201
|
Peterka O, Jirásko R, Chocholoušková M, Kuchař L, Wolrab D, Hájek R, Vrána D, Strouhal O, Melichar B, Holčapek M. Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158634. [PMID: 31978556 DOI: 10.1016/j.bbalip.2020.158634] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Ultrahigh-performance supercritical fluid chromatography - mass spectrometry (UHPSFC/MS), ultrahigh-performance liquid chromatography - mass spectrometry (UHPLC/MS), and matrix-assisted laser desorption/ionization (MALDI) - MS techniques were used for the lipidomic characterization of exosomes isolated from human plasma. The high-throughput methods UHPSFC/MS and UHPLC/MS using a silica-based column containing sub-2 μm particles enabled the lipid class separation and the quantitation based on exogenous class internal standards in <7 minute run time. MALDI provided the complementary information on anionic lipid classes, such as sulfatides. The nontargeted analysis of 12 healthy volunteers was performed, and absolute molar concentration of 244 lipids in exosomes and 191 lipids in plasma belonging to 10 lipid classes were quantified. The statistical evaluation of data included principal component analysis, orthogonal partial least square discriminant analysis, S-plots, p-values, T-values, fold changes, false discovery rate, box plots, and correlation plots, which resulted in the information on lipid changes in exosomes in comparison to plasma. The major changes were detected in the composition of triacylglycerols, diacylglycerols, phosphatidylcholines, and lysophosphatidylcholines, whereby sphingomyelins, phosphatidylinositols, and sulfatides showed rather similar profiles in both biological matrices.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Michaela Chocholoušková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Ladislav Kuchař
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Roman Hájek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic
| | - Ondřej Strouhal
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
202
|
Chicón-Bosch M, Tirado OM. Exosomes in Bone Sarcomas: Key Players in Metastasis. Cells 2020; 9:cells9010241. [PMID: 31963599 PMCID: PMC7016778 DOI: 10.3390/cells9010241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Bone sarcomas are rare cancers which often present with metastatic disease and are still associated with poor survival rates. Studies in the last decade have identified that exosomes, a type of extracellular vesicle released by cells, play an important role in tumour progression and dissemination. Through the transfer of their cargo (RNAs, proteins, and lipids) across cells, they are involved in cellular cross-talk and can induce changes in cellular behaviour. Exosomes have been shown to be important in metastasis organotropism, induction of angiogenesis and vascular permeability, the education of cells towards a pro-metastatic phenotype or the interaction between stromal and tumour cells. Due to the importance exosomes have in disease progression and the high incidence of metastasis in bone sarcomas, recent studies have evaluated the implications of these extracellular vesicles in bone sarcomas. In this review, we discuss the studies that evaluate the role of exosomes in osteosarcoma, Ewing sarcoma, and preliminary data on chondrosarcoma.
Collapse
Affiliation(s)
- Mariona Chicón-Bosch
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), 28029 Madrid, Spain
- Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| |
Collapse
|
203
|
Panagopoulou MS, Wark AW, Birch DJS, Gregory CD. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles 2020; 9:1710020. [PMID: 32002172 PMCID: PMC6968689 DOI: 10.1080/20013078.2019.1710020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) have numerous potential applications in the field of healthcare and diagnostics, and research into their biological functions is rapidly increasing. Mainly because of their small size and heterogeneity, there are significant challenges associated with their analysis and despite overt evidence of the potential of EVs in clinical diagnostic practice, guidelines for analytical procedures have not yet been properly established. Here, we present an overview of the main methods for studying the properties of EVs based on the principles of fluorescence. Setting aside the isolation, purification and physicochemical characterization strategies which answer questions about the size, surface charge and stability of EVs (reviewed elsewhere), we focus on available optical tools that enable the direct analysis of phenotype and mechanisms of interaction with tissues. In brief, the topics on which we elaborate range from the most popular approaches such as nanoparticle tracking analysis and flow cytometry, to less commonly used techniques such as fluorescence depolarization and microarrays as well as emerging areas such as fast fluorescence lifetime imaging microscopy (FLIM). We highlight that understanding the strengths and limitations of each method is essential for choosing the most appropriate combination of analytical tools. Finally, future directions of this rapidly developing area of medical diagnostics are discussed.
Collapse
Affiliation(s)
- Maria S. Panagopoulou
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Alastair W. Wark
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - David J S Birch
- Photophysics Group, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Christopher D. Gregory
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh, UK
| |
Collapse
|
204
|
Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G, Cantaluppi V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol 2020; 11:74. [PMID: 32180768 PMCID: PMC7057849 DOI: 10.3389/fimmu.2020.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may modulate expression of recipient cell genes. As paracrine factors, neutrophil- and macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert pleiotropic effects on complement and coagulation. Depending on their biogenesis, they can amplify complement activation or shed complement inhibitors and prevent cell lysis. Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic effects and also promote endothelial survival and angiogenesis after ischemic injury. Kidney endothelial- and tubular-derived EVs play a key role in ischemia-reperfusion injury (IRI) and during the healing process; additionally, they can trigger rejection by inducing both alloimmune and autoimmune responses. Endothelial EVs have procoagulant/pro-inflammatory effects and can release sequestered self-antigens, generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and interstitial fibrosis-tubular atrophy. Different EVs, including those from mesenchymal stromal cells (MSCs), have been employed as a therapeutic tool in experimental models of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition of apoptosis and inflammation-fibrogenesis or by inducing autophagy) and stimulate tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally, urinary and serum EVs represent potential biomarkers for delayed graft function (DGF) and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft tissue and innate/adaptive immune systems. EVs play a major role in allorecognition, IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic tools in KT.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Sergio Dellepiane
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, The Tisch Cancer Institute, New York, NY, United States
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- *Correspondence: Vincenzo Cantaluppi
| |
Collapse
|
205
|
Afrisham R, Sadegh-Nejadi S, Meshkani R, Emamgholipour S, Paknejad M. Effect of circulating exosomes derived from normal-weight and obese women on gluconeogenesis, glycogenesis, lipogenesis and secretion of FGF21 and fetuin A in HepG2 cells. Diabetol Metab Syndr 2020; 12:32. [PMID: 32322309 PMCID: PMC7161281 DOI: 10.1186/s13098-020-00540-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It is generally accepted that obesity can lead to metabolic disorders such as NAFLD and insulin resistance. However, the underlying mechanism has been poorly understood. Moreover, there is evidence to support the possible role of exosomes in the metabolic homeostasis regulation. Accordingly, we aimed to determine the effect of plasma circulating exosomes derived from obese and normal-weight women on insulin signaling and the secretion of hepatokines in human liver cells. METHODS Plasma exosomes isolated from four obese (O-Exo) women and four normal-weight (N-Exo) female candidates were characterized for size, zeta potential, and CD63 protein expression and were used for stimulation of HepG2 cells. Then, cell viability, as well as levels of glycogen and triglyceride (TG), were evaluated. Levels of fetuin-A and FGF21 were measured using the ELISA kit. Expression of glucose 6-phosphatase (G6pase) and phosphoenolpyruvate carboxykinase (PEPCK) genes were determined using qRT-PCR. Western blot analysis was carried out to evaluating the phosphorylation of GSK3β. RESULTS The TG levels increased significantly in the cells treated with O-Exo than the control (vehicle) group (P = 0.005) and normal-weight group (P = 0.018). Levels of p-GSK3β and glycogen were significantly reduced by O-Exo in comparison with control (P = 0.002, P = 0.018, respectively). The mRNA expression of G6pase and PEPCK enzymes increased in the cells treated with O-Exo in comparison with the vehicle group (P = 0.017, P = 0.010, respectively). The levels of FGF21 in the supernatant of cells treated with O-Exo and N-Exo were significantly lower than the control group (P = 0.007). CONCLUSION It appears that obesity-related circulating exosomes can impair insulin signaling pathways and associated components, increase intracellular TG content, and decrease FGF21 secretion in the hepatocytes.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Sadegh-Nejadi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
206
|
Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159:308-321. [PMID: 32151658 DOI: 10.1016/j.addr.2020.03.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/02/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles contain a lipid bilayer membrane that protects the encapsulated material, such as proteins, nucleic acids, lipids and metabolites, from the extracellular environment. These vesicles are released from cells via different mechanisms. During recent years extracellular vesicles have been studied as possible biomarkers for different diseases, as biological nanoparticles for drug delivery, and in basic studies as a tool to understand the structure of biological membranes and the mechanisms involved in vesicular trafficking. Lipids are essential molecular components of extracellular vesicles, but at the moment our knowledge about the lipid composition and the function of lipids in these vesicles is limited. However, the interest of the research community in these molecules is increasing as their role in extracellular vesicles is starting to be acknowledged. In this review, we will present the status of the field and describe what is needed to bring it forward.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
207
|
Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020; 154-155:64-78. [PMID: 32768564 PMCID: PMC7406478 DOI: 10.1016/j.addr.2020.07.022] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) has been expected to be a unique pharmaceutic for the treatment of broad-spectrum intractable diseases. However, its unfavorable properties such as easy degradation in the blood and negative-charge density are still a formidable barrier for clinical use. For disruption of this barrier, siRNA delivery technology has been significantly advanced in the past two decades. The approval of Patisiran (ONPATTRO™) for the treatment of transthyretin-mediated amyloidosis, the first approved siRNA drug, is a most important milestone. Since lipid-based nanoparticles (LNPs) are used in Patisiran, LNP-based siRNA delivery is now of significant interest for the development of the next siRNA formulation. In this review, we describe the design of LNPs for the improvement of siRNA properties, bioavailability, and pharmacokinetics. Recently, a number of siRNA-encapsulated LNPs were reported for the treatment of intractable diseases such as cancer, viral infection, inflammatory neurological disorder, and genetic diseases. We believe that these contributions address and will promote the development of an effective LNP-based siRNA delivery system and siRNA formulation.
Collapse
Affiliation(s)
| | | | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
208
|
Le Saux S, Aarrass H, Lai-Kee-Him J, Bron P, Armengaud J, Miotello G, Bertrand-Michel J, Dubois E, George S, Faklaris O, Devoisselle JM, Legrand P, Chopineau J, Morille M. Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles (EVs) and impact on their cellular interaction. Biomaterials 2019; 231:119675. [PMID: 31838346 DOI: 10.1016/j.biomaterials.2019.119675] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
In regards to their key role in intercellular communication, extracellular vesicles (EVs) have a strong potential as bio-inspired drug delivery systems (DDS). With the aim of circumventing some of their well-known issues (production yield, drug loading yield, pharmacokinetics), we specifically focused on switching the biological vision of these entities to a more physico-chemical one, and to consider and fine-tune EVs as synthetic vectors. To allow a rational use, we first performed a full physico-chemical (size, concentration, surface charge, cryoTEM), biochemical (western blot, proteomics, lipidomics, transcriptomics) and biological (cell internalisation) characterisation of murine mesenchymal stem cell (mMSC)-derived EVs. A stability study based on evaluating the colloidal behaviour of obtained vesicles was performed in order to identify optimal storage conditions. We evidenced the interest of using EVs instead of liposomes, in regards to target cell internalisation efficiency. EVs were shown to be internalised through a caveolae and cholesterol-dependent pathway, following a different endocytic route than liposomes. Then, we characterised the effect of physical methods scarcely investigated with EVs (extrusion through 50 nm membranes, freeze-drying, sonication) on EV size, concentration, structure and cell internalisation properties. Our extensive characterisation of the effect of these physical processes highlights their promise as loading methods to make EVs efficient delivery vehicles.
Collapse
Affiliation(s)
- Sarah Le Saux
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Hanna Aarrass
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | | | - Patrick Bron
- CBS, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Jean Armengaud
- Laboratory «Innovative technologies for Detection and Diagnostics», CEA-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Laboratory «Innovative technologies for Detection and Diagnostics», CEA-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Justine Bertrand-Michel
- MetaToul-LIPIDOMIQUE, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) Inserm/Université Paul Sabatier UMR1048, Toulouse, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Simon George
- MGX-Montpellier GenomiX, IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Orestis Faklaris
- Montpellier Ressources Imagerie, Biocampus, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | | | - Joël Chopineau
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France; Université de Nîmes, Nîmes, France
| | - Marie Morille
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France.
| |
Collapse
|
209
|
Kalinec GM, Gao L, Cohn W, Whitelegge JP, Faull KF, Kalinec F. Extracellular Vesicles From Auditory Cells as Nanocarriers for Anti-inflammatory Drugs and Pro-resolving Mediators. Front Cell Neurosci 2019; 13:530. [PMID: 31849615 PMCID: PMC6895008 DOI: 10.3389/fncel.2019.00530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Drug- and noise-related hearing loss are both associated with inflammatory responses in the inner ear. We propose that intracochlear delivery of a combination of pro-resolving mediators, specialized proteins and lipids that accelerate the return to homeostasis by modifying the immune response rather than by inhibiting inflammation, might have a profound effect on the prevention of sensorineural hearing loss. However, intracochlear delivery of such agents requires a reliable and effective method to convey them, fully active, directly to the target cells. The present study provides evidence that extracellular vesicles (EVs) from auditory HEI-OC1 cells may incorporate significant quantities of anti-inflammatory drugs, pro-resolving mediators and their polyunsaturated fatty acid precursors as cargo, and potentially could work as carriers for their intracochlear delivery. EVs generated by HEI-OC1 cells were divided by size into two fractions, small (≤150 nm diameter) and large (>150 nm diameter), and loaded with aspirin, lipoxin A4, resolvin D1, and the polyunsaturated fatty acids (PUFA) arachidonic, eicosapentaenoic, docosahexanoic, and linoleic. Bottom-up proteomics revealed a differential distribution of selected proteins between small and large vesicles. Only 17.4% of these proteins were present in both fractions, whereas 61.5% were unique to smaller vesicles and only 3.7% were exclusively found in the larger ones. Importantly, the pro-resolving protein mediators Annexin A1 and Galectins 1 and 3 were only detected in small vesicles. Lipidomic studies, on the other hand, showed that small vesicles contained higher levels of eicosanoids than large ones and, although all of them incorporated the drugs and molecules investigated, small vesicles were more efficiently loaded with PUFA and the large ones with aspirin, LXA4 and resolvin D1. Importantly, our data indicate that the vesicles contain all necessary enzymatic components for the de novo generation of eicosanoids from fatty acid precursors, including pro-inflammatory agents, suggesting that their cargo should be carefully tailored to avoid interference with their therapeutic purpose. Altogether, these results support the idea that both small and large EVs from auditory HEI-OC1 cells could be used as nanocarriers for anti-inflammatory drugs and pro-resolving mediators.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucy Gao
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
210
|
Faict S, Oudaert I, D’Auria L, Dehairs J, Maes K, Vlummens P, De Veirman K, De Bruyne E, Fostier K, Vande Broek I, Schots R, Vanderkerken K, Swinnen JV, Menu E. The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11121823. [PMID: 31756922 PMCID: PMC6966559 DOI: 10.3390/cancers11121823] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is well-known for the development of drug resistance, leading to relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics assay on MM patient plasma, we aimed to identify new targets. We observed a dysregulation in the sphingolipid metabolism, with the upregulation of several ceramides and downregulation of sphingomyelin. This imbalance suggests an increase in sphingomyelinase, the enzyme responsible for hydrolyzing sphingomyelin into ceramide. We confirmed the upregulation of acid sphingomyelinase (ASM) in primary MM cells. Furthermore, we observed an increase in ASM expression in MM cell lines treated with melphalan or bortezomib, as well as in their exosomes. Exosomes high in ASM content were able to transfer the drug-resistant phenotype to chemosensitive cells, hereby suggesting a tumor-protective role for ASM. Finally, inhibition of ASM by amitriptyline improved drug sensitivity in MM cell lines and primary MM cells. In summary, this study is the first to analyze differences in plasma lipid composition of MM patients and match the observed differences to an upregulation of ASM. Moreover, we demonstrate that amitriptyline is able to inhibit ASM and increase sensitivity to anti-myeloma drugs. This study, therefore, provides a rational to include ASM-targeting-drugs in combination strategies in myeloma patients.
Collapse
Affiliation(s)
- Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Inge Oudaert
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Ludovic D’Auria
- Neurochemistry Unit, Institute of Neuroscience, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (J.D.); (J.V.S.)
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
- Department of Clinical Hematology, Universitair Ziekenhuis Gent, B-9000 Ghent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Karel Fostier
- Department of Clinical Hematology, Onze-Lieve-Vrouwziekenhuis Aalst, B-9300 Aalst, Belgium;
| | - Isabelle Vande Broek
- Department of Clinical Hematology, Algemeen Ziekenhuis Nikolaas, B-9100 Sint-Niklaas, Belgium;
| | - Rik Schots
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (J.D.); (J.V.S.)
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
- Correspondence:
| |
Collapse
|
211
|
Extracellular Vesicles in Modifying the Effects of Ionizing Radiation. Int J Mol Sci 2019; 20:ijms20225527. [PMID: 31698689 PMCID: PMC6888126 DOI: 10.3390/ijms20225527] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated nanovesicles actively secreted by almost all cell types. EVs can travel long distances within the body, being finally taken up by the target cells, transferring information from one cell to another, thus influencing their behavior. The cargo of EVs comprises of nucleic acids, lipids, and proteins derived from the cell of origin, thereby it is cell-type specific; moreover, it differs between diseased and normal cells. Several studies have shown that EVs have a role in tumor formation and prognosis. It was also demonstrated that ionizing radiation can alter the cargo of EVs. EVs, in turn can modulate radiation responses and they play a role in radiation-induced bystander effects. Due to their biocompatibility and selective targeting, EVs are suitable nanocarrier candidates of drugs in various diseases, including cancer. Furthermore, the cargo of EVs can be engineered, and in this way they can be designed to carry certain genes or even drugs, similar to synthetic nanoparticles. In this review, we describe the biological characteristics of EVs, focusing on the recent efforts to use EVs as nanocarriers in oncology, the effects of EVs in radiation therapy, highlighting the possibilities to use EVs as nanocarriers to modulate radiation effects in clinical applications.
Collapse
|
212
|
Zhang YF, Shi JB, Li C. Small extracellular vesicle loading systems in cancer therapy: Current status and the way forward. Cytotherapy 2019; 21:1122-1136. [PMID: 31699595 DOI: 10.1016/j.jcyt.2019.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Systemic chemotherapy is a conventional and important strategy for inhibition of cancer progression, but it is usually accompanied by various adverse effects. Targeting drug delivery systems, effective tools to avoid the adverse effects of chemotherapy, have been intensively studied and developed. Recently, the emerging application of exosomes and exosome-mimics (small extracellular vesicles [sEVs]) in targeted drug delivery and therapeutics has been widely appreciated. The sEVs-based delivery system comprises three basic components: vesicles, cargoes and surface decorations. In this article, we review the current status, existing challenges and future directions in this field from the following aspects: selection and production of vesicles; cargoes and methods to load them into vesicles; modifications to the surfaces of vesicles; as well as ways to prolong the half-life of sEVs in the circulation. Existing and emerging data indicate that sEVs are promising nanocarriers for clinical use, but additional efforts are needed to translate research findings into therapeutic products.
Collapse
Affiliation(s)
- Yue-Feng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jin-Bo Shi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
213
|
Exosomes: Versatile Nano Mediators of Immune Regulation. Cancers (Basel) 2019; 11:cancers11101557. [PMID: 31615107 PMCID: PMC6826959 DOI: 10.3390/cancers11101557] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
One of many types of extracellular vesicles (EVs), exosomes are nanovesicle structures that are released by almost all living cells that can perform a wide range of critical biological functions. Exosomes play important roles in both normal and pathological conditions by regulating cell-cell communication in cancer, angiogenesis, cellular differentiation, osteogenesis, and inflammation. Exosomes are stable in vivo and they can regulate biological processes by transferring lipids, proteins, nucleic acids, and even entire signaling pathways through the circulation to cells at distal sites. Recent advances in the identification, production, and purification of exosomes have created opportunities to exploit these structures as novel drug delivery systems, modulators of cell signaling, mediators of antigen presentation, as well as biological targeting agents and diagnostic tools in cancer therapy. This review will examine the functions of immunocyte-derived exosomes and their roles in the immune response under physiological and pathological conditions. The use of immunocyte exosomes in immunotherapy and vaccine development is discussed.
Collapse
|
214
|
Yerneni SS, Lathwal S, Shrestha P, Shirwan H, Matyjaszewski K, Weiss L, Yolcu ES, Campbell PG, Das SR. Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. ACS NANO 2019; 13:10555-10565. [PMID: 31436946 PMCID: PMC6800810 DOI: 10.1021/acsnano.9b04651] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exosomes show potential as ideal vehicles for drug delivery because of their natural role in transferring biological cargo between cells. However, current methods to engineer exosomes without negatively impacting their function remain challenging. Manipulating exosome-secreting cells is complex and time-consuming, while direct functionalization of exosome surface proteins suffers from low specificity and low efficiency. We demonstrate a rapid, versatile, and scalable method with oligonucleotide tethers to enable diverse surface functionalization on both human and murine exosomes. These exosome surface modifiers, which range from reactive functional groups and small molecules to aptamers and large proteins, can readily and efficiently enhance native exosome properties. We show that cellular uptake of exosomes can be specifically altered with a tethered AS1411 aptamer, and targeting specificity can be altered with a tethered protein. We functionalize exosomes with an immunomodulatory protein, FasL, and demonstrate their biological activity both in vitro and in vivo. FasL-functionalized exosomes, when bioprinted on a collagen matrix, allows spatial induction of apoptosis in tumor cells and, when injected in mice, suppresses proliferation of alloreactive T cells. This oligonucleotide tethering strategy is independent of the exosome source and further circumvents the need to genetically modify exosome-secreting cells.
Collapse
Affiliation(s)
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | | | - Lee Weiss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Esma S. Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Phil G. Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Subha R. Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
215
|
Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, Xun Z, Wang D, Ding P. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomater 2019; 96:517-536. [PMID: 31284098 DOI: 10.1016/j.actbio.2019.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform, due to their specific composition and biological properties. However, challenges like considerable complexity, low isolation yield, drug payload, and potential safety concerns substantially reduce their pharmaceutical acceptability. Given that the nano-bio-interface is a crucial factor for nanocarrier behavior and function, modification of synthetic nanoparticles with the intrinsic hallmarks of exosomes' membrane to create exosome mimetics could allow for siRNA delivery in a safer and more efficient manner. Herein, connexin 43 (Cx43)-embedded, exosome-mimicking lipid bilayers coated chitosan nanoparticles (Cx43/L/CS NPs) were constructed by using cell-free (CF) synthesis systems with plasmids encoding Cx43 in the presence of lipid-coated CS NPs (L/CS NPs). The integration of de novo synthesized Cx43 into the lipid bilayers of L/CS NPs occurred cotranslationally during one-pot reaction and, more importantly, the integrated Cx43 was functionally active in transport. In addition to considerably lower cytotoxicity (<four-fold) than cationic Lipo 2000, the obtained Cx43/L/CS-siRNA NPs showed feasible cellular uptake and silencing efficacy that was significantly higher than free siRNA and CS-siRNA NPs. By using a gap junction (GJ) inhibitor, 18β-glycyrrhetinic acid, we demonstrated that Cx43 facilitated the delivery of siRNA into Cx43-expressing U87 MG cells. Additionally, the cellular entry of Cx43/L/CS-siRNA NPs may rely on different endocytic mechanisms, depending on the types of recipient cells. However, Cx43/L/CS-siRNA NPs still exhibited far from adequate delivery efficiency compared with transfection reagent Lipo 2000. Taken together, our study provides a brand new strategy to construct Cx43-functionalized, exosome-mimetic nanoparticles, which may further encourage the establishment of more biomimetic nanocarriers with higher biocompatibility and delivery efficiency. SIGNIFICANCE OF STATEMENT: The major issue to move RNA interference (RNAi) therapy from bench to bedside is the lack of safe and efficient delivery vehicles. Given the certain advantages and limitations of exosomes and synthetic nanocarriers, a promising strategy is to facilitate positive feedbacks between the two fields, in which the superiority of exosomes regarding special membrane composition beneficial for cytoplasmic delivery and the better pharmaceutical acceptance of synthetic nanocarriers could be combined. In this study, we reported to construct Cx43-integrated, exosome-mimetic lipid bilayers coated nanoparticles by using CF synthesis technique. The obtained Cx43/L/CS-siRNA NPs were characterized by desirable cytotoxicity profile and feasible delivery efficiency. This study provides a new avenue and insights for the synthesis of more biocompatible and effective bio-mimetic siRNA delivery platforms.
Collapse
|
216
|
Than UTT, Leavesley DI, Parker TJ. Characteristics and roles of extracellular vesicles released by epidermal keratinocytes. J Eur Acad Dermatol Venereol 2019; 33:2264-2272. [PMID: 31403744 DOI: 10.1111/jdv.15859] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
Keratinocytes, which constitute 90% of the cells in the epidermis of the skin, have been demonstrated to communicate with other skin cells such as fibroblasts, melanocytes and immune cells through extracellular vesicles (EVs). This communication is facilitated by the enriched EV biomolecular cargo which regulates multiple biological processes within skin tissue, including cell proliferation, cell migration, anti-apoptosis, pigmentation transfer and extracellular matrix remodelling. This review will provide an overview of the current literature and advances in the field of keratinocyte-derived EV research with particular regard to the interactions and communication between keratinocytes and other skin cells, mediated by EVs and EV components. Importantly, this information may shed some light on the potential for keratinocyte-derived EVs in future biomedical studies.
Collapse
Affiliation(s)
- U T T Than
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec International Hospital, Ha Noi, Vietnam
| | - D I Leavesley
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia
| | - T J Parker
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| |
Collapse
|
217
|
Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. J Neuroimmune Pharmacol 2019; 15:422-442. [PMID: 31456107 DOI: 10.1007/s11481-019-09873-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from eukaryotic and prokaryotic cells that can transport cargo containing DNA, RNA, lipids and proteins, between cells as a means of intercellular communication. Although EVs were initially considered to be cellular debris deprived of any essential biological functions, emerging literature highlights the critical roles of EVs in the context of intercellular signaling, maintenance of tissue homeostasis, modulation of immune responses, inflammation, cancer progression, angiogenesis, and coagulation under both physiological and pathological states. Based on the ability of EVs to shuttle proteins, lipids, carbohydrates, mRNAs, long non-coding RNAs (lncRNAs), microRNAs, chromosomal DNA, and mitochondrial DNA into target cells, the presence and content of EVs in biofluids have been exploited for biomarker research in the context of diagnosis, prognosis and treatment strategies. Additionally, owing to the characteristics of EVs such as stability in circulation, biocompatibility as well as low immunogenicity and toxicity, these vesicles have become attractive systems for the delivery of therapeutics. More recently, EVs are increasingly being exploited as conduits for delivery of therapeutics for anticancer strategies, immunomodulation, targeted drug delivery, tissue regeneration, and vaccination. In this review, we highlight and discuss the multiple strategies that are employed for the use of EVs as delivery vehicles for therapeutic agents, including the potential advantages and challenges involved. Graphical abstract.
Collapse
|
218
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
219
|
Abdik H, Avsar Abdik E, Hızlı Deniz AA, Taşlı PN, Şahin F. A Novel Virtue in Stem Cell Research: Exosomes and Their Role in Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:133-146. [PMID: 30729448 DOI: 10.1007/5584_2019_339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past decade a number of different stem cell types have entered the clinical applications increasingly as a therapeutic option, due to their tissue maintenance capacity at the site where they localize. Although it was initially thought that conferral of resilience to damaged tissue largely depends on the stem cells themselves through orchestration of signaling among the local epithelial and immune systems at the injury site, recent findings point out that the remarkable regenerative capacity of stem cells is rather due to their nanovesicular products that emerge as the new active players of tissue repair processes. Among these extracellular vesicles exosomes generated particularly by stem cells have been receiving a substantial interest both in the fields of stem cell biology and extracellular vesicles. In this chapter fundamental facts about stem cell biology, biogenesis of extracellular vesicles and exosomes, their structure, and function are summarized. Moreover, properties of both tumor-derived exosomes as well as those derived from stem cells are discussed relatively in-depth in terms of their influence on proximal and distal tissue physiology. Last but not the least, among countless studies in an exploding field, we summarize those that attempt to unravel the complex signaling networks through which stem cell-derived exosomes alter the fate of differentiating stem cells as well as the molecular make-up of exosomes released from differentiating stem cells by conducting thorough proteomic and genomic analyses with the ultimate goal of identifying effector gene products mediating exosomal cues in stem cell biology.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| | - Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
220
|
Zebrowska A, Skowronek A, Wojakowska A, Widlak P, Pietrowska M. Metabolome of Exosomes: Focus on Vesicles Released by Cancer Cells and Present in Human Body Fluids. Int J Mol Sci 2019; 20:ijms20143461. [PMID: 31337156 PMCID: PMC6678201 DOI: 10.3390/ijms20143461] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes and other classes of extracellular vesicles (EVs) have gained interest due to their role in cell-to-cell communication. Knowledge of the molecular content of EVs may provide important information on features of parental cells and mechanisms of cross-talk between cells. To study functions of EVs it is essential to know their composition, that includes proteins, nucleic acids, and other classes biomolecules. The metabolome, set of molecules the most directly related to the cell phenotype, is the least researched component of EVs. However, the metabolome of EVs circulating in human blood and other bio-fluids is of particular interest because of its potential diagnostic value in cancer and other health conditions. On the other hand, the metabolome of EVs released to culture media in controlled conditions in vitro could shed light on important aspects of communication between cells in model systems. This paper summarizes the most common approaches implemented in EV metabolomics and integrates currently available data on the composition of the metabolome of EVs obtained in different models with particular focus on human body fluids and cancer cells.
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland
| | - Agata Skowronek
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 44-100 Poznan, Poland
| | - Piotr Widlak
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland
| | - Monika Pietrowska
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland.
| |
Collapse
|
221
|
Osaki M, Okada F. Exosomes and Their Role in Cancer Progression. Yonago Acta Med 2019; 62:182-190. [PMID: 31320822 DOI: 10.33160/yam.2019.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Exosomes are a subset of extracellular vesicles and their size is approximately 100 nm in diameter. They are surrounded by a lipid bilayer membrane and secreted from almost all of cells. Exosomes are generated within the endocytic system as ILV (intraluminal membrane vesicle) and secreted during the fusion of MVB (multivesicular body) with the cell membrane. Recently it has been reported that exosomes modulate cell-cell communication contributing to the maintenance of tissue homeostasis by molecules including exosomes. Moreover, exosomes released from cancer cells are involved in cancer progression. Thus, data regarding the role of the exosomes in malignant cancer will lead to development of novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Mitsuhiko Osaki
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
222
|
Efficient isolation, biophysical characterisation and molecular composition of extracellular vesicles secreted by primary and immortalised cells of reproductive origin. Theriogenology 2019; 135:121-137. [PMID: 31207473 DOI: 10.1016/j.theriogenology.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022]
Abstract
Effective communication between the maternal reproductive tract, gametes and the pre-implantation embryo is essential for the successful establishment of pregnancy. Recent studies have recognised extracellular vesicles (EVs) as potent vehicles for intercellular communication, potentially via their transport of microRNAs (miRNAs). The aim of the current investigation was to determine the size, concentration and electrical surface properties (zeta potential) of EVs secreted by; (1) primary cultures of porcine oviductal epithelial cells (POECs) from the isthmus and ampullary regions of the female reproductive tract; (2) Ishikawa and RL95-2 human endometrial epithelial cell line cultures; and (3) the non-reproductive epithelial cell line HEK293T. In addition, this study investigated whether EVs secreted by POECs contained miRNAs. All cell types were cultured in EV-depleted medium for 24 or 48 h. EVs were successfully isolated from conditioned culture media using size exclusion chromatography. Nanoparticle tracking analysis (NTA) was performed to evaluate EV size, concentration and zeta potential. QRT-PCR was performed to quantify the expression of candidate miRNAs (miR-103, let-7a, miR-19a, miR-203, miR-126, miR-19b, RNU44, miR-92, miR-196a, miR-326 and miR-23a). NTA confirmed the presence of EVs with diameters of 50-150 nm in all cell types. EV size distribution was significantly different between cell types after 24 and 48 h of cell culture and the concentration of EVs secreted by POECs and Ishikawa cells was also time dependent. The distribution of EVs with specific electrokinetic potential measurements varied between cell types, indicating that EVs of differing cellular origin have varied membrane components. In addition, EVs secreted by POECs exhibited significantly different time dependant changes in zeta potential. QRT-PCR confirmed the presence of miR-103, let-7a, miR-19a, miR-203, miR-126, and miR-19b in EVs secreted by POECs (CT ≥ 29). Bioinformatics analysis suggests that these miRNAs are involved in cell proliferation, innate immune responses, apoptosis and cellular migration. In conclusion, reproductive epithelial cells secrete distinct populations of EVs containing miRNAs, which potentially act in intercellular communication in order to modulate the periconception events leading to successful establishment of pregnancy.
Collapse
|
223
|
Bång-Rudenstam A, Cerezo-Magaña M, Belting M. Pro-metastatic functions of lipoproteins and extracellular vesicles in the acidic tumor microenvironment. Cancer Metastasis Rev 2019; 38:79-92. [PMID: 30767150 PMCID: PMC6647379 DOI: 10.1007/s10555-019-09786-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although the overall mortality in cancer is steadily decreasing, major groups of patients still respond poorly to available treatments. The key clinical challenge discussed here relates to the inherent capacity of cancer cells to metabolically adapt to hypoxic and acidic stress, resulting in treatment resistance and a pro-metastatic behavior. Hence, a detailed understanding of stress adaptive responses is critical for the design of more rational therapeutic strategies for cancer. We will focus on the emerging role of extracellular vesicles (EVs) and lipoprotein particles in cancer cell metabolic stress adaptation and how these pathways may constitute potential Achilles' heels of the cancer cell machinery and alternative treatment targets of metastasis. In this context, common extracellular lipid uptake mechanisms, involving specific cell-surface receptors and endocytic pathways, may operate during remodeling of acidic atherosclerotic plaques as well as the tumor microenvironment. The role of endocytosis in regulating the cellular response to hypoxic and acidic stress through spatial coordination of receptor proteins may be exploited for therapeutic purposes. As a consequence, molecular mechanisms of endocytosis have attracted increasing attention as potential targets for tumor specific delivery of therapeutic substances, such as antibody-drug conjugates. The identification of internalizing surface proteins specific to the acidic tumor niche remains an unmet need of high clinical relevance. Among the currently explored, acidosis-related, internalizing target proteins, we will focus on the cell-surface proteoglycan carbonic anhydrase 9.
Collapse
Affiliation(s)
- Anna Bång-Rudenstam
- Department of Clinical Sciences Lund, Section of Oncology and Pathology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Myriam Cerezo-Magaña
- Department of Clinical Sciences Lund, Section of Oncology and Pathology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences Lund, Section of Oncology and Pathology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden.
| |
Collapse
|
224
|
Gargiulo E, Paggetti J, Moussay E. Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends. Cells 2019; 8:cells8050511. [PMID: 31137912 PMCID: PMC6562645 DOI: 10.3390/cells8050511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
Small extracellular vesicles (small EVs) are commonly released by all cells, and are found in all body fluids. They are implicated in cell to cell short- and long-distance communication through the transfer of genetic material and proteins, as well as interactions between target cell membrane receptors and ligands anchored on small EV membrane. Beyond their canonical functions in healthy tissues, small EVs are strategically used by tumors to communicate with the cellular microenvironment and to establish a proper niche which would ultimately allow cancer cell proliferation, escape from the immune surveillance, and metastasis formation. In this review, we highlight the effects of hematological malignancy-derived small EVs on immune and stromal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
225
|
Nagano T, Katsurada M, Dokuni R, Hazama D, Kiriu T, Umezawa K, Kobayashi K, Nishimura Y. Crucial Role of Extracellular Vesicles in Bronchial Asthma. Int J Mol Sci 2019; 20:ijms20102589. [PMID: 31137771 PMCID: PMC6566667 DOI: 10.3390/ijms20102589] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are circulating vesicles secreted by various cell types. EVs are classified into three groups according to size, structural components, and generation process of vesicles: exosomes, microvesicles, and apoptotic bodies. Recently, EVs have been considered to be crucial for cell-to-cell communications and homeostasis because they contain intracellular proteins and nucleic acids. Epithelial cells from mice suffering from bronchial asthma (BA) secrete more EVs and suppress inflammation-induced EV production. Moreover, microarray analyses of bronchoalveolar lavage fluid have revealed that several microRNAs are useful novel biomarkers of BA. Mesenchymal stromal cell-derived EVs are possible candidates of novel BA therapy. In this review, we highlight the biologic roles of EVs in BA and review novel EV-targeted therapy to help understanding by clinicians and biologists.
Collapse
Affiliation(s)
- Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
226
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
227
|
Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype. Int J Mol Sci 2019; 20:ijms20102547. [PMID: 31137607 PMCID: PMC6566274 DOI: 10.3390/ijms20102547] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Communication between cells is quintessential for biological function and cellular homeostasis. Membrane-bound extracellular vesicles known as exosomes play pivotal roles in mediating intercellular communication in tumor microenvironments. These vesicles and exosomes carry and transfer biomolecules such as proteins, lipids and nucleic acids. Here we focus on exosomes secreted from senescent cells. Cellular senescence can alter the microenvironment and influence neighbouring cells via the senescence-associated secretory phenotype (SASP), which consists of factors such as cytokines, chemokines, matrix proteases and growth factors. This review focuses on exosomes as emerging SASP components that can confer pro-tumorigenic effects in pre-malignant recipient cells. This is in addition to their role in carrying SASP factors. Transfer of such exosomal components may potentially lead to cell proliferation, inflammation and chromosomal instability, and consequently cancer initiation. Senescent cells are known to gather in various tissues with age; eliminating senescent cells or blocking the detrimental effects of the SASP has been shown to alleviate multiple age-related phenotypes. Hence, we speculate that a better understanding of the role of exosomes released from senescent cells in the context of cancer biology may have implications for elucidating mechanisms by which aging promotes cancer and other age-related diseases, and how therapeutic resistance is exacerbated with age.
Collapse
|
228
|
Marcos AL, Corradi GR, Mazzitelli LR, Casali CI, Fernández Tome MDC, Adamo HP, de Tezanos Pinto F. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182993. [PMID: 31132336 DOI: 10.1016/j.bbamem.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.
Collapse
Affiliation(s)
- Alejandra Lucía Marcos
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Gerardo Raul Corradi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Luciana Romina Mazzitelli
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo Pedro Adamo
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
229
|
Braun F, Müller RU. Urinary extracellular vesicles as a source of biomarkers reflecting renal cellular biology in human disease. Methods Cell Biol 2019; 154:43-65. [PMID: 31493821 DOI: 10.1016/bs.mcb.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For more than a decade, extracellular vesicles (EVs) have been the focus of extensive research efforts attempting to uncover their biological function in health and disease. Likewise, numerous studies have investigated them as a source of potential biomarkers to complement or replace the routine diagnostic procedures. Urinary extracellular vesicles take a distinct place among these studies, as they hold the promise to reflect changes in the cellular biology of the nephron and can be isolated without any invasive procedure. However, their potential has been insufficiently exploited since both their biological function and their use for diagnostic purposes in human disease have only gained increasing attention in the last years. This review aims to give an overview of the present knowledge about urinary extracellular vesicles with a special focus on novel nomenclature recommendations, current techniques for urinary EV separation and potential biomarkers that have emerged from the analysis of urinary EVs.
Collapse
Affiliation(s)
- Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
230
|
Bruno S, Chiabotto G, Favaro E, Deregibus MC, Camussi G. Role of extracellular vesicles in stem cell biology. Am J Physiol Cell Physiol 2019; 317:C303-C313. [PMID: 31091143 DOI: 10.1152/ajpcell.00129.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular vesicles (EVs) are membrane vesicles carrying proteins, nucleic acids, and bioactive lipids of the cell of origin. These vesicles released within the extracellular space and entering into the circulation may transfer their cargo to neighboring or distant cells and induce phenotypical and functional changes that may be relevant in several physiopathological conditions. In an attempt to define the biological properties of EVs, several investigations have focused on their cargo and on the effects elicited in recipient cells. EVs have been involved in modulation of tumor microenvironment and behavior, as well as in the immune and inflammatory response. In the present review, we address the paracrine action of EVs released by stem cells and their potential involvement in the activation of regenerative programs in injured cells.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Enrica Favaro
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
231
|
Wang J, Yi Y, Zhu Y. [Progress of mesenchymal stem cells derived exosomes in wound repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:634-639. [PMID: 31090360 DOI: 10.7507/1002-1892.201901051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the research progress of mesenchymal stem cells derived exosomes (MSCs-EXOs) in wound repair in recent years. Methods The literature about the role of MSCs-EXOs in wound repair at home and abroad was extensively consulted. The mechanism of MSCs-EXOs in wound repair and its clinical application prospects were summarized and analyzed. Results MSCs-EXOs can inhibit early inflammatory reaction, promote angiogenesis, proliferation, and migration of epithelial cells, regulate collagen synthesis, and inhibit scar proliferation in the later stage of wound healing. Compared with MSCs, MSCs-EXOs have many advantages, such as high stability, easy storage, non-tumorigenicity, no proliferation, easy quantitative use, and so on. It has broad clinical application prospects. Conclusion MSCs-EXOs can promote wound repair and hopefully develop into a clinical product to promote the repair of acute or chronic wounds.
Collapse
Affiliation(s)
- Jiangwen Wang
- Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Yangyan Yi
- Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006,
| | - Yuanzheng Zhu
- Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| |
Collapse
|
232
|
Endothelial Microparticles in Uremia: Biomarkers and Potential Therapeutic Targets. Toxins (Basel) 2019; 11:toxins11050267. [PMID: 31086003 PMCID: PMC6563302 DOI: 10.3390/toxins11050267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022] Open
Abstract
Endothelial microparticles (EMPs) are vesicles derived from cell membranes, which contain outsourced phosphatidylserine and express adhesion molecules, such as cadherin, intercellular cell adhesion molecule-1 (ICAM-1), E-selectin, and integrins. EMPs are expressed under physiological conditions and continue circulating in the plasma. However, in pathologic conditions their levels increase, and they assume a pro-inflammatory and pro-coagulant role via interactions with monocytes; these effects are related to the development of atherosclerosis. Chronic kidney dysfunction (CKD) characterizes this dysfunctional scenario through the accumulation of uremic solutes in the circulating plasma, whose toxicity is related to the development of cardiovascular diseases. Therefore, this review aims to discuss the formation of EMPs and their biological effects in the uremic environment. Data from previous research demonstrate that uremic toxins are closely associated with the activation of inflammatory biomarkers, cardiovascular dysfunction processes, and the release of EMPs. The impact of a decrease in circulating EMPs in clinical studies has not yet been evaluated. Thus, whether MPs are biochemical markers and/or therapeutic targets has yet to be established.
Collapse
|
233
|
Witwer KW, Van Balkom BW, Bruno S, Choo A, Dominici M, Gimona M, Hill AF, De Kleijn D, Koh M, Lai RC, Mitsialis SA, Ortiz LA, Rohde E, Asada T, Toh WS, Weiss DJ, Zheng L, Giebel B, Lim SK. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8:1609206. [PMID: 31069028 PMCID: PMC6493293 DOI: 10.1080/20013078.2019.1609206] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation.
Collapse
Affiliation(s)
- Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bas W.M. Van Balkom
- Division Internal Medicine and Dermatology, Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Massimo Dominici
- MAB Laboratory, TPM of Mirandola, Mirandola, Italy
- Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Gimona
- GMP Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Research Program Nanovesicular Therapies, Department of Transfusion Medicine and Celericon Therapeutics G.m.b.H., Paracelsus Medical University (PMU), Salzburg, Austria
| | - Andrew F. Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Dominique De Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mickey Koh
- Department of Haematology, St George’s University Hospital NHS Trust, London, UK
- Cell Therapy Facility, Blood Services Group Health Sciences Authority, Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - S. Alex Mitsialis
- Department of Pediatrics, Harvard Medical School & Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Luis A. Ortiz
- Division of Environmental and Occupational Medicine, Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Rohde
- GMP Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Research Program Nanovesicular Therapies, Department of Transfusion Medicine and Celericon Therapeutics G.m.b.H., Paracelsus Medical University (PMU), Salzburg, Austria
| | - Takashi Asada
- Department of Tissue Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Daniel J. Weiss
- Health Sciences Research Facility, University of Vermont College of Medicine, Burlington, VT, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
234
|
Lim W, Kim HS. Exosomes as Therapeutic Vehicles for Cancer. Tissue Eng Regen Med 2019; 16:213-223. [PMID: 31205851 DOI: 10.1007/s13770-019-00190-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Exosomes are membrane-enclosed extracellular vesicles implicated in cell-cell communication. Exosomes contain proteins, mRNAs, non-coding RNAs (miRNAs and lncRNAs) and lipids that are derived from producing cells. These nano-sized vesicles are present in biofluids including blood, urine, saliva, amniotic fluid, semen and conditioned media of cultured cells. Methods This review summarizes current progress on the strategies of development of diagnostic biomarkers and drug loading onto exosomes for overcoming cancer progression. Results A number of studies indicate that the exosome appears to be a key player in tissue repair and regeneration of in a number of animal disease models. In addition, alterations of the molecular profiles in exosomes are known to be correlated with the disease progression including cancer, suggesting their usefulness in disease diagnosis and prognosis. Studies utilizing engineered exosomes either by chemical or biological methods have demonstrated promising results in a number of animal models with cancer. Conclusion Understanding the molecular and cellular properties of exosomes offer benefits for cancer diagnosis by liquid biopsy and for their application in therapeutic drug delivery systems. Studies have shown that genetic or molecular engineering of exosomes augmented their target specificity and anticancer activity with less toxicity. Thus, deeper understanding of exosome biology will facilitate their therapeutic potential as an innovative drug delivery system for cancer.
Collapse
Affiliation(s)
- Whasun Lim
- 1Department of Biomedical Science, College of Medical Convergence, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601 Republic of Korea.,2Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601 Republic of Korea.,3Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707 Republic of Korea
| | - Han-Soo Kim
- 1Department of Biomedical Science, College of Medical Convergence, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601 Republic of Korea.,2Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601 Republic of Korea
| |
Collapse
|
235
|
Valenzuela Alvarez M, Gutierrez LM, Correa A, Lazarowski A, Bolontrade MF. Metastatic Niches and the Modulatory Contribution of Mesenchymal Stem Cells and Its Exosomes. Int J Mol Sci 2019; 20:E1946. [PMID: 31010037 PMCID: PMC6515194 DOI: 10.3390/ijms20081946] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent an interesting population due to their capacity to release a variety of cytokines, chemokines, and growth factors, and due to their motile nature and homing ability. MSCs can be isolated from different sources, like adipose tissue or bone marrow, and have the capacity to differentiate, both in vivo and in vitro, into adipocytes, chondrocytes, and osteoblasts, making them even more interesting in the regenerative medicine field. Tumor associated stroma has been recognized as a key element in tumor progression, necessary for the biological success of the tumor, and MSCs represent a functionally fundamental part of this associated stroma. Exosomes represent one of the dominant signaling pathways within the tumor microenvironment. Their biology raises high interest, with implications in different biological processes involved in cancer progression, such as the formation of the pre-metastatic niche. This is critical during the metastatic cascade, given that it is the formation of a permissive context that would allow metastatic tumor cells survival within the new environment. In this context, we explored the role of exosomes, particularly MSCs-derived exosomes as direct or indirect modulators. All this points out a possible new tool useful for designing better treatment and detection strategies for metastatic progression, including the management of chemoresistance.
Collapse
Affiliation(s)
- Matias Valenzuela Alvarez
- Remodelative Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), C1199ACL Buenos Aires, Argentina.
| | - Luciana M Gutierrez
- Remodelative Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), C1199ACL Buenos Aires, Argentina.
| | | | - Alberto Lazarowski
- INFIBIOC, Clinical Biochemistry Department, School of Pharmacy and Biochemistry (FFyB), University of Buenos Aires (UBA), C1113AAD Buenos Aires, Argentina.
| | - Marcela F Bolontrade
- Remodelative Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), C1199ACL Buenos Aires, Argentina.
| |
Collapse
|
236
|
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019; 18:75. [PMID: 30940145 PMCID: PMC6444571 DOI: 10.1186/s12943-019-0991-5] [Citation(s) in RCA: 1008] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-derived exosomes (TDEs) participate in formation and progression of different cancer processes, including tumor microenvironment (TME) remodeling, angiogenesis, invasion, metastasis and drug-resistance. Exosomes initiate or suppress various signaling pathways in the recipient cells via transmitting heterogeneous cargoes. In this review we discuss exosome biogenesis, exosome mediated metastasis and chemoresistance. Furthermore, tumor derived exosomes role in tumor microenvironment remodeling, and angiogenesis is reviewed. Also, exosome induction of epithelial mesenchymal transition (EMT) is highlighted. More importantly, we discuss extensively how exosomes regulate drug resistance in several cancers. Thus, understanding exosome biogenesis, their contents and the molecular mechanisms and signaling pathways that are responsible for metastasis and drug-resistance mediated by TDEs may help to devise novel therapeutic approaches for cancer progression particularly to overcome therapy-resistance and preventing metastasis as major factors of cancer mortality.
Collapse
Affiliation(s)
- Ladan Mashouri
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA.
| |
Collapse
|
237
|
Shanbhogue P, Hoffmann RM, Airola MV, Maini R, Hamelin DJ, Garcia-Diaz M, Burke JE, Hannun YA. The juxtamembrane linker in neutral sphingomyelinase-2 functions as an intramolecular allosteric switch that activates the enzyme. J Biol Chem 2019; 294:7488-7502. [PMID: 30890560 DOI: 10.1074/jbc.ra118.007288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- From the Departments of Biochemistry and Cell Biology.,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and
| | - Reece M Hoffmann
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | | | - Rohan Maini
- From the Departments of Biochemistry and Cell Biology
| | - David J Hamelin
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - John E Burke
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Yusuf A Hannun
- From the Departments of Biochemistry and Cell Biology, .,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and.,Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794.,Medicine, and
| |
Collapse
|
238
|
Gézsi A, Kovács Á, Visnovitz T, Buzás EI. Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp Mol Med 2019; 51:1-11. [PMID: 30872567 PMCID: PMC6418293 DOI: 10.1038/s12276-019-0226-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy. EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system, we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.
Collapse
Affiliation(s)
- András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
239
|
Karttunen J, Heiskanen M, Lipponen A, Poulsen D, Pitkänen A. Extracellular Vesicles as Diagnostics and Therapeutics for Structural Epilepsies. Int J Mol Sci 2019; 20:E1259. [PMID: 30871144 PMCID: PMC6470789 DOI: 10.3390/ijms20061259] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles involved in intercellular communication. Data is emerging that EVs and their cargo have potential as diagnostic biomarkers and treatments for brain diseases, including traumatic brain injury and epilepsy. Here, we summarize the current knowledge regarding changes in EV numbers and cargo in status epilepticus (SE) and traumatic brain injury (TBI), which are clinically significant etiologies for acquired epileptogenesis in animals and humans. We also review encouraging data, which suggests that EVs secreted by stem cells may serve as recovery-enhancing treatments for SE and TBI. Using Gene Set Enrichment Analysis, we show that brain EV-related transcripts are positively enriched in rodent models of epileptogenesis and epilepsy, and altered in response to anti-seizure drugs. These data suggest that EVs show promise as biomarkers, treatments and drug targets for epilepsy. In parallel to gathering conceptual knowledge, analytics platforms for the isolation and analysis of EV contents need to be further developed.
Collapse
Affiliation(s)
- Jenni Karttunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - David Poulsen
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center (CTRC), Department of Neurosurgery, Buffalo, NY 14203, USA.
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
240
|
Wang S, Wang J, Wei W, Ma G. Exosomes: The Indispensable Messenger in Tumor Pathogenesis and the Rising Star in Antitumor Applications. ACTA ACUST UNITED AC 2019; 3:e1900008. [PMID: 32627408 DOI: 10.1002/adbi.201900008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Indexed: 12/27/2022]
Abstract
As natural secreted nanovesicles through the endolysosomal pathway, exosomes have attracted increasing attention over the past decades. An overwhelming number of studies have provided evidence for the intriguing roles that exosomes play in intercellular communication. They are widely involved in the transmission of biomolecule cargos between original cells and neighboring/distant cells in normal physiological processes. In addition, it has also been demonstrated that exosomes play vital roles in multiple biological pathways in the development of numerous diseases including cancer. Moreover, both natural and modified exosomes showed promising potential in serving as a versatile nanoplatform for cancer diagnosis and cancer therapy. This review aims to present a comprehensive and critical overview on the recent advances in exosome nanoscience and nanotechnology, ranging from their biogenesis, secretion, isolation, and biological function in tumor pathogenesis to their extensive antitumor applications.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
241
|
Wu H, Chen X, Ji J, Zhou R, Liu J, Ni W, Qu L, Ni H, Ni R, Bao B, Xiao M. Progress of Exosomes in the Diagnosis and Treatment of Pancreatic Cancer. Genet Test Mol Biomarkers 2019; 23:215-222. [PMID: 30793953 DOI: 10.1089/gtmb.2018.0235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a digestive system tumor that is highly malignant, with an increasing incidence rate, poor prognosis, and a low 5-year survival rate. The overwhelming majority of patients with PC are in an advanced stage at the time of diagnosis and have lost the opportunity for radical surgery. The efficacy of radiotherapy and chemotherapy for PC is very poor. Therefore, it is of great significance to explore the mechanisms of PC development and new therapeutic targets. Exosomes are extracellular vesicles that mediate the exchange of substances and information between cells. In recent years, exosomes have been shown to play a key role in the development and progression of PC and might be useful for both its diagnosis and treatment. This article reviews the composition and function of exosomes and their roles in the development, diagnosis, and treatment of PC.
Collapse
Affiliation(s)
- Hongpei Wu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
- 2 Medical College, Nantong University, Nantong, P.R. China
| | - Xiaojun Chen
- 3 Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Jie Ji
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
- 2 Medical College, Nantong University, Nantong, P.R. China
| | - Rui Zhou
- 2 Medical College, Nantong University, Nantong, P.R. China
| | - Jinxia Liu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wenkai Ni
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Lishuai Qu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Hongbing Ni
- 4 Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Runzhou Ni
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Baijun Bao
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Mingbing Xiao
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
- 5 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
242
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
243
|
Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6475187. [PMID: 30915196 PMCID: PMC6399542 DOI: 10.1155/2019/6475187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.
Collapse
|
244
|
Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet 2019; 36:189-198. [PMID: 30362057 PMCID: PMC6420537 DOI: 10.1007/s10815-018-1343-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles are lipoproteinaceous membrane-enclosed nanometer-sized structures produced by cells and are thought to mediate cellular communications. Loaded with a specific set of miRNA and protein depending on their tissue of origin, these extracellular vesicles modulate diverse set of biological processes in their target tissues. In recent years, data has gathered on the roles of extracellular vesicles in embryo implantation and pregnancy. Embryo, oviduct, endometrial epithelium and stroma/decidua derived vesicles interact with trophoblast cells and promote their growth and differentiation to aid in embryo implantation. The placental vesicles are detected in maternal circulation that aids in feto-maternal immune tolerance, their levels vary in women with pregnancy-related complications like preeclampsia. Beyond the host, the microbes in the genital tract are also reported to produce extracellular vesicles which are thought to be responsible for inflammation and preterm births. This review focuses on the extracellular vesicular trafficking involved in success of pregnancy.
Collapse
Affiliation(s)
- Noble K Kurian
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
245
|
Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. Extracellular Vesicle-Mediated Communication Within Host-Parasite Interactions. Front Immunol 2019; 9:3066. [PMID: 30697211 PMCID: PMC6340962 DOI: 10.3389/fimmu.2018.03066] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-surrounded structures released by different kinds of cells (normal, diseased, and transformed cells) in vivo and in vitro that contain large amounts of important substances (such as lipids, proteins, metabolites, DNA, RNA, and non-coding RNA (ncRNA), including miRNA, lncRNA, tRNA, rRNA, snoRNA, and scaRNA) in an evolutionarily conserved manner. EVs, including exosomes, play a role in the transmission of information, and substances between cells that is increasingly being recognized as important. In some infectious diseases such as parasitic diseases, EVs have emerged as a ubiquitous mechanism for mediating communication during host-parasite interactions. EVs can enable multiple modes to transfer virulence factors and effector molecules from parasites to hosts, thereby regulating host gene expression, and immune responses and, consequently, mediating the pathogenic process, which has made us rethink our understanding of the host-parasite interface. Thus, here, we review the present findings regarding EVs (especially exosomes) and recognize the role of EVs in host-parasite interactions. We hope that a better understanding of the mechanisms of parasite-derived EVs may provide new insights for further diagnostic biomarker, vaccine, and therapeutic development.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingling Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jiaying Li
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
246
|
Abstract
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
247
|
Abstract
Exosomes are nanovesicles secreted by many cells, including cancer cells. Extensive research has been carried out to validate potential applications of exosomes and to evaluate their efficiency in a wide range of diseases, including cancer. The current knowledge on the origin, biogenesis and composition of exosomes is described. This review then focuses on the use of exosomes in cancer diagnostics and therapeutics.
Collapse
|
248
|
Abstract
Extracellular vesicles (EVs), and exosomes in particular, were initially considered as "garbage bags" for secretion of undesired cellular components. This view has changed considerably over the last two decades, and exosomes have now emerged as important organelles controlling cell-to-cell signaling. They are present in biological fluids and have important roles in the communication between cells in physiological and pathological processes. They are envisioned for clinical use as carriers of biomarkers, therapeutic targets, and vehicles for drug delivery. Important efforts are being made to characterize the contents of these vesicles and to understand the mechanisms that govern their biogenesis and modes of action. This chapter aims to recapitulate the place given to lipids in our understanding of exosome biology. Besides their structural role and their function as carriers, certain lipids and lipid-modifying enzymes seem to exert privileged functions in this mode of cellular communication. By extension, the use of selective "lipid inhibitors" might turn out to be interesting modulators of exosomal-based cell signaling.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France.,Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France. .,Department of Human Genetics, K. U. Leuven, Leuven, Belgium.
| |
Collapse
|
249
|
Dendritic cell extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:213-249. [DOI: 10.1016/bs.ircmb.2019.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
250
|
Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J. Quantification of Lipids: Model, Reality, and Compromise. Biomolecules 2018; 8:E174. [PMID: 30558107 PMCID: PMC6316828 DOI: 10.3390/biom8040174] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Lipids are key molecules in various biological processes, thus their quantification is a crucial point in a lot of studies and should be taken into account in lipidomics development. This family is complex and presents a very large diversity of structures, so analyzing and quantifying all this diversity is a real challenge. In this review, the different techniques to analyze lipids will be presented: from nuclear magnetic resonance (NMR) to mass spectrometry (with and without chromatography) including universal detectors. First of all, the state of the art of quantification, with the definitions of terms and protocol standardization, will be presented with quantitative lipidomics in mind, and then technical considerations and limitations of analytical chemistry's tools, such as NMR, mass spectrometry and universal detectors, will be discussed, particularly in terms of absolute quantification.
Collapse
Affiliation(s)
- Spiro Khoury
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
- French LipidomYstes Network, 31000 Toulouse, France.
| | - Cécile Canlet
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027 Toulouse, France.
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027 Toulouse, France.
| | - Marlène Z Lacroix
- INTHERES, Université de Toulouse, INRA, ENVT, 31432 Toulouse, France.
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
- French LipidomYstes Network, 31000 Toulouse, France.
| | - Juliette Jouhet
- French LipidomYstes Network, 31000 Toulouse, France.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, INRA, CEA, 38000 Grenoble, France.
| | - Justine Bertrand-Michel
- French LipidomYstes Network, 31000 Toulouse, France.
- MetaToul-Lipidomic Core Facility, MetaboHUB, I2MC U1048, Inserm, 31432 Toulouse, France.
| |
Collapse
|