safe, and cost-effective because it does not consume much energy, and non-toxic derivatives are generated. These nanoparticles have diverse and unique properties of interest for applications in many fields. Here, we review the synthesis of metal/metal oxide nanoparticles with plant extracts. These nanoparticles display antibacterial, antifungal, anticancer, and antioxidant properties. Plant-based nanoparticles are also useful for medical diagnosis and drug delivery.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuong Thi Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
235
|
Traynor DJ, Ureña-Horno E, Hobson JJ, Croft EJ, Edwards SE, Rannard SP, Giardiello M. Aqueous (co)polymer stabilisers for size-controlled 2–5 nm gold nanoparticle synthesis with tuneable catalytic activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj03257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuneable (co)polymer composition and architecture influences both AuNP size during synthesis and catalytic activity for the reduction of 4-Nitrophenol.
Collapse
Affiliation(s)
- Daniel J. Traynor
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Elena Ureña-Horno
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - James J. Hobson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Centre of Excellence for Long-acting Therapeutics, University of Liverpool, West Derby Street, Liverpool L7 8TX, UK
| | - Elliot J. Croft
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Stephanie E. Edwards
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Steve P. Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Centre of Excellence for Long-acting Therapeutics, University of Liverpool, West Derby Street, Liverpool L7 8TX, UK
| | - Marco Giardiello
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| |
Collapse
|
236
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
237
|
Pan J, He Q, Lao Z, Zou Y, Su J, Li Q, Chen Z, Cui X, Cai Y, Zhao S. A bifunctional immunosensor based on osmium nano-hydrangeas as a catalytic chromogenic and tinctorial signal output for folic acid detection. Analyst 2021; 147:55-65. [PMID: 34821249 DOI: 10.1039/d1an01432c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a neglected member of the platinum group elements, osmium, the metal with the highest density in the earth, is very suitable for the preparation of a peroxidase with high catalytic activity and stability, and can also be associated with the development of a sensor. In this study, we accessed Os nano-hydrangeas (OsNHs) with one-pot synthesis and utilized them in a bifunctional immunosensor that can present both catalytic chromogenic and tinctorial signal for nanozyme-linked immunosorbent assay (NLISA) and lateral flow immunoassay (LFIA) for use in folic acid (FA) detection. In the OsNHs-NLISA, the linear range is from 9.42 to 167.53 ng mL-1. The limit of detection (LOD) is 4.03 ng mL-1 and the IC50 value is 39.73 ng mL-1. In OsNHs-LFIA, the visual cut-off value and limit of detection (v-LOD) are 100 ng mL-1 and 0.01 ng mL-1, respectively. Additionally, the outcome from the specificity and spiked sample analysis offered recovery from the spiked milk powder sample ranging from 93.9 to 103.6% with a coefficient of variation under 4.9%, compared with UPLC-MS/MS for a correlation of R2 = 0.999 and admirable validation. The promising application of the OsNHs can also be used in other bioprobes, and this bifunctional immunosensor analysis mode is suitable for diversified analytes.
Collapse
Affiliation(s)
- Junkang Pan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China. .,Department of Chemical Engineering and Technology, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhiting Lao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Jingyi Su
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zekai Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
238
|
Li X, Wang H, Zou X, Su H, Li C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 170:106101. [PMID: 34936935 DOI: 10.1016/j.ejps.2021.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA). Targeting of MTX to inflamed joints is essential to the prevention of potential toxicity and improving therapeutic effects. Gold nanoparticles (GNPs) are characterized by controllable particle sizes and good biocompatibilities, therefore, they are promising drug delivery systems. We aimed at developing a GNPs drug delivery system incorporating MTX and folic acid (FA) with strong efficacies against RA. METHODS MTX-Cys-FA was synthesized through solid-phase organic synthesis. Then, it was coupled with sulfhydryl groups in GNPs, thereby successfully preparing a GNPs/MTX-Cys-FA nanoconjugate with targeting properties. Physical and chemical techniques were used to characterize it. Moreover, we conducted its stability, release, pharmacokinetics, biodistribution and cell cytotoxicity, cell uptake, cell migration, as well as its therapeutic effect on CIA rats. The histopathology was conducted to investigate anti-RA effects of GNPs/MTX-Cys-FA nanoconjugates. RESULTS The GNPs/MTX-Cys-FA nanoconjugate exhibited a spherical appearance, had a particle size of 103.06 nm, a zeta potential of -33.68 mV, drug loading capacity of 11.04 %, and an encapsulation efficiency of 73.61%. Cytotoxicity experiments revealed that GNPs had good biocompatibilities while GNPs/MTX-Cys-FA exhibited excellent drug-delivery abilities. Cell uptake and migration experiment showed that nanoconjugates containing FA by LPS activated mouse mononuclear macrophages (RAW264.7) was significantly increased, and they exerted significant inhibitory effects on human fibroblast-like synoviocytes (HFLS) of RA (p<0.01). In addition, the nanoconjugate prolonged blood circulation time of MTX in collagen-induced arthritis (CIA) rats (p<0.01), enhanced MTX accumulation in inflamed joints (p<0.01), enhanced their therapeutic effects (p<0.01), and reduced toxicity to major organs (p<0.01). CONCLUSION GNPs/MTX-Cys-FA nanoconjugates provide effective approaches for RA targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xuena Li
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Huanhui Wang
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Xiaotong Zou
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Hui Su
- Department of Pharmacy, The Sixth Affiliated Hospital of Harbin Medical University, No. 142 road, Zhongyuan Avenue, Harbin 150028, China
| | - Cheng Li
- College of Medicine, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China; Department of Pharmacy, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133000, China.
| |
Collapse
|
239
|
Bao H, Li Y, Yu C, Li X, Wang Y, Gao L, Huang J, Zhang Z. DNA-coated gold nanoparticles for tracking hepatocyte growth factor secreted by transplanted mesenchymal stem cells in pulmonary fibrosis therapy. Biomater Sci 2021; 10:368-375. [PMID: 34897301 DOI: 10.1039/d1bm01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The identification of paracrine factors secreted by transplanted mesenchymal stem cells (MSCs) during the treatment of idiopathic pulmonary fibrosis (IPF) is essential for understanding the role of MSCs in therapy. Herein, we report a facile and efficient strategy for in vivo tracking the secretion of hepatocyte growth factor (HGF) in MSCs during IPF therapy. In our strategy, a novel nanoflare tracer consisting of gold nanoparticles (AuNPs), complementary sequences and dye-labeled recognition sequences is developed. Briefly, the AuNPs are functionalized with oligonucleotide complementary sequences hybridized to the organic dye-labeled recognition sequences, where the organic fluorophores are in close proximity to the AuNPs. In the absence of targets, the dye and AuNPs are separated from each other, inducing the quenching of the fluorescence signal. However, in the presence of targets, the recognition sequences gradually fall off from the AuNPs, causing the fluorescence signal to rise. In brief, in vivo monitoring of the dynamic expression of HGF mRNA in transplanted MSCs during IPF therapy in the current work may provide new insight into the paracrine process of the transplanted MSCs, thereby advancing the MSC-based IPF therapy toward clinical applications.
Collapse
Affiliation(s)
- Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yujie Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Li Gao
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
240
|
Hung HS, Yang YC, Kao WC, Yeh CA, Chang KB, Tang CM, Hsieh HH, Lee HT. Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites. Polymers (Basel) 2021; 13:polym13234265. [PMID: 34883774 PMCID: PMC8659436 DOI: 10.3390/polym13234265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular Diseases (CVDs) such as atherosclerosis, where inflammation occurs in the blood vessel wall, are one of the major causes of death worldwide. Mesenchymal Stem Cells (MSCs)-based treatment coupled with nanoparticles is considered to be a potential and promising therapeutic strategy for vascular regeneration. Thus, angiogenesis enhanced by nanoparticles is of critical concern. In this study, Polyethylene Glycol (PEG) incorporated with 43.5 ppm of gold (Au) nanoparticles was prepared for the evaluation of biological effects through in vitro and in vivo assessments. The physicochemical properties of PEG and PEG–Au nanocomposites were first characterized by UV-Vis spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFMs). Furthermore, the reactive oxygen species scavenger ability as well as the hydrophilic property of the nanocomposites were also investigated. Afterwards, the biocompatibility and biological functions of the PEG–Au nanocomposites were evaluated through in vitro assays. The thin coating of PEG containing 43.5 ppm of Au nanoparticles induced the least platelet and monocyte activation. Additionally, the cell behavior of MSCs on PEG–Au 43.5 ppm coating demonstrated better cell proliferation, low ROS generation, and enhancement of cell migration, as well as protein expression of the endothelialization marker CD31, which is associated with angiogenesis capacity. Furthermore, anti-inflammatory and endothelial differentiation ability were both evaluated through in vivo assessments. The evidence demonstrated that PEG–Au 43.5 ppm implantation inhibited capsule formation and facilitated the expression of CD31 in rat models. TUNEL assay also indicated that PEG–Au nanocomposites would not induce significant cell apoptosis. The above results elucidate that the surface modification of PEG–Au nanomaterials may enable them to serve as efficient tools for vascular regeneration grafts.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Wei-Chien Kao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (H.-S.H.); (W.-C.K.); (C.-A.Y.); (K.-B.C.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Hsu-Tung Lee
- Cancer Prevention and Control Center, Taichung Veterans General Hospital, Taichung 407204, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
241
|
Wan Y, Chai Q, Zou Y, Mao G, Chen J. A versatile fluorescent nanobeacon lighted by DNA-templated copper nanoparticles and the application in isothermal amplification detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120102. [PMID: 34198116 DOI: 10.1016/j.saa.2021.120102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
In this work, an environmentally-friendly and versatile nanobeacon was constructed by utilizing DNA-templated copper nanoparticles (CuNPs) as fluorescence signal source. As the key component of the nanobeacon, a hairpin DNA was designed to contain four segments: two segments for CuNPs template sequence, a target recognition segment and a blocking segment. At room temperature, the target recognition segment partly hybridizes with the blocking segment and thus prohibits the formation of double stranded DNA template, so that no CuNPs can be generated on the hairpin DNA. While a target is introduced, the specific binding of target with recognition sequence triggers off the conformational transformation of the hairpin DNA, which contributes to the formation of the CuNPs template. As a result, the in-situ generation of CuNPs gives birth to the fluorescence signal readout that can be used to identify the target. By reasonably varying the recognition sequence within hairpin DNA, a series of nanobeacons in response to corresponding targets, such as DNA, microRNA, thrombin, and ATP, were put forward with satisfactory sensitivity and selectivity. Moreover, this nanobeacon was also integrated with the strategy of enzyme-assisted target-recycling to realize signal amplification and ultrasensitive detection, which further demonstrated the versatility of the nanobeacon. This novel nanobeacon is expected to be a promising alternative to classical dye-labeled molecular beacon and provide new perspective on ultrasensitive fluorescence sensing.
Collapse
Affiliation(s)
- Yuqi Wan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yanyun Zou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China.
| |
Collapse
|
242
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
243
|
Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Brar B, Pal Y, Tripathi B, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep 2021; 8:1970-1978. [PMID: 34934635 PMCID: PMC8654697 DOI: 10.1016/j.toxrep.2021.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022] Open
Abstract
Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides' physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects.
Collapse
Affiliation(s)
- Anju Manuja
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Rajesh Kumar
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Dharvi Chhabra
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, UP, 231001, India
| | - Mayank Manuja
- Birla Institute of Technology and Science, Pilani, Goa Campus, Goa, India
| | - Basanti Brar
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yash Pal
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - B.N. Tripathi
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Minakshi Prasad
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
244
|
Zhao S, Luo Y, Chang Z, Liu C, Li T, Gan L, Huang Y, Sun Q. BSA-Coated Gold Nanorods for NIR-II Photothermal Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:170. [PMID: 34842995 PMCID: PMC8630206 DOI: 10.1186/s11671-021-03627-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The second near infrared window is considered to be the optimal optical window for medical imaging and therapy as its capability of deep tissue penetration. The preparation of the gold nanorods with long wavelength absorption and low cytotoxicity is still a challenge. A series gold nanorods with large aspect ratio have been synthesized. Strong plasma absorption in the second near infrared window from 1000 to 1300 nm could be observed. The biocompatibility of the synthesized gold nanorods is dramatically improved via coating by bovine serum albumin (BSA), while the optical properties of which remains. The breast cancer tumor-bearing mouse could be well treated by the prepared gold nanorods with the NIR-II light intensity as low as 0.75 W/cm2. In summary, these results demonstrate the feasibility of using low illumination dose to treat tumor in the NIR-II region via the large aspect ratio gould nanoparticles.
Collapse
Affiliation(s)
- Shubi Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yiqun Luo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zong Chang
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Chenchen Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Tong Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Qinchao Sun
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
245
|
Melo L, Hui A, Kowal M, Boateng E, Poursorkh Z, Rocheron E, Wong J, Christy A, Grant E. Size Distributions of Gold Nanoparticles in Solution Measured by Single-Particle Mass Photometry. J Phys Chem B 2021; 125:12466-12475. [PMID: 34734725 DOI: 10.1021/acs.jpcb.1c05557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Specialized applications of nanoparticles often call for particular, well-characterized particle size distributions in solution, but this property can prove difficult to measure. High-throughput methods, such as dynamic light scattering, detect nanoparticles in solution with an efficiency that scales with diameter to the sixth power. This diminishes the accuracy of any determination that must span a range of particle sizes. The accurate classification of broadly distributed systems thus requires very large numbers of measurements. Mass-filtered particle-sensing techniques offer a better dynamic range but are labor-intensive and so have low throughput. Progress in many areas of nanotechnology requires a faster, lower-cost, and more accurate measure of particle size distributions, particularly for diameters smaller than 20 nm. Here, we present a tailored interferometric microscope system, combined with a high-speed image-processing strategy, optimized for real-time particle tracking that determines accurate size distributions in nominal 5, 10, and 15 nm colloidal gold nanoparticle systems by automatically sensing and classifying thousands of single particles sampled from solution at rates as high as 4000 particles per minute. We demonstrate this method by sensing the irreversible binding of gold nanoparticles to poly-d-lysine functionalized coverslips. Variations in the single-particle signal as a function of time and mass, calibrated by TEM, show clear evidence for the presence of diffusion-limited transport that most affects larger particles in solution.
Collapse
Affiliation(s)
- Luke Melo
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Angus Hui
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Matt Kowal
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eric Boateng
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zahra Poursorkh
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Edène Rocheron
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jake Wong
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ashton Christy
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Edward Grant
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
246
|
Effect of Nickel Nitrate Concentration on the Size of Nickel Oxide Nanoparticles Bio-synthesized by Artemisia herba-alba Aqueous Leaves Extract and Improving Their Antioxidant Activities. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02152-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
247
|
Yuan X, Zhen W, Yu S, Xue C. Plasmon Coupling-Induced Hot Electrons for Photocatalytic Hydrogen Generation. Chem Asian J 2021; 16:3683-3688. [PMID: 34505398 DOI: 10.1002/asia.202100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Indexed: 12/17/2022]
Abstract
We present the fabrication of core-shell-satellite Au@SiO2 -Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.
Collapse
Affiliation(s)
- Xu Yuan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Zhen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sijia Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
248
|
Wang X, Hao W, Zhang P, Szego AE, Svensson G, Hedin N. Macroscopic rods from assembled colloidal particles of hydrothermally carbonized glucose and their use as templates for silicon carbide and tricopper silicide. J Colloid Interface Sci 2021; 602:480-489. [PMID: 34139541 DOI: 10.1016/j.jcis.2021.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Self-aggregated colloids can be used for the preparation of materials, and we studied long rod-like aggregates formed on the evaporation of water from dispersed particles of colloidal hydrochar. The monodispersed hydrochar particles (100-200 nm) were synthesized by the hydrothermal carbonization of glucose and purified through dialysis. During the synthesis they formed colloidal dispersions which were electrostatically stable at intermediate to high pH and at low ion strengths. On the evaporation of water, macroscopically large rods formed from the dispersions at intermediate pH conditions. The rods formed at the solid-water interface orthogonally oriented with respect to the drying direction. Pyrolysis rendered the rods highly porous without qualitatively affecting their shape. A Cu-Si alloy was reactively infiltrated into the in-situ pyrolyzed hydrochars and composites of tricopper silicide (Cu3Si)-silicon carbide (SiC)/carbon formed. During this process, the Si atoms reacted with the C atoms, which in turned caused the alloy to wet and further react with the carbon. The shape of the underlying carbon template was maintained during the reactions, and the formed composite preparation was subsequently calcined into a Cu3Si-SiC-based replica of the rod-like assemblies of carbon-based colloidal particles. Transmission and scanning electron microscopy, and X-ray diffraction were used to study the shape, composition, and structure of the formed solids. Further studies of materials prepared with reactive infiltration of alloys into self-aggregated and carbon-based solids can be justified from a perspective of colloidal science, as well as the explorative use of hydrochar prepared from real biomass, exploration of the compositional space in relation to the reactive infiltration, and applications of the materials in catalysis.
Collapse
Affiliation(s)
- Xia Wang
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16 C SE 10691 Stockholm, Sweden
| | - Wenming Hao
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16 C SE 10691 Stockholm, Sweden; School of Chemistry and Chemical Engineering, Taiyuan University of Technology 79# West Yingze Street CN 030024 Taiyuan, China
| | - Peng Zhang
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16 C SE 10691 Stockholm, Sweden
| | - Anthony E Szego
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16 C SE 10691 Stockholm, Sweden
| | - Gunnar Svensson
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16 C SE 10691 Stockholm, Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16 C SE 10691 Stockholm, Sweden.
| |
Collapse
|
249
|
Abstract
There is intensive research using gold nanoparticles for biomedical purposes, which have many advantages such as ease of synthesis and high reactivity. Their possible small size (<10 nm) can lead to the crossing of biological membranes and then to problematic dissemination and storage in organs that must be controlled and evaluated. In this work, a simple isocratic HPLC method was developed and validated to quantify the gold coming from nanoparticles in different biological samples. After a first carbonization step at 900 °C, the nanoparticles were oxidized by dibroma under acidic conditions, leading to tetrachloroaurate ions that could form ion pairs when adding rhodamine B. Finally, ion pairs were extracted and rhodamine B was evaluated to quantify the corresponding gold concentration by reversed-phase HPLC with visible detection. The method was validated for different organs (liver, spleen, lungs, kidneys, or brain) and fluids (plasma and urine) from rats and mice. Lastly, the developed method was used to evaluate the content of gold in organs and fluids after intravenous (IV) injection of nanoparticles.
Collapse
|
250
|
Miniaturization of Anthracene-Containing Nonapeptides for Selective Precipitation/Recovery of Metallic Gold from Aqueous Solutions Containing Gold and Platinum Ions. Processes (Basel) 2021. [DOI: 10.3390/pr9112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The separation and recovery of noble metals is increasingly of interest, in particular the recovery of gold nanocrystals, which have applications in medicine and industry. Typically, metal recovery is performed using liquid–liquid extraction or electrowinning. However, it is necessary to develop noble metal recovery systems providing high selectivity in conjunction with a one-pot setup, ready product recovery, and the use of dilute aqueous solutions. In prior work, our group developed a selective gold recovery process using peptides. This previous research showed that RU065, a nonapeptide containing an anthracene moiety (at a concentration of 2.0 × 10−4 M), is capable of selective reduction of HAuCl4 to recover gold from a solution of HAuCl4 and H2PtCl6, each at 5.0 × 10−5 M. However, peptide molecules are generally costly to synthesize, and therefore it is important to determine the minimum required structural features to design non-peptide anthracene derivatives that could reduce operational costs. In this study, we used RU065 together with 23 of its fragment peptides and investigated the selective precipitation/recovery of metallic gold. RU0654–8, a fragment peptide comprising five amino acid residues (having two lysine, one L-isoleusine, and one L-alanine residue (representing six amide groups) along with an L-2-anthrylalanine residue) provided an Au/Pt atomic ratio of approximately 8, which was comparable to that for the full-length original RU065. The structural features identified in this study are expected to contribute to the design of non-peptide anthracene derivatives for low-cost, one-pot selective gold recovery.
Collapse
|