201
|
Jackson DR, Yu X, Wang G, Patel AB, Calveras J, Barajas JF, Sasaki E, Metsä-Ketelä M, Liu HW, Rohr J, Tsai SC. Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chem Biol 2016; 11:1137-47. [PMID: 26813028 DOI: 10.1021/acschembio.5b00913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cores of aromatic polyketides are essential for their biological activities. Most type II polyketide synthases (PKSs) biosynthesize these core structures involving the minimal PKS, a PKS-associated ketoreductase (KR) and aromatases/cyclases (ARO/CYCs). Oxygenases (OXYs) are rarely involved. BE-7585A is an anticancer polyketide with an angucyclic core. (13)C isotope labeling experiments suggest that its angucyclic core may arise from an oxidative rearrangement of a linear anthracyclinone. Here, we present the crystal structure and functional analysis of BexE, the oxygenase proposed to catalyze this key oxidative rearrangement step that generates the angucyclinone framework. Biochemical assays using various linear anthracyclinone model compounds combined with docking simulations narrowed down the substrate of BexE to be an immediate precursor of aklaviketone, possibly 12-deoxy-aklaviketone. The structural analysis, docking simulations, and biochemical assays provide insights into the role of BexE in BE-7585A biosynthesis and lay the groundwork for engineering such framework-modifying enzymes in type II PKSs.
Collapse
Affiliation(s)
- David R. Jackson
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Xia Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Guojung Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Avinash B. Patel
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jordi Calveras
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jesus F. Barajas
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Eita Sasaki
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Hung-wen Liu
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jürgen Rohr
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shiou-Chuan Tsai
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
202
|
Xie Z, Zhou L, Guo L, Yang X, Qu G, Wu C, Zhang S. Grisemycin, a Bridged Angucyclinone with a Methylsulfinyl Moiety from a Marine-Derived Streptomyces sp. Org Lett 2016; 18:1402-5. [DOI: 10.1021/acs.orglett.6b00332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zeping Xie
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Lin Guo
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Xiaoping Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Guiwu Qu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Changjing Wu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Shumin Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
203
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 985] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
204
|
Ruei JH, Venukumar P, Ingle AB, Mong KKT. C6 picoloyl protection: a remote stereodirecting group for 2-deoxy-β-glycoside formation. Chem Commun (Camb) 2016; 51:5394-7. [PMID: 25470411 DOI: 10.1039/c4cc08465a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We reported a remote control glycosylation method using the picoloyl protecting group for 2-deoxy-β-glycosidic bond formation. The method is applicable to various 2-deoxythioglycosyl donors and the utility is illustrated by the synthesis of a deoxytrisaccharide component of landomycins.
Collapse
Affiliation(s)
- Jyh-Herng Ruei
- Applied Chemistry Department, National Chiao Tung University (NCTU), 1001 Ta Hsueh Road, Taiwan.
| | | | | | | |
Collapse
|
205
|
Su H, Shao H, Zhang K, Li G. Antibacterial metabolites from the Actinomycete Streptomyces sp. P294. J Microbiol 2016; 54:131-5. [PMID: 26832669 DOI: 10.1007/s12275-016-5311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
The Actinomycete strain P294 was isolated from soil and identified as Streptomyces sp. based upon the results of 16S rRNA sequence analysis. Three compounds obtained from the solid fermentation products of this strain have been determined by 1D, 2D NMR and HRMS experiments. These compounds include two new compounds angumycinones C (1) and D (2), and the known compound X-14881 E (3). All compounds were assayed for antibacterial and nematicidal activity. The results showed the three compounds had different degrees of inhibitory activity against several target bacteria but no significant toxicity against the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Huining Su
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, Yunnan, P. R. China
| | - Hongwei Shao
- Angang General Hospital, Anshan, 114021, P. R. China
| | - Keqin Zhang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, Yunnan, P. R. China
| | - Guohong Li
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, Yunnan, P. R. China.
| |
Collapse
|
206
|
Saxena A, Perez F, Krische MJ. Ruthenium(0)-Catalyzed [4+2] Cycloaddition of Acetylenic Aldehydes with α-Ketols: Convergent Construction of Angucycline Ring Systems. Angew Chem Int Ed Engl 2016; 55:1493-7. [PMID: 26663806 PMCID: PMC4718903 DOI: 10.1002/anie.201509646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/13/2015] [Indexed: 11/09/2022]
Abstract
Ruthenium(0) complexes modified by CyJohnPhos or RuPhos catalyze the successive C-C coupling of acetylenic aldehydes with α-ketols to form [4+2] cycloadducts as single diastereomers. This method enables convergent construction of type II polyketide ring systems of the angucycline class.
Collapse
Affiliation(s)
- Aakarsh Saxena
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. A5300, Austin, TX, 78712-1167, USA
| | - Felix Perez
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. A5300, Austin, TX, 78712-1167, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. A5300, Austin, TX, 78712-1167, USA.
| |
Collapse
|
207
|
Abdelfattah MS, Arai MA, Ishibashi M. Bioactive Secondary Metabolites with Unique Aromatic and Heterocyclic Structures Obtained from Terrestrial Actinomycetes Species. Chem Pharm Bull (Tokyo) 2016; 64:668-75. [DOI: 10.1248/cpb.c16-00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohamed S. Abdelfattah
- Graduate School of Pharmaceutical Sciences, Chiba University
- Chemistry Department, Faculty of Science,
Helwan University
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|
208
|
Prylutskyy YI, Cherepanov VV, Kostjukov VV, Evstigneev MP, Kyzyma OA, Bulavin LA, Ivankov O, Davidenko NA, Ritter U. Study of the complexation between Landomycin A and C60 fullerene in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra18807a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report here the first investigation of the non-covalent complexation between C60 fullerene and angucycline antibiotic Landomycin A.
Collapse
Affiliation(s)
| | | | | | - M. P. Evstigneev
- Sevastopol State University
- Sevastopol 299053
- Department of Biology and Chemistry
- Belgorod State University
- 308015 Belgorod
| | - O. A. Kyzyma
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
- Joint Institute for Nuclear Research
- 141980 Dubna
| | - L. A. Bulavin
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
| | - O. Ivankov
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
- Joint Institute for Nuclear Research
- 141980 Dubna
| | - N. A. Davidenko
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
| | - U. Ritter
- Ilmenau University of Technology
- 98693 Ilmenau
- Germany
| |
Collapse
|
209
|
Karuppiah V, Sun W, Li Z. Natural Products of Actinobacteria Derived from Marine Organisms. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63602-7.00013-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
210
|
Bekeova C, Rehakova A, Feckova L, Vlckova S, Novakova R, Mingyar E, Kormanec J. Characterisation of the genes involved in the biosynthesis and attachment of the aminodeoxysugar D-forosamine in the auricin gene cluster of Streptomyces aureofaciens CCM3239. Appl Microbiol Biotechnol 2015; 100:3177-95. [PMID: 26685675 DOI: 10.1007/s00253-015-7214-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022]
Abstract
We previously identified the aur1 gene cluster which produces the angucycline antibiotic auricin. Preliminary characterisation of auricin revealed that it is modified by a single aminodeoxysugar, D-forosamine. Here we characterise the D-forosamine-specific genes. The four close tandem genes, aur1TQSV, encoding enzymes involved in the initial steps of the deoxysugar biosynthesis, were located on a large operon with other core auricin biosynthetic genes. Deleting these genes resulted in the absence of auricin and the production of deglycosylated auricin intermediates. The two final D-forosamine biosynthetic genes, sa59, an NDP-hexose aminotransferase, and sa52, an NDP-aminohexose N-dimethyltransferase, are located in a region rather distant from the core auricin genes. A deletion analysis of these genes confirmed their role in D-forosamine biosynthesis. The Δsa59 mutant had a phenotype similar to that of the cluster deletion mutant, while the Δsa52 mutant produced an auricin with a demethylated D-forosamine. Although auricin contains a single deoxyhexose, two glycosyltransferase genes were found to participate in the attachment of D-forosamine to the auricin aglycon. An analysis of the expression of the D-forosamine biosynthesis genes revealed that the initial D-forosamine biosynthetic genes aur1TQSV are regulated together with the other auricin core genes by the aur1Ap promoter under the control of the auricin-specific activator Aur1P. The expression of the other D-forosamine genes, however, is governed by promoters differentially dependent upon the two SARP family auricin-specific activators Aur1PR3 and Aur1PR4. These promoters contain direct repeats similar to the SARP consensus sequence and are involved in the interaction with both regulators.
Collapse
Affiliation(s)
- Carmen Bekeova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Alena Rehakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Silvia Vlckova
- Institute of Chemistry, Slovak Academy of Sciences, 845 38, Bratislava, Slovak Republic
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Erik Mingyar
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic.
| |
Collapse
|
211
|
Saxena A, Perez F, Krische MJ. Ruthenium(0)-Catalyzed [4+2] Cycloaddition of Acetylenic Aldehydes with α-Ketols: Convergent Construction of Angucycline Ring Systems. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aakarsh Saxena
- University of Texas at Austin; Department of Chemistry; 105 E 24th St. A5300 Austin TX 78712-1167 USA
| | - Felix Perez
- University of Texas at Austin; Department of Chemistry; 105 E 24th St. A5300 Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin; Department of Chemistry; 105 E 24th St. A5300 Austin TX 78712-1167 USA
| |
Collapse
|
212
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
213
|
Ma M, Rateb ME, Teng Q, Yang D, Rudolf JD, Zhu X, Huang Y, Zhao LX, Jiang Y, Li X, Rader C, Duan Y, Shen B. Angucyclines and Angucyclinones from Streptomyces sp. CB01913 Featuring C-Ring Cleavage and Expansion. JOURNAL OF NATURAL PRODUCTS 2015; 78:2471-80. [PMID: 26335269 PMCID: PMC4845661 DOI: 10.1021/acs.jnatprod.5b00601] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Angucyclines and angucyclinones are aromatic polyketides with a tetracyclic benz[a]anthracene skeleton. The benz[a]anthracene scaffold is biosynthesized by type II polyketide synthases that catalyze the decarboxylative condensation of a short acyl-CoA starter and nine extender units. Angucyclines and angucyclinones, the largest group of polycyclic aromatic polyketides, achieve structural diversity via subsequent oxidation, ring cleavage, amino acid incorporation, and glycosylation. We here report the discovery of 14 angucyclinones and two angucyclines (1-16) from Streptomyces sp. CB01913, identifying 12 new compounds featuring various oxidations on rings A and C (1, 2, and 4), different sugar moieties attached to rings A and B (3 and 6), and C-ring cleavage (5 and 10-14) and expansion (8). These new structural features, highlighted by C-ring cleavage and expansion, enrich the structural diversity of angucyclines and angucyclinones. All compounds were tested for cytotoxicity and antibacterial activities, with 1, 5, 15, and 16 showing moderate activities against selected cancer cell lines or bacterial strains.
Collapse
Affiliation(s)
- Ming Ma
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mostafa E. Rateb
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Qihui Teng
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410329, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiuling Li
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410329, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
- Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
214
|
Yang C, Huang C, Zhang W, Zhu Y, Zhang C. Heterologous Expression of Fluostatin Gene Cluster Leads to a Bioactive Heterodimer. Org Lett 2015; 17:5324-7. [PMID: 26465097 DOI: 10.1021/acs.orglett.5b02683] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunfang Yang
- Key
Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunshuai Huang
- Key
Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Wenjun Zhang
- Key
Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key
Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- Key
Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
215
|
Sun W, Zhang F, He L, Karthik L, Li Z. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery. Front Microbiol 2015; 6:1048. [PMID: 26483773 PMCID: PMC4589764 DOI: 10.3389/fmicb.2015.01048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides.
Collapse
Affiliation(s)
- Wei Sun
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Fengli Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Liming He
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Loganathan Karthik
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
216
|
Gessner A, Heitzler T, Zhang S, Klaus C, Murillo R, Zhao H, Vanner S, Zechel DL, Bechthold A. Changing Biosynthetic Profiles by ExpressingbldAinStreptomycesStrains. Chembiochem 2015; 16:2244-52. [DOI: 10.1002/cbic.201500297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Arne Gessner
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Tanja Heitzler
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Christine Klaus
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Renato Murillo
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| | - Hanna Zhao
- Department of Chemistry; Queen's University; Kingston ON K7L 3N6 Canada
| | - Stephanie Vanner
- Department of Chemistry; Queen's University; Kingston ON K7L 3N6 Canada
| | - David L. Zechel
- Department of Chemistry; Queen's University; Kingston ON K7L 3N6 Canada
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology; Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Stefan-Meier-Strasse 19 79104 Freiburg Germany
| |
Collapse
|
217
|
A Pimarane Diterpene and Cytotoxic Angucyclines from a Marine-Derived Micromonospora sp. in Vietnam's East Sea. Mar Drugs 2015; 13:5815-27. [PMID: 26389922 PMCID: PMC4584356 DOI: 10.3390/md13095815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022] Open
Abstract
A screening of our actinomycete fraction library against the NCI-60 SKOV3 human tumor cell line led to the isolation of isopimara-2-one-3-ol-8,15-diene (1), lagumycin B (2), dehydrorabelomycin (3), phenanthroviridone (4), and WS-5995 A (5). These secondary metabolites were produced by a Micromonospora sp. isolated from sediment collected off the Cát Bà peninsula in the East Sea of Vietnam. Compound 1 is a novel Δ8,9-pimarane diterpene, representing one of approximately 20 actinomycete-produced diterpenes reported to date, while compound 2 is an angucycline antibiotic that has yet to receive formal characterization. The structures of 1 and 2 were elucidated by combined NMR and MS analysis and the absolute configuration of 1 was assigned by analysis of NOESY NMR and CD spectroscopic data. Compounds 2–5 exhibited varying degrees of cytotoxicity against a panel of cancerous and non-cancerous cell lines. Overall, this study highlights our collaborative efforts to discover novel biologically active molecules from the large, underexplored, and biodiversity-rich waters of Vietnam’s East Sea.
Collapse
|
218
|
Cañeque T, Gomes F, Mai TT, Maestri G, Malacria M, Rodriguez R. Synthesis of marmycin A and investigation into its cellular activity. Nat Chem 2015; 7:744-51. [PMID: 26291947 PMCID: PMC5892709 DOI: 10.1038/nchem.2302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/10/2015] [Indexed: 12/29/2022]
Abstract
Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.
Collapse
Affiliation(s)
- Tatiana Cañeque
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, 1 Avenue de la Terrasse, Gif sur-Yvette 91198, France
| | - Filipe Gomes
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, 1 Avenue de la Terrasse, Gif sur-Yvette 91198, France
| | - Trang Thi Mai
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, 1 Avenue de la Terrasse, Gif sur-Yvette 91198, France
| | - Giovanni Maestri
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, 1 Avenue de la Terrasse, Gif sur-Yvette 91198, France
- Department of Chemistry, Università degli Studi di Parma, Parco Area delle Scienze 17/a, Parma 43124, Italy
| | - Max Malacria
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, 1 Avenue de la Terrasse, Gif sur-Yvette 91198, France
- Institut Parisien de Chimie Moléculaire, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8232, Paris CEDEX 05 75252, France
| | - Raphaël Rodriguez
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, 1 Avenue de la Terrasse, Gif sur-Yvette 91198, France
- Institut Curie Research Center, Organic Synthesis and Cell Biology Group, 26 rue d’Ulm, Paris Cedex 05 75248, France
- CNRS UMR 3666, Paris 75005, France
| |
Collapse
|
219
|
Khatri HR, Nguyen H, Dunaway JK, Zhu J. Total Synthesis of Antitumor Antibiotic Derhodinosylurdamycin A. Chemistry 2015; 21:13553-7. [DOI: 10.1002/chem.201502113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 11/08/2022]
|
220
|
Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri. Mar Drugs 2015; 13:4682-700. [PMID: 26230704 PMCID: PMC4556999 DOI: 10.3390/md13084682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 12/02/2022] Open
Abstract
During an investigation of new actinomycete species from Caribbean sponges for novel bioactive natural products, frigocyclinone (1), dimethyldehydrorabelomycin (3) and six new angucyclinone derivatives were isolated from Streptomyces sp. strain M7_15 associated with the sponge Scopalina ruetzleri. Of these, monacyclinones A–B (4–5) contain the core ring structure of dehydrorabelomycin (2) with the aminodeoxysugar found in frigocyclinone (1). Monacyclinone C (6) is a hydroxylated variant of frigocyclinone (1) and monacyclinone D (7) is a Baeyer Villiger derivative of (6) which also exists as the open chain hydrolysis product monacyclinone E (8). Monacyclinone F (9) contains two unique epoxide rings attached to the angucyclinone moiety and an additional aminodeoxysugar attached through an angular oxygen bond. All structures were confirmed through spectral analyses. Activity against rhabdomycosarcoma cancer cells (SJCRH30) after 48 h of treatment was observed with frigocyclinone (1; EC50 = 5.2 µM), monacyclinone C (6; 160 µM), monacyclinone E (8; 270 µM), and monacyclinone F (9; 0.73 µM). The strongest bioactivity against rhabdomycosarcoma cancer cells and gram-positive bacteria was exhibited by compound 9, suggesting that the extra aminodeoxysugar subunit is important for biological activity.
Collapse
|
221
|
Zhang M, Hou XF, Qi LH, Yin Y, Li Q, Pan HX, Chen XY, Tang GL. Biosynthesis of trioxacarcin revealing a different starter unit and complex tailoring steps for type II polyketide synthase. Chem Sci 2015; 6:3440-3447. [PMID: 29511509 PMCID: PMC5659172 DOI: 10.1039/c5sc00116a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Different starter unit and complex tailoring steps for type II polyketide synthase in trioxacarcin biosynthesis.
Trioxacarcins (TXNs) are highly oxygenated, polycyclic aromatic natural products with remarkable biological activity and structural complexity. Evidence from 13C-labelled precursor feeding studies demonstrated that the scaffold was biosynthesized from one unit of l-isoleucine and nine units of malonyl-CoA, which suggested a different starter unit in the biosynthesis. Genetic analysis of the biosynthetic gene cluster revealed 56 genes encoding a type II polyketide synthase (PKS), combined with a large amount of tailoring enzymes. Inactivation of seven post-PKS modification enzymes resulted in the production of a series of new TXN analogues, intermediates, and shunt products, most of which show high anti-cancer activity. Structural elucidation of these new compounds not only helps us to propose the biosynthetic pathway, featuring a type II PKS using a novel starter unit, but also set the stage for further characterization of the enzymatic reactions and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Xian-Feng Hou
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Li-Hua Qi
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Yue Yin
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Qing Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Xin-Ya Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China . .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
222
|
Synthesis of Acyloxy-Semicyclic Dienes Using an Enyne Metathesis/Ring Closing Metathesis Approach. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
223
|
Robertson AW, Martinez-Farina CF, Smithen DA, Yin H, Monro S, Thompson A, McFarland SA, Syvitski RT, Jakeman DL. Eight-Membered Ring-Containing Jadomycins: Implications for Non-enzymatic Natural Products Biosynthesis. J Am Chem Soc 2015; 137:3271-5. [DOI: 10.1021/ja5114672] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Huimin Yin
- Department
of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Susan Monro
- Department
of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | | | - Sherri A. McFarland
- Department
of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Raymond T. Syvitski
- Institute
for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | | |
Collapse
|
224
|
Wang B, Ren J, Li L, Guo F, Pan G, Ai G, Aigle B, Fan K, Yang K. Kinamycin biosynthesis employs a conserved pair of oxidases for B-ring contraction. Chem Commun (Camb) 2015; 51:8845-8. [DOI: 10.1039/c5cc01986a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A conserved pair of oxidases is characterized as nature's machinery for benzofluorenone formation.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Jinwei Ren
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Liyuan Li
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Fang Guo
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Bertrand Aigle
- Université de Lorraine
- Dynamique des Génomes et Adaptation Microbienne
- Vandœuvre-lès-Nancy
- France
- INRA
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources
- Institute of Microbiology
- Chinese Academy of Sciences
- 100101 Beijing
- China
| |
Collapse
|
225
|
Martinez-Farina CF, McCormick N, Robertson AW, Clement H, Jee A, Ampaw A, Chan NL, Syvitski RT, Jakeman DL. Investigations into the binding of jadomycin DS to human topoisomerase IIβ by WaterLOGSY NMR spectroscopy. Org Biomol Chem 2015; 13:10324-7. [DOI: 10.1039/c5ob01508a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
First evidence that jadomycins bind human topoisomerase IIβ.
Collapse
Affiliation(s)
| | | | | | - Helen Clement
- College of Pharmacy
- Dalhousie University
- Halifax
- Canada
| | - Alison Jee
- College of Pharmacy
- Dalhousie University
- Halifax
- Canada
| | - Anna Ampaw
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology
- College Medicine
- National Taiwan University
- Taipei City 100
- Taiwan
| | - Ray T. Syvitski
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- Institute of Marine Biosciences
| | - David L. Jakeman
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- College of Pharmacy
| |
Collapse
|
226
|
Guo F, Xiang S, Li L, Wang B, Rajasärkkä J, Gröndahl-Yli-Hannuksela K, Ai G, Metsä-Ketelä M, Yang K. Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab Eng 2014; 28:134-142. [PMID: 25554073 DOI: 10.1016/j.ymben.2014.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
Abstract
The continuously increasing genome sequencing data has revealed numerous cryptic pathways, which might encode novel secondary metabolites with interesting biological activities. However, utilization of this hidden potential has been hindered by the observation that many of these gene clusters remain silent (or poorly expressed) under laboratory conditions. Here we present reporter-guided mutant selection (RGMS) as an effective and widely applicable method for targeted activation of silent gene clusters in the native producers. The strategy takes advantage of genome-scale random mutagenesis for generation of genetic diversity and a reporter-guided selection system for the identification of the desired target-activated mutants. It was first validated in the re-activation of jadomycin biosynthesis in Streptomyces venezuelae ISP5230, where high efficiency of activation was achieved. The same strategy was then applied to a hitherto unactivable pga gene cluster in Streptomyces sp. PGA64 leading to the identification of two new anthraquinone aminoglycosides, gaudimycin D and E.
Collapse
Affiliation(s)
- Fang Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People׳s Republic of China
| | - Sihai Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China
| | - Liyuan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China
| | - Bin Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People׳s Republic of China
| | - Johanna Rajasärkkä
- Department of Biochemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland
| | | | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, People׳s Republic of China.
| |
Collapse
|
227
|
Chen JM, Shepherd MD, Horn J, Leggas M, Rohr J. Enzymatic methylation and structure-activity-relationship studies on polycarcin V, a gilvocarcin-type antitumor agent. Chembiochem 2014; 15:2729-35. [PMID: 25366963 PMCID: PMC4266428 DOI: 10.1002/cbic.201402426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/06/2022]
Abstract
Polycarcin V, a polyketide natural product of Streptomyces polyformus, was chosen to study structure-activity relationships of the gilvocarcin group of antitumor antibiotics due to a similar chemical structure and comparable bioactivity with gilvocarcin V, the principle compound of this group, and the feasibility of enzymatic modifications of its sugar moiety by auxiliary O-methyltransferases. Such enzymes were used to modify the interaction of the drug with histone H3, the biological target that interacts with the sugar moiety. Cytotoxicity assays revealed that a free 2'-OH group of the sugar moiety is essential to maintain the bioactivity of polycarcin V, apparently an important hydrogen bond donor for the interaction with histone H3, and converting 3'-OH into an OCH3 group improved the bioactivity. Bis-methylated polycarcin derivatives revealed weaker activity than the parent compound, indicating that at least two hydrogen bond donors in the sugar are necessary for optimal binding.
Collapse
Affiliation(s)
- Jhong-Min Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| | - Micah D. Shepherd
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
- ZuChem Inc., Next Innovation Center, 801 West Main Street, Peoria, Illinois 61606-1877, USA
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
- Center for Pharmaceutical Science and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
228
|
Zhou Z, Xu Q, Bu Q, Guo Y, Liu S, Liu Y, Du Y, Li Y. Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis. Chembiochem 2014; 16:496-502. [PMID: 25511454 DOI: 10.1002/cbic.201402577] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 01/01/2023]
Abstract
Genomic sequencing of actinomycetes has revealed the presence of numerous gene clusters seemingly capable of natural product biosynthesis, yet most clusters are cryptic under laboratory conditions. Bioinformatics analysis of the completely sequenced genome of Streptomyces chattanoogensis L10 (CGMCC 2644) revealed a silent angucycline biosynthetic gene cluster. The overexpression of a pathway-specific activator gene under the constitutive ermE* promoter successfully triggered the expression of the angucycline biosynthetic genes. Two novel members of the angucycline antibiotic family, chattamycins A and B, were further isolated and elucidated. Biological activity assays demonstrated that chattamycin B possesses good antitumor activities against human cancer cell lines and moderate antibacterial activities. The results presented here provide a feasible method to activate silent angucycline biosynthetic gene clusters to discover potential new drug leads.
Collapse
Affiliation(s)
- Zhenxing Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, 388 Yuhangtang Road, Hangzhou 310058 (China)
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Patrikainen P, Niiranen L, Thapa K, Paananen P, Tähtinen P, Mäntsälä P, Niemi J, Metsä-Ketelä M. Structure-Based Engineering of Angucyclinone 6-Ketoreductases. ACTA ACUST UNITED AC 2014; 21:1381-1391. [DOI: 10.1016/j.chembiol.2014.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
230
|
Abstract
Natural products are important sources of pharmaceuticals, in part owing to their diverse biological activities. Enzymes from natural product biosynthetic pathways have become attractive candidates as biocatalysts for modifying the structures and bioactivities of these complex compounds. Numerous enzymes have been harvested to generate innovative scaffolds, large-scale synthesis of chiral building blocks, and semisynthesis of medicinally relevant natural product derivatives. This review discusses recent examples from three areas: (a) polyketide catalytic domain engineering geared toward synthesis of new polyketides, (b) engineering of tailoring enzymes (other than oxidative enzymes) as biocatalysts, and (c) in vitro total synthesis of natural products using purified enzyme components. With the availability of exponentially increasing genomic information and new genome mining tools, many new and powerful biocatalysts tailored for pharmaceutical synthesis will likely emerge from secondary metabolism.
Collapse
|
231
|
Janso JE, Haltli BA, Eustáquio AS, Kulowski K, Waldman AJ, Zha L, Nakamura H, Bernan VS, He H, Carter GT, Koehn FE, Balskus EP. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica.. Tetrahedron 2014; 70:4156-4164. [PMID: 25045187 PMCID: PMC4101813 DOI: 10.1016/j.tet.2014.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lomaiviticins are a family of cytotoxic marine natural products that have captured the attention of both synthetic and biological chemists due to their intricate molecular scaffolds and potent biological activities. Here we describe the identification of the gene cluster responsible for lomaiviticin biosynthesis in Salinispora pacifica strains DPJ-0016 and DPJ-0019 using a combination of molecular approaches and genome sequencing. The link between the lom gene cluster and lomaiviticin production was confirmed using bacterial genetics, and subsequent analysis and annotation of this cluster revealed the biosynthetic basis for the core polyketide scaffold. Additionally, we have used comparative genomics to identify candidate enzymes for several unusual tailoring events, including diazo formation and oxidative dimerization. These findings will allow further elucidation of the biosynthetic logic of lomaiviticin assembly and provide useful molecular tools for application in biocatalysis and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey E. Janso
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Brad A. Haltli
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Alessandra S. Eustáquio
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Kerry Kulowski
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Li Zha
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Hitomi Nakamura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Valerie S. Bernan
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Haiyin He
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Guy T. Carter
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Frank E. Koehn
- Natural Products, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06355, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
232
|
Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci U S A 2014; 111:5688-93. [PMID: 24706927 DOI: 10.1073/pnas.1324253111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The angucycline antibiotic jadomycin B (JdB) produced by Streptomyces venezuelae has been found here to induce complex survival responses in Streptomyces coelicolor at subinhibitory concentration. The receptor for JdB was identified as a "pseudo" gamma-butyrolactone receptor, ScbR2, which was shown to bind two previously unidentified target promoters, those of redD (redDp) and adpA (adpAp), thus directly regulating undecylprodigiosin (Red) production and morphological differentiation, respectively. Because AdpA also directly regulates the expression of redD, ScbR2, AdpA, and RedD together form a feed-forward loop controlling both differentiation and Red production phenotypes. Different signal strengths (i.e., JdB concentrations) were shown to induce the two different phenotypes by modulating the relative transcription levels of adpA vs. redD. The induction of morphological differentiation and endogenous antibiotic production by exogenous antibiotic exemplifies an important survival strategy more sophisticated than the induction of antibiotic resistance.
Collapse
|
233
|
Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn RJ, Hentschel U, Edrada-Ebel R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs 2014; 12:1220-44. [PMID: 24663112 PMCID: PMC3967206 DOI: 10.3390/md12031220] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/22/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022] Open
Abstract
High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to evaluate the HRFTMS and NMR data of crude extracts from four different fermentation approaches. Statistical analysis identified the best culture one-strain-many-compounds (OSMAC) condition and extraction procedure, which was used for the isolation of novel bioactive metabolites. As a result, two new O-glycosylated angucyclines, named actinosporins A (1) and B (2), were isolated from the broth culture of Actinokineospora sp. strain EG49, which was cultivated from the Red Sea sponge Spheciospongia vagabunda. The structures of actinosporins A and B were determined by 1D- and 2D-NMR techniques, as well as high resolution tandem mass spectrometry. Testing for antiparasitic properties showed that actinosporin A exhibited activity against Trypanosoma brucei brucei with an IC₅₀ value of 15 µM; however no activity was detected against Leishmania major and Plasmodium falciparum, therefore suggesting its selectivity against the parasite Trypanosoma brucei brucei; the causative agent of sleeping sickness.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg D-97082, Germany.
| | - Cheng Cheng
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg D-97082, Germany.
| | - Christina Viegelmann
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0NR, UK.
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0NR, UK.
| | - Tanja Grkovic
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia.
| | - Safwat Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Ronald J Quinn
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia.
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg D-97082, Germany.
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0NR, UK.
| |
Collapse
|
234
|
Zhu D, Baryal KN, Adhikari S, Zhu J. Direct synthesis of 2-deoxy-β-glycosides via anomeric O-alkylation with secondary electrophiles. J Am Chem Soc 2014; 136:3172-5. [PMID: 24476042 DOI: 10.1021/ja4116956] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An approach for direct synthesis of biologically significant 2-deoxy-β-glycosides has been developed via O-alkylation of a variety of 2-deoxy-sugar-derived anomeric alkoxides using challenging secondary triflates as electrophiles. It was found a free hydroxyl group at C3 of the 2-deoxy-sugar-derived lactols is required in order to achieve synthetically efficient yields. This method has also been applied to the convergent synthesis of a 2-deoxy-β-tetrasaccharide.
Collapse
Affiliation(s)
- Danyang Zhu
- Department of Chemistry and School of Green Chemistry and Engineering, The University of Toledo , 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
235
|
Moodie LWK, Larsen DS. A Ring-Closing Enyne Metathesis Approach to Functionalized Semicyclic Dienes: The Total Synthesis of (-)-Tetrangomycin. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
236
|
A. O'Doherty G, U. Sharif E. Regioselective Bromination: An Approach to the D-Ring of the Gilvocarcins. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)90] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
237
|
|
238
|
Leidy MR, Hoffman JM, Pongdee R. Preparation of C-arylglycals via Suzuki-Miyaura cross-coupling of dihydropyranylphosphates. Tetrahedron Lett 2013; 54:6889-6891. [PMID: 24999287 PMCID: PMC4080724 DOI: 10.1016/j.tetlet.2013.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of C-arylglycals has been accomplished employing the Suzuki-Miyaura cross-coupling reaction of dihydropyranylphosphates with arylboronate esters. The reaction is tolerant of both electron-donating (EDG) and electron-withdrawing (EWG) groups on the aromatic ring and affords the corresponding C-arylglycals in good to excellent yields (68-97%). Additionally, the ketene acetal phosphate derived from 6-deoxy-3,4-di-O-benzyl-L-rhamnal also couples efficiently to yield C-arylglycals in excellent yields.
Collapse
Affiliation(s)
- Michelle R. Leidy
- Department of Chemistry, Sewanee: The University of the South, 735 University Avenue, Sewanee, TN 37383-1000, USA
| | - J. Mason Hoffman
- Department of Chemistry, Sewanee: The University of the South, 735 University Avenue, Sewanee, TN 37383-1000, USA
| | - Rongson Pongdee
- Department of Chemistry, Sewanee: The University of the South, 735 University Avenue, Sewanee, TN 37383-1000, USA
| |
Collapse
|
239
|
Kormanec J, Novakova R, Mingyar E, Feckova L. Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Appl Microbiol Biotechnol 2013; 98:45-60. [PMID: 24265028 DOI: 10.1007/s00253-013-5373-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces bacteria are major producers of bioactive natural products, including many antibiotics. We identified a gene cluster, aur1, in a large linear plasmid of Streptomyces aureofaciens CCM3239. The cluster is responsible for the production of a new angucycline polyketide antibiotic auricin. Several tailoring biosynthetic genes were scatted in rather distant aur1 flanking regions. Auricin was produced in a very narrow growth phase interval of several hours after entry into stationary phase, after which it was degraded to non-active metabolites because of its instability at the high pH values reached after the production stage. Strict transcriptional regulation of the auricin biosynthetic gene cluster has been demonstrated, including feed-forward and feedback control by auricin intermediates via several of the huge number of regulatory genes present in the aur1 cluster. The complex mechanism may ensure strict confinement of auricin production to a specific growth stage.
Collapse
Affiliation(s)
- Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic,
| | | | | | | |
Collapse
|
240
|
Mitra P, Behera B, Maiti TK, Mal D. Angucycline C5 Glycosides: Regio- and Stereocontrolled Synthesis and Cytotoxicity. J Org Chem 2013; 78:9748-57. [PMID: 23985070 DOI: 10.1021/jo4013892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prithiba Mitra
- Department
of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Birendra Behera
- Department
of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Tapas K. Maiti
- Department
of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Dipakranjan Mal
- Department
of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
241
|
Paananen P, Patrikainen P, Kallio P, Mäntsälä P, Niemi J, Niiranen L, Metsä-Ketelä M. Structural and Functional Analysis of Angucycline C-6 Ketoreductase LanV Involved in Landomycin Biosynthesis. Biochemistry 2013; 52:5304-14. [DOI: 10.1021/bi400712q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pasi Paananen
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pekka Patrikainen
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pauli Kallio
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pekka Mäntsälä
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Jarmo Niemi
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Laila Niiranen
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department
of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
242
|
Langkocyclines: novel angucycline antibiotics from Streptomyces sp. Acta 3034(*). J Antibiot (Tokyo) 2013; 66:609-16. [PMID: 23820614 DOI: 10.1038/ja.2013.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/08/2022]
Abstract
Langkocyclines A1-A3 and B1 and B2, five new angucycline antibiotics produced by Streptomyces sp. Acta 3034, were detected in the course of our HPLC-diode array screening. The producing strain was isolated from the rhizospheric soil of a Clitorea sp. collected from Burau Bay, Langkawi, Malaysia, and was characterized by morphological, physiological and chemotaxonomic features in addition to 16S ribosomal RNA gene sequence information. Strain Acta 3034 is closely related to Streptomyces psammoticus NBRC 13971(T) and Streptomyces lanatus NBRC 12787(T). Langkocyclines consist of an angular tetracyclic benz[a]anthracene skeleton and hydrolyzable O-glycosidic sugar moieties. The yellow-colored A-type langkocyclines differ in their aglycon from the blue-lilac-colored B-type langkocyclines. The A-type langkocycline aglycon is identical to that of aquayamycin and urdamycin A. The chemical structures of the langkocyclines were elucidated by HR-MS, 1D and 2D NMR experiments. They are biologically active against Gram-positive bacteria and exhibit a moderate antiproliferative activity against various human tumor cell lines.
Collapse
|
243
|
Zhang Y, Huang H, Chen Q, Luo M, Sun A, Song Y, Ma J, Ju J. Identification of the Grincamycin Gene Cluster Unveils Divergent Roles for GcnQ in Different Hosts, Tailoring the l-Rhodinose Moiety. Org Lett 2013; 15:3254-7. [PMID: 23782455 DOI: 10.1021/ol401253p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Zhang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Huang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qi Chen
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Minghe Luo
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Aijun Sun
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Junying Ma
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
244
|
Baryal KN, Zhu D, Li X, Zhu J. Umpolung Reactivity in the Stereoselective Synthesis of S-Linked 2-Deoxyglycosides. Angew Chem Int Ed Engl 2013; 52:8012-6. [DOI: 10.1002/anie.201301682] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/15/2013] [Indexed: 12/12/2022]
|
245
|
Baryal KN, Zhu D, Li X, Zhu J. Umpolung Reactivity in the Stereoselective Synthesis of S-Linked 2-Deoxyglycosides. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
246
|
Kallio P, Patrikainen P, Belogurov GA, Mäntsälä P, Yang K, Niemi J, Metsä-Ketelä M. Tracing the evolution of angucyclinone monooxygenases: structural determinants for C-12b hydroxylation and substrate inhibition in PgaE. Biochemistry 2013; 52:4507-16. [PMID: 23731237 DOI: 10.1021/bi400381s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two functionally distinct homologous flavoprotein hydroxylases, PgaE and JadH, have been identified as branching points in the biosynthesis of the polyketide antibiotics gaudimycin C and jadomycin A, respectively. These evolutionarily related enzymes are both bifunctional and able to catalyze the same initial reaction, C-12 hydroxylation of the common angucyclinone intermediate prejadomycin. The enzymes diverge in their secondary activities, which include hydroxylation at C-12b by PgaE and dehydration at C-4a/C-12b by JadH. A further difference is that the C-12 hydroxylation is subject to substrate inhibition only in PgaE. Here we have identified regions associated with the C-12b hydroxylation in PgaE by extensive chimeragenesis, focusing on regions surrounding the active site. The results highlight the importance of a hairpin-β motif near the dimer interface, with two nonconserved residues, P78 and I79 (corresponding to Q89 and F90, respectively, in JadH), and invariant residue H73 playing key roles. Kinetic characterization of PgaE variants demonstrates that the secondary C-12b hydroxylation and substrate inhibition by prejadomycin are likely to be interlinked. The crystal structure of the PgaE P78Q/I79F variant at 2.4 Å resolution confirms that the changes do not alter the conformation of the β-strand secondary structure and that the side chains of these residues in effect point away from the active site toward the dimer interface. The results support a catalytic model for PgaE containing two binding modes for C-12 and C-12b hydroxylations, where binding of prejadomycin in the orientation for C-12b hydroxylation leads to substrate inhibition. The presence of an allosteric network is evident based on enzyme kinetics.
Collapse
Affiliation(s)
- Pauli Kallio
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
247
|
|
248
|
Fan K, Pan G, Peng X, Zheng J, Gao W, Wang J, Wang W, Li Y, Yang K. Identification of JadG as the B ring opening oxygenase catalyzing the oxidative C-C bond cleavage reaction in jadomycin biosynthesis. ACTA ACUST UNITED AC 2013. [PMID: 23177193 DOI: 10.1016/j.chembiol.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Jadomycin B is a member of atypical angucycline antibiotics whose biosynthesis involves a unique ring opening C-C bond cleavage reaction. Here, we firmly identified JadG as the enzyme responsible for the B ring opening reaction in jadomycin biosynthesis. In vitro analysis of the JadG catalyzed reaction revealed that it requires FMNH(2) or FADH(2) as cofactors in the conversion of dehydrorabelomycin to jadomycin A. The cofactors could be supplied by either a cluster-situated flavin reductase JadY or the Escherichia coli Fre. JadY was characterized as a NAD(P)H-dependent FMN/FAD reductase, with FMN as the preferred substrate. Disruption mutant of jadY still produced jadomycin, indicating that the function of JadY could be substituted by other enzymes in the host. JadG represents the biochemically verified member of an enzyme class catalyzing an unprecedented C-C bond cleavage reaction.
Collapse
Affiliation(s)
- Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Anand N, Upadhyaya K, Ajay A, Mahar R, Shukla SK, Kumar B, Tripathi RP. A Strategy for the Synthesis of Anthraquinone-Based Aryl-C-glycosides. J Org Chem 2013; 78:4685-96. [DOI: 10.1021/jo302589t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Namrata Anand
- Division of Medicinal and Process
Chemistry, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Kapil Upadhyaya
- Division of Medicinal and Process
Chemistry, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Arya Ajay
- Division of Medicinal and Process
Chemistry, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Rohit Mahar
- Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Sanjeev K. Shukla
- Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument
Facility, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Rama Pati Tripathi
- Division of Medicinal and Process
Chemistry, CSIR-Central Drug Research Institute, Lucknow 226001, India
| |
Collapse
|
250
|
Zhang Y, Zhou X, Huang H, Tian X, Song Y, Zhang S, Ju J. 03219A, a new Δ8,9-pregnene isolated from Streptomyces sp. SCSIO 03219 obtained from a South China Sea sediment. J Antibiot (Tokyo) 2013; 66:327-31. [DOI: 10.1038/ja.2013.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|