201
|
Ohtsuki I, Morimoto S. Troponin: Regulatory function and disorders. Biochem Biophys Res Commun 2008; 369:62-73. [DOI: 10.1016/j.bbrc.2007.11.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 11/22/2007] [Indexed: 11/29/2022]
|
202
|
Yumoto F, Tanaka H, Nagata K, Miyauchi Y, Miyakawa T, Ojima T, Tanokura M. Spectroscopic and ITC study of the conformational change upon Ca2+-binding in TnC C-lobe and TnI peptide complex from Akazara scallop striated muscle. Biochem Biophys Res Commun 2008; 369:109-14. [DOI: 10.1016/j.bbrc.2007.11.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
203
|
Mohan PMK, Mukherjee S, Chary KVR. Differential native state ruggedness of the two Ca2+-binding domains in a Ca2+ sensor protein. Proteins 2008; 70:1147-53. [PMID: 17912755 DOI: 10.1002/prot.21751] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Characterization of near-native excited states of a protein provides insights into various biological functions such as co-operativity, protein-ligand, and protein-protein interactions. In the present study, we investigated the ruggedness of the native state of EhCaBP using nonlinear temperature dependence of backbone amide-proton chemical shifts. EhCaBP is a two-domain EF-hand calcium sensor protein consisting of two EF-hands in each domain and binds four Ca2+ ions. It has been observed that approximately 30% of the residues in the protein access alternative conformations. Theoretical modeling suggested that these low-energy excited states are within 2-3 kcal/mol from the native state. Further, it is interesting to note that the residues accessing alternative conformations are more dominated in the C-terminal domain compared with its N-terminal counterpart suggesting that the former is more rugged in its native state. These distinct characteristics of N- and C-terminal domains of a calcium sensor protein belonging to the super family of calmodulin would have implications for domain dependent Ca2+ signaling pathways.
Collapse
Affiliation(s)
- P M Krishna Mohan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.
| | | | | |
Collapse
|
204
|
Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Pflugers Arch 2008; 456:787-800. [PMID: 18231806 DOI: 10.1007/s00424-008-0456-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/12/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCg), a green tea-derived polyphenol, has received much attention as a protective agent against cardiovascular diseases. In this study, we determined its effects on the acidosis-induced change in the Ca(2+) sensitivity of myofilaments in myofibrils prepared from porcine ventricular myocardium and chicken pectoral muscle. EGCg (0.1 mM) significantly inhibited the decrease caused by lowering the pH from 7.0 to 6.0 in the Ca(2+) sensitivity of myofibrillar ATPase activity in cardiac muscle, but not in skeletal muscle. Studies on recombinant mouse cardiac troponin C (cTnC) and chicken fast skeletal troponin C (sTnC) using circular dichroism and intrinsic and extrinsic fluorescence spectroscopy showed that EGCg bound to cTnC with a dissociation constant of approximately 3-4 muM, but did not bind to sTnC. By presumably binding to the cTnC C-lobe, EGCg decreased Ca(2+) binding to cTnC and overcame the depressant effect of protons on the Ca(2+) sensitivity of the cardiac contractile response. To demonstrate isoform-specific effects of the action of EGCg, the pH sensitivity of the Ca(2+) response was examined in cardiac myofibrils in which endogenous cTnC was replaced with exogenous sTnC or cTnC and in skeletal myofibrils in which the endogenous sTn complex was replaced with whole cardiac Tn complex (cTn). The results suggest that the binding of EGCg to the cardiac isoform-specific TnC or Tn complex alters the effect of pH on myofilament Ca(2+) sensitivity in striated muscle.
Collapse
|
205
|
Jeyasingham MD, Artigues A, Nadeau OW, Carlson GM. Structural evidence for co-evolution of the regulation of contraction and energy production in skeletal muscle. J Mol Biol 2008; 377:623-9. [PMID: 18281058 DOI: 10.1016/j.jmb.2007.12.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022]
Abstract
Skeletal muscle phosphorylase kinase (PhK) is a Ca(2+)-dependent enzyme complex, (alpha beta gamma delta)(4), with the delta subunit being tightly bound endogenous calmodulin (CaM). The Ca(2+)-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the "excitation-contraction-energy production triad." Although the Ca(2+)-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex. Here we show that zero-length cross-linking of the PhK complex produces a covalent dimer of its catalytic gamma and CaM subunits. Utilizing mass spectrometry, we determined the residues cross-linked to be in an EF hand of CaM and in a region of the gamma subunit sharing high sequence similarity with the Ca(2+)-sensitive molecular switch of troponin I that is known to bind actin and troponin C, a homolog of CaM. Our findings represent an unusual binding of CaM to a target protein and supply an explanation for the low Ca(2+) stoichiometry of PhK that has been reported. They also provide direct structural evidence supporting co-evolution of the coordinate regulation by Ca(2+) of contraction and energy production in muscle through the sharing of a common structural motif in troponin I and the catalytic subunit of PhK for their respective interactions with the homologous Ca(2+)-binding proteins troponin C and CaM.
Collapse
Affiliation(s)
- Marina D Jeyasingham
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Mail Stop 3030, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
206
|
Tropomyosin and the steric mechanism of muscle regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:95-109. [PMID: 19209816 DOI: 10.1007/978-0-387-85766-4_8] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contraction in all muscles must be precisely regulated and requisite control systems must be able to adjust to changes in physiological and myopathic stimuli. In this chapter, we outline the structural evidence for a steric mechanism that governs muscle activity. The mechanism involves calcium and myosin induced changes in the position of tropomyosin along actin-based thin filaments. This process either blocks or uncovers myosin crossbridge binding sites on actin and consequently regulates crossbridge cycling on thin filaments, the sliding of thin and thick filaments and muscle shortening and force production.
Collapse
|
207
|
Solaro RJ, Rosevear P, Kobayashi T. The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Biochem Biophys Res Commun 2007; 369:82-7. [PMID: 18162178 DOI: 10.1016/j.bbrc.2007.12.114] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/11/2007] [Indexed: 01/02/2023]
Abstract
We review development of evidence and current perceptions of the multiple and significant functions of cardiac troponin I in regulation and modulation of cardiac function. Our emphasis is on the unique structure function relations of the cardiac isoform of troponin I, especially regions containing sites of phosphorylation. The data indicate that modifications of specific regions cardiac troponin I by phosphorylations either promote or reduce cardiac contractility. Thus, a homeostatic balance in these phosphorylations is an important aspect of control of cardiac function. A new concept is the idea that the homeostatic mechanisms may involve modifications of intra-molecular interactions in cardiac troponin I.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics (M/C901) and Center for Cardiovascular Research, 835 South Wolcott Avenue, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
208
|
Li MX, Robertson IM, Sykes BD. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Biochem Biophys Res Commun 2007; 369:88-99. [PMID: 18162171 DOI: 10.1016/j.bbrc.2007.12.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022]
Abstract
Over the 40 years since its discovery, many studies have focused on understanding the role of troponin as a myofilament based molecular switch in regulating the Ca(2+)-dependent activation of striated muscle contraction. Recently, studies have explored the role of cardiac troponin as a target for cardiotonic agents. These drugs are clinically useful for treating heart failure, a condition in which the heart is no longer able to pump enough blood to other organs. These agents act via a mechanism that modulates the Ca(2+)-sensitivity of troponin; such a mode of action is therapeutically desirable because intracellular Ca(2+) concentration is not perturbed, preserving the regulation of other Ca(2+)-based signaling pathways. This review describes molecular details of the interaction of cardiac troponin with a variety of cardiotonic drugs. We present recent structural work that has identified the docking sites of several cardiotonic drugs in the troponin C-troponin I interface and discuss their relevance in the design of troponin based drugs for the treatment of heart disease.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, Alta., Canada
| | | | | |
Collapse
|
209
|
Sugimoto Y, Takezawa Y, Matsuo T, Ueno Y, Minakata S, Tanaka H, Wakabayashi K. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction. Biochem Biophys Res Commun 2007; 369:100-8. [PMID: 18082133 DOI: 10.1016/j.bbrc.2007.11.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 11/16/2022]
Abstract
In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by approximately 0.1% upon activation relative to the relaxing state and increased by approximately 0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca(2+)-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca(2+)-binding and the second induced by actomyosin interaction.
Collapse
Affiliation(s)
- Yasunobu Sugimoto
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
210
|
Kimura-Sakiyama C, Ueno Y, Wakabayashi K, Miki M. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex. J Mol Biol 2007; 376:80-91. [PMID: 18155235 DOI: 10.1016/j.jmb.2007.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/24/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle alpha-Tm, TnI and the beta-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca(2+)-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca(2+). In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is approximately 75 degrees and approximately 85 degrees with and without bound Ca(2+), respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca(2+), and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by approximately 20 degrees upon Ca(2+) binding.
Collapse
Affiliation(s)
- Chieko Kimura-Sakiyama
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering Science, Fukui University, Fukui 910-8507, Japan
| | | | | | | |
Collapse
|
211
|
Abstract
Insect flight muscle is capable of very high oscillatory frequencies. In this issue of Structure, De Nicola and colleagues (De Nicola et al., 2007) describe the structure of the Ca2+ binding protein that regulates asynchronous contraction, casting light on the mechanism of stretch activation.
Collapse
|
212
|
Mathur MC, Kobayashi T, Chalovich JM. Negative charges at protein kinase C sites of troponin I stabilize the inactive state of actin. Biophys J 2007; 94:542-9. [PMID: 17872964 PMCID: PMC2157249 DOI: 10.1529/biophysj.107.113944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations in the troponin complex can lead to increases or decreases in contractile activity. Most mutations of troponin that cause hypertrophic cardiomyopathy increase the activity of cardiac muscle fibers. In at least some cases these mutants stabilize the active state of regulated actin. In contrast, phosphorylation of troponin I at residues 43, 45, and 144 inhibits muscle contractility. To determine if alterations of troponin I that reduce activity do stabilize the inactive state of actin, we introduced negative charges at residues 43, 45, and 144 of troponin I to mimic a constitutively phosphorylated state. At saturating calcium, all mutants decreased ATPase rates relative to wild-type actin-tropomyosin-troponin. Reduced activation of ATPase activity was seen with a single mutation at S45E and was not further altered by mutating the other two sites. In the presence of low concentrations of NEM-S1, wild-type troponin was more active than the mutants. At high NEM-S1, the rates of wild-type and mutants approached the same limiting value. Changes in Ca(2+) affinity also support the idea that the equilibrium between states of actin-tropomyosin-troponin was shifted to the inactive state by mutations that mimic troponin I phosphorylation.
Collapse
Affiliation(s)
- Mohit C Mathur
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | | | | |
Collapse
|
213
|
Howarth JW, Meller J, Solaro RJ, Trewhella J, Rosevear PR. Phosphorylation-dependent conformational transition of the cardiac specific N-extension of troponin I in cardiac troponin. J Mol Biol 2007; 373:706-22. [PMID: 17854829 DOI: 10.1016/j.jmb.2007.08.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/08/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.
Collapse
Affiliation(s)
- Jack W Howarth
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio, 45267, USA
| | | | | | | | | |
Collapse
|
214
|
De Nicola G, Burkart C, Qiu F, Agianian B, Labeit S, Martin S, Bullard B, Pastore A. The Structure of Lethocerus Troponin C: Insights into the Mechanism of Stretch Activation in Muscles. Structure 2007; 15:813-24. [PMID: 17637342 DOI: 10.1016/j.str.2007.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
To gain a molecular description of how muscles can be activated by mechanical stretch, we have solved the structure of the calcium-loaded F1 isoform of troponin C (TnC) from Lethocerus and characterized its interactions with troponin I (TnI). We show that the presence of only one calcium cation in the fourth EF hand motif is sufficient to induce an open conformation in the C-terminal lobe of F1 TnC, in contrast with what is observed in vertebrate muscle. This lobe interacts in a calcium-independent way both with the N terminus of TnI and, with lower affinity, with a region of TnI equivalent to the switch and inhibitory peptides of vertebrate muscles. Using both synthetic peptides and recombinant proteins, we show that the N lobe of F1 TnC is not engaged in interactions with TnI, excluding a regulatory role of this domain. These findings provide insights into mechanically stimulated muscle contraction.
Collapse
Affiliation(s)
- Gianfelice De Nicola
- Molecular Structure Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Yumoto F, Nagata K, Miyauchi Y, Ojima T, Tanaka H, Nishita K, Ohtsuki I, Tanokura M. Crystallization and preliminary X-ray analysis of the Ca2+-bound C-terminal lobe of troponin C in complex with a troponin I-derived peptide fragment from Akazara scallop. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:535-7. [PMID: 17554181 PMCID: PMC2335068 DOI: 10.1107/s1744309107024712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/20/2007] [Indexed: 05/15/2023]
Abstract
Troponin C (TnC) is the Ca(2+)-binding component of troponin and triggers muscle contraction. TnC of the invertebrate Akazara scallop can bind only one Ca(2+) at the C-terminal EF-hand motif. Recombinant TnC was expressed in Escherichia coli, purified, complexed with a 24-residue synthetic peptide derived from scallop troponin I (TnI) and crystallized. The crystals diffracted X-rays to 1.80 A resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 32.1, b = 42.2, c = 60.0 A. The asymmetric unit was assumed to contain one molecular complex of the Akazara scallop TnC C-lobe and TnI fragment, with a Matthews coefficient of 1.83 A(3) Da(-1) and a solvent content of 33.0%.
Collapse
Affiliation(s)
- Fumiaki Yumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Physiology II, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takao Ojima
- Laboratory of Biochemistry and Biotechnology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroyuki Tanaka
- Laboratory of Biochemistry and Biotechnology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Kiyoyoshi Nishita
- Laboratory of Biochemistry and Biotechnology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Iwao Ohtsuki
- Department of Physiology II, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence e-mail:
| |
Collapse
|
216
|
Westfall MV, Metzger JM. Single amino acid substitutions define isoform-specific effects of troponin I on myofilament Ca2+ and pH sensitivity. J Mol Cell Cardiol 2007; 43:107-18. [PMID: 17602701 PMCID: PMC2043486 DOI: 10.1016/j.yjmcc.2007.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/23/2007] [Accepted: 05/15/2007] [Indexed: 11/25/2022]
Abstract
Troponin I isoforms play a key role in determining myofilament Ca2+ sensitivity in cardiac muscle. The goal here was to identify domain clusters and residues that confer troponin I isoform-specific myofilament Ca2+ and pH sensitivities of contraction. Key domains/residues that contribute to troponin I isoform-specific Ca2+ and pH sensitivity were studied using gene transfer of a slow skeletal troponin I (ssTnI) template, with targeted cardiac troponin I (cTnI) residue substitutions. Substitutions in ssTnI with cognate cTnI residues R125Q, H132A, and V134E, studied both independently and together (ssTnIQAE), resulted in efficient stoichiometric replacement of endogenous myofilament cTnI in adult cardiac myocytes. In permeabilized myocytes, the pCa50 of tension ([Ca2+] required for half maximal force), and the acidosis-induced rightward shift of pCa50 were converted to the cTnI phenotype in myocytes expressing ssTnIQAE or ssTnIH132A, and there was no functionally additive effect of ssTnIQAE versus ssTnIH132A. Interestingly, only the acidosis-induced shift in Ca2+ sensitivity was comparable to cTnI in myocytes expressing ssTnIV134E, while ssTnIR125Q fully retained the ssTnI phenotype. An additional ssTnIN141H substitution, which lies within the same structural region of TnI as V134, produced a shift in myofilament Ca2+ sensitivity comparable to cTnI at physiological pH, while the acidic pH response was similar to the effect of wild-type ssTnI. Analysis of sarcomere shortening in intact adult cardiac myocytes was consistent with the force measurements. Targeted substitutions in the carboxyl portion of TnI produced residue-specific influences on myofilament Ca2+ and pH sensitivity of force and give new molecular insights into the TnI isoform dependence of myofilament function.
Collapse
Affiliation(s)
- Margaret V Westfall
- Department of Surgery, Cardiac Surgery Section, University of Michigan, 1150 W. Medical Center Drive, B560 MSRB II, Ann Arbor, MI 48109-0686, USA.
| | | |
Collapse
|
217
|
Wakabayashi K, Sugimoto Y, Takezawa Y, Ueno Y, Minakata S, Oshima K, Matsuo T, Kobayashi T. Structural alterations of thin actin filaments in muscle contraction by synchrotron X-ray fiber diffraction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:327-40. [PMID: 17278377 DOI: 10.1007/978-4-431-38453-3_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Strong evidence has been accumulated that the conformational changes of the thin actin filaments are occurring and playing an important role in the entire process of muscle contraction. The conformational changes and the mechanical properties of the thin actin filaments we have found by X-ray fiber diffraction on skeletal muscle contraction are explored. Recent studies on the conformational changes of regulatory proteins bound to actin filaments upon activation and in the force generation process are also described. Finally, the roles of structural alterations and dynamics of the actin filaments are discussed in conjunction with the regulation mechanism and the force generation mechanism.
Collapse
Affiliation(s)
- Katsuzo Wakabayashi
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Ohtsuki I. Troponin: structure, function and dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:21-36. [PMID: 17278353 DOI: 10.1007/978-4-431-38453-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Iwao Ohtsuki
- Department of Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
219
|
Boussouf SE, Geeves MA. Tropomyosin and troponin cooperativity on the thin filament. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:99-109. [PMID: 17278359 DOI: 10.1007/978-4-431-38453-3_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
220
|
Boussouf SE, Maytum R, Jaquet K, Geeves MA. Role of tropomyosin isoforms in the calcium sensitivity of striated muscle thin filaments. J Muscle Res Cell Motil 2007; 28:49-58. [PMID: 17436057 DOI: 10.1007/s10974-007-9103-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
We have expressed alpha & beta isoforms of mammalian striated muscle tropomyosin (Tm) and alpha-Tm carrying the D175N or E180G cardiomyopathy mutations. In each case the Tm carries an Ala-Ser N-terminal extension to mimic the acetylation of the native Tm. We show that these Ala-Ser modified proteins are good analogues of the native Tm in the assays used here. We go on to use an in vitro kinetic approach to define the assembly of actin filaments with the Tm isoforms with either a cardiac or a skeletal muscle troponin (cTn, skTn). With skTn the calcium sensitivity of the actin filament is the same for alpha & beta-Tm and there is little change with the mutant Tms. For cTn switching from alpha to beta-Tm causes an increase of calcium sensitivity of 0.2 pCa units. D175N is very similar to the wild type alpha-Tm and E180G shows a small increase in calcium sensitivity of about 0.1 pCa unit. The formation of the switched-off blocked-state of the actin filament is independent of the Tm isoform but does differ for cardiac versus skeletal Tn. The in vitro assays developed here provide a novel, simple and efficient method for assaying the behaviour of expressed thin filament proteins.
Collapse
|
221
|
Day SM, Westfall MV, Metzger JM. Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. J Mol Med (Berl) 2007; 85:911-21. [PMID: 17396243 DOI: 10.1007/s00109-007-0181-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 12/31/2022]
Abstract
The cardiac myofilaments are composed of highly ordered arrays of proteins that coordinate cardiac contraction and relaxation in response to the rhythmic waves of [Ca(2+)] during the cardiac cycle. Several cardiac disease states are associated with altered myofilament protein interactions that contribute to cardiac dysfunction. During acute myocardial ischemia, the sensitivity of the myofilaments to activating Ca(2+) is drastically reduced, largely due to the effects of intracellular acidosis on the contractile machinery. Myofilament Ca(2+) sensitivity remains compromised in post-ischemic or "stunned" myocardium even after complete restoration of blood flow and intracellular pH, likely because of covalent modifications of or proteolytic injury to contractile proteins. In contrast, myofilament Ca(2+) sensitivity can be increased in chronic heart failure, owing in part to decreased phosphorylation of troponin I, the inhibitory subunit of the troponin regulatory complex. We highlight, in this paper, the central role of the myofilaments in the pathophysiology of each of these distinct disease entities, with a particular focus on the molecular switch protein troponin I. We also discuss the beneficial effects of a genetically engineered cardiac troponin I, with a histidine button substitution at C-terminal residue 164, for a variety of pathophysiologic conditions, including hypoxia, ischemia, ischemia-reperfusion and chronic heart failure.
Collapse
Affiliation(s)
- Sharlene M Day
- Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, 7301 MSRB III, Ann Arbor, MI 48109-0644, USA.
| | | | | |
Collapse
|
222
|
Biesiadecki BJ, Chong SM, Nosek TM, Jin JP. Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry 2007; 46:1368-79. [PMID: 17260966 PMCID: PMC1794682 DOI: 10.1021/bi061949m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms. Previous studies have demonstrated that NH2-terminal modifications alter the COOH-terminal conformation of TnT and thin filament Ca2+-activation, yet the functional core structure of TnT and the mechanism of NH2-terminal modulation are not well understood. To define the TnT core structure and investigate the regulatory role of the NH2-terminal variable region, we investigated two classes of model TnT molecules: (1) NH2-terminal truncated cardiac TnT and (2) chimera proteins consisting of an acidic or basic skeletal muscle TnT NH2-terminus spliced to the cardiac TnT core. Deletion of the TnT hypervariable NH2-terminus preserved binding to troponin I and tropomyosin and sustained cardiac muscle contraction in the heart of transgenic mice. Further deletion of the conserved central region diminished binding to tropomyosin. The reintroduction of differently charged NH2-terminal domains in the chimeric molecules produced long-range conformational changes in the central and COOH-terminal regions to alter troponin I and tropomyosin binding. Similar NH2-terminal charge effects are demonstrated in naturally occurring cardiac TnT isoforms, indicating a physiological significance. These results suggest that the hypervariable NH2-terminal region modulates the conformation and function of the TnT core structure to fine-tune muscle contractility.
Collapse
Affiliation(s)
- Brandon J. Biesiadecki
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106; and
| | - Stephen M. Chong
- Section of Molecular Cardiology, Evanston Northwestern Healthcare and Northwestern University Fienberg School of Medicine, Evanston, Illinois 60201
| | - Thomas M. Nosek
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106; and
| | - J.-P. Jin
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106; and
- Section of Molecular Cardiology, Evanston Northwestern Healthcare and Northwestern University Fienberg School of Medicine, Evanston, Illinois 60201
- *To whom correspondence should be addressed: Tel.: 847-570-1960; Fax: 847-570-1865; e-mail:
| |
Collapse
|
223
|
Vinogradova MV, Stone DB, Malanina GG, Mendelson RA, Fletterick RJ. Ca ion and the troponin switch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:47-57. [PMID: 17278355 DOI: 10.1007/978-4-431-38453-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
224
|
Hoffman RMB, Sykes BD. Disposition and dynamics: interdomain orientations in troponin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:59-70. [PMID: 17278356 DOI: 10.1007/978-4-431-38453-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Ryan M B Hoffman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
225
|
Yumoto F, Tanokura M. Structural and functional analysis of troponins from scallop striated and human cardiac muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:163-73. [PMID: 17278364 DOI: 10.1007/978-4-431-38453-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Fumiaki Yumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | |
Collapse
|
226
|
Fujiwara S, Matsumoto F. Orientational Information of Troponin C within the Thin Filaments Obtained by Neutron Fiber Diffraction. J Mol Biol 2007; 367:16-24. [PMID: 17254604 DOI: 10.1016/j.jmb.2006.12.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/28/2006] [Accepted: 12/29/2006] [Indexed: 11/21/2022]
Abstract
In striated muscles contraction is regulated by the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), and tropomyosin. Knowledge of in situ structures of these proteins is indispensable for elucidating this Ca(2+)-sensitive regulatory mechanism. We employed neutron scattering to investigate the structure of TnC within the thin filament, and found that TnC assumes extended dumbbell-like structures and moves toward the filament axis by binding of Ca(2+). Here, in order to obtain more detailed in situ structural information of TnC, neutron fiber diffraction measurements were performed. Sols of native thin filaments and the thin filaments containing deuterated TnC were prepared in (2)H(2)O. The oriented samples were obtained by placing these sols sealed in quartz capillaries with a diameter of 3 mm in a magnetic field of 18 Tesla. Neutron fiber diffraction patterns were obtained from these oriented samples in the absence and presence of Ca(2+). The patterns obtained showed strong equatorial diffraction due to the thin filaments, 59 A and 51 A layer-lines due to actin, and meridional reflections due to Tn-complex. Analysis of the meridional reflections due to Tn-complex with aid of model calculation showed that the angle between the thin filament axis and the long axis of TnC was estimated to be 67(+/-7) degrees and 49(+/-17) degrees , in the absence and presence of Ca(2+), respectively, suggesting that TnC, which assumes orientations rather perpendicular to the filament axis in the absence of Ca(2+), tilts toward the filament axis and the orientational and positional disorder increases by binding Ca(2+). It also showed that the relative position of the TnC moved by about 22 A by binding Ca(2+), and this apparent movement was concomitant with the movements of other Tn-subunits. This implies that by binding Ca(2+), significant structural rearrangements of Tn-subunits occur.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.
| | | |
Collapse
|
227
|
Liou YM, Chao HL. Fluorescence spectroscopic analysis of the proximity changes between the central helix of troponin C and the C-terminus of troponin T from chicken skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:466-73. [PMID: 17350907 DOI: 10.1016/j.bbapap.2007.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 11/24/2022]
Abstract
Recent structural studies of the troponin (Tn) core complex have shown that the regulatory head containing the N-lobe of TnC is connected to the IT arm by a flexible linker of TnC. The IT arm is a long coiled-coil formed by alpha-helices of TnI and TnT, plus the C-lobe of TnC. The TnT is thought to play a pivotal role in the linking of Ca(2+) -triggered conformational changes in thin filament regulatory proteins to the activation of cross-bridge cycling. However, a functional domain at the C-terminus of TnT is missing from the Tn core complex. In this study, we intended to determine the proximity relationship between the central helix of TnC and the TnT C-terminus in the binary and the ternary complex with and without Ca2+ by using pyrene excimer fluorescence spectroscopy and fluorescence resonance energy transfer. Chicken fast skeletal TnC contains a Cys102 at the E helix, while TnT has a Cys264 at its C-terminus. These two cysteines were specifically labeled with sulfhydryl-reactive fluorescence probes. The measured distance in the binary complex was about 19 Angstroms and slightly increased when they formed the ternary complex with TnI (20 Angstroms). Upon Ca2+ binding the distance was not affected in the binary complex but increased by approximately 4 Angstroms in the ternary complex. These results suggest that TnI plays an essential role in the Ca(2+) -mediated change in the spatial relationship between the C-lobe of TnC and the C-terminus of TnT.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.
| | | |
Collapse
|
228
|
Arata T, Aihara T, Ueda K, Nakamura M, Ueki S. Calcium structural transition of troponin in the complexes, on the thin filament, and in muscle fibres, as studied by site-directed spin-labelling EPR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:125-35. [PMID: 17278361 DOI: 10.1007/978-4-431-38453-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have measured the intersite distance, side-chain mobility and orientation of specific site(s) of troponin (Tn) complex on the thin filaments or in muscle fibres as well as in solution by means of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR). We have examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a human cardiac (hc)TnC monomer state and hcTnC-hcTnI binary complex. An interspin distance between G42C (B helix) and C84 (D helix) was 18.4 angstroms in the absence of Ca2+. The distance between Q58C (C helix) and C84 (D helix) was 18.3 angstroms. Distance changes were observed by the addition of Ca2+ and by the formation of a complex with TnI. Both Ca2+ and TnI are essential for the full opening -3 angstroms of the N-domain in cardiac TnC. We have determined the in situ distances between C35 and C84 by measuring pulsed electron-electron double resonance (PELDOR) spectroscopy. The distances were 26.0 and 27.2 A in the monomer state and in reconstituted fibres, respectively. The addition of Ca2+ decreased the distance to 23.2 angstroms in fibres but only slightly in the monomer state, indicating that Ca2+ binding to the N-lobe of hcTnC induced a larger structural change in muscle fibres than in the monomer state. We also succeeded in synthesizing a new bifunctional spin labels that is firmly fixed on a central E-helix (94C-101C) of skeletal(sk)TnC to examine its orientation in reconstituted muscle fibres. EPR spectrum showed that this helix is disordered with respect to the filament axis. We have studied the calcium structural transition in skTnI and tropomyosin on the filament by SDSL-EPR. The spin label at a TnI switch segment (C133) showed three motional states depending on Ca2+ and actin. The data suggested that the TnI switch segment binds to TnC N-lobe in +Ca2+ state, and that in -Ca2+ state it is free in TnC-I-T complex alone while fixed to actin in the reconstituted thin filaments. In contrast, the side chain spin labels along the entire tropomyosin molecule showed no Ca(2+)-induced mobility changes.
Collapse
Affiliation(s)
- Toshiaki Arata
- Department of Biological Sciences, Graduate School of Science, Osaka University and CREST/JST, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
229
|
Gergely J. Highlights of the history of calcium regulation of striated muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:11-8. [PMID: 17278352 DOI: 10.1007/978-4-431-38453-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- John Gergely
- Boston Biomedical Research Institute, Boston, MA, USA
| |
Collapse
|
230
|
Krebs J, Heizmann CW. Calcium-binding proteins and the EF-hand principle. CALCIUM - A MATTER OF LIFE OR DEATH 2007. [DOI: 10.1016/s0167-7306(06)41003-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
231
|
Nitanai Y, Minakata S, Maeda K, Oda N, Maéda Y. Crystal structures of tropomyosin: flexible coiled-coil. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:137-51. [PMID: 17278362 DOI: 10.1007/978-4-431-38453-3_13] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tropomyosin (Tm) is a 400 angstroms long coiled coil protein, and with troponin it regulates contraction in skeletal and cardiac muscles in a [Ca2+]-dependent manner. Tm consists of multiple domains with diverse stabilities in the coiled coil form, thus providing Tm with dynamic flexibility. This flexibility must play important roles in the actin binding and the cooperative transition between the calcium regulated states of the entire muscle thin filament. In order to understand the flexibility of Tm in its entirety, the atomic coordinates of Tm are needed. Here we report the two crystal structures of Tm segments. One is rabbit skeletal muscle alpha-Tm encompassing residues 176-284 with an N-terminal extension of 25 residues from the leucine zipper sequence of GCN4, which includes the region that interacts with the troponin core domain. The other is alpha-Tm encompassing residues 176-273 with N- and C-terminal extensions of the leucine zipper sequences. These two crystal structures imply that this molecule is a flexible coiled coil. First, Tm's are not homogeneous and smooth coiled coils, but instead they undulate, with highly fluctuating local parameters specifying the coiled coil. Independent fluctuating showed by two crystal structures is important. Second, in the first crystal, the coiled coil is bent by 9 degrees in the region centered about Y214-E218-Y221, where the inter-helical distance has its maximum. On the other hand, no bend is observed at the same region in the second crystal even if its inter-helical distance has also its maximum. E218, an unusual negatively charged residue at the a position in the heptad repeat, seems to play the key role in destabilizing the coiled coil with alanine destabilizing clusters.
Collapse
Affiliation(s)
- Yasushi Nitanai
- ERATO Actin Filament Dynamics Project, JST, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
232
|
Sun YB, Brandmeier B, Irving M. Structural changes in troponin in response to Ca2+ and myosin binding to thin filaments during activation of skeletal muscle. Proc Natl Acad Sci U S A 2006; 103:17771-6. [PMID: 17101992 PMCID: PMC1693822 DOI: 10.1073/pnas.0605430103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contraction of skeletal and cardiac muscle is regulated by Ca2+ -dependent structural changes in troponin that control the interaction between myosin and actin. We measured the orientations of troponin domains in skeletal muscle fibers using polarized fluorescence from bifunctional rhodamine probes on the C and E helices of troponin C. The C helix, in the regulatory head domain, tilts by approximately 30 degrees when muscle is activated in physiological conditions, with a Ca2+ -sensitivity similar to that of active force. Complete inhibition of active force did not affect C-helix orientation, and binding of rigor myosin heads did not affect its orientation at saturating [Ca2+]. The E helix, in the IT arm of troponin, tilted by approximately 10 degrees on activation, and this was reduced to only 3 degrees when active force was inhibited. Binding of rigor myosin heads produced a larger tilt of the E helix. Thus, in situ, the regulatory head acts as a pure Ca2+ -sensor, whereas the IT arm is primarily sensitive to myosin head binding. The polarized fluorescence data from active muscle are consistent with an in vitro structure of the troponin core complex in which the D and E helices of troponin C are collinear. The present data were used to orient this structure in the fiber and suggest that the IT arm is at approximately 30 degrees to the filament axis in active muscle. In relaxed muscle, the IT arm tilts to approximately 40 degrees but the D/E helix linker melts, allowing the regulatory head to tilt through a larger angle.
Collapse
Affiliation(s)
- Yin-Biao Sun
- *Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom; and
| | - Birgit Brandmeier
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Malcolm Irving
- *Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
233
|
Zhang Z, Biesiadecki BJ, Jin JP. Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage. Biochemistry 2006; 45:11681-94. [PMID: 16981728 PMCID: PMC1762003 DOI: 10.1021/bi060273s] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of the NH2-terminal region of troponin T (TnT) is hypervariable among the muscle type-specific isoforms and is also regulated by alternative RNA splicing. This region does not contain binding sites for other thin filament proteins, but alteration of its structure affects the Ca2+ regulation of muscle contraction. Here we report a truncated cardiac TnT produced during myocardial ischemia reperfusion. Amino acid sequencing and protein fragment reconstruction determined that it is generated by a posttranslational modification selectively removing the NH2-terminal variable region and preserving the conserved core structure of TnT. Triton X-100 extraction of cardiac muscle fibers promoted production of the NH2-terminal truncated cardiac TnT (cTnT-ND), indicating a myofibril-associated proteolytic activity. Mu-calpain is a myofibril-associated protease and is known to degrade TnT. Supporting a role of mu-calpain in producing cTnT-ND in myocardial ischemia reperfusion, calpain inhibitors decreased the level of cTnT-ND in Triton-extracted myofibrils. Mu-calpain treatment of the cardiac myofibril and troponin complex specifically reproduced cTnT-ND. In contrast, mu-calpain treatment of isolated cardiac TnT resulted in nonspecific degradation, suggesting that this structural modification is relevant to physiological structures of the myofilament. Triton X-100 treatment of transgenic mouse cardiac myofibrils overexpressing fast skeletal muscle TnT produced similar NH2-terminal truncations of the endogenous and exogenous TnT, despite different amino acid sequences at the cleavage site. With the functional consequences of removing the NH2-terminal variable region of TnT, the mu-calpain-mediated proteolytic modification of TnT may act as an acute mechanism to adjust muscle contractility under stress conditions.
Collapse
Affiliation(s)
| | | | - Jian-Ping Jin
- * To whom correspondence should be addressed: Molecular Cardiology, Evanston Northwestern Healthcare, Evanston, Illinois 60201 Tel: (847) 570-1960. Fax: (847) 570-1865.
| |
Collapse
|
234
|
Schoffstall B, Brunet NM, Williams S, Miller VF, Barnes AT, Wang F, Compton LA, McFadden LA, Taylor DW, Seavy M, Dhanarajan R, Chase PB. Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform. J Physiol 2006; 577:935-44. [PMID: 17008370 PMCID: PMC1890378 DOI: 10.1113/jphysiol.2006.120105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myosin heavy chain (MHC) isoforms in vertebrate striated muscles are distinguished functionally by differences in chemomechanical kinetics. These kinetic differences may influence the cross-bridge-dependent co-operativity of thin filament Ca(2+) activation. To determine whether Ca(2+) sensitivity of unloaded thin filament sliding depends upon MHC isoform kinetics, we performed in vitro motility assays with rabbit skeletal heavy meromyosin (rsHMM) or porcine cardiac myosin (pcMyosin). Regulated thin filaments were reconstituted with recombinant human cardiac troponin (rhcTn) and alpha-tropomyosin (rhcTm) expressed in Escherichia coli. All three subunits of rhcTn were coexpressed as a functional complex using a novel construct with a glutathione S-transferase (GST) affinity tag at the N-terminus of human cardiac troponin T (hcTnT) and an intervening tobacco etch virus (TEV) protease site that allows purification of rhcTn without denaturation, and removal of the GST tag without proteolysis of rhcTn subunits. Use of this highly purified rhcTn in our motility studies resulted in a clear definition of the regulated motility profile for both fast and slow MHC isoforms. Maximum sliding speed (pCa 5) of regulated thin filaments was roughly fivefold faster with rsHMM compared with pcMyosin, although speed was increased by 1.6- to 1.9-fold for regulated over unregulated actin with both MHC isoforms. The Ca(2+) sensitivity of regulated thin filament sliding speed was unaffected by MHC isoform. Our motility results suggest that the cellular changes in isoform expression that result in regulation of myosin kinetics can occur independently of changes that influence thin filament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Brenda Schoffstall
- Institute of Molecular Biophysics, Department of Biological Science, Bio Unit One, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Poole KJV, Lorenz M, Evans G, Rosenbaum G, Pirani A, Craig R, Tobacman LS, Lehman W, Holmes KC. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 2006; 155:273-84. [PMID: 16793285 DOI: 10.1016/j.jsb.2006.02.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The regulation of striated muscle contraction involves changes in the interactions of troponin and tropomyosin with actin thin filaments. In resting muscle, myosin-binding sites on actin are thought to be blocked by the coiled-coil protein tropomyosin. During muscle activation, Ca2+ binding to troponin alters the tropomyosin position on actin, resulting in cyclic actin-myosin interactions that accompany muscle contraction. Evidence for this steric regulation by troponin-tropomyosin comes from X-ray data [Haselgrove, J.C., 1972. X-ray evidence for a conformational change in the actin-containing filaments of verterbrate striated muscle. Cold Spring Habor Symp. Quant. Biol. 37, 341-352; Huxley, H.E., 1972. Structural changes in actin and myosin-containing filaments during contraction. Cold Spring Habor Symp. Quant. Biol. 37, 361-376; Parry, D.A., Squire, J.M., 1973. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75, 33-55] and electron microscope (EM) data [Spudich, J.A., Huxley, H.E., Finch, J., 1972. Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J. Mol. Biol. 72, 619-632; O'Brien, E.J., Gillis, J.M., Couch, J., 1975. Symmetry and molecular arrangement in paracrystals of reconstituted muscle thin filaments. J. Mol. Biol. 99, 461-475; Lehman, W., Craig, R., Vibert, P., 1994. Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368, 65-67] each with its own particular strengths and limitations. Here we bring together some of the latest information from EM analysis of single thin filaments from Pirani et al. [Pirani, A., Xu, C., Hatch, V., Craig, R., Tobacman, L.S., Lehman, W. (2005). Single particle analysis of relaxed and activated muscle thin filaments. J. Mol. Biol. 346, 761-772], with synchrotron X-ray data from non-overlapped muscle fibres to refine the models of the striated muscle thin filament. This was done by incorporating current atomic-resolution structures of actin, tropomyosin, troponin and myosin subfragment-1. Fitting these atomic coordinates to EM reconstructions, we present atomic models of the thin filament that are entirely consistent with a steric regulatory mechanism. Furthermore, fitting the atomic models against diffraction data from skinned muscle fibres, stretched to non-overlap to preclude crossbridge binding, produced very similar results, including a large Ca2+-induced shift in tropomyosin azimuthal location but little change in the actin structure or apparent alteration in troponin position.
Collapse
Affiliation(s)
- Katrina J V Poole
- Arbeitsgruppe Biophysik, Max Planck Institut für medizinische Forschung, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Hoffman RMB, Blumenschein TMA, Sykes BD. An interplay between protein disorder and structure confers the Ca2+ regulation of striated muscle. J Mol Biol 2006; 361:625-33. [PMID: 16876196 DOI: 10.1016/j.jmb.2006.06.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 11/17/2022]
Abstract
The troponin (Tn) complex regulates the thin filament of striated muscle by transducing [Ca2+] fluctuations into conformational changes. These changes propagate to tropomyosin (Tm), which then assumes a new disposition with respect to actin, reversibly exposing actin's binding sites for the thick filament motor-ATPase (myosin). To date, the structural biology of thin filament regulation has been studied in the context of two equilibrium states corresponding to high (contraction-activated) and low (contraction-inhibited) sarcomeric [Ca2+]. New electron micrographic reconstructions of the thin filament have resolved Tn, actin, and Tm in high and low [Ca2+] states, integrating high-resolution structures of the Tn core, actin, and Tm. The resultant picture of thin filament regulation does not resolve all of the functionally significant portions of troponin I (TnI) or troponin C (TnC). Those regions of Tn have been shown (using NMR relaxation spectroscopy) to undergo conformational fluctuations, rationalizing the absence of these regions from micrograph-based reconstructions. The disordered portions of Tn are, to date, being interpreted within a canonical structure-activity paradigm. Here we present a new mechanism for the regulation of Tn having explicit descriptions of the kinetic pathways of activation and inhibition. Our thesis is that the intrinsic disorder of TnI is mechanistically significant. As the coupling of folding to binding has been shown to confer an inherent kinetic advantage (known as flycasting activity), our thesis accounts for TnI's conformational heterogeneity and known structure-activity relationships in a parsimonious fashion. We integrate recent NMR structures of the C-terminus of TnI and NMR observations of the conformational dynamics of the Tn complex into high-resolution models of the thin filament. Ways of evaluating the mechanism are discussed. The novel conceptual framework presented here prompts new hypotheses regarding the mechanism of pH sensitivity and of pathogenic mutations in troponin.
Collapse
Affiliation(s)
- Ryan M B Hoffman
- Department of Biochemistry, Faculty of Medicine, University of Alberta Edmonton, Alberta, T6G 2H7, Canada
| | | | | |
Collapse
|
237
|
Swartz DR, Yang Z, Sen A, Tikunova SB, Davis JP. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments. J Mol Biol 2006; 361:420-35. [PMID: 16857209 PMCID: PMC2834179 DOI: 10.1016/j.jmb.2006.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/29/2022]
Abstract
Activation of striated muscle contraction is a highly cooperative signal transduction process converting calcium binding by troponin C (TnC) into interactions between thin and thick filaments. Once calcium is bound, transduction involves changes in protein interactions along the thin filament. The process is thought to involve three different states of actin-tropomyosin (Tm) resulting from changes in troponin's (Tn) interaction with actin-Tm: a blocked (B) state preventing myosin interaction, a closed (C) state allowing weak myosin interactions and favored by calcium binding to Tn, and an open or M state allowing strong myosin interactions. This was tested by measuring the apparent rate of Tn dissociation from rigor skeletal myofibrils using labeled Tn exchange. The location and rate of exchange of Tn or its subunits were measured by high-resolution fluorescence microscopy and image analysis. Three different rates of Tn exchange were observed that were dependent on calcium concentration and strong cross-bridge binding that strongly support the three-state model. The rate of Tn dissociation in the non-overlap region was 200-fold faster at pCa 4 (C-state region) than at pCa 9 (B-state region). When Tn contained engineered TnC mutants with weakened regulatory TnI interactions, the apparent exchange rate at pCa 4 in the non-overlap region increased proportionately with TnI-TnC regulatory affinity. This suggests that the mechanism of calcium enhancement of the rate of Tn dissociation is by favoring a TnI-TnC interaction over a TnI-actin-Tm interaction. At pCa 9, the rate of Tn dissociation in the overlap region (M-state region) was 100-fold faster than the non-overlap region (B-state region) suggesting that strong cross-bridges increase the rate of Tn dissociation. At pCa 4, the rate of Tn dissociation was twofold faster in the non-overlap region (C-state region) than the overlap region (M-state region) that likely involved a strong cross-bridge influence on TnT's interaction with actin-Tm. At sub-maximal calcium (pCa 6.2-5.8), there was a long-range influence of the strong cross-bridge on Tn to enhance its dissociation rate, tens of nanometers from the strong cross-bridge. These observations suggest that the three different states of actin-Tm are associated with three different states of Tn. They also support a model in which strong cross-bridges shift the regulatory equilibrium from a TnI-actin-Tm interaction to a TnC-TnI interaction that likely enhances calcium binding by TnC.
Collapse
Affiliation(s)
- Darl R Swartz
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
238
|
Gallon CE, Tschirgi ML, Chandra M. Differences in myofilament calcium sensitivity in rat psoas fibers reconstituted with troponin T isoforms containing the alpha- and beta-exons. Arch Biochem Biophys 2006; 456:127-34. [PMID: 16839517 DOI: 10.1016/j.abb.2006.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/19/2006] [Accepted: 06/08/2006] [Indexed: 11/25/2022]
Abstract
The carboxy terminus of fast skeletal muscle troponin T (fsTnT) is highly conserved. However, mutually exclusive splicing of exons 16 and 17 in the fsTnT gene results in the expression of either the alpha- or beta-fsTnT isoform. The alpha-isoform is expressed only in adult fast skeletal muscle, whereas the beta-isoform is expressed in varying quantities throughout muscle development. Reconstitution of detergent-skinned adult rat psoas muscle fibers with rat fast skeletal troponin complexes containing either fsTnT isoform demonstrated that reconstitution with alpha-fsTnT resulted in greater myofilament Ca(2+) sensitivity than reconstitution with beta-fsTnT, without changes to Ca(2+)-activated maximal tension, ATPase activity or tension cost. The observed isoform-specific differences in myofilament Ca(2+) sensitivity may be due to changes in the transition of the thin-filament regulatory unit from the off to the on state, possibly due to altered interactions of the C-terminus of fsTnT with troponins I and/or C.
Collapse
Affiliation(s)
- Clare E Gallon
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
239
|
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 2006; 359:509-25. [PMID: 16678204 DOI: 10.1016/j.jmb.2006.03.066] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|
240
|
Sousa VP, Pinto JR, Sorenson MM. Ionic interventions that alter the association of troponin C C-domain with the thin filaments of vertebrate striated muscle. Biochim Biophys Acta Gen Subj 2006; 1760:272-82. [PMID: 16300900 DOI: 10.1016/j.bbagen.2005.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/13/2005] [Accepted: 09/27/2005] [Indexed: 11/29/2022]
Abstract
The regulatory complex of vertebrate skeletal muscle integrates information about cross-bridge binding, divalent cations and other intracellular ionic conditions to control activation of muscle contraction. Relatively little is known about the role of the troponin C (TnC) C-domain in the absence of Ca2+. Here, we use a standardized condition for measuring isometric tension in rabbit psoas skinned fibers to track TnC attachment and detachment in the absence of Ca2+ under different conditions of ionic strength, pH and MgATP. In the presence of MgATP and Mg2+, TnC detaches more readily and has a 1.5- to 2-fold lower affinity for the intact thin filament at pH 8 and 250 mM K+ than at pH 6 or in 30 mM K+; changes in affinity are fully reversible. The response to ionic strength is lost when Mg2+ and MgATP are absent, whereas the response to pH persists, suggesting that weaker electrostatic TnC-TnI-TnT interactions can be overridden by strongly bound cross-bridges. In solution, titration of a fluorescent C-domain mutant (F154W TnC) with Mg2+ reveals no significant changes in Mg2+ affinity with pH or ionic strength, suggesting that these parameters influence TnC binding by acting directly on electrostatic forces between TnC and TnI rather than by changing Mg2+ binding to C-domain sites III and IV.
Collapse
Affiliation(s)
- Valeria P Sousa
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | |
Collapse
|
241
|
Blumenschein TMA, Stone DB, Fletterick RJ, Mendelson RA, Sykes BD. Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys J 2006; 90:2436-44. [PMID: 16415057 PMCID: PMC1403181 DOI: 10.1529/biophysj.105.076216] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The determination of crystal structures of the troponin complex (Takeda et al. 2003. Nature. 424:35-41; Vinogradova et al. 2005. Proc. Natl. Acad. Sci. USA. 102:5038-5043) has advanced knowledge of the regulation of muscle contraction at the molecular level. However, there are domains important for actin binding that are not visualized. We present evidence that the C-terminal region of troponin I (TnI residues 135-182) is flexible in solution and has no stable secondary structure. We use NMR spectroscopy to observe the backbone dynamics of skeletal [2H, 13C, 15N]-TnI in the troponin complex in the presence of Ca2+ or EGTA/Mg2+. Residues in this region give stronger signals than the remainder of TnI, and chemical shift index values indicate little secondary structure, suggesting a very flexible region. This is confirmed by NMR relaxation measurements. Unlike TnC and other regions of TnI in the complex, the C-terminal region of TnI is not affected by Ca2+ binding. Relaxation measurements and reduced spectral density analysis are consistent with the C-terminal region of TnI being a tethered domain connected to the rest of the troponin complex by a flexible linker, residues 137-146, followed by a collapsed region with at most nascent secondary structure.
Collapse
Affiliation(s)
- Tharin M A Blumenschein
- CIHR Group in Structure and Function and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
242
|
Pirani A, Vinogradova MV, Curmi PMG, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W. An atomic model of the thin filament in the relaxed and Ca2+-activated states. J Mol Biol 2006; 357:707-17. [PMID: 16469331 DOI: 10.1016/j.jmb.2005.12.050] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/13/2005] [Indexed: 11/30/2022]
Abstract
Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position.
Collapse
Affiliation(s)
- Alnoor Pirani
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Aihara T, Ueki S, Nakamura M, Arata T. Calcium-dependent movement of troponin I between troponin C and actin as revealed by spin-labeling EPR. Biochem Biophys Res Commun 2005; 340:462-8. [PMID: 16375855 DOI: 10.1016/j.bbrc.2005.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 12/05/2005] [Indexed: 11/16/2022]
Abstract
We measured EPR spectra from a spin label on the Cys133 residue of troponin I (TnI) to identify Ca(2+)-induced structural states, based on sensitivity of spin-label mobility to flexibility and tertiary contact of a polypeptide. Spectrum from Tn complexes in the -Ca(2+) state showed that Cys133 was located at a flexible polypeptide segment (rotational correlation time tau=1.9ns) that was free from TnC. Spectra of both Tn complexes alone and those reconstituted into the thin filaments in the +Ca(2+) state showed that Cys133 existed on a stable segment (tau=4.8ns) held by TnC. Spectra of reconstituted thin filaments (-Ca(2+) state) revealed that slow mobility (tau=45ns) was due to tertiary contact of Cys133 with actin, because the same slow mobility was found for TnI-actin and TnI-tropomyosin-actin filaments lacking TnC, T or tropomyosin. We propose that the Cys133 region dissociates from TnC and attaches to the actin surface on the thin filaments, causing muscle relaxation at low Ca(2+) concentrations.
Collapse
Affiliation(s)
- Tomoki Aihara
- Department of Biological Sciences, Graduate School of Science, Osaka University and CREST/JST, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
244
|
Yumoto F, Lu QW, Morimoto S, Tanaka H, Kono N, Nagata K, Ojima T, Takahashi-Yanaga F, Miwa Y, Sasaguri T, Nishita K, Tanokura M, Ohtsuki I. Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochem Biophys Res Commun 2005; 338:1519-26. [PMID: 16288990 DOI: 10.1016/j.bbrc.2005.10.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 10/20/2005] [Indexed: 02/05/2023]
Abstract
Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca2+-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca2+-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca2+ sensitivity of cardiac myofilament, but more severe change in Ca2+ sensitivity is associated with the clinical phenotype of RCM.
Collapse
Affiliation(s)
- Fumiaki Yumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Bell MG, Lankford EB, Gonye GE, Ellis-Davies GCR, Martyn DA, Regnier M, Barsotti RJ. Kinetics of cardiac thin-filament activation probed by fluorescence polarization of rhodamine-labeled troponin C in skinned guinea pig trabeculae. Biophys J 2005; 90:531-43. [PMID: 16258047 PMCID: PMC1367058 DOI: 10.1529/biophysj.105.072769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A genetically engineered cardiac TnC mutant labeled at Cys-84 with tetramethylrhodamine-5-iodoacetamide dihydroiodide was passively exchanged for the endogenous form in skinned guinea pig trabeculae. The extent of exchange averaged nearly 70%, quantified by protein microarray of individual trabeculae. The uniformity of its distribution was verified by confocal microscopy. Fluorescence polarization, giving probe angle and its dispersion relative to the fiber long axis, was monitored simultaneously with isometric tension. Probe angle reflects underlying cTnC orientation. In steady-state experiments, rigor cross-bridges and Ca2+ with vanadate to inhibit cross-bridge formation produce a similar change in probe orientation as that observed with cycling cross-bridges (no Vi). Changes in probe angle were found at [Ca2+] well below those required to generate tension. Cross-bridges increased the Ca2+ dependence of angle change (cooperativity). Strong cross-bridge formation enhanced Ca2+ sensitivity and was required for full change in probe position. At submaximal [Ca2+], the thin filament regulatory system may act in a coordinated fashion, with the probe orientation of Ca2+-bound cTnC significantly affected by Ca2+ binding at neighboring regulatory units. The time course of the probe angle change and tension after photolytic release [Ca2+] by laser photolysis of NP-EGTA was Ca2+ sensitive and biphasic: a rapid component approximately 10 times faster than that of tension and a slower rate similar to that of tension. The fast component likely represents steps closely associated with Ca2+ binding to site II of cTnC, whereas the slow component may arise from cross-bridge feedback. These results suggest that the thin filament activation rate does not limit the tension time course in cardiac muscle.
Collapse
Affiliation(s)
- Marcus G Bell
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA
| | | | | | | | | | | | | |
Collapse
|
246
|
Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 2005; 352:178-201. [PMID: 16061251 DOI: 10.1016/j.jmb.2005.06.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/17/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Troponin and tropomyosin on actin filaments constitute a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle through a series of conformational changes within the actin-based thin filament. Troponin consists of three subunits: an inhibitory subunit (TnI), a Ca2+-binding subunit (TnC), and a tropomyosin-binding subunit (TnT). Ca2+-binding to TnC is believed to weaken interactions between troponin and actin, and triggers a large conformational change of the troponin complex. However, the atomic details of the actin-binding sites of troponin have not been determined. Ternary troponin complexes have been reconstituted from recombinant chicken skeletal TnI, TnC, and TnT2 (the C-terminal region of TnT), among which only TnI was uniformly labelled with 15N and/or 13C. By applying NMR spectroscopy, the solution structures of a "mobile" actin-binding domain (approximately 6.1 kDa) in the troponin ternary complex (approximately 52 kDa) were determined. The mobile domain appears to tumble independently of the core domain of troponin. Ca2+-induced changes in the chemical shift and line shape suggested that its tumbling was more restricted at high Ca2+ concentrations. The atomic details of interactions between actin and the mobile domain of troponin were defined by docking the mobile domain into the cryo-electron microscopy (cryo-EM) density map of thin filament at low [Ca2+]. This allowed the determination of the 3D position of residue 133 of TnI, which has been an important landmark to incorporate the available information. This enabled unique docking of the entire globular head region of troponin into the thin filament cryo-EM map at a low Ca2+ concentration. The resultant atomic model suggests that troponin interacted electrostatically with actin and caused the shift of tropomyosin to achieve muscle relaxation. An important feature is that the coiled-coil region of troponin pushed tropomyosin at a low Ca2+ concentration. Moreover, the relationship between myosin and the mobile domain on actin filaments suggests that the latter works as a fail-safe latch.
Collapse
Affiliation(s)
- Kenji Murakami
- Department of Biosciences, School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551, Japan
| | | | | | | | | | | |
Collapse
|
247
|
Chaudhuri T, Mukherjea M, Sachdev S, Randall JD, Sarkar S. Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. J Mol Biol 2005; 352:58-71. [PMID: 16081096 DOI: 10.1016/j.jmb.2005.06.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/17/2005] [Accepted: 06/29/2005] [Indexed: 12/01/2022]
Abstract
In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms. To define the functional role of the f and alpha/beta exons, we constructed combinations of TnT cDNAs from a single human fetal fast skeletal TnTbeta cDNA clone in order to circumvent the problem of N-terminal sequence heterogeneity present in wild-type TnT isoforms, irrespective of the stage of development. Nucleotide sequences of these constructs, viz. TnTalpha, TnTalpha + f, TnTbeta - f and TnTbeta are identical, except for the presence or absence of the alpha or beta and f exons. Our results, using the recombinant TnT isoforms in different functional in vitro assays, show that the presence of the f peptide in the N-terminal T1 region of TnT, has a strong inhibitory effect on binary interactions between TnT and other thin filament proteins, TnI, TnC and Tm. The presence of the f peptide led to reduced Ca2+-dependent ATPase activity in a reconstituted thin filament, whereas the contribution of the alpha and beta peptides in the biological activity of TnT was primarily modulatory. These results indicate that the f peptide confers an inhibitory effect on the biological function of fast skeletal TnT and this can be correlated with changes in the Ca2+ regulation associated with development in fast skeletal muscle.
Collapse
Affiliation(s)
- Tathagata Chaudhuri
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
248
|
Heeley DH, Belknap B, White HD. Maximal activation of skeletal muscle thin filaments requires both rigor myosin S1 and calcium. J Biol Chem 2005; 281:668-76. [PMID: 16186114 DOI: 10.1074/jbc.m505549200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation by calcium and rigor-bound myosin-S1 of the rate of acceleration of 2'-deoxy-3'-O-(N-methylanthraniloyl)ADP (mdADP) release from myosin-mdADP-P(i) by skeletal muscle thin filaments (reconstituted from actin-tropomyosin-troponin) was measured using double mixing stopped-flow fluorescence with the nucleotide substrate 2'-deoxy-3'-O-(N-methylanthraniloyl). The predominant mechanism of regulation is the acceleration of product dissociation by a factor of approximately 200 by thin filaments in the fully activated conformation (bound calcium and rigor S1) relative to the inhibited conformation (no bound calcium or rigor S1). In contrast, only 2-3-fold regulation is due to a change in actin affinity such as would be expected by "steric blocking" of the myosin binding site of the thin filament by tropomyosin. The binding of one ligand (either calcium or rigor-S1) produces partial activation of the rate of product dissociation, but the binding of both is required to maximally accelerate product dissociation to a rate similar to that obtained with F-actin in the absence of regulatory proteins. The data support an allosteric regulation model in which the binding of either calcium or rigor S1 alone to the thin filament shifts the equilibrium in favor of the active conformation, but full activation requires binding of both ligands.
Collapse
Affiliation(s)
- David H Heeley
- Department of Biochemistry, Memorial University, St. John's, Newfoundland A1B 3X9 Canada
| | | | | |
Collapse
|
249
|
Tanaka H, Takeya Y, Doi T, Yumoto F, Tanokura M, Ohtsuki I, Nishita K, Ojima T. Comparative studies on the functional roles of N- and C-terminal regions of molluskan and vertebrate troponin-I. FEBS J 2005; 272:4475-86. [PMID: 16128816 DOI: 10.1111/j.1742-4658.2005.04866.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vertebrate troponin regulates muscle contraction through alternative binding of the C-terminal region of the inhibitory subunit, troponin-I (TnI), to actin or troponin-C (TnC) in a Ca(2+)-dependent manner. To elucidate the molecular mechanisms of this regulation by molluskan troponin, we compared the functional properties of the recombinant fragments of Akazara scallop TnI and rabbit fast skeletal TnI. The C-terminal fragment of Akazara scallop TnI (ATnI(232-292)), which contains the inhibitory region (residues 104-115 of rabbit TnI) and the regulatory TnC-binding site (residues 116-131), bound actin-tropomyosin and inhibited actomyosin-tropomyosin Mg-ATPase. However, it did not interact with TnC, even in the presence of Ca(2+). These results indicated that the mechanism involved in the alternative binding of this region was not observed in molluskan troponin. On the other hand, ATnI(130-252), which contains the structural TnC-binding site (residues 1-30 of rabbit TnI) and the inhibitory region, bound strongly to both actin and TnC. Moreover, the ternary complex consisting of this fragment, troponin-T, and TnC activated the ATPase in a Ca(2+)-dependent manner almost as effectively as intact Akazara scallop troponin. Therefore, Akazara scallop troponin regulates the contraction through the activating mechanisms that involve the region spanning from the structural TnC-binding site to the inhibitory region of TnI. Together with the observation that corresponding rabbit TnI-fragment (RTnI(1-116)) shows similar activating effects, these findings suggest the importance of the TnI N-terminal region not only for maintaining the structural integrity of troponin complex but also for Ca(2+)-dependent activation.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Laboratory of Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Hernandez OM, Szczesna-Cordary D, Knollmann BC, Miller T, Bell M, Zhao J, Sirenko SG, Diaz Z, Guzman G, Xu Y, Wang Y, Kerrick WGL, Potter JD. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy affect muscle contraction in transgenic mice and reconstituted human cardiac fibers. J Biol Chem 2005; 280:37183-94. [PMID: 16115869 DOI: 10.1074/jbc.m508114200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the physiological effects of the troponin T (TnT) F110I and R278C mutations associated with familial hypertrophic cardiomyopathy (FHC) in humans. Three to four-month-old transgenic (Tg) mice expressing F110I-TnT and R278C-TnT did not develop significant hypertrophy or ventricular fibrosis even after chronic exercise challenge. The F110I mutation impaired acute exercise tolerance, whereas R278C did not. Skinned papillary muscle fibers from transgenic mice expressing F110I-TnT demonstrated increased Ca(2+) sensitivity of force and ATPase activity, and likewise an increased Ca(2+) sensitivity of force was observed in F110I-TnT-reconstituted human cardiac muscle preparations. In contrast, no changes in force or the ATPase-pCa dependencies were observed in transgenic R278C fibers or in human fibers reconstituted with the R278C-TnT mutant. The maximal level of force development was dramatically decreased in both transgenic mice. However, the maximal ATPase was not different (R278C-TnT) or only slightly less (F110I-TnT) than that of non-Tg and WT-Tg littermates. Consequently, their ratios of ATPase/force (energy cost) at all Ca(2+) concentrations were dramatically higher compared with non-Tg and WT-Tg fibers. This increase in energy cost most likely results from a decrease in force per myosin cross-bridge, because forcing all cross-bridges into the force generating state by substitution of MgADP for MgATP in maximum contracting solutions resulted in the same increase in maximal force (15%) in all transgenic and non-transgenic preparations. The combination of increased Ca(2+) sensitivity and energy cost in the F110I hearts may be responsible for the greater severity of this phenotype compared with the R278C mutation.
Collapse
Affiliation(s)
- Olga M Hernandez
- Department of Pharmacology, Georgetown University Medical Center, Washington, D. C. 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|