201
|
Villarreal F, Martín V, Colaneri A, González-Schain N, Perales M, Martín M, Lombardo C, Braun HP, Bartoli C, Zabaleta E. Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. PLANT MOLECULAR BIOLOGY 2009; 70:471-485. [PMID: 19326245 DOI: 10.1007/s11103-009-9484-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 03/15/2009] [Indexed: 05/27/2023]
Abstract
Plant mitochondria include gamma-type carbonic anhydrases (gammaCAs) of unknown function. In Arabidopsis, the gammaCAs form a gene family of five members which all are attached to the NADH dehydrogenase complex (complex I) of the respiratory chain. Here we report a functional analysis of gamma carbonic anhydrase 2 (CA2). The gene encoding CA2 is constitutively expressed in all plant organs investigated but it is ten fold induced in flowers, particularly in tapetal tissue. Ectopic expression of CA2 in Arabidopsis causes male sterility in transgenic plants. In normal anther development, secondary thickenings of the endothecial cell wall cause anthers to open upon dehydration. Histological analyses revealed that abnormal secondary thickening prevents anther opening in 35S::CA2 transgenic plants. CA2 abundance in transgenic plants is increased 2-3 fold compared to wild-type plants as revealed by Western blotting analyses. Moreover, abundance of other members of the CA family, termed CA3 and CAL2, is increased in transgenic plants. Oxygen uptake measurements revealed that respiration in transgenic plants is mainly based on NADH reduction by the alternative NADH dehydrogenases present in plant mitochondria. Furthermore, the formation of reactive oxygen species (ROS) is very low in transgenic plants. We propose that reduction in ROS inhibits H(2)O(2) dependent lignin polymerization in CA2 over-expressing plants, thereby causing male sterility.
Collapse
Affiliation(s)
- Fernando Villarreal
- Instituto de Investigaciones Biológicas, IIB, Facultad de Cs. Exactas y Naturales, UNMdP-CONICET, C.C. 1245, Mar del Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff R, Carlson JE. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC PLANT BIOLOGY 2009; 9:51. [PMID: 19426529 PMCID: PMC2688492 DOI: 10.1186/1471-2229-9-51] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 05/09/2009] [Indexed: 05/07/2023]
Abstract
UNLABELLED BACKGROUND1471-2229-9-51: American chestnut (Castanea dentata) was devastated by an exotic pathogen in the beginning of the twentieth century. This chestnut blight is caused by Cryphonectria parasitica, a fungus that infects stem tissues and kills the trees by girdling them. Because of the great economic and ecological value of this species, significant efforts have been made over the century to combat this disease, but it wasn't until recently that a focused genomics approach was initiated. Prior to the Genomic Tool Development for the Fagaceae project, genomic resources available in public databases for this species were limited to a few hundred ESTs. To identify genes involved in resistance to C. parasitica, we have sequenced the transcriptome from fungal infected and healthy stem tissues collected from blight-sensitive American chestnut and blight-resistant Chinese chestnut (Castanea mollissima) trees using ultra high throughput pyrosequencing. RESULTS We produced over a million 454 reads, totaling over 250 million bp, from which we generated 40,039 and 28,890 unigenes in total from C. mollissima and C. dentata respectively. The functions of the unigenes, from GO annotation, cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. In silico expression analyses showed that many of the stress response unigenes were expressed more in canker tissues versus healthy stem tissues in both American and Chinese chestnut. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either American or Chinese chestnut canker tissues. CONCLUSION Our study resulted in the identification of a large set of cDNA unigenes from American chestnut and Chinese chestnut. The ESTs and unigenes from this study constitute an important resource to the scientific community interested in the discovery of genes involved in various biological processes in Chestnut and other species. The identification of many defense-related genes differentially expressed in canker vs. healthy stem in chestnuts provides many new candidate genes for developing resistance to the chestnut blight and for studying pathways involved in responses of trees to necrotrophic pathogens. We also identified several candidate genes that may underline the difference in resistance to Cryphonectria parasitica between American chestnut and Chinese chestnut.
Collapse
Affiliation(s)
- Abdelali Barakat
- The School of Forest Resources, Department of Horticulture, The Huck Institutes of the Life Sciences, The Pennsylvania State University, 323 Forest Resources Building, University Park, PA 16802, USA
| | - Denis S DiLoreto
- The School of Forest Resources, Department of Horticulture, The Huck Institutes of the Life Sciences, The Pennsylvania State University, 323 Forest Resources Building, University Park, PA 16802, USA
| | - Yi Zhang
- The School of Forest Resources, Department of Horticulture, The Huck Institutes of the Life Sciences, The Pennsylvania State University, 323 Forest Resources Building, University Park, PA 16802, USA
| | - Chris Smith
- Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Kathleen Baier
- Department of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - William A Powell
- Department of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Nicholas Wheeler
- Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Ron Sederoff
- Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - John E Carlson
- The School of Forest Resources, Department of Horticulture, The Huck Institutes of the Life Sciences, The Pennsylvania State University, 323 Forest Resources Building, University Park, PA 16802, USA
| |
Collapse
|
203
|
Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M. Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:463-72. [PMID: 18826428 DOI: 10.1111/j.1365-313x.2008.03697.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR), a natural disease response in plants, can be induced chemically. Salicylic acid (SA) acts as a key endogenous signaling molecule that mediates SAR in dicotyledonous plants. However, the role of SA in monocotyledonous plants has yet to be elucidated. In this study, the mode of action of the agrochemical protectant chemical probenazole was assessed by microarray-based determination of gene expression. Cloning and characterization of the most highly activated probenazole-responsive gene revealed that it encodes UDP-glucose:SA glucosyltransferase (OsSGT1), which catalyzes the conversion of free SA into SA O-beta-glucoside (SAG). We found that SAG accumulated in rice leaf tissue following treatment with probenazole or 2,6-dichloroisonicotinic acid. A putative OsSGT1 gene from the rice cultivar Akitakomachi was cloned and the gene product expressed in Escherichia coli was characterized, and the results suggested that probenazole-responsive OsSGT1 is involved in the production of SAG. Furthermore, RNAi-mediated silencing of the OsSGT1 gene significantly reduced the probenazole-dependent development of resistance against blast disease, further supporting the suggestion that OsSGT1 is a key mediator of development of chemically induced disease resistance. The OsSGT1 gene may contribute to the SA signaling mechanism by inducing up-regulation of SAG in rice plants.
Collapse
Affiliation(s)
- Kenji Umemura
- Agricultural & Veterinary Research Laboratories, Meiji Seika Kaisha Ltd, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
De Vleesschauwer D, Chernin L, Höfte MM. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC PLANT BIOLOGY 2009; 9:9. [PMID: 19161601 PMCID: PMC2650696 DOI: 10.1186/1471-2229-9-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/22/2009] [Indexed: 05/04/2023]
Abstract
BACKGROUND Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. RESULTS In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus miyabeanus. Artificial enhancement of ROS levels in inoculated leaves faithfully mimicked the opposite effects of IC1270 bacteria on aforementioned pathogens, suggesting a central role for oxidative events in the IC1270-induced resistance mechanism. CONCLUSION Besides identifying ROS as modulators of antagonistic defense mechanisms in rice, this work reveals the mechanistic similarities between S. plymuthica-mediated ISR and R protein-dictated ETI and underscores the importance of using appropriate innate defense mechanisms when breeding for broad-spectrum rice disease resistance.
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Gent, Belgium
| | - Leonid Chernin
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, the Hebrew University of Jerusalem, P.O.B. 12, Rehovot 76100, Israel
| | - Monica M Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Gent, Belgium
| |
Collapse
|
205
|
Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH, Favery B, Levis C, Martinet S, Masur C, Ponchet M, Roby D, Schlaich NL, Jouanin L, Keller H. Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog 2009; 5:e1000264. [PMID: 19148278 PMCID: PMC2613516 DOI: 10.1371/journal.ppat.1000264] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/14/2008] [Indexed: 11/19/2022] Open
Abstract
Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition. However, the interaction of the resulting plants with the environment must be analyzed carefully to ensure that there are no undesirable side effects of lignin modification. We show here that Arabidopsis thaliana mutants with impaired 5-hydroxyguaiacyl O-methyltransferase (known as caffeate O-methyltransferase; COMT) function were more susceptible to various bacterial and fungal pathogens. Unexpectedly, asexual sporulation of the downy mildew pathogen, Hyaloperonospora arabidopsidis, was impaired on these mutants. Enhanced resistance to downy mildew was not correlated with increased plant defense responses in comt1 mutants but coincided with a higher frequency of oomycete sexual reproduction within mutant tissues. Comt1 mutants but not wild-type Arabidopsis accumulated soluble 2-O-5-hydroxyferuloyl-L-malate. The compound weakened mycelium vigor and promoted sexual oomycete reproduction when applied to a homothallic oomycete in vitro. These findings suggested that the accumulation of 2-O-5-hydroxyferuloyl-L-malate accounted for the observed comt1 mutant phenotypes during the interaction with H. arabidopsidis. Taken together, our study shows that an artificial downregulation of COMT can drastically alter the interaction of a plant with the biotic environment.
Collapse
Affiliation(s)
- Michaël Quentin
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Valérie Allasia
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Anthony Pegard
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | | | | | - Bruno Favery
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Caroline Levis
- Unité de Phytopathologie et Méthodologies de la Détection, INRA, Versailles, France
| | | | - Clarissa Masur
- Institut Bio III Pflanzenphysiologie, RWTH Aachen University, Aachen, Germany
| | - Michel Ponchet
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR INRA-CNRS, Castanet-Tolosan, France
| | | | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, INRA, IJPB, Versailles, France
| | - Harald Keller
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| |
Collapse
|
206
|
Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. PLANT CELL REPORTS 2008; 27:1877-87. [PMID: 18784924 DOI: 10.1007/s00299-008-0607-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/15/2008] [Accepted: 08/26/2008] [Indexed: 05/09/2023]
Abstract
RHO-like monomeric G-proteins of plants (ROPs, also called RACs), are involved in plant development and interaction with the environment. The barley (Hordeum vulgare) ROP protein HvRACB has been shown to be required for entry of the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) into living host cells. To get a deeper insight into evolutionarily conserved functions of ROPs in cell polarity and pathogen responses, we stably expressed constitutively activated (CA) mutant variants of different barley ROPs (HvRACB, HvRAC1, HvRAC3) in barley. CA HvROPs induced epidermal cell expansion and/or abolished polarity in tip growing root hairs. All three CA HvROPs enhanced susceptibility of barley to penetration by Bgh whereas only CA HvRAC1 supported whole cell H(2)O(2) production in non-penetrated cells. Despite increasing penetration by Bgh, CA HvRAC1 promoted callose deposition at sites of fungal attack and resistance to penetration by Magnaporthe oryzae. The data show an involvement of ROPs in polar growth processes of the monocot barley and in responses to fungal pathogens with different life style.
Collapse
|
207
|
Cernadas RA, Camillo LR, Benedetti CE. Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii. MOLECULAR PLANT PATHOLOGY 2008; 9:609-31. [PMID: 19018992 PMCID: PMC6640372 DOI: 10.1111/j.1364-3703.2008.00486.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii pathotype C (Xaa) are responsible for citrus canker disease; however, while Xac causes canker on all citrus varieties, Xaa is restricted to Mexican lime, and in sweet oranges it triggers a defence response. To gain insights into the differential pathogenicity exhibited by Xac and Xaa and to survey the early molecular events leading to canker development, a detailed transcriptional analysis of sweet orange plants infected with the pathogens was performed. Using differential display, suppressed subtractive hybridization and microarrays, we identified changes in transcript levels in approximately 2.0% of the approximately 32,000 citrus genes examined. Genes with altered expression in response to Xac/Xaa surveyed at 6 and 48 h post-infection (hpi) were associated with cell-wall modifications, cell division and expansion, vesicle trafficking, disease resistance, carbon and nitrogen metabolism, and responses to hormones auxin, gibberellin and ethylene. Most of the genes that were commonly modulated by Xac and Xaa were associated with basal defences triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, we detected clear changes in the transcriptional profiles of defence, cell-wall, vesicle trafficking and cell growth-related genes in Xac-infected leaves between 6 and 48 hpi. This is consistent with the notion that Xac suppresses host defences early during infection and simultaneously changes the physiological status of the host cells, reprogramming them for division and growth. Notably, brefeldin A, an inhibitor of vesicle trafficking, retarded canker development. In contrast, Xaa triggered a mitogen-activated protein kinase signalling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defence genes.
Collapse
Affiliation(s)
- Raúl Andrés Cernadas
- Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, 13083-970, Brazil
| | | | | |
Collapse
|
208
|
Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. THE PLANT CELL 2008; 20:2265-79. [PMID: 18723578 PMCID: PMC2553611 DOI: 10.1105/tpc.107.054395] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A small GTPase, Rac1, plays a key role in rice (Oryza sativa) innate immunity as part of a complex of regulatory proteins. Here, we used affinity column chromatography to identify rice RACK1 (for Receptor for Activated C-Kinase 1) as an interactor with Rac1. RACK1 functions in various mammalian signaling pathways and is involved in hormone signaling and development in plants. Rice contains two RACK1 genes, RACK1A and RACK1B, and the RACK1A protein interacts with the GTP form of Rac1. Rac1 positively regulates RACK1A at both the transcriptional and posttranscriptional levels. RACK1A transcription was also induced by a fungal elicitor and by abscisic acid, jasmonate, and auxin. Analysis of transgenic rice plants and cell cultures indicates that RACK1A plays a role in the production of reactive oxygen species (ROS) and in resistance against rice blast infection. Overexpression of RACK1A enhances ROS production in rice seedlings. RACK1A was shown to interact with the N terminus of NADPH oxidase, RAR1, and SGT1, key regulators of plant disease resistance. These results suggest that RACK1A functions in rice innate immunity by interacting with multiple proteins in the Rac1 immune complex.
Collapse
Affiliation(s)
- Ayako Nakashima
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW. Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:203-219. [PMID: 18446316 DOI: 10.1007/s00122-008-0766-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/03/2008] [Indexed: 05/26/2023]
Abstract
Susceptibility to foliar pathogens commonly causes significant reductions in productivity of the important temperate forage perennial ryegrass. Breeding for durable disease resistance involves not only the deployment of major genes but also the additive effects of minor genes. An approach based on in vitro single nucleotide polymorphism (SNP) discovery in candidate defence response (DR) genes has been used to develop potential diagnostic genetic markers. SNPs were predicted, validated and mapped for representatives of the pathogenesis-related (PR) protein-encoding and reactive oxygen species (ROS)-generating gene classes. The F(1)(NA(6) x AU(6)) two-way pseudo-test cross population was used for SNP genetic mapping and detection of quantitative trait loci (QTLs) in response to a crown rust field infection. Novel resistance QTLs were coincident with mapped DR gene SNPs. QTLs on LG3 and LG7 also coincided with both herbage quality QTLs and candidate genes for lignin biosynthesis. Multiple DR gene SNP loci additionally co-located with QTLs for grey leaf spot, bacterial wilt and crown rust resistance from other published studies. Further functional validation of DR gene SNP loci using methods such as fine-mapping and association genetics will improve the efficiency of parental selection based on superior allele content.
Collapse
Affiliation(s)
- P M Dracatos
- Department of Primary Industries, Biosciences Research Division, La Trobe Research and Development Park, Bundoora, VIC 3083, Australia
| | | | | | | | | | | | | |
Collapse
|
210
|
Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. THE NEW PHYTOLOGIST 2008; 179:738-750. [PMID: 18547377 DOI: 10.1111/j.1469-8137.2008.02502.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
* Independent antisense down-regulation of 10 individual enzymes in the monolignol pathway has generated a series of otherwise isogenic alfalfa (Medicago sativa) lines with varying lignin content and composition. These plants show various visible growth phenotypes, and possess significant differences in vascular cell size and number. * To better understand the phenotypic consequences of lignin modification, the distributions of lignin content and composition in stems of the various alfalfa lines at the cellular level were studied by confocal microscopy after staining for specific lignin components, and by chemical analysis of laser capture dissected tissue types. * Although all antisense transgenes were driven by the same promoter with specificity for vascular, fiber and parenchyma tissues, the impact of down-regulating a specific transgene varied in the different tissue types. For example, reducing expression of ferulate 5-hydroxylase reduced accumulation of syringyl lignin in fiber and parenchyma cells, but not in vascular elements. * The results support a model for cell type-specific regulation of lignin content and composition at the level of the monolignol pathway, and illustrate the use of laser capture microdissection as a new approach to spatially resolved lignin compositional analysis.
Collapse
Affiliation(s)
- Jin Nakashima
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Fang Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Lisa Jackson
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Gail Shadle
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
211
|
Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 2008; 275:3249-77. [PMID: 18513324 DOI: 10.1111/j.1742-4658.2008.06488.x] [Citation(s) in RCA: 516] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca(2+)-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka CREST, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
212
|
Schultheiss H, Preuss J, Pircher T, Eichmann R, Hückelhoven R. Barley RIC171 interacts with RACB in planta and supports entry of the powdery mildew fungus. Cell Microbiol 2008; 10:1815-26. [PMID: 18466344 DOI: 10.1111/j.1462-5822.2008.01167.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RHO-like GTPases of plants (ROPs, also called RACs) are involved in plant development and interaction with the environment. The barley ROP protein RACB is involved in susceptibility to the fungal pathogen Blumeria graminis f.sp. hordei (Bgh). By screening barley sequence databases for potential protein interactors of plant RHO-like proteins, we identified a ROP-interactive CRIB (CDC42/RAC interactive binding) motif containing protein of 171 amino acids (RIC171). The protein interacted with constitutively activated RACB in a targeted yeast two-hybrid assay. By use of split yellow fluorescing protein fusions, we demonstrated that RIC171 interacts with constitutively activated (CA) RACB-G15V but not with dominant negative RACB-T20N in planta. Transient overexpression of RIC171, similar to overexpression of CA RACB-G15V, rendered epidermal cells more susceptible to penetration by Bgh. In contrast, expression of a 46-amino-acid RIC171-CRIB peptide, which was sufficient to interact with CA RACB-G15V, had a dominant negative effect and reduced susceptibility to Bgh. A red fluorescing DsRED-RIC171 fusion protein colocalized with green fluorescing GFP-RACB-G15V at the cell periphery. Coexpression with CA RACB-G15V but not with RACB-T20N increased peripheral localization of DsRED-RIC171. Additionally, DsRED-RIC171 accumulated at sites of fungal attack, suggesting enhanced ROP activity at sites of attempted fungal penetration.
Collapse
Affiliation(s)
- Holger Schultheiss
- Lehrstuhl für Phytopathologie, Technische Universität München, Freising, Germany
| | | | | | | | | |
Collapse
|
213
|
Berken A, Wittinghofer A. Structure and function of Rho-type molecular switches in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:380-93. [PMID: 18272378 DOI: 10.1016/j.plaphy.2007.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Indexed: 05/20/2023]
Abstract
Molecular switches of the Rho family, in concert with their associated regulators and effectors are well known as important control elements of vital signaling pathways in eucaryotic organisms. Yet, this knowledge has so far been established mainly from animal and fungal studies. However, during the recent years, the Rho switch has gone increasingly green as well, and it turned out that the homologous system in plants holds some distinctive features regarding structures, functions and molecular mechanisms for signal transduction. In this review, we give an overview about the structural characteristics of the Rho proteins of plants, termed ROP, highlighting some exciting differences to their animal and fungal counterparts. We further address the unique regulators and effectors of the ROPs and discuss the structural basis for the function and interaction of those proteins in ROP controlled reaction cascades. We finally intend to stimulate the demand for future three-dimensional structures that advance our understanding of the ROP switch in plants.
Collapse
Affiliation(s)
- Antje Berken
- Max Planck Institute of Molecular Physiology, Structural Biology Department, Otto Hahn Strasse 11, 44227 Dortmund, Germany.
| | | |
Collapse
|
214
|
Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick TR, Uhrig J, Weingarten L, Huber M, Palme K. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:909-923. [PMID: 18088316 DOI: 10.1111/j.1365-313x.2007.03384.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two-hybrid screening we have found three previously uncharacterized receptor-like protein kinases to be Rop GTPase-interacting molecules: a cysteine-rich receptor kinase, named NCRK, and two receptor-like cytosolic kinases from the Arabidopsis RLCK-VIb family, named RBK1 and RBK2. Uniquely for Rho-family small GTPases, plant Rop GTPases were found to interact directly with the protein kinase domains. Rop4 bound NCRK preferentially in the GTP-bound conformation as determined by flow cytometric fluorescence resonance energy transfer measurements in insect cells. The kinase RBK1 did not phosphorylate Rop4 in vitro, suggesting that the protein kinases are targets for Rop signalling. Bimolecular fluorescence complementation assays demonstrated that Rop4 interacted in vivo with NCRK and RBK1 at the plant plasma membrane. In Arabidopsis protoplasts, NCRK was hyperphosphorylated and partially co-localized with the small GTPase RabF2a in endosomes. Gene expression analysis indicated that the single-copy NCRK gene was relatively upregulated in vasculature, especially in developing tracheary elements. The seven Arabidopsis RLCK-VIb genes are ubiquitously expressed in plant development, and highly so in pollen, as in case of RBK2. We show that the developmental context of RBK1 gene expression is predominantly associated with vasculature and is also locally upregulated in leaves exposed to Phytophthora infestans and Botrytis cinerea pathogens. Our data indicate the existence of cross-talk between Rop GTPases and specific receptor-like kinases through direct molecular interaction.
Collapse
Affiliation(s)
- Arthur J Molendijk
- Institute for Biologie II/Botany, Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Heller G, Adomas A, Li G, Osborne J, van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO. Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC PLANT BIOLOGY 2008; 8:19. [PMID: 18298811 PMCID: PMC2268937 DOI: 10.1186/1471-2229-8-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 02/25/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Symbiotic ectomycorrhizal associations of fungi with forest trees play important and economically significant roles in the nutrition, growth and health of boreal forest trees, as well as in nutrient cycling. The ecology and physiology of ectomycorrhizal associations with Pinus sp are very well documented but very little is known about the molecular mechanisms behind these mutualistic interactions with gymnosperms as compared to angiosperms. RESULTS Using a micro-array approach, the relative abundance of 2109 EST transcripts during interaction of Pinus sylvestris roots with the ectomycorrhizal fungus was profiled. The results reveal significant differential expression of a total of 236 ESTs, 96 transcripts differentially abundant after 1 day of physical contact with the fungus, 134 transcripts after 5 days and only 6 after 15 days at early stages of mantle formation on emerging lateral roots. A subset of cell wall modification and stress related genes was further assessed by quantitative reverse transcription PCR at late stages of mycorrhizal development coinciding with Hartig net formation. The results reveal down regulation of gene transcripts involved in general defence mechanism (e.g. antimicrobial peptide) as well as those involved in cell wall modification (e.g. glycine rich protein, xyloglucan endo transglycosylase). CONCLUSION This study constitutes the first attempt to characterize the transcriptome of the plant partner in the Pinus sylvestris - Laccaria bicolor model system. We identified 236 ESTs which are potentially important for molecular regulation of a functional symbiotic association in conifer host. The results highlight similarities with other studies based on angiosperm model systems, nevertheless some differences were found in the timing and spatial scale of gene regulation during ectomycorrhiza development in gymnosperms. The present study has identified a number of potentially important molecular events responsible for the initiation and regulation of biochemical, physiological and morphological changes during development of a fully functional symbiosis that are relevant for gymnosperm hosts.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Forest Mycology and Pathology, Swedish University of Agriculture, Uppsala, Sweden
- Forest Biotechnology Group, North Carolina State University, Raleigh, NC, USA
| | - Aleksandra Adomas
- Department of Forest Mycology and Pathology, Swedish University of Agriculture, Uppsala, Sweden
- Forest Biotechnology Group, North Carolina State University, Raleigh, NC, USA
| | - Guosheng Li
- Department of Forest Mycology and Pathology, Swedish University of Agriculture, Uppsala, Sweden
| | | | - Len van Zyl
- Forest Biotechnology Group, North Carolina State University, Raleigh, NC, USA
| | - Ron Sederoff
- Forest Biotechnology Group, North Carolina State University, Raleigh, NC, USA
| | - Roger D Finlay
- Department of Forest Mycology and Pathology, Swedish University of Agriculture, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Pathology, Swedish University of Agriculture, Uppsala, Sweden
| | - Frederick O Asiegbu
- Department of Forest Mycology and Pathology, Swedish University of Agriculture, Uppsala, Sweden
- Forest Biotechnology Group, North Carolina State University, Raleigh, NC, USA
- Department of Forest Ecology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
216
|
Ralph J, Kim H, Lu F, Grabber JH, Leplé JC, Berrio-Sierra J, Derikvand MM, Jouanin L, Boerjan W, Lapierre C. Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:368-79. [PMID: 18184422 DOI: 10.1111/j.1365-313x.2007.03345.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignin in angiosperms (poplar, Arabidopsis, tobacco), has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-methoxyphenyl)-1,2,2-tris(ethylthio)ethane]. Its truncated side chain and distinctive oxidation state suggest that it derives from ferulic acid that has undergone bis-8-O-4 (cross) coupling during lignification, as validated by model studies. A diagnostic contour for such structures is found in two-dimensional (13)C-(1)H correlated (HSQC) NMR spectra of lignins isolated from cinnamoyl CoA reductase (CCR)-deficient poplar. As low levels of the marker are also released from normal (i.e. non-transgenic) plants in which ferulic acid may be present during lignification, notably in grasses, the marker is only an indicator for CCR deficiency in general, but is a reliable marker in woody angiosperms such as poplar. Its derivation, together with evidence for 4-O-etherified ferulic acid, strongly implies that ferulic acid is incorporated into angiosperm lignins. Its endwise radical coupling reactions suggest that ferulic acid should be considered an authentic lignin precursor. Moreover, ferulic acid incorporation provides a new mechanism for producing branch points in the polymer. The findings sharply contradict those reported in a recent study on CCR-deficient Arabidopsis.
Collapse
Affiliation(s)
- John Ralph
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sági L, Swennen R, Terauchi R. High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. MOLECULAR PLANT PATHOLOGY 2008; 9:25-36. [PMID: 18705881 PMCID: PMC6640410 DOI: 10.1111/j.1364-3703.2007.00440.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify positive regulators of cell death in plants, we performed a high-throughput screening, employing potato virus X-based overexpression in planta of a cDNA library derived from paraquat-treated Nicotiana benthamiana leaves. The screening of 30,000 cDNA clones enabled the identification of an ADP-ribosylation factor 1 (ARF1) that induces cell death when overexpressed in N. benthamiana. Overexpression of the guanosine diphosphate (GDP)-locked mutant of ARF1 did not trigger cell death, suggesting that ARF1 guanosine triphosphatase (GTPase) activity is necessary for the observed cell death-inducing activity. The ARF1 transcript level increased strongly following treatment with Phytophthora infestans elicitor INF1, as well as inoculation with a non-host pathogen Pseudomonas cichorii in N. benthamiana. In addition, ARF1 was induced in the interaction between the N gene and tobacco mosaic virus (TMV) in Nicotiana tabacum. By contrast, inoculation with the virulent pathogen Pseudomonas syringae pv. tabaci did not affect ARF1 expression in N. benthamiana. Virus-induced gene silencing of ARF1 in N. benthamiana resulted in a stunted phenotype, and severely hampered non-host resistance towards P. cichorii. In addition, ARF1 silencing partially compromised resistance towards TMV in N. benthamiana containing the N resistance gene. By contrast, and in accordance with the ARF1 gene expression profile, silencing of ARF1 transcription did not alter the susceptibility of N. benthamiana towards the pathogen P. syringae pv. tabaci. These results strongly implicate ARF1 in the non-host resistance to bacteria and N gene-mediated resistance in N. benthamiana.
Collapse
Affiliation(s)
- Bert Coemans
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. THE PLANT CELL 2007; 19:4022-34. [PMID: 18156215 PMCID: PMC2217649 DOI: 10.1105/tpc.107.055624] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 11/07/2007] [Accepted: 12/07/2007] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidase play critical roles in various cellular activities, including plant innate immunity response. In contrast with the large multiprotein NADPH oxidase complex of phagocytes, in plants, only the homologs of the catalytic subunit gp91phox and the cytosolic regulator small GTPase Rac are found. Plant homologs of the gp91phox subunit are known as Rboh (for respiratory burst oxidase homolog). Although numerous Rboh have been isolated in plants, the regulation of enzymatic activity remains unknown. All rboh genes identified to date possess a conserved N-terminal extension that contains two Ca2+ binding EF-hand motifs. Previously, we ascertained that a small GTPase Rac (Os Rac1) enhanced pathogen-associated molecular pattern-induced ROS production and resistance to pathogens in rice (Oryza sativa). In this study, using yeast two-hybrid assay, we found that interaction between Rac GTPases and the N-terminal extension is ubiquitous and that a substantial part of the N-terminal region of Rboh, including the two EF-hand motifs, is required for the interaction. The direct Rac-Rboh interaction was supported by further studies using in vitro pull-down assay, a nuclear magnetic resonance titration experiment, and in vivo fluorescence resonance energy transfer (FRET) microscopy. The FRET analysis also suggests that cytosolic Ca2+ concentration may regulate Rac-Rboh interaction in a dynamic manner. Furthermore, transient coexpression of Os Rac1 and rbohB enhanced ROS production in Nicotiana benthamiana, suggesting that direct Rac-Rboh interaction may activate NADPH oxidase activity in plants. Taken together, the results suggest that cytosolic Ca2+ concentration may modulate NADPH oxidase activity by regulating the interaction between Rac GTPase and Rboh.
Collapse
Affiliation(s)
- Hann Ling Wong
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, 630-0192 Nara, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Thao NP, Chen L, Nakashima A, Hara SI, Umemura K, Takahashi A, Shirasu K, Kawasaki T, Shimamoto K. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. THE PLANT CELL 2007; 19:4035-45. [PMID: 18156216 PMCID: PMC2217650 DOI: 10.1105/tpc.107.055517] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A rice (Oryza sativa) Rac/Rop GTPase, Os Rac1, is involved in innate immunity, but its molecular function is largely unknown. RAR1 (for required for Mla12 resistance) and HSP90 (a heat shock protein 90 kD) are important components of R gene-mediated disease resistance, and their function is conserved in several plant species. HSP90 has also recently been shown to be important in mammalian innate immunity. However, their functions at the molecular level are not well understood. In this study, we examined the functional relationships between Os Rac1, RAR1, and HSP90. Os RAR1-RNA interference (RNAi) rice plants had impaired basal resistance to a compatible race of the blast fungus Magnaporthe grisea and the virulent bacterial blight pathogen Xanthomonas oryzae. Constitutively active Os Rac1 complemented the loss of resistance, suggesting that Os Rac1 and RAR1 are functionally linked. Coimmunoprecipitation experiments with rice cell culture extracts indicate that Rac1 forms a complex with RAR1, HSP90, and HSP70 in vivo. Studies with Os RAR1-RNAi and treatment with geldanamycin, an HSP90-specific inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-mediated enhancement of pathogen-associated molecular pattern-triggered immune responses in rice cell cultures. Furthermore, the function of HSP90, but not RAR1, may be essential for their association with the Rac1 complex. Os Rac1 also regulates RAR1 expression at both the mRNA and protein levels. Together, our results indicate that Rac1, RAR1, HSP90, and HSP70 form one or more protein complexes in rice cells and suggest that these proteins play important roles in innate immunity in rice.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Yang Z, Fu Y. ROP/RAC GTPase signaling. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:490-4. [PMID: 17709276 PMCID: PMC2956068 DOI: 10.1016/j.pbi.2007.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 05/16/2023]
Abstract
ROP/RAC GTPases are versatile signaling molecules in plants. Recent studies of ROP/RAC regulators and effectors have generated new insights into the molecular basis of their functional versatility. Significant progress has also been made in our understanding of the mechanism for the localization of ROP/RAC signaling to specific domains of the plasma membrane.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
221
|
Tokunaga T, Esaka M. Induction of a novel XIP-type xylanase inhibitor by external ascorbic acid treatment and differential expression of XIP-family genes in rice. PLANT & CELL PHYSIOLOGY 2007; 48:700-14. [PMID: 17379695 DOI: 10.1093/pcp/pcm038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rice microarray analysis showed that a number of stress-related genes are induced by external addition of L-ascorbic acid (AsA). The gene designated as AK073843 which is homologous to class capital SHA, Cyrillic chitinase was found to exhibit the highest induction among these genes. However, its crucial residues within the chitinase active site are substituted with other residues, suggesting that the protein has no chitinase activity. The recombinant protein which is encoded by the AK073843 gene produced in Escherichia coli has xylanase inhibitor activity, indicating that the gene encodes a novel rice XIP-type xylanase inhibitor protein (OsXIP). The expression of OsXIP was enhanced not only by exogenous AsA treatment but also by various stresses such as citrate and sodium chloride treatments, and wounding; however, it was not influenced by increasing endogenous AsA content. External AsA treatment caused a significant increase in electrolyte leakage from rice root. These results suggested that OsXIP was induced by stress which is caused by external AsA treatment. Rice XIP-family genes, OsXIP, riceXIP and RIXI, showed differential organ-specific expression. Also, these genes were differentially induced by stress and stress-related phytohormones. The transcripts of OsXIP and riceXIP were undetectable under normal conditions, and were drastically induced by wounding and methyl jasmonate (MeJA) treatment in the root. RIXI was constitutively expressed in the shoot but not induced by wounding and stress-related phytohormones. Thus, XIP-type xylanase inhibitors were suggested to be specialized in their function and involved in defense mechanisms in rice.
Collapse
Affiliation(s)
- Takaaki Tokunaga
- Graduate School of Biosphere Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8528 Japan
| | | |
Collapse
|
222
|
Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T. Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 2007. [PMID: 17315067 DOI: 10.1007/s11101-009-9155-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The present study established a system for comprehensive metabolic analysis of the cinnamate/monolignol and lignan pathways by the use of a stable-isotope-dilution method. The system was successfully applied to characterization of the pathways in Carthamus tinctorius cv. Round-leaved White maturing seeds in combination with administration of stable-isotope-labelled precursors. Experimental results obtained using this technique strongly suggested the intermediacy of ferulic acid in lignan biosynthesis in the plant.
Collapse
Affiliation(s)
- Norikazu Sakakibara
- Research Institute for Sustainable Humanosphare, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
223
|
Hückelhoven R. Cell wall-associated mechanisms of disease resistance and susceptibility. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:101-27. [PMID: 17352660 DOI: 10.1146/annurev.phyto.45.062806.094325] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The plant cuticle and cell wall separate microbial pathogens from the products of plant metabolism. While microbial pathogens try to breach these barriers for colonization, plants respond to attempted penetration by a battery of wall-associated defense reactions. Successful pathogens circumvent or suppress plant nonself recognition and basal defense during penetration and during microbial reproduction. Additionally, accommodation of fungal infection structures within intact cells requires host reprogramming. Recent data highlight that both early plant defense to fungal penetration and host reprogramming for susceptibility can function at the host cell periphery. Genetic evidence has also widened our understanding of how fungal pathogens are restricted during penetration at the plant cell wall. This review summarizes the current view of how plants monitor and model their cell periphery during interaction with microbial invaders.
Collapse
|
224
|
Cristofani-Yaly M, Berger IJ, Targon MLP, Takita MA, Dorta SDO, Freitas-Astúa J, Souza AAD, Boscariol-Camargo RL, Reis MS, Machado MA. Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
225
|
Freitas-Astúa J, Bastianel M, Locali-Fabris EC, Novelli VM, Silva-Pinhati AC, Basílio-Palmieri AC, Targon MLP, Machado MA. Differentially expressed stress-related genes in the compatible citrus-Citrus leprosis virus interaction. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; Embrapa Mandioca e Fruticultura Tropical, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
226
|
De Vleesschauwer D, Cornelis P, Höfte M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1406-19. [PMID: 17153925 DOI: 10.1094/mpmi-19-1406] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyanin production led to a significant decrease in induced systemic resistance (ISR) to M. grisea, and in trans complementation for pyocyanin production restored the ability to elicit ISR. Intriguingly, pyocyanin-deficient mutants, unlike the wild type, triggered ISR against R. solani. Hence, bacterial pyocyanin plays a differential role in 7NSK2-mediated ISR in rice. Application of purified pyocyanin to hydroponically grown rice seedlings increased H202 levels locally on the root surface as well as a biphasic H202 generation pattern in distal leaves. Co-application of pyocyanin and the antioxidant sodium ascorbate alleviated the opposite effects of pyocyanin on rice blast and sheath blight development, suggesting that the differential effectiveness of pyocyanin with respect to 7NSK2-triggered ISR is mediated by transiently elevated H202 levels in planta. The cumulative results suggest that reactive oxygen species act as a double-edged sword in the interaction of rice with the hemibiotroph M. grisea and the necrotroph R. solani.
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure links, 653, B-9000 Gent, Belgium
| | | | | |
Collapse
|
227
|
Yoda H, Hiroi Y, Sano H. Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. PLANT PHYSIOLOGY 2006; 142:193-206. [PMID: 16844838 PMCID: PMC1557616 DOI: 10.1104/pp.106.080515] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 07/12/2006] [Indexed: 05/10/2023]
Abstract
Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.
Collapse
Affiliation(s)
- Hiroshi Yoda
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | | | | |
Collapse
|
228
|
Bacsi A, Choudhury BK, Dharajiya N, Sur S, Boldogh I. Subpollen particles: carriers of allergenic proteins and oxidases. J Allergy Clin Immunol 2006; 118:844-50. [PMID: 17030236 PMCID: PMC3079542 DOI: 10.1016/j.jaci.2006.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/22/2006] [Accepted: 07/05/2006] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pollen is known to induce allergic asthma in atopic individuals, although only a few inhaled pollen grains penetrate into the lower respiratory tract. OBJECTIVE We sought to provide evidence that subpollen particles (SPPs) of respirable size, possessing both antigenic and redox properties, are released from weed pollen grains and to test their role in allergic airway inflammation. METHODS The release of SPPs was analyzed by means of microscopic imaging and flow cytometry. The redox properties of SPPs and the SPP-mediated oxidative effect on epithelial cells were determined by using redox-sensitive probes and specific inhibitors. Western blotting and amino acid sequence analysis were used to examine the protein components of the SPP. The allergenic properties of the SPP were determined in a murine model of experimental asthma. RESULTS Ragweed pollen grains released 0.5 to 4.5 microm of SPPs on hydration. These contained Amb a 1, along with other allergenic proteins of ragweed pollen, and possessed nicotinamide adenine dinucleotide (reduced) or nicotinamide adenine dinucleotide phosphate (reduced) [NAD(P)H] oxidase activity. The SPPs significantly increased the levels of reactive oxygen species (ROS) in cultured cells and induced allergic airway inflammation in the experimental animals. Pretreatment of the SPPs with NAD(P)H oxidase inhibitors attenuated their capacity to increase ROS levels in the airway epithelial cells and subsequent airway inflammation. CONCLUSIONS The allergenic potency of SPPs released from ragweed pollen grains is mediated in tandem by ROS generated by intrinsic NAD(P)H oxidases and antigenic proteins. CLINICAL IMPLICATIONS Severe clinical symptoms associated with seasonal asthma might be explained by immune responses to inhaled SPPs carrying allergenic proteins and ROS-producing NAD(P)H oxidases.
Collapse
Affiliation(s)
- Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex
| | - Barun K. Choudhury
- Division of Allergy, Pulmonary, Immunology, Critical Care and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Nilesh Dharajiya
- Division of Allergy, Pulmonary, Immunology, Critical Care and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Sanjiv Sur
- Division of Allergy, Pulmonary, Immunology, Critical Care and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex
| |
Collapse
|
229
|
Brembu T, Winge P, Bones AM, Yang Z. A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Res 2006; 16:435-45. [PMID: 16699539 DOI: 10.1038/sj.cr.7310055] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rho GTPases are molecular switches that act as key regulators of a many cellular processes, including cell movement, morphogenesis, host defense, cell division and gene expression. Rho GTPases are found in all eukaryotic kingdoms. Plants lack clear homologs to conventional Rho GTPases found in yeast and animals; instead, they have over time developed a unique subfamily, ROPs, also known as RAC. The origin of ROP-like proteins appears to precede the appearance of land plants. This review aims to discuss the evolution of ROP/RAC and to compare plant ROP and animal Rho GTPases, focusing on similarities and differences in regulation of the GTPases and their downstream effectors.
Collapse
Affiliation(s)
- Tore Brembu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
230
|
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A. Early signaling events induced by elicitors of plant defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:711-24. [PMID: 16838784 DOI: 10.1094/mpmi-19-0711] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elicitor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models.
Collapse
Affiliation(s)
- Angela Garcia-Brugger
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante Microbe Environnement, INRA, Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Nibau C, Wu HM, Cheung AY. RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants. TRENDS IN PLANT SCIENCE 2006; 11:309-15. [PMID: 16737841 DOI: 10.1016/j.tplants.2006.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/04/2006] [Accepted: 04/26/2006] [Indexed: 05/04/2023]
Abstract
RAC/ROP GTPases are a family of plant-specific signaling molecules solely representing the Ras and Rho family of Ras-related G proteins in plants. RAC/ROPs potentially interact with cell surface-associated signal perception apparatus for a broad range of extracellular stimuli, including hormones, pathogen elicitors and abiotic stress, and mediate diverse cellular pathways in response to these signals. They are also known to interact with multiple effectors, affecting cellular and biochemical systems that regulate actin dynamics, reactive oxygen species production, proteolysis, and gene expression. RAC/ROPs are, thus, ideally suited as integrators for multiple signals and as coordinators of diverse cellular pathways to control growth, differentiation, development and defense responses. Recent findings that suggest how RAC/ROP signaling activity is regulated and how functional specificity can be achieved are discussed here.
Collapse
Affiliation(s)
- Candida Nibau
- Plant Biology Graduate Program, University of Massachusetts, Lederle Graduate Research Tower, Department of Biochemistry and Molecular Biology, Amherst, MA 10003, USA
| | | | | |
Collapse
|