201
|
Ding Y, Huang S, Sun Y, Li Y, Zhu L, Wang S. Preparation of Nitrogen and Sulfur Co‐doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO
2
Atmosphere for Symmetric Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yan Ding
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shuqiong Huang
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yangkai Sun
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yunchao Li
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou Zhejiang 310027 China
| | - Lingjun Zhu
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
202
|
Xie Q, Si W, Shen Y, Wang Z, Uyama H. N- and O-doped hollow carbons constructed by self- and extrinsic activation for the oxygen reduction reaction and flexible zinc-air Batteries. NANOSCALE 2021; 13:16296-16306. [PMID: 34558569 DOI: 10.1039/d1nr04821j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zinc-air batteries (ZAB), especially those assembled on flexible substrates, have attracted great research attention in electronics and wearable electronics. However, the air-cathode reaction-oxygen reduction reaction (ORR) has limited the development of ZAB technology. In this study, a hollow carbon catalyst, NOC-1000-1, was prepared by pyrolysis of a mixture of a N-enriched Zn/bispyrozolate-based metal-organic framework and urea to replace the labile Pt-based catalysts for ORR. The employment of sacrifical urea eliminated the requirement for complicated post-treatment compared to the template method. Combined with self-activation (Zn evaporation), the obtained carbon showed a micro- and mesopore-dominant hierarchical structure coexisting with some macropores. Moreover, the doped N and O species were also tailored in a preferable configuration for ORR by simply screening the pyrolysis conditions. Under the synergistic effect of the preferable N and O configurations and pore structure, the derived carbon catalyst displayed superior ORR activity of 0.977 V onset potential and 0.867 V half-wave potential; these values are slightly better than those of the 20% Pt/C benchmark catalyst (0.985 and 0.861 V, respectively). Flexible solid-state ZABs were further assembled by employing the derived carbon catalyst as an air-cathode, and they exhibited a higher peak power density of 100.92 mW cm-2 than a 20% Pt/C-RuO2 battery as well as previously reported similar batteries and very high stability for up to 30 h. The flexible solid-state ZABs could drive a red light-emitting diode and run a 130-type motor for hours, which indicates their promising applications in real-world technologies.
Collapse
Affiliation(s)
- Qianjie Xie
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Wenfang Si
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
203
|
Huang Y, Wang M, Li Y, Yin S, Zhu H, Wan C. Edge-Rich Reduced Graphene Oxide Embedded in Silica-Based Laminated Ceramic Composites for Efficient and Robust Electrocatalytic Hydrogen Evolution. SMALL METHODS 2021; 5:e2100621. [PMID: 34927927 DOI: 10.1002/smtd.202100621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Indexed: 06/14/2023]
Abstract
To mitigate the energy crisis and environmental pollution, efficient and earth-abundant hydrogen evolution reaction (HER) electrocatalysts are essential for hydrogen production through electrochemical water splitting. Graphene-based materials as metal-free catalysts have attracted significant attention but suffer from insufficient activity and stability. Therefore, a novel and economical approach is developed to prepare highly active, robust, and self-supported reduced graphene oxide (rGO)/SiO2 ceramic composites as electrocatalysts in HER. Through intercalation and pressure sintering, the rGO sheets are parallelly aligned and embedded into a dense and chemically inert SiO2 matrix, ensuring the electrical conductivity and stability of the prepared composites. After directional cutting, the edges of the oriented rGO sheets become fully exposed on the composite surface, acting as highly electrocatalytic active sites in HER, as confirmed by density functional theory calculations. The 4 vol% rGO/SiO2 composite displays superior electrocatalytic performance, featuring a low overpotential (134 mV) at a current density of 10 mA cm-2 , a small Tafel slope (103 mV dec-1 ), and excellent catalytic durability in 0.5 m H2 SO4 . This study provides a new yet cost-effective strategy to prepare metal-free, robust, and edge-rich rGO/ceramic composites as a highly electrocatalytic active catalyst for HER applications.
Collapse
Affiliation(s)
- Yujia Huang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Min Wang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Li
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shujia Yin
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chunlei Wan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
204
|
Shombe GB, Razzaque S, Khan MD, Nyokong T, Mashazi P, Choi J, Bhoyate S, Gupta RK, Revaprasadu N. Low temperature scalable synthetic approach enabling high bifunctional electrocatalytic performance of NiCo 2S 4 and CuCo 2S 4 thiospinels. RSC Adv 2021; 11:31533-31546. [PMID: 35496864 PMCID: PMC9041439 DOI: 10.1039/d1ra02309h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/22/2021] [Indexed: 01/24/2023] Open
Abstract
Ternary metal sulfides are currently in the spotlight as promising electroactive materials for high-performance energy storage and/or conversion technologies. Extensive research on metal sulfides has indicated that, amongst other factors, the electrochemical properties of the materials are strongly influenced by the synthetic protocol employed. Herein, we report the electrochemical performance of uncapped NiCo2S4 and CuCo2S4 ternary systems prepared via solventless thermolysis of the respective metal ethyl xanthate precursors at 200 and 300 °C. The structural, morphological and compositional properties of the synthesized nanoparticles were examined by powder X-ray diffraction (p-XRD), transmission electron microscopy (TEM), high-resolution TEM, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) techniques. Electrochemical studies indicate that NiCo2S4 nanoparticles synthesized at 300 °C exhibit superior energy storage characteristics with a high specific capacitance of ca. 2650 F g−1 at 1 mV s−1, as compared to CuCo2S4 nanoparticles, which showcased a specific capacitance of ca. 1700 F g−1 at the same scan rate. At a current density of 0.5 A g−1, NiCo2S4 and CuCo2S4 nanoparticles displayed specific capacitances of 1201 and 475 F g−1, respectively. In contrast, CuCo2S4 nanoparticles presented a higher electrocatalytic activity with low overpotentials of 269 mV for oxygen evolution reaction (OER), and 224 mV for the hydrogen evolution reaction (HER), at 10 mA cm−2. The stability of the catalysts was examined for 2000 cycles in which a negligible change in both OER and HER activities was observed. A scalable solventless approach is employed to prepare NiCo2S4 and CuCo2S4 with bare surface for enhanced supercapacitance and water splitting. The particles exhibit good energy storage and electrocatalytic activity as well as stability.![]()
Collapse
Affiliation(s)
- Ginena Bildard Shombe
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3880 South Africa .,Chemistry Department, University of Dar es Salaam P.O. Box 35061 Dar es Salaam Tanzania
| | - Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Luoyu Road No. 1037 Wuhan China
| | - Malik Dilshad Khan
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3880 South Africa .,Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University P.O. Box 94 Makhanda 6140 South Africa
| | - Philani Mashazi
- Institute for Nanotechnology Innovation, Rhodes University P.O. Box 94 Makhanda 6140 South Africa.,Department of Chemistry, Rhodes University P. O. Box 94 Makhanda 6140 South Africa
| | - Jonghyun Choi
- Department of Chemistry, Pittsburg State University Pittsburg KS 66762 USA
| | - Sanket Bhoyate
- Department of Chemistry, Pittsburg State University Pittsburg KS 66762 USA
| | - Ram K Gupta
- Department of Chemistry, Pittsburg State University Pittsburg KS 66762 USA
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3880 South Africa
| |
Collapse
|
205
|
Li J, Yi W, Li Y, Liu W, Bai H, Jiao Z, Zhang Y, Wang X, Zou M, Xi G. Nitrogen-Doped Titanium Monoxide Flexible Membrane for a Low-Cost, Biocompatible, and Durable Raman Scattering Substrate. Anal Chem 2021; 93:12776-12785. [PMID: 34493037 DOI: 10.1021/acs.analchem.1c02971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of low-cost, biocompatible, and durable high-performance substrates is an urgent issue in the field of surface-enhanced Raman scattering (SERS). Herein, by reducing and exfoliating the TiO2-layered nanoplates in the gas phase, nitrogen-doped titanium monoxide (N-TiO) ultrathin nanosheets composed of 2-3 single layers with a thickness of only ∼1.2 nm are synthesized. Compared with pure TiO, the oxidation resistance of N-TiO is greatly improved, in which the oxidation threshold is significantly increased from 187.5 to 415.6 °C. The N-TiO ultrathin nanosheets are found to have strong surface plasmon resonance in the visible region. These ultrathin N-TiO nanosheets can be easily assembled into a large-scale flexible membrane and exhibit remarkable SERS effects. Moreover, this low-cost flexible SERS substrate combines the high durability of noble-metal substrates and the high biocompatibility of semiconductor substrates.
Collapse
Affiliation(s)
- Jingbin Li
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China.,College of Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yahui Li
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Wei Liu
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Hua Bai
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Zhiwei Jiao
- College of Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaotian Wang
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Mingqiang Zou
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
206
|
Yi L, Ji Y, Shao P, Chen J, Li J, Li H, Chen K, Peng X, Wen Z. Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkali‐Acid Electrocatalytic Sulfion Recycling and H
2
Generation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luocai Yi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yaxin Ji
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| | - Ping Shao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Junwei Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| | - Hao Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xinxin Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Science Beijing 100049 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
207
|
Fan F, Zhou H, Yan R, Yang C, Zhu H, Gao Y, Ma L, Cao S, Cheng C, Wang Y. Anchoring Fe-N-C Sites on Hierarchically Porous Carbon Sphere and CNT Interpenetrated Nanostructures as Efficient Cathodes for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41609-41618. [PMID: 34428013 DOI: 10.1021/acsami.1c10510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Engineering efficient zinc-air batteries have attracted tremendous attention because of their essential role in the field of renewable energy systems. However, the sluggish reaction kinetics of the oxygen reduction reaction (ORR) at the air cathode impair the battery performance significantly. Recently, metal-N-C-based porous carbon nanoarchitectures have emerged as promising ORR electrocatalysts in zinc-air batteries. Herein, taking advantage of metal-organic complexation and mesoporous silica templates, we successfully anchor Fe-N-C sites on hierarchically porous carbon sphere and carbon nanotube interpenetrated nanostructures (Fe-N-C/HPCS@CNT) to serve as efficient cathodes for zinc-air batteries. Benefiting from its synergistic effects between the highly active Fe-N-C sites, ultrahigh surface areas, and unique hierarchically porous nanostructures, Fe-N-C/HPCS@CNT exhibits preferable ORR performance (E1/2 = 0.873 V) compared to commercial Pt/C (E1/2 = 0.841 V). Most importantly, when used as a cathode catalyst for homemade zinc-air batteries, Fe-N-C/HPCS@CNT exhibits gratifying peak power density (164.0 mW cm-2), large specific capacity (762.0 mAh g-1), superior long-term stability, extraordinary rate capability, and excellent charge/discharge performance. We believe that this report will not only offer new insights into the design of Fe-N-C-based catalysts but also promote the practical utilization of Fe-N-C-based cathodes for a wide range of energy applications.
Collapse
Affiliation(s)
- Fei Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Haoran Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yun Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.,National Clinical Research Center for Geriatrics, Sichuan University, Chengdu 610041, China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Yinghan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
208
|
Wang F, Xu Y, Wang Y, Liang Z, Zhang R, Wang Y, Zhang H, Zhang W, Cao R, Zheng H. Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chem Commun (Camb) 2021; 57:8190-8193. [PMID: 34313269 DOI: 10.1039/d1cc02591k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A space-confined strategy has been used to control the pyrolysis of two-dimensional (2D) NiCo-MOF@ZIF-L(Zn). A thin SiO2 layer as a confined space could avoid the destruction of the 2D morphology during pyrolysis and expose more active sites. The obtained NiCo-NC material exhibits high ORR and Zn-air battery performance.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Xie C, Lin L, Huang L, Wang Z, Jiang Z, Zhang Z, Han B. Zn-N x sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. Nat Commun 2021; 12:4823. [PMID: 34376654 PMCID: PMC8355145 DOI: 10.1038/s41467-021-25118-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Selective cleavage of C-C bonds is very important in organic chemistry, but remains challenging because of their inert chemical nature. Herein, we report that Zn/NC-X catalysts, in which Zn2+ coordinate with N species on microporous N-doped carbon (NC) and X denotes the pyrolysis temperature, can effectively catalyze aerobic oxidative cleavage of C(CO)-C bonds and quantitatively convert acetophenone to methyl benzoate with a yield of 99% at 100 °C. The Zn/NC-950 can be applied for a wide scope of acetophenone derivatives as well as more challenging alkyl ketones. Detail mechanistic investigations reveal that the catalytic performance of Zn/NC-950 can be attributed to the coordination between Zn2+ and N species to change the electronic state of the metal, synergetic effect of the Zn single sites with their surrounding N atoms, as well as the microporous structure with the high surface area and structural defects of the NC.
Collapse
Affiliation(s)
- Chao Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Zixin Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Zhiwei Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
210
|
Zhou X, Leng X, Ling C, Chong H, Xu AW, Yang Z. Integrating a metal framework with Co-confined carbon nanotubes as trifunctional electrocatalysts to boost electron and mass transfer approaching practical applications. NANOSCALE 2021; 13:12651-12658. [PMID: 34477615 DOI: 10.1039/d1nr02476k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A facile and large-scale construction of robust and inexpensive trifunctional self-supporting electrodes for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in metal-air batteries and water splitting is crucial but remains challenging. Herein, we report a direct and up-scalable all-solid-phase strategy for the synthesis of a porous three-dimensional electrode consisting of cobalt nanoparticles wrapped in nitrogen-doped carbon tubes (Co/N-CNTs), which are in situ planted onto the surface of a cobalt foam. The resultant Co/N-CNTs can directly serve as a self-supporting and adhesive-free electrode with excellent and durable catalytic performances for the ORR, OER and HER. The metal framework substrate with an open-pore architecture is favorable for electron and mass transfer and allows fast catalytic kinetics. More importantly, when used in Zn-air batteries and overall water splitting, the as-prepared Co/N-CNT electrode displays a remarkable performance, implying bright perspects for practical application.
Collapse
Affiliation(s)
- Xiao Zhou
- Institutes of Physical Science and Information Technology, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, China.
| | | | | | | | | | | |
Collapse
|
211
|
Sanchis-Gual R, Otero TF, Coronado-Puchau M, Coronado E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. NANOSCALE 2021; 13:12676-12686. [PMID: 34477618 DOI: 10.1039/d1nr02928b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prussian blue analogues (PBAs) have been proven as excellent Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) in acidic, neutral and alkaline media. Further improvements can be achieved by increasing their electrical conductivity, but scarce attention has been paid to quantify the electroactive sites of the electrocatalyst when this enhancement occurs. In this work, we have studied how the chemical design influences the specific density of electroactive sites in different Au-PBA nanostructures. Thus, we have first obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell sizes. Their catalytic activity is evaluated by studying the OER, which is compared to pristine PBAs and other Au-PBA heterostructures. By using the coulovoltammetric technique, we have demonstrated that the introduction of 5-10% of Au in weight in the core@shell leads to an increase in the electroactive mass and thus, to a higher density of active sites capable of taking part in the OER. This increase leads to a significant decrease in the onset potential (up to 100 mV) and an increase (up to 420%) in the current density recorded at an overpotential of 350 mV. However, the Tafel slope remains unchanged, suggesting that Au reduces the limiting potential of the catalyst with no variation in the reaction kinetics. These improvements are not observed in other Au-PBA nanostructures mainly due to a lower contact between both compounds and the Au oxidation. Hence, an Au core activates the PBA shell and increases the conductivity of the resulting hybrid, while the PBA shell prevents Au oxidation. The strong synergistic effect existing in the core@shell structure evidences the importance of the chemical design for preparing PBA-based nanostructures exhibiting better electrocatalytic performances and higher electrochemical stabilities.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | | | | | | |
Collapse
|
212
|
Yang C, Hong L, Chong P, Li Y, Wei M. Tin-based metal-phosphine complexes nanoparticles as long-cycle life electrodes for high-performance hybrid supercapacitors. J Colloid Interface Sci 2021; 606:148-157. [PMID: 34388567 DOI: 10.1016/j.jcis.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
New tin-based metal-phosphine complexes of [Sn(OH)4(PPh3)2] and [Sn(OH)2(PPh3)2] have been successfully synthesized and used as supercapacitor electrodes for the first time, exhibiting a high specific capacitance, a good rate capability, and an excellent cycling stability. The specific capacitances (highest specific capacitance for tin-based materials) of 1204F g-1 and 764F g-1 for two samples at a current density of 1 A g-1 in 6 M KOH can respectively be achieved, and their capacitance retention remained at 95.1% and 89.2% even after 15,000 cycles at a current density of 10 A g-1. Furthermore, a flexible quasi-solid-state asymmetric supercapacitor composed of Sn(OH)2(PPh3)2 and activated carbon was assembled and exhibited a specific capacitance of 290.6 mF cm-2 at a current density of 1 mA cm-2. More importantly, this device also displayed excellent cyclic stability of ∼100% for 1800 cycles during the galvanostatic charge/discharge process at 5 mF cm-2.
Collapse
Affiliation(s)
- Chengyu Yang
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lvyin Hong
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Peidian Chong
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Yafeng Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Mingdeng Wei
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
213
|
Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. A copper nitride catalyst for the efficient hydroxylation of aryl halides under ligand-free conditions. Org Biomol Chem 2021; 19:6593-6597. [PMID: 34019611 DOI: 10.1039/d1ob00768h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitride (Cu3N) was used as a heterogeneous catalyst for the hydroxylation of aryl halides under ligand-free conditions. The cubic Cu3N nanoparticles showed high catalytic activity, comparable to those of conventional Cu catalysts with nitrogen ligands, demonstrating that the nitrogen atoms in Cu3N act as functional ligands that promote hydroxylation.
Collapse
Affiliation(s)
- Hang Xu
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
214
|
Wang HY, Ren JT, Weng CC, Lv XW, Yuan ZY. Hierarchical porous N,S-codoped carbon with trapped Mn species for efficient pH-universal electrochemical oxygen reduction in Zn-air battery. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
215
|
Yi L, Ji Y, Shao P, Chen J, Li J, Li H, Chen K, Peng X, Wen Z. Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkali-Acid Electrocatalytic Sulfion Recycling and H 2 Generation. Angew Chem Int Ed Engl 2021; 60:21550-21557. [PMID: 34288331 DOI: 10.1002/anie.202108992] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/05/2022]
Abstract
WS2 nanosheets hold great promise for a variety of applications yet faces a grand challenge in terms of large-scale synthesis. We report a reliable, scalable, and high-yield (>93 %) synthetic strategy to fabricate WS2 nanosheets, which exhibit highly desirable electrocatalytic properties toward both the alkaline sulfion (S2- ) oxidation reaction (SOR) and the acidic hydrogen evolution reaction (HER). The findings prompted us to develop a hybrid alkali-acid electrochemical cell with the WS2 nanosheets as bifunctional electrode catalysts of alkaline anodic SOR and acidic cathodic HER. The proof-of-concept device holds promise for self-power or low-electricity electrolytic H2 generation and environmentally friendly recycling of sulfion with enhanced electron utilization efficiency.
Collapse
Affiliation(s)
- Luocai Yi
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yaxin Ji
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Ping Shao
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Junxiang Chen
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Junwei Li
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hao Li
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Kai Chen
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Xinxin Peng
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhenhai Wen
- CAS, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
216
|
Thomas J, Kunnathulli AP, Vazhayil A, Thomas N. Influence of the Amount of Carbon during the Synthesis of LaFe 0.8Co 0.2O 3/Carbon Hybrid Material in Oxygen Evolution Reaction. ACS OMEGA 2021; 6:17566-17575. [PMID: 34278142 PMCID: PMC8280668 DOI: 10.1021/acsomega.1c02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 05/18/2023]
Abstract
The oxygen evolution reaction (OER) and the hydrogen evolution reaction occurred at the anode and cathode, which depends on the electronic structure, morphology, electrochemically active surface area, and charge-transfer resistance of the electrocatalyst. Transition metals like cobalt, nickel, and iron have better OER and oxygen reduction reaction activities. At the same time, transition-metal oxide/carbon hybrid has several applications in electrochemical energy conversion reactions. The rich catalytic site of transition metals and the excellent conductivity of carbon material make these materials as a hopeful electrocatalyst in OER. Carbon-incorporated LaFe0.8Co0.2O3 was prepared by a simple solution combustion method for the development of the best performance of the electrocatalyst. The catalyst can deliver 10 mA/cm2 current density at an overpotential of 410 mV with better catalytic stability. The introduction of carbon material improves the dispersion ability of the catalyst and the electrical conductivity. The Tafel slope and onset potential of the best catalyst are 49.1 mV/dec and 1.55 V, respectively.
Collapse
Affiliation(s)
- Jasmine Thomas
- Department
of Chemistry, Sree Narayana College, Kannur 670007, Kerala, India
| | | | - Ashalatha Vazhayil
- Department
of Chemistry, Nirmalagiri College, Kannur 670701, Kerala, India
| | - Nygil Thomas
- Department
of Chemistry, Nirmalagiri College, Kannur 670701, Kerala, India
| |
Collapse
|
217
|
Wang X, Wang Y, Liu D, Li X, Xiao H, Ma Y, Xu M, Yuan G, Chen G. Opening MXene Ion Transport Channels by Intercalating PANI Nanoparticles from the Self-Assembly Approach for High Volumetric and Areal Energy Density Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30633-30642. [PMID: 34156249 DOI: 10.1021/acsami.1c06934] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) MXene materials have attracted great attention as advanced energy storage devices. A Ti3C2 MXene film can be used as a high-performance electrode material for flexible supercapacitors owing to its high specific capacitance, excellent conductivity, and remarkable flexibility. Unfortunately, self-stacking of MXene nanosheets makes them hard to balance the volumetric and areal capacitance performance. Herein, high conductive polyaniline nanoparticles (PANI NPs, ∼10 nm) are proposed as intercalators to regulate the MXene nanosheet interlayer by the self-assembly method. Interlayered PANI NPs not only restrain MXene self-stacking but also enable more ion transport routes, and conductive PANI NPs filled in MXene interlayer are in the form of nanoparticles that can build interconnected conductive channels. Meanwhile, PANI NPs slightly changes the thickness of the MX/PANI NPs hybrid film, thus bringing a high volumetric capacitance. As a result, the freestanding MX/PANI NPs-10% electrode displays an excellent areal capacitance of 1885 mF cm-2 (377 F g-1), meanwhile maintains a high volumetric capacitance of 873 F cm-3 even when the load of MXene reaches 5 mg cm-2. Moreover, the symmetric supercapacitor assembled by MX/PANI NPs hybrid film demonstrates high areal energy density (90.3 μWh cm-2) and volumetric energy density (20.9 Wh L-1) compared to MXene-based symmetric supercapacitors reported in the literature. This rational design balancing areal and volumetric energy densities provides another approach for solving the inherent problems of MXene and further exploiting MXene materials toward application in advanced energy storage devices.
Collapse
Affiliation(s)
- Xue Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuanming Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dongdong Liu
- Department of Materials Science, School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264009, P. R. China
| | - Xiaolong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Huanhao Xiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yu Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ming Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Guohui Yuan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Gairong Chen
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, P. R. China
| |
Collapse
|
218
|
Wang J, Yu Q, Li H, Li R, Zeng S, Yao Q, Guo Z, Chen H, Qu K. Natural DNA-assisted RuP 2 on highly graphitic N,P-codoped carbon for pH-wide hydrogen evolution. Chem Commun (Camb) 2021; 57:7284-7287. [PMID: 34212953 DOI: 10.1039/d1cc01951a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural DNA was employed for the first time as a phosphorization agent and carbon source to controllably synthesize a RuP2/N,P-codoped carbon composite by a simple "mix-and-pyrolyze" strategy, which displays higher activity for alkaline and acidic HER and neutral activity compared to Pt/C together with outstanding durability.
Collapse
Affiliation(s)
- Jingshu Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Wang H, Chen J, Lin Y, Wang X, Li J, Li Y, Gao L, Zhang L, Chao D, Xiao X, Lee JM. Electronic Modulation of Non-van der Waals 2D Electrocatalysts for Efficient Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008422. [PMID: 34032317 DOI: 10.1002/adma.202008422] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The exploration of efficient electrocatalysts for energy conversion is important for green energy development. Owing to their high surface areas and unusual electronic structure, 2D electrocatalysts have attracted increasing interest. Among them, non-van der Waals (non-vdW) 2D materials with numerous chemical bonds in all three dimensions and novel chemical and electronic properties beyond those of vdW 2D materials have been studied increasingly over the past decades. Herein, the progress of non-vdW 2D electrocatalysts is critically reviewed, with a special emphasis on electronic structure modulation. Strategies for heteroatom doping, vacancy engineering, pore creation, alloying, and heterostructure engineering are analyzed for tuning electronic structures and achieving intrinsically enhanced electrocatalytic performances. Lastly, a roadmap for the future development of non-vdW 2D electrocatalysts is provided from material, mechanism, and performance viewpoints.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yanping Lin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Xiaohan Wang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lijun Gao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
220
|
Jin H, Zhao X, Liang L, Ji P, Liu B, Hu C, He D, Mu S. Sulfate Ions Induced Concave Porous S-N Co-Doped Carbon Confined FeC x Nanoclusters with Fe-N 4 Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101001. [PMID: 34145745 DOI: 10.1002/smll.202101001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 06/12/2023]
Abstract
To improve the catalytic activity of the catalysts, it is key to intensifying the intrinsic activity of active sites or increasing the exposure of accessible active sites. In this work, an efficient oxygen reduction electrocatalyst is designed that confines plentiful FeCx nanoclusters with Fe-N4 sites in a concave porous S-N co-doped carbon matrix, readily accessible for the oxygen reduction reaction (ORR). Sulfate ions react with the carbon derived from ZIF-8 at high temperatures, leading to the shrinkage of the carbon framework and then forming a concave structure with abundant macropores and mesopores with S incorporation. Such an architecture promotes the exposure of active sites and accelerates remote mass transfer. As a result, the catalyst (Fe/S-NC) with a large number of C-S-C, Fe-N4 , and FeCx nanoclusters presents impressive ORR activity and stability. In alkaline media, the half-wave potential of the best catalyst (Fe/S2 -NC) is 0.91 V, which far exceeds that of commercial platinum carbon (0.85 V), while in acidic media the half-wave potential reaches 0.784 V, comparable to platinum carbon (0.812 V). Furthermore, for the zinc-air battery, the outstanding peak power density of Fe/S2 -NC (170 mW cm-2 ) superior to platinum carbon (108 mW cm-2 ) also highlights its great application potential.
Collapse
Affiliation(s)
- Huihui Jin
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Zhao
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Lvhan Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| | - Bingshuai Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenxi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
221
|
Zhu Z, Gao F, Zhang Z, Zhuang Q, Yu H, Huang Y, Liu Q, Fu M. Synthesis of the cathode and anode materials from discarded surgical masks for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 603:157-164. [PMID: 34186393 DOI: 10.1016/j.jcis.2021.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/13/2023]
Abstract
Advanced carbon-based electrode materials derived from wastes are essential to high-performance supercapacitors due to their abundance and sustainability. In this work, we fabricate novel cathodes and anodes based on discarded surgicalmask-derived carbon (DSM-C). Discarded surgicalmasks are good candidates for carbon-based electrode materials due to their unique fibrous structure and simple composition compared to conventional biomass sources. Benefiting from the excellent electrical conductivity of DSM-C and abundant redox reactions from nickel oxide (NiO), the electrochemical performances of NiO/DSM-C composites have been greatly improved. Specifically, the DSM-C and NiO/DSM-C electrodes show high specific capacitances of 240 F g-1 and 496 F g-1 at 1 A g-1 respectively, and excellent rate capability. Moreover,asymmetric supercapacitors (ASCs) are assembled using DSM-C and NiO/DSM-C as anodes and cathodes, respectively. They deliver a high energy density of 57 Wh kg-1 at a power density of 702 W kg-1, accompanied by superior cycling stability (98.5% capacitance retention after 10,000 cycles). This work shows prospective applications of DSM-C as an electrode material for energy storage systems.
Collapse
Affiliation(s)
- Zitong Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fan Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhihao Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingru Zhuang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yongqing Huang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Min Fu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
222
|
Jia J, Wei S, Cai Q, Zhao J. Two-dimensional IrN 2 monolayer: An efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J Colloid Interface Sci 2021; 600:711-718. [PMID: 34049026 DOI: 10.1016/j.jcis.2021.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022]
Abstract
The development of bifunctional electrocatalysts with good stability and high efficiency for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for renewable energy conversion and storage. Herein, by means of swarm-intelligence structure search and density functional theory (DFT) computations, we proposed a novel kind of two-dimensional (2D) monolayer with hypercoordinate structure as electrocatalysts for ORR/OER, namely, transition dinitride (TMN2, TM = V, Co, Rh, Pd, W, Re, and Ir) monolayer. Our result revealed that these TMN2 monolayers have excellent thermal, dynamic and chemical stability, as well as inherent metallic nature for their practical applications in electrocatalysis. More interestingly, among all 2D TMN2 materials, the IrN2 monolayer was suggested to perform as an ideal bifunctional electrocatalyst for ORR/OER with a low overpotential of 0.47 and 0.27 V, respectively, which is comparable to Pt and Ir- or Ru-based oxides. Furthermore, by examining the d-band centers of the active sites in different TMN2 monolayers, we well rationalized the superior catalytic activity of IrN2 monolayer for ORR/OER. Our findings not only further enrich 2D nanomaterials with hypercoordinate structure, but also open a new door to develop bifunctional oxygen electrocatalysts with high efficiency.
Collapse
Affiliation(s)
- Jingjing Jia
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China
| | - Shuquan Wei
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
223
|
Zhang Z, Zhang H, Yao Y, Wang J, Guo H, Deng Y, Han X. Controlled Synthesis and Structure Engineering of Transition Metal-based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zinc-Air Battery and Water-Splitting Devices. CHEMSUSCHEM 2021; 14:1659-1673. [PMID: 33565262 DOI: 10.1002/cssc.202002944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalytic energy conversion plays a crucial role in realizing energy storage and utilization. Clean energy technologies such as water electrolysis, fuel cells, and metal-air batteries heavily depend on a series of electrochemical redox reactions occurring on the catalysts surface. Therefore, developing efficient electrocatalysts is conducive to remarkably improved performance of these devices. Among numerous studies, transition metal-based nanomaterials (TMNs) have been considered as promising catalysts by virtue of their abundant reserves, low cost, and well-designed active sites. This Minireview is focused on the typical clean electrochemical reactions: hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. Recent efforts to optimize the external morphology and the internal electronic structure of TMNs are described, and beginning with single-component TMNs, the active sites are clarified, and strategies for exposing more active sites are discussed. The summary about multi-component TMNs demonstrates the complementary advantages of integrating functional compositions. A general introduction of single-atom TMNs is provided to deepen the understanding of the catalytic process at an atomic scale. Finally, current challenges and development trends of TMNs in clean energy devices are summarized.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hong Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, P. R. China
| | - Yirong Yao
- Chemicals, Minerals and Metallic Materials Inspection Centre, Tianjin Customs, Tianjin, 300456, P. R. China
| | - Jiajun Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hao Guo
- State Key Laboratory of Advanced Chemical Power Sources, Guizhou, 563003, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
224
|
Meng C, Das P, Shi X, Fu Q, Müllen K, Wu ZS. In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Caixia Meng
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics The Chinese Academy of Sciences Dalian 116023 China
| | - Pratteek Das
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics The Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyu Shi
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics The Chinese Academy of Sciences Dalian 116023 China
| | - Qiang Fu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics The Chinese Academy of Sciences Dalian 116023 China
| | - Klaus Müllen
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 Mainz 55128 Germany
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics The Chinese Academy of Sciences Dalian 116023 China
- Dalian National Laboratory for Clean Energy Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
225
|
Wang B, Chen D, Jiao S, Zhang Q, Wang W, Lu M, Fang Z, Pang G, Feng S. Coupling NiFe-MOF nanosheets with Ni 3N microsheet arrays for efficient electrocatalytic water oxidation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03730g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective strategy for growing a MOF material on metallic transition metal nitride for electrocatalytic OER at high current densities.
Collapse
Affiliation(s)
- Boran Wang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Duo Chen
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Shihui Jiao
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qi Zhang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenwen Wang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mengjie Lu
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Zhenxing Fang
- College of Science and Technology Ningbo University, 521 Wenwei Road, Ningbo, 315300, P. R. China
| | - Guangsheng Pang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
226
|
Abstract
2D metals, metallenes, feature exciting opportunities at the forefront of electrocatalysis. We bring to attention metallene preparation techniques and modification strategies for the derivation of highly functional metallenes in key electrocatalytic applications.
Collapse
Affiliation(s)
- P. Prabhu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
227
|
He B, Shen J, Wang B, Lu Z, Ma D. Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study. Phys Chem Chem Phys 2021; 23:15685-15692. [PMID: 34270659 DOI: 10.1039/d1cp01861b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) for water splitting is crucial for the sustainable production of clean hydrogen fuel, while the high cost of Pt catalysts impedes its commercialization. Herein, we have performed a systematic theoretical study on the electrocatalytic HER over single-atom catalysts (SACs) based on low-cost TiN. Specifically, the TiN(100) surface with a Ti or N vacancy has been considered as the support. 20 transition-metal (TM) atoms and 3 nonmetallic atoms are embedded into the Ti or N vacancy, accordingly denoted as M@Tiv or M@Nv. All the single atoms can be stabilized by the surface vacancies, controlled by the adjustable chemical potential. Interestingly, for TM-embedded TiN(100), the hydrogen binding is much stronger over M@Nv than M@Tiv, which can be attributed to the more localized d states of the TM atoms anchored by the N vacancies, indicating a strong coordination effect. Among 43 catalysts, 10 (Ni, Zn, Nb, Mo, Rh@Tiv, and Au, Pd, W, Mo, B@Nv) were predicted to have high HER catalytic activity with near-zero hydrogen adsorption free energy. For the further gaseous hydrogen evolution, Zn@Tiv can adopt both Tafel (with an energy barrier of 0.68 eV) and Heyrovsky mechanisms, while the others may prefer the Heyrovsky mechanism. This work provides a promising strategy to realize cost-efficient electrocatalysts for the HER, and highlights the important role of the local coordination environment for SACs.
Collapse
Affiliation(s)
- Bingling He
- College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China and Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Jiansheng Shen
- College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China
| | - Bin Wang
- College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China
| | - Zhansheng Lu
- College of Physics, Henan Normal University, Xinxiang 453007, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
228
|
Gu L, Sun XL, Zhao J, Gong BQ, Bao ZL, Jia HL, Guan MY, Ma SS. A highly efficient bifunctional electrocatalyst (ORR/OER) derived from GO functionalized with carbonyl, hydroxyl and epoxy groups for rechargeable zinc–air batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj00837d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly efficient bifunctional electrocatalyst, Co–N/S/rGO, was prepared via modifying the surface functional groups of GO, and it showed good application prospects in zinc–air batteries.
Collapse
Affiliation(s)
- Lei Gu
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Xuan-Long Sun
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Bing-Quan Gong
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Zheng-Lv Bao
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Hai-Lang Jia
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Shuai-Shuai Ma
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| |
Collapse
|
229
|
Duan G, Zhao L, Chen L, Wang F, He S, Jiang S, Zhang Q. ZnCl 2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. NEW J CHEM 2021. [DOI: 10.1039/d1nj04667e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We systemically control the specific surface area and pore structure of flax-based carbon fibers by impregnating with zinc chloride (ZnCl2) solution. The results show that ZnCl2 affects the microstructure and the specific capacitance.
Collapse
Affiliation(s)
- Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Luying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Feng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
230
|
Dewangan K, Singh D, Patel SKS, Shrivas K. Temperature-programmed nitridation of monodispersed VO x nanoparticles into nanocrystalline superconducting oxygen-doped vanadium nitride. NEW J CHEM 2021. [DOI: 10.1039/d1nj00244a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A two-stage synthesis process was employed to prepare high-quality nanocrystalline vanadium nitride (VN) for superconducting applications.
Collapse
Affiliation(s)
- Khemchand Dewangan
- Department of Chemistry
- Indira Gandhi National Tribal University
- Amarkantak-484887
- India
| | - Dadan Singh
- Department of Chemistry
- Indira Gandhi National Tribal University
- Amarkantak-484887
- India
| | | | - Kamlesh Shrivas
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|