201
|
Periodontal inflammation recruits distant metastatic breast cancer cells by increasing myeloid-derived suppressor cells. Oncogene 2019; 39:1543-1556. [PMID: 31685946 PMCID: PMC7018659 DOI: 10.1038/s41388-019-1084-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023]
Abstract
Periodontal diseases can lead to chronic inflammation affecting the integrity of the tooth supporting tissues. Recently, a striking association has been made between periodontal diseases and primary cancers in the absence of a mechanistic understanding. Here we address the effect of periodontal inflammation (PI) on tumor progression, metastasis, and possible underlining mechanisms. We show that an experimental model of PI in mice can promote lymph node (LN) micrometastasis, as well as head and neck metastasis of 4T1 breast cancer cells, both in early and late stages of cancer progression. The cervical LNs had a greater tumor burden and infiltration of MDSC and M2 macrophages compared with LNs at other sites. Pyroptosis and the resultant IL-1β production were detected in patients with PI, mirrored in mouse models. Anakinra, IL-1 receptor antagonist, limited metastasis, and MDSC recruitment at early stages of tumor progression, but failed to reverse established metastatic tumors. PI and the resulting production of IL-1β was found to promote CCL5, CXCL12, CCL2, and CXCL5 expression. These chemokines recruit MDSC and macrophages, finally enabling the generation of a premetastatic niche in the inflammatory site. These findings support the idea that periodontal inflammation promotes metastasis of breast cancer by recruiting MDSC in part by pyroptosis-induced IL-1β generation and downstream CCL2, CCL5, and CXCL5 signaling in the early steps of metastasis. These studies define the role for IL-1β in the metastatic progression of breast cancer and highlight the need to control PI, a pervasive inflammatory condition in older patients.
Collapse
|
202
|
Kim HS, Jang JM, Yun SY, Zhou D, Piao Y, Ha HC, Back MJ, Shin IC, Kim DK. Effect of Robinia pseudoacacia Leaf Extract on Interleukin-1β-mediated Tumor Angiogenesis. In Vivo 2019; 33:1901-1910. [PMID: 31662518 DOI: 10.21873/invivo.11684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Interleukin (IL)-1β is a pro-inflammatory cytokine that has recently been established as a stimulator of angiogenesis via regulation of proangiogenic factor expression in the tumor microenvironment. This study aimed to demonstrate the inhibitory effects of Robinia pseudoacacia leaf extract (RP) on IL-1β-mediated tumor angiogenesis. MATERIALS AND METHODS Secreted embryonic alkaline phosphatase (SEAP) reporter gene assay, ex vivo and in vitro tube formation assay, western blot, and quantitative PCR were used to analyze the inhibitory effect of RP on IL-1β-mediated angiogenesis. RESULTS RP inhibited secretion of SEAP, blocked IL-1β signaling, and inhibited IL-1β-mediated angiogenesis in ex vivo and in vitro assays. RP inhibited nuclear translocation of NF-ĸB by suppressing phosphorylation of IL-1β signaling protein kinases and inhibited mRNA expression of IL-1β-induced pro-angiogenic factors including VEGFA, FGF2, ICAM1, CXCL8, and IL6. CONCLUSION RP suppressed IL-1β-mediated angiogenesis and, thus, could be a promising agent in anticancer therapy.
Collapse
Affiliation(s)
- Hee Soo Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
203
|
Pfalzer AC, Crott JW, Koh GY, Smith DE, Garcia PE, Mason JB. Interleukin-1 Signaling Mediates Obesity-Promoted Elevations in Inflammatory Cytokines, Wnt Activation, and Epithelial Proliferation in the Mouse Colon. J Interferon Cytokine Res 2019; 38:445-451. [PMID: 30328795 DOI: 10.1089/jir.2017.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity is a prominent risk factor for colorectal cancer (CRC). One mechanism by which obesity promotes the development of CRC is by generating a chronic, low-grade state of colonic inflammation. Interleukin-1β (IL-1β), a proinflammatory cytokine often elevated in obesity, is known to activate several procarcinogenic signaling pathways that are implicated in colonic carcinogenesis. We therefore sought to define the role of IL-1β in mediating some of the early biochemical and molecular events leading up to obesity-promoted CRC. Twenty-five wild-type (WT) C57BL/6J mice and 24 lacking a functional IL-1 receptor (IL1R-/-) were each randomized to either low-fat or high-fat diets, resulting in lean and obese mice. Compared to WT lean controls, WT obese mice displayed 30%-80% greater concentrations of IL-1β and tumor necrosis factor-α (TNF-α) in the colonic mucosa (IL-1β: P = 0.04; TNF-α: P < 0.05), activation of the Wnt signaling cascade [evidenced by a 2-fold increase in colonic crypt cells displaying intranuclear β-catenin (P < 0.03)], and a significant expansion of the proliferation zone of the colonic crypt (P < 0.04). These obesity-induced alterations in colonic cytokines, Wnt signaling, and proliferation were absent in the obese IL1R-/- mice. In the absence of IL-1 signaling, obesity-induced elevations of colonic IL-1β, TNF-α, Wnt activation, and enhanced epithelial proliferation no longer occur. These observations underscore the important mechanistic roles that IL-1 signaling appears to play in mediating the procancerous effects of obesity in the colon, thereby identifying a potential target for future strategies aimed at chemoprevention.
Collapse
Affiliation(s)
- Anna C Pfalzer
- 1 Vitamins and Carcinogenesis Laboratory , Boston, Massachusetts.,2 Friedman School of Nutritional Science and Policy, Tufts University , Boston, Massachusetts
| | - Jimmy W Crott
- 1 Vitamins and Carcinogenesis Laboratory , Boston, Massachusetts.,2 Friedman School of Nutritional Science and Policy, Tufts University , Boston, Massachusetts
| | - Gar Yee Koh
- 1 Vitamins and Carcinogenesis Laboratory , Boston, Massachusetts.,2 Friedman School of Nutritional Science and Policy, Tufts University , Boston, Massachusetts
| | - Donald E Smith
- 3 Comparative Biology Unit, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University , Boston, Massachusetts
| | - Paloma E Garcia
- 1 Vitamins and Carcinogenesis Laboratory , Boston, Massachusetts
| | - Joel B Mason
- 1 Vitamins and Carcinogenesis Laboratory , Boston, Massachusetts.,2 Friedman School of Nutritional Science and Policy, Tufts University , Boston, Massachusetts.,4 Department of Gastroenterology, Tufts University School of Medicine , Boston, Massachusetts
| |
Collapse
|
204
|
Chen S, Zhang N, Shao J, Wang T, Wang X. A novel gene signature combination improves the prediction of overall survival in urinary bladder cancer. J Cancer 2019; 10:5744-5753. [PMID: 31737111 PMCID: PMC6843883 DOI: 10.7150/jca.30307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Bladder carcinoma is a clinical heterogeneous disease, which is with significant variability of the prognosis and high risk of death. This revealed prominently the need to identify high-efficiency cancer characteristics to predict clinical prognosis. Methods: Gene expression profiles of 93 bladder tumor patients from Gene Expression Omnibus data sets was performed in this study, along with 408 bladder tumor patients retrieved from The Cancer Genome Atlas database. The relationship of gene signature and overall survival was analyzed in the training cohort (n = 46). The validation for that was performed in an internal validation cohort (n = 47) and an external validation cohort (n = 408). Results: Four genes (TMPRSS11E, SCEL, KRT78, TMEM185A) were identified by univariable and multivariable Cox regression analysis. According to a risk score on the bases on the four-gene signature, we grouped these patients in high-risk group and low-risk group with significantly different overall survival in the training series and successfully validated it in both the internal and external validation cohorts. Subsequent studies demonstrated that the four-gene expression risk score was independent of radical cystectomy stage, chemotherapy and lymph node status. Higher rates of FAT4 mutation and MACF1 mutation in bladder tumors with high risk score were found compared with tumors with low risk score. Gene set enrichment analysis revealed high-risk score was associated with some tumor progression and recurrence associated pathways. Conclusions: This four-gene risk score might have potential clinical implications in the selection of high-risk urinary bladder cancer patients for aggressive therapy. The selected four genes might become potential therapeutic targets and diagnostic markers for urinary bladder cancer.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialiang Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
205
|
Zhao X, Nedvetsky P, Stanchi F, Vion AC, Popp O, Zühlke K, Dittmar G, Klussmann E, Gerhardt H. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. eLife 2019; 8:e46380. [PMID: 31580256 PMCID: PMC6797479 DOI: 10.7554/elife.46380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1β at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
| | - Pavel Nedvetsky
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
- Medical Cell Biology, Medical Clinic DUniversity Hospital MünsterMünsterGermany
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
| | - Anne-Clemence Vion
- Integrative Vascular Biology LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- INSERM UMR-970, Paris Cardiovascular Research CenterParis Descartes UniversityParisFrance
| | - Oliver Popp
- ProteomicsMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Kerstin Zühlke
- Anchored Signaling LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Gunnar Dittmar
- ProteomicsMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- CRP Santé · Department of OncologyLIH Luxembourg Institute of HealthLuxembourgLuxembourg
| | - Enno Klussmann
- Anchored Signaling LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Center for Cardiovascular Research)BerlinGermany
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
- Integrative Vascular Biology LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Center for Cardiovascular Research)BerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| |
Collapse
|
206
|
Koohini Z, Koohini Z, Teimourian S. Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment. Pathol Oncol Res 2019; 25:1285-1293. [PMID: 30610466 DOI: 10.1007/s12253-018-00568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Angiogenesis and metastasis are two critical steps for cancer cells survival and migration. The microenvironment of tumor sphere induces new blood vessels formation for enhancing tumor mass. Preexisting capillaries and postcapillary venules in tumors bring about new blood vessels. ROBO1-ROBO4 are transmembrane receptors family which act as guidance molecules of the nervous system. The SLITs family is secreted glycoproteins that bind to these receptors. SLIT-ROBO signaling pathway plays an important role in neurogenesis and immune response. Linkage between ROBOs and their ligands (SLITs) induce chemorepllent signal for regulation of axon guidance and leukocyte cell migration, recent finding shows that it is also involved in endothelial cell migration and angiogenesis in various type of cancers. In this article we review recent finding of SLIT-ROBO pathway in angiogenesis and metastasis.
Collapse
Affiliation(s)
- Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
207
|
Exercise training, circulating cytokine levels and immune function in cancer survivors: A meta-analysis. Brain Behav Immun 2019; 81:92-104. [PMID: 31454519 DOI: 10.1016/j.bbi.2019.08.187] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Anti-cancer therapies lead to chronic non-resolving inflammation and reduced immune function. One potential therapy is exercise training, but the effectiveness of these interventions to improve immune-related outcomes, the gaps in the literature, and recommendations to progress the field need to be determined. OBJECTIVES (1) to conduct separate meta-analyses in cancer survivors to determine the effects of exercise training on pro- and anti-inflammatory markers, and immune cell proportions and function; and (2) to perform subgroup analyses to determine whether exercise modality, cancer type, and specific markers help to explain heterogeneity in each meta-analysis. DATA SOURCES Electronic databases (PubMed/MEDLINE, EMBASE, CENTRAL, and CINAHL) from inception to March 2018. The reference lists of eligible articles and relevant reviews were also checked. STUDY SELECTION Inclusion criteria were adult cancer survivors from randomized controlled trials performing structured exercise intervention (aerobic, resistance or combined training or Tai Chi/yoga) compared to usual care control group and included pro-inflammatory, anti-inflammatory, and/or immune cell outcomes. APPRAISAL AND SYNTHESIS METHODS A total of 5349 potentially eligible articles were identified, of which 26 articles (27 trials) met the inclusion criteria. Effect sizes were calculated as standardized mean differences (SMD), where <0.2 was defined as trivial, 0.2-0.3 as small, 0.4-0.8 as moderate, and >0.8 as a large effect. RESULTS Exercise training decreased pro-inflammatory markers (SMD: -0.2, 95% CI: -0.4, -0.1, p < 0.001). Sub-group analysis for the pro-inflammatory markers indicated that combined aerobic and resistance training had the greatest effect (SMD: -0.3, 95% CI: -0.5, -1.9, p < 0.001), that prostate (SMD: -0.5, 95% CI: -0.8, 0.1, p = 0.004) and breast cancer populations were most responsive (SMD: -0.2, 95% CI: -0.3, -0.1, p = 0.001), and that C-reactive protein (SMD: -0.5, 95% CI: -0.9, -0.06, p = 0.025) and tumor necrosis factor (SMD: -0.3, 95% CI: -0.5, -0.06, p = 0.004) were the most sensitive to change. Exercise training tended to decrease anti-inflammatory markers (p = 0.072) but had no effect on natural killer or natural killer T cell proportions or cytotoxic activity. CONCLUSIONS Exercise training reduces pro-inflammatory markers in cancer survivors, with the strongest evidence for combined training and for prostate and breast cancer survivors. Further research is warranted to determine if these changes are clinically relevant or are associated with improvements in symptoms. To strengthen future research, focusing on novel immune populations that include functional parameters and standardized reporting of key immune outcomes is recommended.
Collapse
|
208
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
209
|
Elechalawar CK, Bhattacharya D, Ahmed MT, Gora H, Sridharan K, Chaturbedy P, Sinha SH, Chandra Sekhar Jaggarapu MM, Narayan KP, Chakravarty S, Eswaramoorthy M, Kundu TK, Banerjee R. Dual targeting of folate receptor-expressing glioma tumor-associated macrophages and epithelial cells in the brain using a carbon nanosphere-cationic folate nanoconjugate. NANOSCALE ADVANCES 2019; 1:3555-3567. [PMID: 36133563 PMCID: PMC9417975 DOI: 10.1039/c9na00056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/22/2019] [Indexed: 05/21/2023]
Abstract
Glioblastoma multiforme (GBM), the highly invasive form of glioma, exhibits the highest mortality in patients with brain malignancies. Increasing glioma patients' survivability is challenging, as targeting only tumor-associated malignant cells would not reduce the overall aggressiveness of the tumor mass. This is due to the inadequacy in countering pro-proliferative, invasive and metastatic factors released by tumor-mass associated macrophages (TAMs). Hence, strategically, dual targeting both tumor cells and TAMs is necessary for effective glioma treatment and increased survivability. Conventional FR-targeting systems can easily target cancer cells that overtly express folate receptors (FRs). However, FRs are expressed only moderately in both glioma cells and in TAMs. Hence, it is more challenging to coordinate dual targeting of glioma cells and TAMs with lower levels of FR expression. A recently developed carbon nanosphere (CSP) with effective blood-brain barrier (BBB) penetrability was modified with a new folic acid-cationic lipid conjugate (F8) as a targeting ligand. The uniqueness of the cationic lipid-folate conjugate is that it stably associates with the negatively charged CSP surface at about >22 mol% surface concentration, a concentration at least 5-fold higher than what is achieved for conventional FR-targeting delivery systems. This enabled dual uptake of the CSP on TAMs and tumor cells via FRs. A doxorubicin-associated FR-targeting formulation (CFD), in an orthotopic glioma model and in a glioma subcutaneous model, induced the maximum anticancer effect with enhanced average mice survivability twice that of untreated mice and without any systemic liver toxicity. Additionally, we observed a significant decrease of TAM-released pro-aggressive factors, TGF-β, STAT3, invasion and migration related sICAM-1, and other cytokines indicating anti-TAM activity of the CFD. Taken together, we principally devised, to the best of our knowledge, the first FR-targeting nano-delivery system for targeting brain-associated TAMs and tumor cells as an efficient glioma therapeutic.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Dwaipayan Bhattacharya
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad 500078 India
| | - Mohammed Tanveer Ahmed
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Halley Gora
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Kathyayani Sridharan
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Piyush Chaturbedy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Sarmistha Halder Sinha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Madhan Mohan Chandra Sekhar Jaggarapu
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad 500078 India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Tapas Kumar Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| |
Collapse
|
210
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|
211
|
Othman N, Jamal R, Abu N. Cancer-Derived Exosomes as Effectors of Key Inflammation-Related Players. Front Immunol 2019; 10:2103. [PMID: 31555295 PMCID: PMC6737008 DOI: 10.3389/fimmu.2019.02103] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes, a category of small lipid bilayer extracellular vesicles that are naturally secreted by many cells (both healthy and diseased), carry cargo made up of proteins, lipids, DNAs, and RNAs; all of which are functional when transferred to their recipient cells. Numerous studies have demonstrated the powerful role that exosomes play in the mediation of cell-to-cell communication to induce a pro-tumoral environment to encourage tumor progression and survival. Recently, considerable interest has developed in regard to the role that exosomes play in immunity; with studies demonstrating the ability of exosomes to either metabolically alter immune players such as dendritic cells, T cells, macrophages, and natural killer cells. In this review, we summarize the recent literature on the function of exosomes in regulating a key process that has long been associated with the progression of cancer-inflammation and immunity.
Collapse
Affiliation(s)
- Norahayu Othman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| |
Collapse
|
212
|
Xiang W, Li Z, Lin Z, You K, Pan M, Zheng G. Association between indel polymorphism (rs145204276) in the promoter region of lncRNA GAS5 and the risk of febrile convulsion. J Cell Physiol 2019; 234:14526-14534. [PMID: 30656683 DOI: 10.1002/jcp.28158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study aimed to explore the regulatory relationship between growth arrest special 5 (GAS5) and interleukin-1β (IL-1β) implicated in the development of febrile seizure (FS). METHOD The presence of FS and the genotype of GAS5 were used as two different indicators to divide the 50 newborn babies, recruited in this study, into different groups. The potential regulatory relationship among GAS5, miR-21, and IL-1β was identified by measuring their expression using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry assays among different sample groups. Computational analyses and luciferase assays were also conducted to verify the interaction between GAS5, miR-21, and IL-1β. RESULT GAS5 and IL-1β expression was upregulated in cells collected from FS patients or genotyped as INS/DEL and DEL/DEL, whereas the expression of miR-21 was decreased in above samples, indicating a negative relationship between miR-21 and GAS5/IL-1β. Results of the computational analysis showed that miR-21 directly bound to and increased the expression of GAS5, whereas the expression of IL-1β was suppressed by miR-21. In the presence of GAS5, the expression of miR-21 was lowered, whereas the expression of IL-1β was increased. CONCLUSION The results obtained in this study supported the conclusion that GAS5 negatively regulated the expression of miR-21, which in turn negatively regulated the expression IL-1β. Therefore, the overexpression of GAS5 could decrease the magnitude of FS.
Collapse
Affiliation(s)
- Wenna Xiang
- Department of Pediatrics, People's Hospital of Ruian, Ruian, Zhejiang, People's Republic of China
| | - Zhishu Li
- Department of Pediatrics, People's Hospital of Ruian, Ruian, Zhejiang, People's Republic of China
| | - Zongze Lin
- Department of Pediatrics, People's Hospital of Ruian, Ruian, Zhejiang, People's Republic of China
| | - Keyou You
- Department of Pediatrics, People's Hospital of Ruian, Ruian, Zhejiang, People's Republic of China
| | - Minli Pan
- Department of Pediatrics, People's Hospital of Ruian, Ruian, Zhejiang, People's Republic of China
| | - Ge Zheng
- Department of Pediatrics, People's Hospital of Ruian, Ruian, Zhejiang, People's Republic of China
| |
Collapse
|
213
|
Hoeng J, Maeder S, Vanscheeuwijck P, Peitsch MC. Assessing the lung cancer risk reduction potential of candidate modified risk tobacco products. Intern Emerg Med 2019; 14:821-834. [PMID: 30767158 PMCID: PMC6722152 DOI: 10.1007/s11739-019-02045-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Smoking is the major cause of lung cancer. While the risk of lung cancer increases with the number of cigarettes smoked and the duration of smoking, it also decreases upon smoking cessation. The development of candidate modified risk tobacco products (cMRTP) is aimed at providing smokers who will not quit with alternatives to cigarettes that present less risk of harm and smoking-related disease. It is necessary to assess the risk reduction potential of cMRTPs, including their potential to reduce the risk of lung cancer. Assessing the lung cancer risk reduction potential of cMRTPs is hampered by (i) the absence of clinical risk markers that are predictive of future lung cancer development, (ii) the latency of lung cancer manifestation (decades of smoking), and (iii) the slow reduction in excess risk upon cessation and a fortiori upon switching to a cMRTP. It is, therefore, likely that only long-term epidemiology will provide definitive answers to this question and allow to first verify that a cMRTP reduces the risk of lung cancer and if it does, to quantify the reduction in excess lung cancer risk associated with a cMRTP. For this to be possible, the cMRTP would need to be available in the market and used exclusively by a large portion of current smokers. Here, we propose that a mechanism-based approach represents a solid alternative to show in a pre-market setting that switching to a cMRTP is likely to significantly reduce the risk of lung cancer. This approach is based on the causal chain of events that leads from smoking to disease and leverages both non-clinical and clinical studies as well as the principles of systems toxicology. We also discuss several important challenges inherent to the assessment of cMRTPs as well as key aspects regarding product use behavior.
Collapse
Affiliation(s)
- Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Manuel C. Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
214
|
Matamoros JA, da Silva MIF, de Moura PMMF, Leitão MDCG, Coimbra EC. Reduced Expression of IL-1β and IL-18 Proinflammatory Interleukins Increases the Risk of Developing Cervical Cancer. Asian Pac J Cancer Prev 2019; 20:2715-2721. [PMID: 31554368 PMCID: PMC6976845 DOI: 10.31557/apjcp.2019.20.9.2715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The objective of this study was to analyze the gene expression profile of the proinflammatory interleukins, (IL-1β and IL-18) in patients with premalignant lesions and cervical cancer. Methods: Total IL-1β and IL-18 mRNA was quantified by qPCR to obtain the expression data in cervical tissues. A total of 74 cervical biopsies were obtained from women undergoing a colposcopy. The samples were divided into: normal (19), low level lesions (LSIL) or NIC I (17), high level lesions (HSIL) or CIN II and CIN III (29) and cancer (9). The normal cervical tissue samples were included as controls. The OR and 95% CI were calculated for the determination of the risk of progression between each type of lesion and cancer using logistic regression. Results: The results showed that an increase in the risk of progression of pre-neoplastic lesions to cancer was between 2.5 and 2.08 times higher in women with lower IL-1β and IL-18 expression, respectively. Conclusions: This study provided evidence that IL-1β and IL-18 are potential biomarkers that can be explored in further studies for monitoring the evolution of pre-neoplastic lesions and avoiding overtreatment or undertreatment of the patients.
Collapse
Affiliation(s)
- Jose Anibal Matamoros
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| | | | | | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Biological Sciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Eliane Campos Coimbra
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| |
Collapse
|
215
|
Abstract
Pancreatic cancer is one of the most lethal diseases. In pancreatic cancer development and progression, genetic (gene mutations and activation of oncogenes) and environmental factors (smoking, alcohol consumption, type 2 diabetes mellitus, obesity) play an essential role. Recently, molecular studies revealed that dysbiosis of microbiota also has influence on cancer development. Research indicates that bacteria and viruses can lead to chronic inflammation, antiapoptotic changes, cell survival, and cell invasion. This review presents bacteria and viruses oncogenic for the pancreas. Possible mechanisms of carcinogenic action are also described.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, Poznań 61-712, Poland.
| |
Collapse
|
216
|
Zhang X, Hwang YS. Cancer-associated fibroblast stimulates cancer cell invasion in an interleukin-1 receptor (IL-1R)-dependent manner. Oncol Lett 2019; 18:4645-4650. [PMID: 31611973 PMCID: PMC6781746 DOI: 10.3892/ol.2019.10784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor microenvironment serves an important role in tumor growth and metastasis. Cancer cells can promote growth and malignancy by altering the surrounding stroma. Cancer-associated fibroblast (CAF) are an abundant cell type present within the tumor microenvironment and provide tumorigenic features by secreting cytokines. In the current study, the CAF-mediated invasion of oral squamous cell carcinoma (OSCC) was investigated and the associated mechanisms were elucidated. Cancer invasion was estimated using a Matrigel-coated Transwell chamber and FITC-gelatin matrix. To verify the effect of the tumor microenvironment, conditioned media (CM) from normal fibroblast (NF) and CAFs were prepared. An ELISA was performed to estimate the level of IL-1β. A proteome profiler human protease array was performed to verify the proteases affected by stimulation with CM, from CAF. Recombinant IL-1β protein increased the invasion of OSCC cells. IL-1β expression was higher in CAF than NF. CM from CAF (CM-CAF) increased cancer invasion and FITC-gelatin matrix degradation. The invasive capacity provided by CAF was abrogated by an IL-1 receptor (IL-1R) antagonist. Additionally, CM-CAF increased the secretion of ADAM 9 and Kallikrein 11 from OSCC cells. The invasion activity by CM-CAF was partially abrogated by the neutralization of ADAM 9 or Kallikrein 11. In conclusion, by providing stromal factor, CAFs were a critical inducer of OSCC invasion, and CAF secretes the required amount of IL-1β to increase cancer invasion activity. The invasive capacity of CAF was identified to be IL-1R-dependent. ADAM 9 and Kallikrein 11 were influencing factors involved in the increase of CAF-mediated cancer invasion.
Collapse
Affiliation(s)
- Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China.,Oral Cancer Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam, Gyunggi-Do 13135, Republic of Korea
| |
Collapse
|
217
|
Xu Z, Zheng X, Zheng J. Tumor-derived exosomes educate fibroblasts to promote salivary adenoid cystic carcinoma metastasis via NGF-NTRK1 pathway. Oncol Lett 2019; 18:4082-4091. [PMID: 31516608 PMCID: PMC6733016 DOI: 10.3892/ol.2019.10740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Salivary adenoid cystic carcinoma (SACC) is a rare head and neck malignancy characterized by unpredictable expansion, considerable perineural invasion and high risk of metastasis; however, the underlying mechanism of SACC progression remains unclear. Cancer-associated fibroblasts localized within the tumor microenvironment may promote cancer malignant transformation by enhancing tumor growth, blood vessel formation, inflammation development and metastasis occurrence. Small extracellular vesicles, including exosomes, are mediators of intercellular communication and can influence major tumor-associated pathways. The present study aimed to explore the exosome-mediated communication between SACC cells and fibroblasts. The results from confocal microscopy demonstrated that exosomes derived from the human cell line SACC-83 were internalized by the human periodontal ligament fibroblast (HPLF) cells. Following exosome internalization, HPLF cells appeared to enhance SACC-83 cell metastasis and were educated toward a protumorigenesis phenotype according to transcriptome RNA sequencing and reverse transcription-quantitative polymerase chain reaction analysis. This phenomenon included exosome-mediated stimulation of proinflammatory cytokines and nerve growth factor (NGF) secretion. Furthermore, NGF blockage reduced the enhanced SACC-83 cell invasion stimulated by the supernatant isolated from exosome-educated HPLF cells. In addition, the results reported that neurotrophic receptor tyrosine kinase 1 (NTRK1), which is the high-affinity NGF receptor, was significantly upregulated in human SACC-83 cells. These results demonstrated that SACC-83 cell-derived exosomes educated HPLF cells toward the protumorigenic phenotype via the NGF-NTRK1 pathway, which suggested that this type of exosomes may be used as a potential therapeutic target for SACC.
Collapse
Affiliation(s)
- Zhengli Xu
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China.,Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xing Zheng
- Department of Stomatology, The Third Affiliated Hospital of Naval Medical University, Shanghai 200438, P.R. China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
218
|
Cai T, Santi R, Tamanini I, Galli IC, Perletti G, Bjerklund Johansen TE, Nesi G. Current Knowledge of the Potential Links between Inflammation and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20153833. [PMID: 31390729 PMCID: PMC6696519 DOI: 10.3390/ijms20153833] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation is inherent in prostatic diseases and it is now accepted that it may facilitate cellular proliferation in both benign and malignant conditions. The strong relationship between prostatic inflammation and pathogenesis of benign prostatic hyperplasia (BPH) is supported by epidemiologic, histopathologic and molecular evidence. Contrariwise, the role of inflammation in prostate carcinogenesis is still controversial, although current data indicate that the inflammatory microenvironment can regulate prostate cancer (PCa) growth and progression. Knowledge of the complex molecular landscape associated with chronic inflammation in the context of PCa may lead to the introduction and optimization of novel targeted therapies. In this perspective, evaluation of the inflammatory component in prostate specimens could be included in routine pathology reports.
Collapse
Affiliation(s)
- Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | | | - Irene Tamanini
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | | | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, 21100 Busto Arsizio, Italy
| | | | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy.
| |
Collapse
|
219
|
Anti-Tumor Effects of Vitamin B2, B6 and B9 in Promonocytic Lymphoma Cells. Int J Mol Sci 2019; 20:ijms20153763. [PMID: 31374832 PMCID: PMC6696026 DOI: 10.3390/ijms20153763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation can lead to tumour initiation and progression. Vitamin B complex has the ability to regulate the immune response and, therefore, inflammation but many of the mechanistic and molecular processes involved in this regulation are still not fully understood. This study sought to determine some of these processes by studying the effects of vitamin B2 (riboflavin) B6 (pyridoxine) and B9 (folic acid) on un-differentiated pro-monocytic lymphoma cells in regard to their ability to alter the proliferation, migration, apoptosis, cytokines and expression levels of programmed death ligand 1. We show that vitamin B2, B6 and B9, on pro-monocytic lymphoma cells exerted an anti-tumorigenic effect. This data could form the basis for future studies in using vitamin B supplementation to reduce cancer cell growth in vivo.
Collapse
|
220
|
Cordella M, Tabolacci C, Senatore C, Rossi S, Mueller S, Lintas C, Eramo A, D'Arcangelo D, Valitutti S, Facchiano A, Facchiano F. Theophylline induces differentiation and modulates cytoskeleton dynamics and cytokines secretion in human melanoma-initiating cells. Life Sci 2019; 230:121-131. [PMID: 31125565 DOI: 10.1016/j.lfs.2019.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
AIMS Cutaneous melanoma is the most aggressive skin cancer, derived from neoplastic transformation of melanocytes. Since several evidences highlighted the importance of a hierarchical model of differentiation among cancer cells, closely related to resistance mechanisms and tumor relapse, we investigated the effects of theophylline (Theo), a methylxanthine commonly used in treatment of respiratory diseases, on melanoma cells with different degree of differentiation, including patient-derived melanoma-initiating cells. MATERIALS AND METHODS The antiproliferative and antimetastatic effects of Theo was demonstrated by cell counting, adhesion and migration assays on A375 and SK-MEL-30 cells. Further, Theo ability to reduce cell growth was highly significant in A375-derived spheroids and in two patient-derived melanoma-initiating cells (MICs). In order to identify pathways potentially involved in the antineoplastic properties of Theo, a comparative mass spectrometry proteomic analysis was used. Then, melanin content, tyrosinase and tissue transglutaminase activities as differentiation markers and actin re-organization through confocal microscopy were evaluated. Furthermore, a secretome profile of MICs after Theo treatments was performed by multiplex immunoassay. KEY FINDINGS Obtained results demonstrate inhibitory effects of Theo on melanoma cell proliferation and migration, mainly in MICs, together with the induction of differentiation parameters. Moreover, our data indicate that the known anti-melanoma effect of Theo is due also to its ability to interfere with cytoskeleton dynamics and to induce the secretion of inflammatory molecules involved in recruitment of immunosuppressive cells in tumor microenvironment. SIGNIFICANCE Data strongly suggest that Theo supplement, either as drug or as dietary supply, may represent a potent additional weapon against melanoma.
Collapse
Affiliation(s)
- Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Cinzia Senatore
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Carla Lintas
- Center for Neurodevelopmental Disorders, Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Salvatore Valitutti
- Cancer Research Center of Toulouse, Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | | | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
221
|
Syed SN, Raue R, Weigert A, von Knethen A, Brüne B. Macrophage S1PR1 Signaling Alters Angiogenesis and Lymphangiogenesis During Skin Inflammation. Cells 2019; 8:cells8080785. [PMID: 31357710 PMCID: PMC6721555 DOI: 10.3390/cells8080785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/19/2022] Open
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1β, VEGF-A, and VEGF-C, and their receptors’ expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany.
| |
Collapse
|
222
|
Diabetic Retinopathy, lncRNAs, and Inflammation: A Dynamic, Interconnected Network. J Clin Med 2019; 8:jcm8071033. [PMID: 31337130 PMCID: PMC6678747 DOI: 10.3390/jcm8071033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is reaching epidemic levels globally due to the increase in prevalence of diabetes mellitus (DM). DR also has detrimental effects to quality of life, as it is the leading cause of blindness in the working-age population and the most common cause of vision loss in individuals with DM. Over several decades, many studies have recognized the role of inflammation in the development and progression of DR; however, in recent years, accumulating evidence has also suggested that non-coding RNAs, especially long non-coding (lncRNAs), are aberrantly expressed in diabetes and may play a putative role in the development and progression of DR through the modulation of gene expression at the transcriptional, post-transcriptional, or epigenetic level. In this review, we will first highlight some of the key inflammatory mediators and transcription factors involved in DR, and we will then introduce the critical roles of lncRNAs in DR and inflammation. Following this, we will discuss the implications of lncRNAs in other epigenetic mechanisms that may also contribute to the progression of inflammation in DR.
Collapse
|
223
|
Hernandez-Santana YE, Giannoudaki E, Leon G, Lucitt MB, Walsh PT. Current perspectives on the interleukin-1 family as targets for inflammatory disease. Eur J Immunol 2019; 49:1306-1320. [PMID: 31250428 DOI: 10.1002/eji.201848056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Since the first description of interleukin-1 (IL-1) and the genesis of the field of cytokine biology, the understanding of how IL-1 and related cytokines play central orchestrating roles in the inflammatory response has been an area of intense investigation. As a consequence of these endeavours, specific strategies have been developed to target the function of the IL-1 family in human disease realizing significant impacts for patients. While the most significant advances to date have been associated with inhibition of the prototypical family members IL-1α/β, approaches to target more recently identified family members such as IL-18, IL-33 and the IL-36 subfamily are now beginning to come to fruition. This review summarizes current knowledge surrounding the roles of the IL-1 family in human disease and describes the rationale and strategies which have been developed to target these cytokines to inhibit the pathogenesis of a wide range of diseases in which inflammation plays a centrally important role.
Collapse
Affiliation(s)
- Yasmina E Hernandez-Santana
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Eirini Giannoudaki
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Gemma Leon
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Margaret B Lucitt
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College, Dublin
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| |
Collapse
|
224
|
Zhu J, Zhang J, Wang Y, Chen J, Li X, Liu X, Kong E, Su SB, Zhang Z. The Effect of Interleukin 38 on Inflammation-induced Corneal Neovascularization. Curr Mol Med 2019; 19:589-596. [PMID: 31244436 DOI: 10.2174/1566524019666190627122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiogenesis is tightly linked to inflammation. Cytokines of interleukin 1 (IL-1) family are key mediators in modulating inflammatory responses. METHODS In this study, we examined the role of IL-38, a member of the IL-1 family, in mediating inflammation-induced angiogenesis. RESULTS The results showed that the angiogenesis was attenuated by topical administration of IL-38 to the injured corneas in a mouse model of alkali-induced corneal neovascularization (CNV). Further study showed that the expression of inflammatory cytokines TNF-α, IL-6, IL-8 and IL-1β was decreased in the IL-38-treated corneas. Moreover, the angiogenic activities including the proliferation, migration and tube formation of human retinal endothelial cells were reduced by IL-38 treatment in vitro. CONCLUSION The data indicate that IL-38 modulates inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Jiangli Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yan Wang
- Guangdong Science and Technology Library (Guangdong Institute of Scientific and Technical Information and Development Strategy), China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Xiangling Liu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Shao B Su
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| |
Collapse
|
225
|
Resistance to Systemic Agents in Renal Cell Carcinoma Predict and Overcome Genomic Strategies Adopted by Tumor. Cancers (Basel) 2019; 11:cancers11060830. [PMID: 31207938 PMCID: PMC6627706 DOI: 10.3390/cancers11060830] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The development of new systemic agents has led us into a "golden era" of management of metastatic renal cell carcinoma (RCC). Certainly, the approval of immune-checkpoint inhibitors and the combination of these with targeted compounds has irreversibly changed clinical scenarios. A deeper knowledge of the molecular mechanisms that correlate with tumor development and progression has made this revolution possible. In this amazing era, novel challenges are awaiting us in the clinical management of metastatic RCC. Of these, the development of reliable criteria which are able to predict tumor response to treatment or primary and acquired resistance to systemic treatments still remain an unmet clinical need. Thanks to the availability of data provided by studies evaluating genomic assessments of the disease, this goal may no longer be out of reach. In this review, we summarize current knowledge about genomic alterations related to primary and secondary resistance to target therapy and immune-checkpoint inhibitors in RCC.
Collapse
|
226
|
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39:12. [PMID: 31182982 PMCID: PMC6551897 DOI: 10.1186/s41232-019-0101-5] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of "inflammation" in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|
227
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
228
|
Prionisti I, Bühler LH, Walker PR, Jolivet RB. Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Front Pharmacol 2019; 10:506. [PMID: 31231208 PMCID: PMC6560150 DOI: 10.3389/fphar.2019.00506] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of brain tumors, with a dismal prognosis. During the course of the disease, microglia and macrophages both infiltrate the tumor microenvironment and contribute considerably in glioma development. Thus, tumor-associated microglia and macrophages have recently emerged as potentially key therapeutic targets. Here, we review the physiology of microglia and their responses in brain cancer. We further discuss current treatment options for GBM using radiotherapy, and novel advances in our knowledge of microglia physiology, with emphasis on the recently discovered pathway that controls the baseline motility of microglia processes. We argue that the latter pathway is an interesting therapeutic avenue to pursue for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ioanna Prionisti
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, Geneva, Switzerland
| | - Léo H. Bühler
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Paul R. Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals – University of Geneva, Geneva, Switzerland
| | - Renaud B. Jolivet
- Département de Physique Nucléaire et Corpusculaire (DPNC), University of Geneva, Geneva, Switzerland
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| |
Collapse
|
229
|
PTPN2 Regulates Inflammasome Activation and Controls Onset of Intestinal Inflammation and Colon Cancer. Cell Rep 2019; 22:1835-1848. [PMID: 29444435 DOI: 10.1016/j.celrep.2018.01.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023] Open
Abstract
Variants in the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with inflammatory disorders, including inflammatory bowel diseases, rheumatoid arthritis, and type 1 diabetes. The anti-inflammatory role of PTPN2 is highlighted by the fact that PTPN2-deficient mice die a few weeks after birth because of systemic inflammation and severe colitis. However, the tissues, cells, and molecular mechanisms that contribute to this phenotype remain unclear. Here, we demonstrate that myeloid cell-specific deletion of PTPN2 in mice (PTPN2-LysMCre) promotes intestinal inflammation but protects from colitis-associated tumor formation in an IL-1β-dependent manner. Elevated levels of mature IL-1β production in PTPN2-LysMCre mice are a consequence of increased inflammasome assembly due to elevated phosphorylation of the inflammasome adaptor molecule ASC. Thus, we have identified a dual role for myeloid PTPN2 in directly regulating inflammasome activation and IL-1β production to suppress pro-inflammatory responses during colitis but promote intestinal tumor development.
Collapse
|
230
|
Waters MR, Gupta AS, Mockenhaupt K, Brown LN, Biswas DD, Kordula T. RelB acts as a molecular switch driving chronic inflammation in glioblastoma multiforme. Oncogenesis 2019; 8:37. [PMID: 31142741 PMCID: PMC6541631 DOI: 10.1038/s41389-019-0146-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor characterized by extensive necrosis and immunosuppressive inflammation. The mechanisms by which this inflammation develops and persists in GBM remain elusive. We identified two cytokines interleukin-1β (IL-1) and oncostatin M (OSM) that strongly negatively correlate with patient survival. We found that these cytokines activate RelB/p50 complexes by a canonical NF-κB pathway, which surprisingly drives expression of proinflammatory cytokines in GBM cells, but leads to their inhibition in non-transformed astrocytes. We discovered that one allele of the gene encoding deacetylase Sirtuin 1 (SIRT1), needed for repression of cytokine genes, is deleted in 80% of GBM tumors. Furthermore, RelB specifically interacts with a transcription factor Yin Yang 1 (YY1) in GBM cells and activates GBM-specific gene expression programs. As a result, GBM cells continuously secrete proinflammatory cytokines and factors attracting/activating glioma-associated microglia/macrophages and thus, promote a feedforward inflammatory loop.
Collapse
Affiliation(s)
- Michael R Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth, University School of Medicine and the Massey Cancer Center, Richmond, VI, 23298, USA
| | - Angela S Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth, University School of Medicine and the Massey Cancer Center, Richmond, VI, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth, University School of Medicine and the Massey Cancer Center, Richmond, VI, 23298, USA
| | - LaShardai N Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth, University School of Medicine and the Massey Cancer Center, Richmond, VI, 23298, USA
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth, University School of Medicine and the Massey Cancer Center, Richmond, VI, 23298, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth, University School of Medicine and the Massey Cancer Center, Richmond, VI, 23298, USA.
| |
Collapse
|
231
|
Chen S, Shen Z, Liu Z, Gao L, Han Z, Yu S, Kang M. IL-1RA suppresses esophageal cancer cell growth by blocking IL-1α. J Clin Lab Anal 2019; 33:e22903. [PMID: 31102307 PMCID: PMC6642324 DOI: 10.1002/jcla.22903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background Interleukin‐1 promotes tumor angiogenesis through VEGF production. The interleukin‐1 receptor antagonist can suppress tumors by blocking this effect. Methods Immunohistochemistry, WB, and gene sequencing were used to analyze the expression of IL‐1RA in esophageal cancer patients. WB was used to detect the expression of IL‐1RA and interleukin‐1α in esophageal cancer cells. Stable ESCC cell models overexpressing the IL‐1RA were constructed. Their cell functions were tested, and their effects on VEGF were examined. Results IL‐1RA is downregulated in primary EC tumors, and this downregulation of IL‐1RA is closely related to TNM staging and survival prognosis. The overexpression of IL‐1RA increased the proliferation of KYSE410 EC cells, which have a high level of IL‐1α expression. Overexpression of IL‐1RA in KYSE410 cells promotes a decrease in the expression of VEGF‐A. However, IL‐1RA expression did not cause any changes in EC9706 cells with low IL‐1α expression. Conclusion IL‐1RA acts as a tumor suppressor, and its deletion promotes tumor progression by increasing VEGF‐A expression in ESCC.
Collapse
Affiliation(s)
- Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhun Liu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
232
|
Van Gorp H, Lamkanfi M. The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep 2019; 20:embr.201847575. [PMID: 31101676 DOI: 10.15252/embr.201847575] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/02/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022] Open
Abstract
In addition to the genomic alterations that occur in malignant cells, the immune system is increasingly appreciated as a critical axis that regulates the rise of neoplasms and the development of primary tumours and metastases. The interaction between inflammatory cell infiltrates and stromal cells in the tumour microenvironment is complex, with inflammation playing both pro- and anti-tumorigenic roles. Inflammasomes are intracellular multi-protein complexes that act as key signalling hubs of the innate immune system. They respond to cellular stress and trauma by promoting activation of caspase-1, a protease that induces a pro-inflammatory cell death mode termed pyroptosis along with the maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Here, we will briefly introduce inflammasome biology with a focus on the dual roles of inflammasome-produced cytokines in cancer development. Despite emerging insight that inflammasomes may promote and suppress cancer development according to the tumour stage and the tumour microenvironment, much remains to be uncovered. Further exploration of inflammasome biology in tumorigenesis should enable the development of novel immunotherapies for cancer patients.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Center for Inflammation Research, VIB, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium .,Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| |
Collapse
|
233
|
Mantovani A, Ponzetta A, Inforzato A, Jaillon S. Innate immunity, inflammation and tumour progression: double-edged swords. J Intern Med 2019; 285:524-532. [PMID: 30873708 PMCID: PMC7174018 DOI: 10.1111/joim.12886] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Components of the cellular and the humoral arm of the immune system are essential elements of the tumour microenvironment (TME). The TME includes tumour-associated macrophages which have served as a paradigm for the cancer-promoting inflammation. Cytokines, IL-1 in particular, and complement have emerged as important players in tumour promotion. On the other hand, myeloid cells, innate lymphoid cells and complement have the potential, if unleashed, to mediate anticancer resistance. Targeting checkpoints restraining innate immunity, macrophages and natural killer (NK) cells in particular holds promise as a therapeutic strategy.
Collapse
Affiliation(s)
- A Mantovani
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - A Ponzetta
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, (Mi), Italy
| | - A Inforzato
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - S Jaillon
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| |
Collapse
|
234
|
Degos C, Heinemann M, Barrou J, Boucherit N, Lambaudie E, Savina A, Gorvel L, Olive D. Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Front Immunol 2019; 10:877. [PMID: 31105699 PMCID: PMC6498896 DOI: 10.3389/fimmu.2019.00877] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Endometrial Cancer is the most common cancer in the female genital tract in developed countries, and with its increasing incidence due to risk factors such as aging and obesity tends to become a public health issue. However, its immune environment has been less characterized than in other tumors such as breast cancers. NK cells are cytotoxic innate lymphoid cells that are considered as a major anti-tumoral effector cell type which function is drastically altered in tumors which participates to tumor progression. Here we characterize tumor NK cells both phenotypically and functionally in the tumor microenvironment of endometrial cancer. For that, we gathered endometrial tumors, tumor adjacent healthy tissue, blood from matching patients and healthy donor blood to perform comparative analysis of NK cells. First we found that NK cells were impoverished in the tumor infiltrate. We then compared the phenotype of NK cells in the tumor and found that tumor resident CD103+ NK cells exhibited more co-inhibitory molecules such as Tigit, and TIM-3 compared to recruited CD103− NK cells and that the expression of these molecules increased with the severity of the disease. We showed that both chemokines (CXCL12, IP-10, and CCL27) and cytokines profiles (IL-1β and IL-6) were altered in the tumor microenvironment and might reduce NK cell function and recruitment to the tumor site. This led to hypothesize that the tumor microenvironment reduces resident NK cells cytotoxicity which we confirmed by measuring cytotoxic effector production and degranulation. Taken together, our results show that the tumor microenvironment reshapes NK cell phenotype and function to promote tumor progression.
Collapse
Affiliation(s)
- Clara Degos
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Mellie Heinemann
- Department of Surgical Oncology 2, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix-Marseille University, Marseille, France
| | - Julien Barrou
- Department of Surgical Oncology 2, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix-Marseille University, Marseille, France
| | - Nicolas Boucherit
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology 2, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix-Marseille University, Marseille, France
| | | | - Laurent Gorvel
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Daniel Olive
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| |
Collapse
|
235
|
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019; 50:778-795. [PMID: 30995499 PMCID: PMC7174020 DOI: 10.1016/j.immuni.2019.03.012] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy; William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martina Molgora
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy.
| |
Collapse
|
236
|
3D type I collagen environment leads up to a reassessment of the classification of human macrophage polarizations. Biomaterials 2019; 208:98-109. [PMID: 31005702 DOI: 10.1016/j.biomaterials.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Macrophages have multiple roles in development, tissue homeostasis and repair and present a high degree of phenotypic plasticity embodied in the concept of polarization. One goal of macrophage biology field is to characterize these polarizations at the molecular level. To achieve this task, it is necessary to integrate how physical environment signals are interpreted by macrophages under immune stimulation. In this work, we study how a 3D scaffold obtained from polymerized fibrillar rat type I collagen modulates the polarizations of human macrophages and reveal that some traditionally used markers should be reassessed. We demonstrate that integrin β2 is a regulator of STAT1 phosphorylation in response to IFNγ/LPS as well as responsible for the inhibition of ALOX15 expression in response to IL-4/IL-13 in 3D. Meanwhile, we also find that the CCL19/CCL20 ratio is reverted in 3D under IFNγ/LPS stimulation. 3D also induces the priming of the NLRP3 inflammasome resulting in an increased IL-1β and IL-6 secretion. These results give the molecular basis for assessing collagen induced immunomodulation of human macrophages in various physiological and pathological contexts such as cancer.
Collapse
|
237
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
238
|
Zendehdel E, Abdollahi E, Momtazi‐Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120:4739-4747. [DOI: 10.1002/jcb.27757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/06/2018] [Indexed: 08/30/2023]
Abstract
AbstractCurcumin is a dietary polyphenol and a bioactive phytochemical that possesses anti‐inflammatory, antioxidant, anticancer, and chemopreventive properties, which make it capable of affecting multiple sites along the stem cell pathways to induce apoptosis in these cells. Curcumin’s function is through suppression of cytokine release, especially the secretion of interleukins. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types, leading to the development of tumors. Cancer stem cells (CSC) are capable of sustaining tumor formation and differentiation, and are normally characterized by self‐renewal mechanisms. Furthermore, these cells might be responsible for tumor relapse and resistance to therapy. Several studies have focused on the mechanisms of curcumin action in manipulating transcription factors, signaling pathways, CSC markers, microRNAs related to CSCs functions and apoptosis induction in various human cancer cells. In the present review, we aimed to summarize the reported molecular mechanisms of curcumin’s effects on CSCs.
Collapse
Affiliation(s)
- Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Elham Abdollahi
- Department of Medical Immunology, Student Research Committee, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Abbas Momtazi‐Borojeni
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mitra Korani
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
239
|
Abstract
Inflammasomes are molecular platforms that assemble upon sensing various intracellular stimuli. Inflammasome assembly leads to activation of caspase 1, thereby promoting the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and inducing an inflammatory cell death called pyroptosis. Effectors of the inflammasome efficiently drive an immune response, primarily providing protection against microbial infections and mediating control over sterile insults. However, aberrant inflammasome signalling is associated with pathogenesis of inflammatory and metabolic diseases, neurodegeneration and malignancies. Chronic inflammation perpetuated by inflammasome activation plays a central role in all stages of tumorigenesis, including immunosuppression, proliferation, angiogenesis and metastasis. Conversely, inflammasome signalling also contributes to tumour suppression by maintaining intestinal barrier integrity, which portrays the diverse roles of inflammasomes in tumorigenesis. Studies have underscored the importance of environmental factors, such as diet and gut microbiota, in inflammasome signalling, which in turn influences tumorigenesis. In this Review, we deliver an overview of the interplay between inflammasomes and tumorigenesis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
240
|
Martin TJ, Maise J, Gabure S, Whalen MM. Exposures to the environmental contaminants pentachlorophenol and dichlorodiphenyltrichloroethane increase production of the proinflammatory cytokine, interleukin-1β, in human immune cells. J Appl Toxicol 2019; 39:1132-1142. [PMID: 30912175 DOI: 10.1002/jat.3798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
Pentachlorophenol (PCP) and dichlorodiphenyltrichloroethane (DDT) are organochlorine environmental contaminants found in human blood at very significant levels (as high as 5 μm for PCP and 260 nm for DDT). Cancers of the blood (lymphoma and myeloma) and kidney as well as others have been associated with exposure to these contaminants. Interleukin (IL)-1β is a proinflammatory cytokine and is involved in stimulating cell proliferation. High levels of IL-1β are associated with inflammatory diseases and tumor progression. Previous studies showed that PCP and DDT at certain concentrations were able to stimulate secretion of IL-1β. This study shows that the increased secretion of IL-1β seen with both contaminants is due to compound-induced increases in the production of this cytokine. Increased production began within 6 hours of exposure to PCP and continued to increase up to 24 hours. DDT-induced stimulation of IL-1β appeared to be maximal after 6 hours of exposure and then diminished by 24 hours. The increases seen in IL-1β production stimulated by PCP appear to be at least partially due to compound-induced increases in IL-1β mRNA. Although DDT caused increased production of IL-1β, it did not appear to cause consistent increases in its mRNA. PCP- and DDT-induced increases in IL-1β production were dependent primarily on the p38 mitogen-activated protein kinase pathway. These results indicate that both PCP and DDT are able to increase IL-1β production in a p38 mitogen-activated protein kinase-dependent manner, which may have the potential to influence chronic inflammation.
Collapse
Affiliation(s)
- Tamara J Martin
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - JaQuel Maise
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| | - Sahra Gabure
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| |
Collapse
|
241
|
Guilbaud E, Gautier EL, Yvan-Charvet L. Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers (Basel) 2019; 11:E298. [PMID: 30832375 PMCID: PMC6468621 DOI: 10.3390/cancers11030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident cells that act as immune sentinels to maintain tissue integrity, preserve self-tolerance and protect against invading pathogens. Lung macrophages within the distal airways face around 8000⁻9000 L of air every day and for that reason are continuously exposed to a variety of inhaled particles, allergens or airborne microbes. Chronic exposure to irritant particles can prime macrophages to mediate a smoldering inflammatory response creating a mutagenic environment and favoring cancer initiation. Tumor-associated macrophages (TAMs) represent the majority of the tumor stroma and maintain intricate interactions with malignant cells within the tumor microenvironment (TME) largely influencing the outcome of cancer growth and metastasis. A number of macrophage-centered approaches have been investigated as potential cancer therapy and include strategies to limit their infiltration or exploit their antitumor effector functions. Recently, strategies aimed at targeting IL-1 signaling pathway using a blocking antibody have unexpectedly shown great promise on incident lung cancer. Here, we review the current understanding of the bridge between TAM metabolism, IL-1 signaling, and effector functions in lung adenocarcinoma and address the challenges to successfully incorporating these pathways into current anticancer regimens.
Collapse
Affiliation(s)
- Emma Guilbaud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR_S 1166, Sorbonnes Universités, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
242
|
Dhorepatil A, Ball S, Ghosh RK, Kondapaneni M, Lavie CJ. Canakinumab: Promises and Future in Cardiometabolic Diseases and Malignancy. Am J Med 2019; 132:312-324. [PMID: 30832770 DOI: 10.1016/j.amjmed.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Inflammation has proven in multiple studies to be responsible for the progression of cardiometabolic diseases and malignancies. The interleukin family has been critically associated with progression of atherosclerosis, insulin resistance, and various malignancies. Given the advent of pharmacologic interleukin-1 (IL-1) inhibition, this pathway can potentially be targeted to improve outcomes. In the recently concluded Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial, investigators looked at the potential role of IL-1 (especially IL-1β) inhibition in halting the progression of atherosclerosis. In the subset analysis of the data from this trial, IL-1β inhibition with canakinumab was found to have beneficial effects in other cardiometabolic diseases characterized by inflammation, like diabetes, stroke, and chronic kidney disease, and also in patients with lung cancer. In this article, we will try to review the current literature on the role of canakinumab in the treatment of cardiometabolic diseases and malignancies.
Collapse
Affiliation(s)
- Aneesh Dhorepatil
- Department of Cardiology, Case Western Reserve University, Heart and Vascular Institute, MetroHealth Medical Center, Cleveland, Ohio
| | - Somedeb Ball
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Raktim K Ghosh
- Department of Cardiology, Case Western Reserve University, Heart and Vascular Institute, MetroHealth Medical Center, Cleveland, Ohio.
| | - Meera Kondapaneni
- Department of Cardiology, Case Western Reserve University, Heart and Vascular Institute, MetroHealth Medical Center, Cleveland, Ohio
| | - Carl J Lavie
- Department of Cardiology, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, the University of Queensland School of Medicine, New Orleans, La
| |
Collapse
|
243
|
Imai Y, Yoshida O, Watanabe T, Yukimoto A, Koizumi Y, Ikeda Y, Tokumoto Y, Hirooka M, Abe M, Hiasa Y. Stimulated hepatic stellate cell promotes progression of hepatocellular carcinoma due to protein kinase R activation. PLoS One 2019; 14:e0212589. [PMID: 30794626 PMCID: PMC6386440 DOI: 10.1371/journal.pone.0212589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) were reported to promote the progression of hepatocellular carcinoma (HCC), however its mechanism is uncertain. We previously reported that protein kinase R (PKR) in hepatocytes regulated HCC proliferation. In this study, we focused on the role of PKR in HSCs, and clarified the mechanism of its association with HCC progression. We confirmed the activation of PKR in a human HSC cell line (LX-2 cell). IL-1β is produced from HSCs stimulated by lipopolysaccharide (LPS) or palmitic acid which are likely activators of PKR in non-alcoholic steatohepatitis (NASH). Production was assessed by real-time PCR and ELISA. C16 and small interfering RNA (siRNA) were used to inhibit PKR in HSCs. The HCC cell line (HepG2 cell) was cultured with HSC conditioning medium to assess HCC progression, which was evaluated by proliferation and scratch assays. Expression of PKR was increased and activated in stimulated HSCs, and IL-1β production was also increased molecular. Key molecules of the mitogen-activated protein kinase pathway were also upregulated and activated by LPS. Otherwise, PKR inhibition by C16 and PKR siRNA decreased IL-1β production. HCC progression was promoted by HSC-stimulated conditioning medium although it was reduced by the conditioning medium from PKR-inhibited HSCs. Moreover, palmitic acid also upregulated IL-1β expression in HSCs, and conditioning medium from palmitic acid-stimulated HSCs promoted HCC proliferation. Stimulated HSCs by activators of PKR in NASH could play a role in promoting HCC progression through the production of IL-1β, via a mechanism that seems to be dependent on PKR activation.
Collapse
Affiliation(s)
- Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- * E-mail:
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Atsushi Yukimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yoshio Ikeda
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
244
|
Lo UG, Bao J, Cen J, Yeh HC, Luo J, Tan W, Hsieh JT. Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:31-45. [PMID: 30906803 PMCID: PMC6420704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Interferon is known as a pleiotropic factor in innate immunity, cancer immunity and therapy. Despite an objective short-term response of interferon (IFN) therapy in renal cell carcinoma (RCC) patients, the potential adverse effect of IFN on RCC cells is not fully understood. In this study, we demonstrate that IFNs can enhance RCC invasion via a new mechanism of IFIT5-mediated tumor suppressor microRNA (miRNA) degradation resulted in the elevation of Slug and ZEB1 and epithelial-to-mesenchymal transition (EMT). Clinically, a significant upregulation of IFNγ signaling pathway (such as IFNGR1, IFNGR2, STAT1 and STAT2) is observed in RCC patients with metastatic disease. Overall, this study provides a new mechanism of action of IFN-elicited canonical pathway in regulating suppressor miRNAs. Most importantly, it highlights the potential pro-metastatic effect of IFNs, which could undermine the clinical applicability of IFNs for treating RCC patients.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Jiming Bao
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Republic of China
| | - Junjie Cen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Republic of China
| | - Hsin-Chih Yeh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University HospitalTaiwan, Republic of China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Republic of China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Republic of China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Biotechnology, Kaohsiung Medical UniversityKaohsiung, Taiwan, Republic of China
| |
Collapse
|
245
|
da Silva APB, Alluri LSC, Bissada NF, Gupta S. Association between oral pathogens and prostate cancer: building the relationship. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:1-10. [PMID: 30906801 PMCID: PMC6420702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic inflammation and infections are associated with increased risk of prostate cancer development. There is considerable evidence that proves the interrelationship between bacterial/viral infections and carcinogenesis. Periodontitis is a chronic inflammatory disease triggered by gram-negative anaerobic bacteria. In this narrative review, we investigate the relationship between periodontal disease and prostate cancer by reviewing previous studies of the association and possible mechanisms that may explain this link. METHODS A comprehensive search for articles published was performed using the key words, "periodontal disease", "prostate disease", "prostate cancer", "prostatic inflammation". Thorough reviews of each study were conducted and assessed for eligibility, and data was summarized. RESULTS The role of inflammatory responses in the prostate as drivers of malignancy appears to be predisposed by periodontal pathogens and/or periodontitis inflammatory mediators. CONCLUSION Periodontal diseases might be associated with prostate cancer. However, the mechanism(s) explaining this relationship remains unclear and requires further elucidation.
Collapse
Affiliation(s)
- Andre Paes B da Silva
- Department of Periodontics, Case Western Reserve University, School of Dental MedicineCleveland 44106, Ohio
| | - Leela Subhashini C Alluri
- Department of Periodontics, Case Western Reserve University, School of Dental MedicineCleveland 44106, Ohio
| | - Nabil F Bissada
- Department of Periodontics, Case Western Reserve University, School of Dental MedicineCleveland 44106, Ohio
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Dental MedicineCleveland 44106, Ohio
| |
Collapse
|
246
|
Deng J, Yu XQ, Wang PH. Inflammasome activation and Th17 responses. Mol Immunol 2019; 107:142-164. [PMID: 30739833 DOI: 10.1016/j.molimm.2018.12.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022]
Abstract
Immune sensing of exogenous molecules from microbes (e.g., pathogen-associated molecular patterns) and nonmicrobial molecules (e.g., asbestos, alum, and silica), as well as endogenous damage-associated molecular patterns (e.g., ATP, uric acid crystals, and amyloid A) activates innate immunity by inducing immune-related genes, including proinflammatory cytokines, which further facilitate the development of adaptive immunity. The roles of transcriptional responses downstream of immune sensing have been widely characterized in informing adaptive immunity; however, few studies focus on the effect of post-translational responses on the modulation of adaptive immune responses. Inflammasomes activated by the previously described endo- and exogenous stimuli autocatalytically induce intracellular pro-caspase-1, which cleaves the inactive precursors of interleukin-1β (IL-1β) and IL-18 into bioactive proinflammatory cytokines. IL-1β and IL-18 not only contribute to the host defense against infections by activating phagocytes, such as monocytes, macrophages, dendritic cells, and neutrophils, but also induce T-helper 17 (Th17)- and Th1-mediated adaptive immune responses. In synergy with IL-6 and IL-23, IL-1β activates IL-1 receptor (IL-1R) signaling to drive the differentiation of IL-17-producing Th17 cells, which not only play critical roles in host protective immunity to infections of bacteria, fungi, and certain viruses but also participate in the pathology of inflammatory disorders and tumorigenesis. Consequently, targeting inflammasomes and IL-1/IL-1R signaling may effectively improve the treatment of Th17-associated disorders, such as autoinflammatory diseases and cancers, thereby providing novel insights into drug development.
Collapse
Affiliation(s)
- Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Qiang Yu
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110-2499, USA
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
247
|
Lindahl G, Abrahamsson A, Dabrosin C. Dietary flaxseed and tamoxifen affect the inflammatory microenvironment in vivo in normal human breast tissue of postmenopausal women. Eur J Clin Nutr 2019; 73:1250-1259. [DOI: 10.1038/s41430-019-0396-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
|
248
|
Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol 2019; 12:10. [PMID: 30683126 PMCID: PMC6347849 DOI: 10.1186/s13045-019-0699-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cell-cell interactions maintain tissue homeostasis and contribute to dynamic alteration of the tumor microenvironment (TME). Communication between cancer and host cells not only promotes advanced disease aggression but also determines therapeutic response in cancer patients. Despite accumulating evidence supporting the role of tumor-infiltrating immunocytes in modulating tumor immunity, the interplay between heterogeneous tumor subpopulations and immunocytes is elusive. Methods We expanded colorectal cancer stem cells (CRCSCs) as cancer spheroids from the murine colorectal cancer (CRC) cell line CT26 to interrogate tumor-host interactions using a syngeneic tumor model. RNA-sequencing analysis of host cells and tumor exosomes was performed to identify molecular determinants that mediate the crosstalk between CRCSCs and immunocytes. The Cancer Genome Atlas (TCGA) database was used to validate the clinical significance in CRC patients. Results The expanded CT26 cancer spheroids showed increased stemness gene expression, enhanced spheroid and clonogenicity potential, and an elevated tumor-initiating ability, characteristic of CRCSCs. By examining immune cell composition in syngeneic tumor-bearing mice, a systemic increase in CD11b+/Ly6GHigh/Ly6CLow neutrophils was observed in mice bearing CRCSC-derived tumors. An increased secretion of CRCSC exosomes was observed in vitro, and through in vivo tracking, CRCSC exosomes were found to be transported to the bone marrow. Moreover, CRCSC exosomes prolonged the survival of bone marrow-derived neutrophils and engendered a protumoral phenotype in neutrophils. Mechanistically, tumor exosomal tri-phosphate RNAs induced the expression of interleukin-1β (IL-1β) through a pattern recognition-NF-κB signaling axis to sustain neutrophil survival. CRCSC-secreted CXCL1 and CXCL2 then attracted CRCSC-primed neutrophils to promote tumorigenesis of CRC cells via IL-1β. Moreover, neutrophil depletion using a Ly6G-specific antibody (clone 1A8) attenuated the tumorigenicity of CRCSCs. In human specimens, CRC patients exhibiting an active CRCSC signal (Snail+IL8+) showed elevated tumor infiltration of MPO+ neutrophils, and high (in the top 10%) MPO expression predicted poor survival of CRC patients. Conclusions This study elucidates a multistep CRCSC-neutrophil interaction during advanced cancer progression. Strategies targeting aberrant neutrophil activation may be developed for combating CSC-related malignancy. Electronic supplementary material The online version of this article (10.1186/s13045-019-0699-4) contains supplementary material, which is available to authorized users.
Collapse
|
249
|
The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood 2019; 133:1039-1048. [PMID: 30670444 DOI: 10.1182/blood-2018-10-844654] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
In cancer biology, tumor-promoting inflammation and an inflammatory microenvironment play a vital role in disease pathogenesis. In the past decade, aberrant innate immune activation and proinflammatory signaling within the malignant clone and the bone marrow (BM) microenvironment were identified as key pathogenic drivers of myelodysplastic syndromes (MDS). In particular, S100A9-mediated NOD-like receptor protein 3 (NLRP3) inflammasome activation directs an inflammatory, lytic form of cell death termed pyroptosis that underlies many of the hallmark features of the disease. This circuit and accompanying release of other danger-associated molecular patterns expands BM myeloid-derived suppressor cells, creating a feed-forward process propagating inflammasome activation. Furthermore, somatic gene mutations of varied functional classes license the NLRP3 inflammasome to generate a common phenotype with excess reactive oxygen species generation, Wnt/β-catenin-induced proliferation, cation flux-induced cell swelling, and caspase-1 activation. Recent investigations have shown that activation of the NLRP3 inflammasome complex has more broad-reaching importance, particularly as a possible disease-specific biomarker for MDS, and, mechanistically, as a driver of cardiovascular morbidity/mortality in individuals with age-related, clonal hematopoiesis. Recognition of the mechanistic role of aberrant innate immune activation in MDS provides a new perspective for therapeutic development that could usher in a novel class of disease-modifying agents.
Collapse
|
250
|
Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy IP, Khaitov MR, Trinchieri G, Waisman A, Grivennikov SI. Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer. Immunity 2019; 50:166-180.e7. [PMID: 30650375 PMCID: PMC6490968 DOI: 10.1016/j.immuni.2018.11.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 07/11/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
Chronic inflammation drives the progression of colorectal cancer (CRC). Increased expression of interleukin (IL)-17A is associated with poor prognosis, and IL-17A blockade curbs tumor progression in preclinical models of CRC. Here we examined the impact of IL-1 signaling, a key regulator of the IL-17 pathway, in different cell types within the CRC microenvironment. Genetic deletion of the IL-1 receptor (IL-1R1) in epithelial cells alleviated tumorigenesis in the APC model of CRC, demonstrating a cell-autonomous role for IL-1 signaling in early tumor seed outgrowth. T cell specific ablation of IL-1R1 decreased tumor-elicited inflammation dependent on IL-17 and IL-22, thereby reducing CRC progression. The pro-tumorigenic roles of IL-1 were counteracted by its effects on myeloid cells, particularly neutrophils, where IL-1R1 ablation resulted in bacterial invasion into tumors, heightened inflammation and aggressive CRC progression. Thus, IL-1 signaling elicits cell-type-specific responses, which, in aggregate, set the inflammatory tone of the tumor microenvironment and determine the propensity for disease progression.
Collapse
Affiliation(s)
- Oxana Dmitrieva-Posocco
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Personalized Medicine and Molecular Immunology, National Research Center - Institute of Immunology, FMBA, Moscow, 115478, Russia
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David F Posocco
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Vivianty Hou
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wuxing Yuan
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vishal Thovarai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| | - Matthias Gunzer
- University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45122 Essen, Germany
| | - Igor P Shilovskiy
- Personalized Medicine and Molecular Immunology, National Research Center - Institute of Immunology, FMBA, Moscow, 115478, Russia
| | - Musa R Khaitov
- Personalized Medicine and Molecular Immunology, National Research Center - Institute of Immunology, FMBA, Moscow, 115478, Russia
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|