201
|
Dong J, Pan Y, Wang H, Yang K, Liu L, Qiao Z, Yuan YD, Peh SB, Zhang J, Shi L, Liang H, Han Y, Li X, Jiang J, Liu B, Zhao D. Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. Angew Chem Int Ed Engl 2020; 59:10151-10159. [PMID: 31859381 DOI: 10.1002/anie.201915199] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/06/2022]
Abstract
The self-assembly of highly stable zirconium(IV)-based coordination cages with aggregation induced emission (AIE) molecular rotors for in vitro bio-imaging is reported. The two coordination cages, NUS-100 and NUS-101, are assembled from the highly stable trinuclear zirconium vertices and two flexible carboxyl-decorated tetraphenylethylene (TPE) spacers. Extensive experimental and theoretical results show that the emissive intensity of the coordination cages can be controlled by restricting the dynamics of AIE-active molecular rotors though multiple external stimuli. Because the two coordination cages have excellent chemical stability in aqueous solutions (pH stability: 2-10) and impressive AIE characteristics contributed by the molecular rotors, they can be employed as novel biological fluorescent probes for in vitro live-cell imaging.
Collapse
Affiliation(s)
- Jinqiao Dong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Lingmei Liu
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yi Di Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jian Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yu Han
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
202
|
Hardy M, Struch N, Holstein JJ, Schnakenburg G, Wagner N, Engeser M, Beck J, Clever GH, Lützen A. Dynamic Complex-to-Complex Transformations of Heterobimetallic Systems Influence the Cage Structure or Spin State of Iron(II) Ions. Angew Chem Int Ed Engl 2020; 59:3195-3200. [PMID: 31788925 PMCID: PMC7028022 DOI: 10.1002/anie.201914629] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/26/2022]
Abstract
Two new heterobimetallic cages, a trigonal‐bipyramidal and a cubic one, were assembled from the same mononuclear metalloligand by adopting the molecular library approach, using iron(II) and palladium(II) building blocks. The ligand system was designed to readily assemble through subcomponent self‐assembly. It allowed the introduction of steric strain at the iron(II) centres, which stabilizes its paramagnetic high‐spin state. This steric strain was utilized to drive dynamic complex‐to‐complex transformations with both the metalloligand and heterobimetallic cages. Addition of sterically less crowded subcomponents as a chemical stimulus transformed all complexes to their previously reported low‐spin analogues. The metalloligand and bipyramid incorporated the new building block more readily than the cubic cage, probably because the geometric structure of the sterically crowded metalloligand favours the cube formation. Furthermore it was possible to provoke structural transformations upon addition of more favourable chelating ligands, converting the cubic structures into bipyramidal ones.
Collapse
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.,Current address: Arlanxeo Netherlands B.V., Urmonderbaan 24, 6167 RD, Geleen, The Netherlands
| | - Julian J Holstein
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Norbert Wagner
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Johannes Beck
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Guido H Clever
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
203
|
Hardy M, Struch N, Holstein JJ, Schnakenburg G, Wagner N, Beck J, Engeser M, Clever GH, Lützen A. Dynamische Komplex‐zu‐Komplex‐Umwandlungen von heterobimetallischen Systemen und ihr Einfluss auf die Käfigstruktur oder den Spinzustand von Eisen(II)‐Ionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914629] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- derzeitige Adresse: Arlanxeo Netherlands B.V. Urmonderbaan 24 6167 RD Geleen Niederlande
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Norbert Wagner
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Johannes Beck
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
204
|
Chen CJ, Lee WT, Hu JH, Mahat Chhetri P, Chen JD. Structural diversity and modification in Ni( ii) coordination polymers: a peculiar phenomenon of reversible structural transformation between a 1D ladder and 2D layer. CrystEngComm 2020. [DOI: 10.1039/d0ce01170c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The coordination of 5-tert-IPA2− ligands, the relaxation of the interdigitated 2D net and the breaking and connecting of the bis-pyridyl-bis-amide ligand demonstrate the peculiar reversible structural transformation between a 1D ladder and 2D layer.
Collapse
Affiliation(s)
- Chia-Jou Chen
- Department of Chemistry
- Chung-Yuan Christian University
- Chung-Li
- Republic of China
| | - Wei-Te Lee
- Department of Chemistry
- Chung-Yuan Christian University
- Chung-Li
- Republic of China
| | - Ji-Hong Hu
- Department of Chemistry
- Chung-Yuan Christian University
- Chung-Li
- Republic of China
| | | | - Jhy-Der Chen
- Department of Chemistry
- Chung-Yuan Christian University
- Chung-Li
- Republic of China
| |
Collapse
|
205
|
Kolien J, Inglis AR, Vasdev RAS, Howard BI, Kruger PE, Preston D. Exploiting the labile site in dinuclear [Pd2L2]n+ metallo-cycles: multi-step control over binding affinity without alteration of core host structure. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00901f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic metallosupramolecular systems have generally been binary (on/off) when they have control over molecular recognition. This report details a dipalladium(ii) system with four-step graduated control over recognition for a guest.
Collapse
Affiliation(s)
- James Kolien
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Amanda R. Inglis
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | | | - Ben I. Howard
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| |
Collapse
|
206
|
Saha S, Ghosh A, Paululat T, Schmittel M. Allosteric regulation of rotational, optical and catalytic properties within multicomponent machinery. Dalton Trans 2020; 49:8693-8700. [DOI: 10.1039/d0dt01961e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allosteric regulation of various functions within multicomponent machinery was triggered by the reversible transformation of nanorotors (k298 = 44–61 kHz) to “dimeric” supramolecular structures (k298 = 0.60 kHz) upon adding a stoichiometric chemical stimulus.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering
- Department Chemie – Biologie
- Organische Chemie I
- D-57068 Siegen
- Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering
- Department Chemie – Biologie
- Organische Chemie I
- D-57068 Siegen
- Germany
| | - Thomas Paululat
- Department Chemie – Biologie
- Organische Chemie II
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering
- Department Chemie – Biologie
- Organische Chemie I
- D-57068 Siegen
- Germany
| |
Collapse
|
207
|
Moutier F, Khalil AM, Baudron SA, Lescop C. Gleaned snapshots on the road to coordination polymers: heterometallic architectures based on Cu(I) metallaclips and 2,2'-bis-dipyrrin metalloligands. Chem Commun (Camb) 2020; 56:10501-10504. [PMID: 32776040 DOI: 10.1039/d0cc04862c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The assembly of binuclear Cu(i) metallaclips with 2,2'-bis-dipyrrin based metalloligands gives rise to a diversity of architectures featuring a recurring π-stacked compact tetranuclear metallacycle but differing in their nuclearity and dimensionality depending on the nature of the capping ligands and metal cations.
Collapse
Affiliation(s)
- F Moutier
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - A M Khalil
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - S A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, 4 rue Blaise Pascal, F-67000, Strasbourg, France.
| | - C Lescop
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
208
|
Yang L, Qin L, Dou Y, Zhang D, Zhou Z, Wang S. High conversion and selectivity of photodimerization under air conditions by supramolecular oxidation restraint within a metallocage-like nanoreactor. CrystEngComm 2020. [DOI: 10.1039/d0ce00678e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The well-designed metal–organic cage Ce-BHP acts as an efficient catalyst and molecular nanoreactor for photodimerization of 9,10-anthraquinone under air condition.
Collapse
Affiliation(s)
- Lu Yang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Lan Qin
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yong Dou
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| |
Collapse
|
209
|
El Sayed Moussa M, Khalil AM, Evariste S, Wong HL, Delmas V, Le Guennic B, Calvez G, Costuas K, Yam VWW, Lescop C. Intramolecular rearrangements guided by adaptive coordination-driven reactions toward highly luminescent polynuclear Cu(i) assemblies. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01595g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Highly luminescent solid-state Cu6, Au2Cu10 and Pt4Cu11 derivatives are obtained in one step reaction thanks to adaptive coordination-driven supramolecular chemistry using pre-assembled flexible Cu(i) precursors.
Collapse
|
210
|
Jia X, Yue B, Zhou L, Niu X, Wu W, Zhu L. Fluorescence to multi-colored phosphorescence interconversion of a novel, asterisk-shaped luminogen via multiple external stimuli. Chem Commun (Camb) 2020; 56:4336-4339. [DOI: 10.1039/d0cc00371a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoluminescence from blue fluorescence to green, yellow, and orange phosphorescence can be switched via multiple stimuli on an asterisk-shaped compound.
Collapse
Affiliation(s)
- Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials
- Henan University
- 475004 Kaifeng
- P. R. China
- State Key Laboratory of Molecular Engineering of Polymers
| | - Bingbing Yue
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- P. R. China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- P. R. China
| | - Xiling Niu
- Henan Key Laboratory of Photovoltaic Materials
- Henan University
- 475004 Kaifeng
- P. R. China
| | - Weiling Wu
- Henan Key Laboratory of Photovoltaic Materials
- Henan University
- 475004 Kaifeng
- P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- P. R. China
| |
Collapse
|
211
|
Preston D, Patil KM, O'Neil AT, Vasdev RAS, Kitchen JA, Kruger PE. Long-cavity [Pd2L4]4+ cages and designer 1,8-naphthalimide sulfonate guests: rich variation in affinity and differentiated binding stoichiometry. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00658k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long cavity dual domain [Pd2L4]4+ cages bind long, dual domain guests, with tunable binding affinities and stoichiometries.
Collapse
Affiliation(s)
- Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Komal M. Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Alex T. O'Neil
- Chemistry
- School of Natural and Computational Sciences
- Massey University
- Auckland
- New Zealand
| | | | - Jonathan A. Kitchen
- Chemistry
- School of Natural and Computational Sciences
- Massey University
- Auckland
- New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| |
Collapse
|
212
|
Nauroozi D, Wurster B, Faust R. Cross-π-conjugated enediyne with multitopic metal binding sites. RSC Adv 2020; 10:38612-38616. [PMID: 35517520 PMCID: PMC9057285 DOI: 10.1039/d0ra06320g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022] Open
Abstract
The synthesis of an enediyne molecule functionlized with different metal coordination sites in a cross-π-conjugated fashion is reported. Using Pd-mediated cross-coupling reactions, 2,2′-bipyridine units were attached at the periphery of diazafluorenemethylidene to obtain a multitopic ligand. UV-vis spectrosopic investigations along with electrochemical analyses reveal electronic communication along the conjugated path reflected in red-shifted absorption spectra and shifts of reduction potentials. The properties of the ligand could be manipulated by coordinating [Ru(bpy)2]2+ fragments at all three coordination spheres of the molecule while the different complexing imine moieties serve as possible coordination sites for various metal centres. Synthesis and structural characterization of a geminal enediyne molecule with three imine metal binding sites based on diazafluorenemethylidene in a cross-π-conjugated fashion is reported.![]()
Collapse
Affiliation(s)
- Djawed Nauroozi
- Institute for Chemistry
- CINSaT – Centre for Interdisciplinary Nanostructure Science and Technology
- University of Kassel
- 34132 Kassel
- Germany
| | - Benjamin Wurster
- Institute for Chemistry
- CINSaT – Centre for Interdisciplinary Nanostructure Science and Technology
- University of Kassel
- 34132 Kassel
- Germany
| | - Rüdiger Faust
- Institute for Chemistry
- CINSaT – Centre for Interdisciplinary Nanostructure Science and Technology
- University of Kassel
- 34132 Kassel
- Germany
| |
Collapse
|
213
|
Malviya N, Sonkar C, Ganguly R, Bhattacherjee D, Bhabak KP, Mukhopadhyay S. Novel Approach to Generate a Self-Deliverable Ru(II)-Based Anticancer Agent in the Self-Reacting Confined Gel Space. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47606-47618. [PMID: 31755256 DOI: 10.1021/acsami.9b17075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Finding the most effective method for cancer treatment is one of the thought-provoking tasks. Drug delivery by collapsing of metallogel to the cancer cell is an appealing way out. Cancer cells have an acidic environment due to excessive accumulation of lactic acid. In this work, the novel G5 gelator with a strategically free carboxylic acid arm has been designed and fabricated and characterized by several spectroscopic and microscopic techniques. These experiments suggest the formation of an ordered supramolecular gel with clover-leaf-like morphology. Mechanical properties from rheological measurements suggest the viscoelastic nature of the gel. Furthermore, we have obtained crystals of G5 from the pure dimethyl sulfoxide solution, whereas gelation gets induced by addition of water. This G5 gelator loses its gelation capability once the carboxylate is esterified by layering with methanol, which furnished the crystals of Me-G5' (G5' = G5-H). Further, the G5 gelator is used for the formation of ruthenium metallogel. Interestingly, we obtained the monomeric species [Ru(G5')(η6-p-cymene)Cl] [Ru(II)G5] only in confined gel space upon addition of a [Ru2(η6-p-cymene)2Cl4] dimer to G5. The Ru(II)G5 metallogel has an inherent anticancer property with an IC50 value of 10.53 μM for the A549 cancer cell line. Treatment of the Ru(II)G5 metallogel by lactic acid for mimicking the acidic environment of the malignant cell results in collapsing of the gel by releasing the ruthenium metal ion. This released ruthenium ion binds with the lactic acid derivative making the gelator G5 free and producing a new compound Ru(II)L, which has also shown the anticancer property. The molecular docking study revealed that the released G5 could interact with a monocarboxylate transporter to disrupt the lactate transport chain, which might induce apoptosis.
Collapse
Affiliation(s)
| | | | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , Nanyang Technological University , 639798 Singapore
| | - Debojit Bhattacherjee
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Krishna Pada Bhabak
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | | |
Collapse
|
214
|
Ayme JF, Lehn JM. Self-sorting of two imine-based metal complexes: balancing kinetics and thermodynamics in constitutional dynamic networks. Chem Sci 2019; 11:1114-1121. [PMID: 34084368 PMCID: PMC8146771 DOI: 10.1039/c9sc04988f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
A major hurdle in the development of complex constitutional dynamic networks (CDNs) is the lack of strategies to simultaneously control the output of two (or more) interconnected dynamic processes over several species, namely reversible covalent imine bond formation and dynamic metal-ligand coordination. We have studied in detail the self-sorting process of 11 constitutional dynamic libraries containing two different amines, aldehydes and metal salts into two imine-based metal complexes, having no overlap in terms of their compositions. This study allowed us to determine the factors influencing the fidelity of this process (concentration, electronic and steric parameters of the organic components, and nature of the metal cations). In all 11 systems, the outcome of the process was primarily determined by the ability of the octahedral metal ion to select its pair of components from the initial pool of components, with the composition of the weaker tetrahedral complex being imposed by the components rejected by the octahedral metal ions. Different octahedral metal ions required different levels of precision in the "assembling instructions" provided by the organic components of the CDN to guide it towards a sorted output. The concentration of the reaction mixture, and the electronic and steric properties of the initial components of the library were all found to influence the lifetime of unwanted metastable intermediates formed during the assembling of the two complexes.
Collapse
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
215
|
Feng H, Gao W, Lin Y, Jin G. Dynamic Interconversion between Solomon Link and Trapezoidal Metallacycle Ensembles Accompanying Conformational Change of the Linker. Chemistry 2019; 25:15687-15693. [DOI: 10.1002/chem.201904196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hui‐Jun Feng
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Wen‐Xi Gao
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Science Shanghai 200032 P. R. China
| |
Collapse
|
216
|
Endo K, Ube H, Shionoya M. Multi-Stimuli-Responsive Interconversion between Bowl- and Capsule-Shaped Self-Assembled Zinc(II) Complexes. J Am Chem Soc 2019; 142:407-416. [DOI: 10.1021/jacs.9b11099] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kenichi Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
217
|
Lu Z, Ronson TK, Nitschke JR. Reversible reduction drives anion ejection and C 60 binding within an Fe II 4L 6 cage. Chem Sci 2019; 11:1097-1101. [PMID: 34084365 PMCID: PMC8146419 DOI: 10.1039/c9sc05728e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FeII4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways. FeII4L6 cage 1 binds anionic guests but not neutral guests. In its reduced form, the cage can bind neutral C60. Reduction and oxidation of the cage could thus be used as a stimulus to control the uptake and release of both neutral and charged guests.![]()
Collapse
Affiliation(s)
- Zhenpin Lu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
218
|
Lewis JEM, Tarzia A, White AJP, Jelfs KE. Conformational control of Pd 2L 4 assemblies with unsymmetrical ligands. Chem Sci 2019; 11:677-683. [PMID: 34123040 PMCID: PMC8146399 DOI: 10.1039/c9sc05534g] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
With increasing interest in the potential utility of metallo-supramolecular architectures for applications as diverse as catalysis and drug delivery, the ability to develop more complex assemblies is keenly sought after. Despite this, symmetrical ligands have been utilised almost exclusively to simplify the self-assembly process as without a significant driving foa mixture of isomeric products will be obtained. Although a small number of unsymmetrical ligands have been shown to serendipitously form well-defined metallo-supramolecular assemblies, a more systematic study could provide generally applicable information to assist in the design of lower symmetry architectures. Pd2L4 cages are a popular class of metallo-supramolecular assembly; research seeking to introduce added complexity into their structure to further their functionality has resulted in a handful of examples of heteroleptic structures, whilst the use of unsymmetrical ligands remains underexplored. Herein we show that it is possible to design unsymmetrical ligands in which either steric or geometric constraints, or both, can be incorporated into ligand frameworks to ensure exclusive formation of single isomers of three-dimensional Pd2L4 metallo-supramolecular assemblies with high fidelity. In this manner it is possible to access Pd2L4 cage architectures of reduced symmetry, a concept that could allow for the controlled spatial segregation of different functionalities within these systems. The introduction of steric directing groups was also seen to have a profound effect on the cage structures, suggesting that simple ligand modifications could be used to engineer structural properties.
Collapse
Affiliation(s)
- James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew Tarzia
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
219
|
Tateishi T, Takahashi S, Okazawa A, Martí-Centelles V, Wang J, Kojima T, Lusby PJ, Sato H, Hiraoka S. Navigated Self-Assembly of a Pd2L4 Cage by Modulation of an Energy Landscape under Kinetic Control. J Am Chem Soc 2019; 141:19669-19676. [DOI: 10.1021/jacs.9b07779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tomoki Tateishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Atsushi Okazawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Jianzhu Wang
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Paul J. Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
220
|
Ma L, Yang T, Zhang Z, Yin S, Song Z, Shi W, Chu D, Zhang Y, Zhang M. Cyanostilbene-based near-infrared emissive platinum(II) metallacycles for cancer theranostics. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
221
|
Li Y, An Y, Fan J, Liu X, Li X, Hahn FE, Wang Y, Han Y. Strategy for the Construction of Diverse Poly‐NHC‐Derived Assemblies and Their Photoinduced Transformations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Jian‐Zhong Fan
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Xiao‐Xu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - F. Ekkehardt Hahn
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms- Universität Münster, Corrensstraße 39 48149 Münster Germany
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
222
|
Li Y, An YY, Fan JZ, Liu XX, Li X, Hahn FE, Wang YY, Han YF. Strategy for the Construction of Diverse Poly-NHC-Derived Assemblies and Their Photoinduced Transformations. Angew Chem Int Ed Engl 2019; 59:10073-10080. [PMID: 31589799 DOI: 10.1002/anie.201912322] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 12/14/2022]
Abstract
A series of supramolecular assemblies of types [Ag8 (L)4 ](PF6 )8 and [Ag4 (L)2 ](PF6 )4 , obtained from the tetraphenylethylene (TPE) bridged tetrakis(1,2,4-triazolium) salts H4 -L(PF6 )4 and AgI ions, is described. The assembly type obtained dependends on the N-wingtip substituents of H4 -L(PF6 )4 . Changes in the lengths of the N4-wingtip substituents enables controlled formation of assemblies with either [Ag4 (L)2 ](PF6 )4 or [Ag8 (L)4 ](PF6 )8 stoichiometry. The molecular structures of selected [Ag8 (L)4 ](PF6 )8 and [Ag4 (L)2 ](PF6 )4 assemblies were determined by X-ray diffraction analyses. While H4 -L(PF6 )4 does not exhibit fluorescence in solution, their tetra-NHC (NHC=N-heterocyclic carbene) assemblies do upon NHC-metal coordination. Upon irradiation, all assemblies undergo a light-induced, supramolecule-to-supramolecule structural transformation by an oxidative photocyclization involving phenyl groups of the TPE core, resulting in a significant change of the luminescence properties.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yuan-Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jian-Zhong Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiao-Xu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.,Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-, Universität Münster, Corrensstraße 39, 48149, Münster, Germany
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
223
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
224
|
Sampani SI, Al-Hilaly YK, Malik S, Serpell LC, Kostakis GE. Zinc-dysprosium functionalized amyloid fibrils. Dalton Trans 2019; 48:15371-15375. [PMID: 31107476 DOI: 10.1039/c9dt01134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterometallic Zn2Dy2 entity bearing partially saturated metal centres covalently decorates a highly ordered amyloid fibril core and the functionalised assembly exhibits catalytic Lewis acid behaviour.
Collapse
|
225
|
Levine AM, Biswas S, Braunschweig AB. Photoactive organic material discovery with combinatorial supramolecular assembly. NANOSCALE ADVANCES 2019; 1:3858-3869. [PMID: 36132107 PMCID: PMC9419180 DOI: 10.1039/c9na00476a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/04/2019] [Indexed: 05/20/2023]
Abstract
Organic semiconductors have received substantial attention as active components in optoelectronic devices because of their processability and customizable properties. Tailoring the organic active layer in these devices to exhibit the desired optoelectronic properties requires understanding the complex and often subtle structure-property relationships governing their photophysical response to light. Both structural organization and molecular orbitals play pivotal roles, and their interactions with each other are difficult to anticipate based upon the structure of the components alone, especially in systems comprised of multiple components. In pursuit of design rules, there is a need to explore multicomponent systems combinatorially to access larger data sets, and supramolecularly to use error correcting, noncovalent assembly to achieve long-range order. This review will focus on the use of supramolecular chemistry to study combinatorial, hierarchical organic systems with emergent optoelectronic properties. Specifically, we will describe systems that undergo excited state deactivation by charge transfer (CT), singlet fission (SF), and Förster resonance energy transfer (FRET). Adopting combinatorial, supramolecular assembly to study emergent photophysics promises to rapidly accelerate progress in this research field.
Collapse
Affiliation(s)
- Andrew M Levine
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
- Graduate Center, City University of New York 365 5th Avenue New York NY 10016 USA
| | - Sankarsan Biswas
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
- Graduate Center, City University of New York 365 5th Avenue New York NY 10016 USA
| | - Adam B Braunschweig
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
- Graduate Center, City University of New York 365 5th Avenue New York NY 10016 USA
| |
Collapse
|
226
|
Xu G, Wu L, Chang X, Ang TWH, Wong W, Huang J, Che C. Solvent‐Induced Cluster‐to‐Cluster Transformation of Homoleptic Gold(I) Thiolates between Catenane and Ring‐in‐Ring Structures. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guang‐Tao Xu
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional MaterialsHKU-CAS Joint Laboratory on New Materials, and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Liang‐Liang Wu
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional MaterialsHKU-CAS Joint Laboratory on New Materials, and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiao‐Yong Chang
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional MaterialsHKU-CAS Joint Laboratory on New Materials, and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Tim Wai Hung Ang
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional MaterialsHKU-CAS Joint Laboratory on New Materials, and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, Hung Hom Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional MaterialsHKU-CAS Joint Laboratory on New Materials, and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional MaterialsHKU-CAS Joint Laboratory on New Materials, and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
| |
Collapse
|
227
|
Xu G, Wu L, Chang X, Ang TWH, Wong W, Huang J, Che C. Solvent‐Induced Cluster‐to‐Cluster Transformation of Homoleptic Gold(I) Thiolates between Catenane and Ring‐in‐Ring Structures. Angew Chem Int Ed Engl 2019; 58:16297-16306. [DOI: 10.1002/anie.201909980] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guang‐Tao Xu
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Liang‐Liang Wu
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiao‐Yong Chang
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Tim Wai Hung Ang
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
| |
Collapse
|
228
|
Goswami A, Paululat T, Schmittel M. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery. J Am Chem Soc 2019; 141:15656-15663. [DOI: 10.1021/jacs.9b07737] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
229
|
Preston D, Inglis AR, Crowley JD, Kruger PE. Self‐assembly and Cycling of a Three‐state Pd
x
L
y
Metallosupramolecular System. Chem Asian J 2019; 14:3404-3408. [DOI: 10.1002/asia.201901238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Dan Preston
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| | - Amanda R. Inglis
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and NanotechnologyDepartment of ChemistryUniversity of Otago Dunedin New Zealand
| | - Paul E. Kruger
- School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8041 New Zealand
| |
Collapse
|
230
|
Sepehrpour H, Fu W, Sun Y, Stang PJ. Biomedically Relevant Self-Assembled Metallacycles and Metallacages. J Am Chem Soc 2019; 141:14005-14020. [PMID: 31419112 PMCID: PMC6744948 DOI: 10.1021/jacs.9b06222] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diverse metal-organic complexes (MOCs), shaped as rectangles, triangles, hexagons, prisms, and cages, can be formed by coordination between metal ions (Pt, Pd, Ru, Rh, Ir, Zn, Co, and Cd) and organic ligands, with potential applications as alternatives to conventional biomedical materials for therapeutic, sensing, and imaging purposes. MOCs have been investigated as anticancer drugs in the treatment of malignant tumors in lung, cervical, breast, colon, liver, prostate, ovarian, brain, stomach, bone, skin, mouth, thyroid, and other cancers. MOCs with one, two, and three cavities have also been investigated as drug carriers and prepared for the loading and release of different drugs. In addition, MOCs can target proteins by the shape effect and recognize sugars and DNA by electrostatic interactions, as well as estradiol by host-guest interactions, etc. This Perspective mainly covers achievements in the biomedical application of MOCs. We aim to identify some key trends in the reported MOC structures in relation to their biomedical activity and potential applications.
Collapse
Affiliation(s)
- Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| | - Wenxin Fu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Peter. J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
231
|
Zhang D, Ronson TK, Güryel S, Thoburn JD, Wales DJ, Nitschke JR. Temperature Controls Guest Uptake and Release from Zn 4L 4 Tetrahedra. J Am Chem Soc 2019; 141:14534-14538. [PMID: 31478658 PMCID: PMC6753657 DOI: 10.1021/jacs.9b07307] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We report the preparation of triazatruxene-faced
tetrahedral cage 1, which exhibits two diastereomeric
configurations (T1 and T2) that differ in
the handedness of the
ligand faces relative to that of the octahedrally coordinated metal
centers. At lower temperatures, T1 is favored, whereas T2 predominates at higher temperatures. Host–guest
studies show that T1 binds small aliphatic guests, whereas T2 binds larger aromatic molecules, with these changes in
binding preference resulting from differences in cavity size and degree
of enclosure. Thus, by a change in temperature the cage system can
be triggered to eject one bound guest and take up another.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Songül Güryel
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - John D Thoburn
- Department of Chemistry , Randolph-Macon College , Ashland , Virginia 23005 , United States
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
232
|
Han Y, Liu M, Zhong R, Gao Z, Chen Z, Zhang M, Wang F. Photoresponsiveness of Anthracene-Based Supramolecular Polymers Regulated via a σ-Platinated 4,4-Difluoro-4-bora-3a,4a-diaza- s-indacene Photosensitizer. Inorg Chem 2019; 58:12407-12414. [PMID: 31483635 DOI: 10.1021/acs.inorgchem.9b02073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anthracene and its derivatives have attracted tremendous interest in recent years because of their intriguing photoresponsive behaviors. Our research group has previously constructed anthracene-based supramolecular polymers, which display multicycle anthracene-endoperoxide photoswitching in a macroscopic manner. However, high-energy light excitation (λ = 365-460 nm) is required for anthracene-to-endoperoxide photooxygenation, giving rise to severe photodegradation problems. In this work, we have developed an effective approach to addressing this issue, by encapsulating a σ-platinated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) photosensitizer into anthracene-based supramolecular polymeric systems. The platination effect enhances π-electron delocalization, while promoting intersystem crossing from singlet to triplet excited states. Accordingly, the σ-platinated BODIPY photosensitizer displays excellent 1O2 production capability, facilitating anthracene-to-endoperoxide transformation under low-energy irradiation conditions (λ = 520-590 nm). This leads to the breakup of supramolecular polymers and gels, which can be restored at room and elevated temperatures because of the reversible endoperoxide-to-anthracene deoxygenation process. Overall, the rational design of a σ-metalated photosensitizer opens up a new avenue to regulating the photoresponsiveness of supramolecular polymers under mild and nondestructive conditions.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Ruolei Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Zongchun Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
233
|
Mollick S, Fajal S, Mukherjee S, Ghosh SK. Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies. Chem Asian J 2019; 14:3096-3108. [DOI: 10.1002/asia.201900800] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/26/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Samraj Mollick
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Pune 411008 India
| | - Sahel Fajal
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Pune 411008 India
| | - Soumya Mukherjee
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Pune 411008 India
| | - Sujit K. Ghosh
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Pune 411008 India
- Centre for Energy ScienceIISER Pune Pune 411008 India
| |
Collapse
|
234
|
Ding F, Chen Z, Kim WY, Sharma A, Li C, Ouyang Q, Zhu H, Yang G, Sun Y, Kim JS. A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(ii) metallacycle for efficient cancer imaging and therapy. Chem Sci 2019; 10:7023-7028. [PMID: 31588269 PMCID: PMC6676325 DOI: 10.1039/c9sc02466b] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The scarcity of efficient imaging technologies for precise cancer treatment greatly drives the development of new nanotheranostic based platforms that enable both diagnostic and therapeutic functions, together in a single formulation. Owing to the complicated physiological microenvironment, nanosystems designed with the possibility of noninvasive real-time monitoring of therapeutic progression in the second near-infrared channel (NIR-II, 1000-1700 nm) could substantially improve the current cancer therapies. Herein, we design a novel NIR-II theranostic nanoprobe, PSY (size ∼110 nm), by incorporating organoplatinum(ii) metallacycles P1 and an organic NIR-II molecular dye, SY1030, into the FDA-approved polymer Pluronic F127. Preliminary in vitro and in vivo studies suggest that PSY is capable of being internalized into glioma U87MG-cells with no significant internalization in non-cancerous tissues. In addition, it shows excellent photostability and minimal background for real-time monitoring the process of therapy in the NIR-II region. Furthermore, in U87MG xenografts and orthotopic breast tumor, PSY demonstrat significantly improved anticancer efficacy compared to a clinically approved Pt(ii)-based anticancer drug, cisplatin. The engineered nano-cocktail PSY offers a simple strategy for delivering the organoplatinum(ii) macrocycle P1 and NIR-II fluorophore SY1030 as a cocktail of diagnostic and therapeutic functions and highlights its promising capacity for future cancer treatment.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Zhao Chen
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Won Young Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Amit Sharma
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Chonglu Li
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Qingying Ouyang
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research , Ministry of Education , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| |
Collapse
|
235
|
Dhara S, Ansari MA, Lahiri GK. Host–Guest Feature of DPPP Bridged Arene–Ruthenium Clip Derived Molecular Rectangle. Inorg Chem 2019; 58:10991-10999. [DOI: 10.1021/acs.inorgchem.9b01468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Mohd. Asif Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
236
|
Singh K, Kumari S, Jana A, Das P, Das N. A Pt(II)‐based Hexagonal Ionic Supramolecular Coordination Complex and its DNA Interactions. ChemistrySelect 2019. [DOI: 10.1002/slct.201901844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Khushwant Singh
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801 106, Bihar India
| | - Sonam Kumari
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801 106, Bihar India
| | - Achintya Jana
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801 106, Bihar India
| | - Prolay Das
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801 106, Bihar India
| | - Neeladri Das
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801 106, Bihar India
| |
Collapse
|
237
|
Alvariño C, Heinrich B, Donnio B, Deschenaux R, Therrien B. Supramolecular Arene-Ruthenium Metallacycle with Thermotropic Liquid-Crystalline Properties. Inorg Chem 2019; 58:9505-9512. [PMID: 31247839 DOI: 10.1021/acs.inorgchem.9b01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of 1,4-di(4-pyridinyl)benzene with poly(arylester) dendrimers bearing cyanobiphenyl end-groups gives a bidentate dendromesogenic ligand (L) that exhibits thermotropic liquid-crystalline properties. Combination of the diruthenium complex [Ru2(p-cymene)2(donq)][DDS]2 (M) with L, by coordination-driven self-assembly, affords the discrete and well-defined metallacycle M2L2. Like L, this supramolecular dendritic system displays mesomorphic properties above 50 °C. Both compounds L and M2L2 show smectic phases, characterized by a multilayered organization of the multiple components.
Collapse
Affiliation(s)
- Cristina Alvariño
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Robert Deschenaux
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Bruno Therrien
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| |
Collapse
|
238
|
Paul I, Samanta D, Gaikwad S, Schmittel M. Selective detection of DABCO using a supramolecular interconversion as fluorescence reporter. Beilstein J Org Chem 2019; 15:1371-1378. [PMID: 31293687 PMCID: PMC6604717 DOI: 10.3762/bjoc.15.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 11/23/2022] Open
Abstract
The quantitative double self-sorting between the three-component rectangle [Cu4(1)2(2)2]4+ and the four-component sandwich complex [Cu2(1)(2)(4)]2+ is triggered by inclusion and release of DABCO (4). The fully reversible and clean switching between two multicomponent supramolecular architectures can be monitored by fluorescence changes at the zinc porphyrin sites. The structural changes are accompanied by a huge spatial contraction/expansion of the zinc porphyrin–zinc porphyrin distances that change from 31.2/38.8 Å to 6.6 Å and back. The supramolecular interconversion was used for the highly selective detection of DABCO in a mixture of other similar compounds.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Debabrata Samanta
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
239
|
Satoh Y, Catti L, Akita M, Yoshizawa M. A Redox-Active Heterocyclic Capsule: Radical Generation, Oxygenation, and Guest Uptake/Release. J Am Chem Soc 2019; 141:12268-12273. [DOI: 10.1021/jacs.9b03419] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yoshiyuki Satoh
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Lorenzo Catti
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
240
|
Xue H, Cao J, Zhao L, Hao H, Hong M. Conformation-Driven Self-Assembly: From a 1D Metal-Organic Polymer to an Infinite Double Nanotube. ACS OMEGA 2019; 4:10755-10760. [PMID: 31460173 PMCID: PMC6648636 DOI: 10.1021/acsomega.9b01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
A novel conformation-driven self-assembly system from a one-dimensional polymer to a metal-organic double nanotube has been developed. DFT calculations indicate that the double nanotube with a syn-conformation of ligands is a thermodynamically favored stable product than a one-dimensional polymer. To the best of our knowledge, this is the first example of the infinite metal-organic double nanotube. In addition, a discrete M6L8-type cage has also been in situ self-assembled from rationally selected building blocks.
Collapse
Affiliation(s)
- Hui Xue
- Inner
Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials,
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Junze Cao
- Inner
Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials,
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Liang Zhao
- Inner
Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials,
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Haigang Hao
- Inner
Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials,
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Maochun Hong
- State
Key Laboratory of Structure Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
241
|
Feng H, Gao W, Lin Y, Jin G. Selective Synthesis of Discrete Mono‐, Interlocked‐, and Borromean Ring Ensembles Based on a
π
‐Electron‐Deficient Ligand. Chem Asian J 2019; 14:2712-2718. [DOI: 10.1002/asia.201900741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hui‐Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Wen‐Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| |
Collapse
|
242
|
Zhang Z, Zhao Z, Hou Y, Wang H, Li X, He G, Zhang M. Aqueous Platinum(II)-Cage-Based Light-Harvesting System for Photocatalytic Cross-Coupling Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2019; 58:8862-8866. [PMID: 31034686 PMCID: PMC6854906 DOI: 10.1002/anie.201904407] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Photosynthesis is a process wherein the chromophores in plants and bacteria absorb light and convert it into chemical energy. To mimic this process, an emissive poly(ethylene glycol)-decorated tetragonal prismatic platinum(II) cage was prepared and used as the donor molecule to construct a light-harvesting system in water. Eosin Y was chosen as the acceptor because of its good spectral overlap with that of the metallacage, which is essential for the preparation of light-harvesting systems. Such a combination showed enhanced catalytic activity in catalyzing the cross-coupling hydrogen evolution reaction, as compared with eosin Y alone. This study offers a pathway for using the output energy from the light-harvesting system to mimic the whole photosynthetic process.
Collapse
Affiliation(s)
- Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (P. R. China)
| | - Zhengqing Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (P. R. China)
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (P. R. China)
| | - Heng Wang
- Department of Chemistry, University of South Florida Tampa, FL 33620 (USA)
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida Tampa, FL 33620 (USA)
| | - Gang He
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (P. R. China)
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (P. R. China)
| |
Collapse
|
243
|
Matsumoto K, Kusaba S, Tanaka Y, Sei Y, Akita M, Aritani K, Haga M, Yoshizawa M. A Peanut‐Shaped Polyaromatic Capsule: Solvent‐Dependent Transformation and Electronic Properties of a Non‐Contacted Fullerene Dimer. Angew Chem Int Ed Engl 2019; 58:8463-8467. [DOI: 10.1002/anie.201903117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kyosuke Matsumoto
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Shunsuke Kusaba
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kazushi Aritani
- Department of Applied ChemistryChuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Masa‐aki Haga
- Department of Applied ChemistryChuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
244
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019; 58:8515-8519. [DOI: 10.1002/anie.201904160] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
245
|
Arumugam R, Shankar B, Soumya KR, Sathiyendiran M. fac-Re(CO) 3-based neutral heteroleptic tetrahedrons. Dalton Trans 2019; 48:7425-7431. [PMID: 31041944 DOI: 10.1039/c8dt05065a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new flexible ditopic nitrogen donors possessing a xylene spacer and 2-phenylbenzimidazolyl or its derivatives as a coordinating unit and one rigid bis-chelating ligand consisting of two 2-hydroxyphenylbenzimidazolyl motifs and a central phenylene spacer were synthesized and further used with Re2(CO)10 for making a new family of neutral, heteroleptic tetrahedral-shaped supramolecular coordination complexes via a one-pot approach. The new ligands and the complexes were characterized using various analytical and spectroscopic methods. The molecular structures of the complexes were determined using single crystal X-ray diffraction analysis, which reveal that four rhenium cores are arranged in the vertices, and four ligands are at the edges of the tetrahedron.
Collapse
Affiliation(s)
- Ramar Arumugam
- School of Chemistry, University of Hyderabad, Hyderabad -500 046, India.
| | - Bhaskaran Shankar
- School of Chemistry, University of Hyderabad, Hyderabad -500 046, India.
| | - K R Soumya
- School of Chemistry, University of Hyderabad, Hyderabad -500 046, India.
| | | |
Collapse
|
246
|
Herasymchuk K, Miller JJ, MacNeil GA, Sergeenko AS, McKearney D, Goeb S, Sallé M, Leznoff DB, Storr T. Coordination-driven assembly of a supramolecular square and oxidation to a tetra-ligand radical species. Chem Commun (Camb) 2019; 55:6082-6085. [PMID: 31066383 DOI: 10.1039/c9cc02320h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of a supramolecular square was achieved by coordination-driven assembly of redox-active nickel(ii) salen linkers and (ethylenediamine)palladium(ii) nodes. The tetrameric geometry of the supramolecular structure was confirmed via MS, NMR, and electrochemical experiments. While oxidation of the monomeric metalloligand Schiff-base affords a Ni(iii) species, oxidation of the coordination-driven assembly results in ligand radical formation.
Collapse
Affiliation(s)
| | - Jessica J Miller
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| | | | - Ania S Sergeenko
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| | - Declan McKearney
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
247
|
Gao WX, Feng HJ, Lin YJ, Jin GX. Covalent Post-assembly Modification Triggers Structural Transformations of Borromean Rings. J Am Chem Soc 2019; 141:9160-9164. [DOI: 10.1021/jacs.9b02985] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
248
|
Fan X, Zhang D, Jiang S, Wang H, Lin LT, Zheng B, Xu WH, Zhao Y, Hay BP, Chan YT, Yang XJ, Li X, Wu B. Construction and interconversion of anion-coordination-based ('aniono') grids and double helicates modulated by counter-cations. Chem Sci 2019; 10:6278-6284. [PMID: 31341580 PMCID: PMC6598520 DOI: 10.1039/c9sc02012h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
‘Aniono’ double helicates and grids were constructed using PO43– anions and a bis–tris(urea) ligand and interconverted by changing the counter-cation.
Supramolecular assembly of well-defined discrete architectures has been of great interest due to the tunable properties of these structures in functional materials and bio-mimicking. While metal-coordination-driven assembly has been extensively studied, anion-coordination-driven assembly (ACDA) is just emerging for constructing complex supramolecular structures. Herein two A2nL2n (A = anion, L = ligand; n = 1 or 2) ‘aniono’-supramolecular assemblies, i.e. double helicates and the first anion grid, have been constructed based on the coordination between phosphate (PO43–) anion and a bis–tris(urea) ligand. Moreover, the aniono-grid and double helicate motifs can be readily interconverted under ambient conditions by simply changing the counter-cation. These results redefine the power and scope of ACDA, which may represent a new approach in the assembly of well-defined architectures in parallel with the metal coordination-driven assembly of metallo-supramolecules.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Shiyu Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA
| | - Lin-Ting Lin
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Wen-Hua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Benjamin P Hay
- Supramolecular Design Institute , Oak Ridge , TN 37830 , USA
| | - Yi-Tsu Chan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| |
Collapse
|
249
|
Zhang Z, Zhao Z, Hou Y, Wang H, Li X, He G, Zhang M. Aqueous Platinum(II)‐Cage‐Based Light‐Harvesting System for Photocatalytic Cross‐Coupling Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904407] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhengqing Zhao
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Heng Wang
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Gang He
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
250
|
Li M, Chen LJ, Zhang Z, Luo Q, Yang HB, Tian H, Zhu WH. Conformer-dependent self-assembled metallacycles with photo-reversible response. Chem Sci 2019; 10:4896-4904. [PMID: 31160961 PMCID: PMC6510319 DOI: 10.1039/c9sc00757a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Discrete, well-defined metallacycles and metallacages with stimuli-responsive behaviors have been largely predominated by the organic donor/metal acceptor paradigm with spontaneous formation of coordination bonds. However, light-driven self-assembly systems usually show relatively low utilization yield of photons and low fatigue resistance. Given that almost no example illustrates the different self-assembly behaviors of antiparallel and parallel conformers in the traditional photochromic diarylethene (DAE) system, here we have for the first time constructed a unique series of photoactive conformer-dependent metallacycles, focusing on the characterization and comparison of self-assembly behavior in different ligand conformers with different di-platinum(ii) acceptors. Their photoswitchable scaffold sizes and shapes are precisely controlled by photochromically separable parallel or anti-parallel conformers via coordination-driven self-assembly. The ap-conformer and closed form provide larger bending angles upon coordination with di-Pt(ii) acceptors into hexagon [6 + 6] or [3 + 3] while the p-conformer only can form smaller polygon cycles. Notably, in contrast with the non-photoactive parallel conformer, the reversible interconversion of anti-parallel ring-open and ring-closed conformer metallacycles can be achieved by alternate irradiation with UV and visible light, respectively, along with a relatively high conversion ratio and good fatigue resistance. This work provides a potential way to construct smart materials for use in sensing, catalysis and drug delivery systems.
Collapse
Affiliation(s)
- Mengqi Li
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , Chang-Kung Chuang Institute , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China .
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Qianfu Luo
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , Chang-Kung Chuang Institute , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China .
| | - He Tian
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| |
Collapse
|