201
|
Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 2014; 23:108-18. [PMID: 25352242 DOI: 10.1038/mt.2014.204] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023] Open
Abstract
Despite the proven safety of oncolytic viruses (OV) in clinical trials for glioblastoma (GBM), their efficacy has been hindered by suboptimal spreading within the tumor. We show that hyaluronan or hyaluronic acid (HA), an important component of extracellular matrix (ECM), is highly expressed in a majority of tumor xenografts established from patient-derived GBM lines that present both invasive and nodular phenotypes. Intratumoral injection of a conditionally replicating adenovirus expressing soluble hyaluronidase (ICOVIR17) into nodular GBM, mediated HA degradation and enhanced viral spread, resulting in a significant antitumor effect and mice survival. In an effort to translate OV-based therapeutics into clinical settings, we encapsulated human adipose-derived mesenchymal stem cells (MSC) loaded with ICOVIR17 in biocompatible synthetic extracellular matrix (sECM) and tested their efficacy in a clinically relevant mouse model of GBM resection. Compared with direct injection of ICOVIR17, sECM-MSC loaded with ICOVIR17 resulted in a significant decrease in tumor regrowth and increased mice survival. This is the first report of its kind revealing the expression of HA in GBM and the role of OV-mediated HA targeting in clinically relevant mouse model of GBM resection and thus has clinical implications.
Collapse
Affiliation(s)
- Jordi Martinez-Quintanilla
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek He
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [3] Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramon Alemany
- Laboratori de Recerca Traslacional IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Khalid Shah
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [3] Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [4] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
202
|
Nance E, Zhang C, Shih TY, Xu Q, Schuster BS, Hanes J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS NANO 2014; 8:10655-64. [PMID: 25259648 PMCID: PMC4212792 DOI: 10.1021/nn504210g] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/26/2014] [Indexed: 05/21/2023]
Abstract
Poor drug distribution and short drug half-life within tumors strongly limit efficacy of chemotherapies in most cancers, including primary brain tumors. Local or targeted drug delivery via controlled-release polymers is a promising strategy to treat infiltrative brain tumors, which cannot be completely removed surgically. However, drug penetration is limited with conventional local therapies since small-molecule drugs often enter the first cell they encounter and travel only short distances from the site of administration. Nanoparticles that avoid adhesive interactions with the tumor extracellular matrix may improve drug distribution and sustain drug release when applied to the tumor area. We have previously shown model polystyrene nanoparticles up to 114 nm in diameter were able to rapidly diffuse in normal brain tissue, but only if coated with an exceptionally dense layer of poly(ethylene glycol) (PEG) to reduce adhesive interactions. Here, we demonstrate that paclitaxel (PTX)-loaded, poly(lactic-co-glycolic acid) (PLGA)-co-PEG block copolymer nanoparticles with an average diameter of 70 nm were able to diffuse 100-fold faster than similarly sized PTX-loaded PLGA particles (without PEG coatings). Densely PEGylated PTX-loaded nanoparticles significantly delayed tumor growth following local administration to established brain tumors, as compared to PTX-loaded PLGA nanoparticles or unencapsulated PTX. Delayed tumor growth combined with enhanced distribution of drug-loaded PLGA-PEG nanoparticles to the tumor infiltrative front demonstrates that particle penetration within the brain tumor parenchyma improves therapeutic efficacy. The use of drug-loaded brain-penetrating nanoparticles is a promising approach to achieve sustained and more uniform drug delivery to treat aggressive gliomas and potentially other brain disorders.
Collapse
Affiliation(s)
- Elizabeth Nance
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Clark Zhang
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Ting-Yu Shih
- Department of Chemical & Biomolecular Engineering and Center for Cancer Nanotechnology Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qingguo Xu
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Benjamin S. Schuster
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical & Biomolecular Engineering and Center for Cancer Nanotechnology Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Address correspondence to
| |
Collapse
|
203
|
Kwak B, Ozcelikkale A, Shin CS, Park K, Han B. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J Control Release 2014; 194:157-67. [PMID: 25194778 DOI: 10.1016/j.jconrel.2014.08.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/14/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
Abstract
Delivery of therapeutic agents selectively to tumor tissue, which is referred as "targeted delivery," is one of the most ardently pursued goals of cancer therapy. Recent advances in nanotechnology enable numerous types of nanoparticles (NPs) whose properties can be designed for targeted delivery to tumors. In spite of promising early results, the delivery and therapeutic efficacy of the majority of NPs are still quite limited. This is mainly attributed to the limitation of currently available tumor models to test these NPs and systematically study the effects of complex transport and pathophysiological barriers around the tumors. In this study, thus, we developed a new in vitro tumor model to recapitulate the tumor microenvironment determining the transport around tumors. This model, named tumor-microenvironment-on-chip (T-MOC), consists of 3-dimensional microfluidic channels where tumor cells and endothelial cells are cultured within extracellular matrix under perfusion of interstitial fluid. Using this T-MOC platform, the transport of NPs and its variation due to tumor microenvironmental parameters have been studied including cut-off pore size, interstitial fluid pressure, and tumor tissue microstructure. The results suggest that T-MOC is capable of simulating the complex transport around the tumor, and providing detailed information about NP transport behavior. This finding confirms that NPs should be designed considering their dynamic interactions with tumor microenvironment.
Collapse
Affiliation(s)
- Bongseop Kwak
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Crystal S Shin
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
204
|
Nichols JW, Bae YH. EPR: Evidence and fallacy. J Control Release 2014; 190:451-64. [DOI: 10.1016/j.jconrel.2014.03.057] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
|
205
|
Lin Q, Jin CS, Huang H, Ding L, Zhang Z, Chen J, Zheng G. Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3072-3082. [PMID: 24706435 DOI: 10.1002/smll.201303842] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The abilities to deliver siRNA to its intended action site and assess the delivery efficiency are challenges for current RNAi therapy, where effective siRNA delivery will join force with patient genetic profiling to achieve optimal treatment outcome. Imaging could become a critical enabler to maximize RNAi efficacy in the context of tracking siRNA delivery, rational dosimetry and treatment planning. Several imaging modalities have been used to visualize nanoparticle-based siRNA delivery but rarely did they guide treatment planning. We report a multimodal theranostic lipid-nanoparticle, HPPS(NIR)-chol-siRNA, which has a near-infrared (NIR) fluorescent core, enveloped by phospholipid monolayer, intercalated with siRNA payloads, and constrained by apoA-I mimetic peptides to give ultra-small particle size (<30 nm). Using fluorescence imaging, we demonstrated its cytosolic delivery capability for both NIR-core and dye-labeled siRNAs and its structural integrity in mice through intravenous administration, validating the usefulness of NIR-core as imaging surrogate for non-labeled therapeutic siRNAs. Next, we validated the targeting specificity of HPPS(NIR)-chol-siRNA to orthotopic tumor using sequential four-steps (in vivo, in situ, ex vivo and frozen-tissue) fluorescence imaging. The image co-registration of computed tomography and fluorescence molecular tomography enabled non-invasive assessment and treatment planning of siRNA delivery into the orthotopic tumor, achieving efficacious RNAi therapy.
Collapse
Affiliation(s)
- Qiaoya Lin
- Princess Margaret Cancer Center and Techna Institute, UHN, TMDT 5-362, 101 College Street, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science & Technology, Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
206
|
Galgoczy R, Pastor I, Colom A, Giménez A, Mas F, Alcaraz J. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects. Colloids Surf B Biointerfaces 2014; 120:200-7. [DOI: 10.1016/j.colsurfb.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 11/29/2022]
|
207
|
Herrmann D, Conway JRW, Vennin C, Magenau A, Hughes WE, Morton JP, Timpson P. Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis 2014; 35:1671-9. [PMID: 24903340 DOI: 10.1093/carcin/bgu108] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Basic in vitro systems can be used to model and assess complex diseases, such as cancer. Recent advances in this field include the incorporation of multiple cell types and extracellular matrix proteins into three-dimensional (3D) models to recapitulate the structure, organization and functionality of live tissue in situ. Cells within such a 3D environment behave very differently from cells on two-dimensional (2D) substrates, as cell-matrix interactions trigger signalling pathways and cellular responses in 3D, which may not be observed in 2D. Thus, the use of 3D systems can be advantageous for the assessment of disease progression over 2D set-ups alone. Here, we highlight the current advantages and challenges of employing 3D systems in the study of cancer and provide an overview to guide the appropriate use of distinct models in cancer research.
Collapse
Affiliation(s)
- David Herrmann
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - James R W Conway
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Claire Vennin
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Astrid Magenau
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - William E Hughes
- Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and
| | - Jennifer P Morton
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Paul Timpson
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
208
|
Lütje S, van Rij CM, Franssen GM, Fracasso G, Helfrich W, Eek A, Oyen WJ, Colombatti M, Boerman OC. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:28-36. [PMID: 24764162 DOI: 10.1002/cmmi.1596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 01/17/2023]
Abstract
D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing subcutaneous prostate cancer xenografts. The optimal time point for imaging was determined in biodistribution and microSPECT imaging studies with (111)In-D2B IgG, (111)In-capromab pendetide, (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments in mice with PSMA-expressing LNCaP and PSMA-negative PC3 tumors at several time points after injection. All (111)In-labeled antibody formats specifically accumulated in the LNCaP tumors, with highest uptake of (111)In-D2B IgG and (111)In-capromab pendetide at 168 h p.i. (94.8 ± 19.2% injected dose per gram (ID/g) and 16.7 ± 2.2% ID/g, respectively), whereas uptake of (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments peaked at 24 h p.i. (12.1 ± 3.0% ID/g and 15.1 ± 2.9% ID/g, respectively). Maximum LNCaP tumor-to-blood ratios were 13.0 ± 2.3 (168 h p.i.), 6.2 ± 0.7 (24 h p.i.), 23.0 ± 4.0 (24 h p.i.) and 4.5 ± 0.6 (168 h p.i.) for (111)In-D2B IgG, (111)In-F(ab')2, (111)In-Fab and (111)In-capromab pendetide, respectively. LNCaP tumors were clearly visualized with microSPECT with all antibody formats. This study demonstrates the feasibility of D2B IgG, F(ab')2 and Fab fragments for targeting PSMA-expressing prostate cancer xenografts.
Collapse
Affiliation(s)
- Susanne Lütje
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Toley BJ, Tropeano Lovatt ZG, Harrington JL, Forbes NS. Microfluidic technique to measure intratumoral transport and calculate drug efficacy shows that binding is essential for doxorubicin and release hampers Doxil. Integr Biol (Camb) 2014; 5:1184-96. [PMID: 23860772 DOI: 10.1039/c3ib40021b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intratumoral transport and binding are important mechanisms that determine the efficacy of cancer drugs. Current drug screening methods rely heavily on monolayers of cancer cells, which overlook the contribution of tissue-level transport and binding. To quantify these factors, we developed a method that couples an in vitro, drug-delivery device containing a three-dimensional cell mass and a mathematical model of drug diffusion, binding to DNA, release from carriers, and clearance. Spheroids derived from LS174T human colon carcinoma cells were inserted into rectangular chambers to form rectangular cell masses (tissue) and subjected to continuous medium perfusion. To simulate drug delivery and clearance, the tissues were treated with doxorubicin followed by drug-free medium. To evaluate the effect of liposome encapsulation, tissues were treated with liposome-encapsulated doxorubicin (Doxil). Spatiotemporal dynamics of drug distribution and apoptosis was measured by fluorescence microscopy. The diffusivity and DNA binding constant of doxorubicin were determined by fitting experimental data to the mathematical model. Results show that an ideal combination of diffusivity, binding constant, clearance rate, and cytotoxicity contribute to the high therapeutic efficacy of doxorubicin. There was no detectable release of doxorubicin from Doxil in the tissues. The rate of doxorubicin release, evaluated by fitting experimental data to the mathematical model, was below therapeutically effective levels. These results show that despite enhanced systemic circulation obtained by liposome encapsulation, the therapeutic effect of Doxil is limited by slow intratumoral drug release. The experimental and computational methods developed here to calculate drug efficacy provide mechanisms to explain poor performance of drug candidates, and enable design of more successful cancer drugs.
Collapse
Affiliation(s)
- Bhushan J Toley
- Department of Chemical Engineering, University of Massachusetts, Amherst, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, MA 01003-9303, USA.
| | | | | | | |
Collapse
|
210
|
Barua S, Mitragotri S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. NANO TODAY 2014; 9:223-243. [PMID: 25132862 PMCID: PMC4129396 DOI: 10.1016/j.nantod.2014.04.008] [Citation(s) in RCA: 716] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticles (NPs) have emerged as an effective modality for the treatment of various diseases including cancer, cardiovascular and inflammatory diseases. Various forms of NPs including liposomes, polymer particles, micelles, dendrimers, quantum dots, gold NPs and carbon nanotubes have been synthesized and tested for therapeutic applications. One of the greatest challenges that limit the success of NPs is their ability to reach the therapeutic site at necessary doses while minimizing accumulation at undesired sites. The biodistribution of NPs is determined by body's biological barriers that manifest in several distinct ways. For intravascular delivery of NPs, the barrier manifests in the form of: (i) immune clearance in the liver and spleen, (ii) permeation across the endothelium into target tissues, (iii) penetration through the tissue interstitium, (iv) endocytosis in target cells, (v) diffusion through cytoplasm and (vi) eventually entry into the nucleus, if required. Certain applications of NPs also rely on delivery through alternate routes including skin and mucosal membranes of the nose, lungs, intestine and vagina. In these cases, the diffusive resistance of these tissues poses a significant barrier to delivery. This review focuses on the current understanding of penetration of NPs through biological barriers. Emphasis is placed on transport barriers and not immunological barriers. The review also discusses design strategies for overcoming the barrier properties.
Collapse
Affiliation(s)
- Sutapa Barua
- Center for Bioengineering, Department of Chemical Engineering University of California, Santa Barbara, CA 93106
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering University of California, Santa Barbara, CA 93106
| |
Collapse
|
211
|
Seo BR, DelNero P, Fischbach C. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer. Adv Drug Deliv Rev 2014; 69-70:205-216. [PMID: 24309015 DOI: 10.1016/j.addr.2013.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 12/12/2022]
Abstract
Tumor-stroma interactions have emerged as critical determinants of drug efficacy. However, the underlying biological and physicochemical mechanisms by which the microenvironment regulates therapeutic response remain unclear, due in part to a lack of physiologically relevant in vitro platforms to accurately interrogate tissue-level phenomena. Tissue-engineered tumor models are beginning to address this shortcoming. By allowing selective incorporation of microenvironmental complexity, these platforms afford unique access to tumor-associated signaling and transport dynamics. This review will focus on engineering approaches to study drug delivery as a function of tumor-associated changes of the vasculature and extracellular matrix (ECM). First, we review current biological understanding of these components and discuss their impact on transport processes. Then, we evaluate existing microfluidic, tissue engineering, and materials science strategies to recapitulate vascular and ECM characteristics of tumors, and finish by outlining challenges and future directions of the field that may ultimately improve anti-cancer therapies.
Collapse
|
212
|
Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors. Mol Ther 2014; 22:1266-1274. [PMID: 24590046 DOI: 10.1038/mt.2014.36] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/10/2014] [Indexed: 01/12/2023] Open
Abstract
Bacterial therapies, designed to manufacture therapeutic proteins directly within tumors, could eliminate cancers that are resistant to other therapies. To be effective, a payload protein must be secreted, diffuse through tissue, and efficiently kill cancer cells. To date, these properties have not been shown for a single protein. The gene for Staphylococcus aureus α-hemolysin (SAH), a pore-forming protein, was cloned into Escherichia coli. These bacteria were injected into tumor-bearing mice and volume was measured over time. The location of SAH relative to necrosis and bacterial colonies was determined by immunohistochemistry. In culture, SAH was released and killed 93% of cancer cells in 24 hours. Injection of SAH-producing bacteria reduced viable tissue to 9% of the original tumor volume. By inducing cell death, SAH moved the boundary of necrosis toward the tumor edge. SAH diffused 6.8 ± 0.3 µm into tissue, which increased the volume of affected tissue from 48.6 to 3,120 µm(3). A mathematical model of molecular transport predicted that SAH efficacy is primarily dependent on colony size and the rate of protein production. As a payload protein, SAH will enable effective bacterial therapy because of its ability to diffuse in tissue, kill cells, and expand tumor necrosis.
Collapse
|
213
|
Noble CO, Krauze MT, Drummond DC, Forsayeth J, Hayes ME, Beyer J, Hadaczek P, Berger MS, Kirpotin DB, Bankiewicz KS, Park JW. Pharmacokinetics, tumor accumulation and antitumor activity of nanoliposomal irinotecan following systemic treatment of intracranial tumors. Nanomedicine (Lond) 2014; 9:2099-108. [PMID: 24494810 DOI: 10.2217/nnm.13.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM We sought to evaluate nanoliposomal irinotecan as an intravenous treatment in an orthotopic brain tumor model. MATERIALS & METHODS Nanoliposomal irinotecan was administered intravenously in the intracranial U87MG brain tumor model in mice, and irinotecan and SN-38 levels were analyzed in malignant and normal tissues. Therapy studies were performed in comparison to free irinotecan and control treatments. RESULTS Tissue analysis demonstrated favorable properties for nanoliposomal irinotecan, including a 10.9-fold increase in tumor AUC for drug compared with free irinotecan and 35-fold selectivity for tumor versus normal tissue exposure. As a therapy for orthotopic brain tumors, nanoliposomal irinotecan showed a mean survival time of 54.2 versus 29.5 days for free irinotecan. A total of 33% of the animals receiving nanoliposomal irinotecan showed no residual tumor by study end compared with no survivors in the other groups. CONCLUSION Nanoliposomal irinotecan administered systemically provides significant pharmacologic advantages and may be an efficacious therapy for brain tumors.
Collapse
Affiliation(s)
- Charles O Noble
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Senanayake TH, Lu Y, Bohling A, Raja S, Band H, Vinogradov SV. Encapsulation of poorly soluble drugs in polymer-drug conjugates: effect of dual-drug nanoformulations on cancer therapy. Pharm Res 2014; 31:1605-15. [PMID: 24452808 DOI: 10.1007/s11095-013-1265-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/09/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE Current cancer chemotherapy is gradually shifting to the application of drug combinations that prevent development of drug resistance. Many anticancer drugs have poor solubility and limited oral bioavailability. Using an innovative approach, we developed dual-drug nanoformulations of a polymeric nanogel conjugate with anticancer 5-FU nucleoside analog, floxuridine (FLOX), and the second anticancer drugs, paclitaxel (PCL), or a geldanamycin analog, 17-AAG, for combination therapy. METHODS PCL or 17-AAG had been encapsulated in the cholesteryl-polyvinyl alcohol-floxuridine nanogel (CPVA-FLOX) by simple solution mixing and sonication. Dual nanodrugs formed particles with diameter 180 nm and either drug content (5-20%) that were stable and could be administered orally. Their cytotoxicity in human and mouse cancer cells was determined by MTT assay, and cellular target inhibition - by Western blot analysis. Tumor growth inhibition was evaluated using an orthotopic mouse mammary 4T1 cancer model. RESULTS CPVA-FLOX was more potent than free drug in cancer models including drug-resistant ones; while dual nanodrugs demonstrated a significant synergy (CPVA-FLOX/PCL), or showed no significant synergy (CPVA-FLOX/17-AAG) compared to free drugs (PCL or 17-AAG). Dual nanodrug CPVA-FLOX/17-AAG effect on its cellular target (HSP70) was similar to 17-AAG alone. In animal model, however, both dual nanodrugs effectively inhibited tumor growth compared to CPVA-FLOX after oral administration. CONCLUSION Oral dual-drug nanoformulations of poorly-soluble drugs proved to be a highly efficient combination anticancer therapy in preclinical studies.
Collapse
Affiliation(s)
- Thulani H Senanayake
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025, USA
| | | | | | | | | | | |
Collapse
|
215
|
A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. Biomaterials 2014; 35:3319-30. [PMID: 24447463 DOI: 10.1016/j.biomaterials.2013.12.080] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) tissue-engineered tumor models have the potential to bridge the gap between monolayer cultures and patient-derived xenografts for the testing of nanoparticle (NP)-based cancer therapeutics. In this study, a hydrogel-derived prostate cancer (PCa) model was developed for the in vitro evaluation of doxorubicin (Dox)-loaded polymer NPs (Dox-NPs). The hydrogels were synthesized using chemically modified hyaluronic acid (HA) carrying acrylate groups (HA-AC) or reactive thiols (HA-SH). The crosslinked hydrogel networks exhibited an estimated pore size of 70-100 nm, similar to the spacing of the extracellular matrices (ECM) surrounding tumor tissues. LNCaP PCa cells entrapped in the HA matrices formed distinct tumor-like multicellular aggregates with an average diameter of 50 μm after 7 days of culture. Compared to cells grown on two-dimensional (2D) tissue culture plates, cells from the engineered tumoroids expressed significantly higher levels of multidrug resistance (MDR) proteins, including multidrug resistance protein 1 (MRP1) and lung resistance-related protein (LRP), both at the mRNA and the protein levels. Separately, Dox-NPs with an average diameter of 54 ± 1 nm were prepared from amphiphilic block copolymers based on poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals. Dox-NPs were able to diffuse through the hydrogel matrices, penetrate into the tumoroid and be internalized by LNCaP PCa cells through caveolae-mediated endocytosis and macropinocytosis pathways. Compared to 2D cultures, LNCaP PCa cells cultured as multicellular aggregates in HA hydrogel were more resistant to Dox and Dox-NPs treatments. Moreover, the NP-based Dox formulation could bypass the drug efflux function of MRP1, thereby partially reversing the resistance to free Dox in 3D cultures. Overall, the engineered tumor model has the potential to provide predictable results on the efficacy of NP-based cancer therapeutics.
Collapse
|
216
|
Pan Z, Yu L, Song N, Zhou L, Li J, Ding M, Tan H, Fu Q. Synthesis and characterization of biodegradable polyurethanes with folate side chains conjugated to hard segments. Polym Chem 2014. [DOI: 10.1039/c3py01340e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel folate-conjugated chain extender (LDDFA) was designed and synthesized to enhance site-specific intracellular delivery of drug carriers against folate receptor overexpressing tumors.
Collapse
Affiliation(s)
- Zhicheng Pan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lunquan Yu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Nijia Song
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lijuan Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiehua Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mingming Ding
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hong Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qiang Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
217
|
Lin Q, Chen J, Zhang Z, Zheng G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 2014; 9:105-20. [DOI: 10.2217/nnm.13.192] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi therapeutics are believed to be the future of personalized medicine and have shown promise in early clinical trials. However, many physiological barriers exist in the systemic delivery of siRNAs to the cytoplasm of targeted cells to perform their function. To overcome these barriers, many siRNA delivery systems have been developed. Among these, lipid-based nanoparticles have great potential owing to their biocompatibility and low toxicity in comparison with inorganic nanoparticles and viral systems. This review discusses the hurdles of systemic siRNA delivery and highlights the recent progress made in lipid-based nanoparticles, which are categorized based on their key lipid components, including cationic lipid, lipoprotein, lipidoid, neutral lipid and anionic lipid-based nanoparticles. It is expected that these lipid nanoparticle-based siRNA delivery systems will have an enabling role for personalized cancer medicine, where siRNA delivery will join forces with genetic profiling of individual patients to achieve the best treatment outcome.
Collapse
Affiliation(s)
- Qiaoya Lin
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower 5-363, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Gang Zheng
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
218
|
|
219
|
Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53. Gene Ther 2013; 21:158-67. [PMID: 24285215 DOI: 10.1038/gt.2013.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/06/2013] [Accepted: 10/17/2013] [Indexed: 12/18/2022]
Abstract
Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer.
Collapse
|
220
|
Ko ES, Han BK, Kim RB, Cho EY, Ahn S, Nam SJ, Ko EY, Shin JH, Hahn SY. Apparent diffusion coefficient in estrogen receptor-positive invasive ductal breast carcinoma: correlations with tumor-stroma ratio. Radiology 2013; 271:30-7. [PMID: 24475830 DOI: 10.1148/radiol.13131073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine whether apparent diffusion coefficient (ADC) values vary according to tumor-stroma ratio, dominant stroma type, or presence of central fibrosis in estrogen receptor-positive breast cancer. MATERIALS AND METHODS Institutional review board approval was obtained, and patient consent was waived. Sixty-one patients with estrogen receptor-positive invasive ductal carcinoma-not otherwise specified who underwent breast magnetic resonance (MR) imaging with diffusion-weighted (DW) imaging were included in this study. The ADC values of the lesions were measured. Two pathologists evaluated the tumor-stroma ratio, dominant stroma type (collagen, fibroblast, lymphocyte), and central fibrosis. Detectability on DW images was compared between the two groups according to the tumor-stroma ratio (stroma rich or stroma poor). Mean ADC values were retrospectively compared with the tumor-stroma ratio, dominant stroma type, and presence of a central fibrosis. Multiple linear regression analysis was performed to determine variables independently associated with ADC. RESULTS On DW images, detectability was not significantly different between stroma-rich and stroma-poor groups (P = .244). ADC values were significantly lower in the stroma-poor group (P < .001). The mean ADC values in the collagen-dominant type were lower than in fibroblast-dominant or lymphocyte-dominant types (P = .021). In multiple linear regression analysis, tumor-stroma ratio (P = .007), tumor size (P = .007), and dominant stroma type (collagen dominant, P = .029) were independently correlated with ADC. CONCLUSION In estrogen receptor-positive breast cancers, ADC values showed significant differences according to the tumor-stroma ratio and dominant stroma type.
Collapse
Affiliation(s)
- Eun Sook Ko
- From the Departments of Radiology (E.S.K., B.K.H., E.Y.K., J.H.S., S.Y.H.), Pathology (E.Y.C., S.A.), and Surgery (S.J.N.), Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 135-710, South Korea; and Department of Preventive Medicine, Dong-A University School of Medicine, Busan, South Korea (R.B.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
P-glycoprotein-activity measurements in multidrug resistant cell lines: single-cell versus single-well population fluorescence methods. BIOMED RESEARCH INTERNATIONAL 2013; 2013:676845. [PMID: 24350282 PMCID: PMC3848087 DOI: 10.1155/2013/676845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/29/2013] [Indexed: 11/17/2022]
Abstract
Background. P-gp expression has been linked to the efflux of chemotherapeutic drugs in human cancers leading to multidrug resistance. Fluorescence techniques have been widely applied to measure the P-gp activity. In this paper, there is a comparison between the advantages of two fluorescence approaches of commonly available and affordable instruments: the microplate reader (MPR) and the flow cytometer to detect the P-gp efflux activity using calcein-AM. Results. The selectivity, sensibility, and reproducibility of the two methods have been defined. Our results showed that the MPR is more powerful for the detection of small inhibition, whereas the flow cytometry method is more reliable at higher concentrations of the inhibitors. We showed that to determine precisely the inhibition efficacy the flow cytometry is better; hence, to get the correct Emax and EC50 values, we cannot only rely on the MPR. Conclusion. Both techniques can potentially be used extensively in the pharmaceutical industry for high-throughput drug screening and in biology laboratories for academic research, monitoring the P-gp efflux in specific assays.
Collapse
|
222
|
Marcucci F, Bellone M, Caserta CA, Corti A. Pushing tumor cells towards a malignant phenotype: stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer 2013; 135:1265-76. [PMID: 24174383 DOI: 10.1002/ijc.28572] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/26/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment produces different types of stimuli capable of endowing tumor cells with an aggressive behavior that is characterized by increased motility, invasiveness and propensity to metastasize, gain of a tumor-initiating phenotype, and drug resistance. The following classes of stimuli have been reported to promote such a malignant phenotype: (i) solid- or fluid-induced stress; (ii) altered composition of the extracellular matrix; (iii) hypoxia and low pH; (iv) innate and adaptive immune responses; (v) antitumor drugs. The simultaneous presence of more than one of these stimuli, as likely occurs in vivo, may lead to synergistic interactions in the induction of malignant traits. In many cases, the gain of a malignant phenotype is not the result of a direct effect of the stimuli on tumor cells but, rather, a stimulus-promoted cross-talk between tumor cells and other cell types within the tumor microenvironment. This cross-talk is mainly mediated by two classes of molecules: paracrine factors and adhesion receptors. Stimuli that promote a malignant phenotype can promote additional outcomes in tumor cells, including autophagy and cell death. We summarize here the available evidence about the variables that induce tumor cells to take one or the other of these roads in response to the same stimuli. At the end of this review, we address some unanswered questions in this domain and indicate future directions of research.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Centro Nazionale di Epidemiologia Sorveglianza e Promozione della Salute (CNESPS), Istituto Superiore di Sanita' (ISS), Roma, Italy; Hepatology Association of Calabria (ACE), Reggio Calabria, Italy
| | | | | | | |
Collapse
|
223
|
Abstract
There are many obstacles to effective cancer chemotherapy, including drug penetration and accumulation in tumors and drug systemic toxicity. The penetration of therapies into tumors is limited by the dense tumor matrix and by compression of the tumor vasculature. We have developed spiropyran-based nanoparticles that shrink from 103 to 49 nm upon irradiation at 365 nm. That shrinkage enhanced tissue penetration and drug release. Irradiation of s.c. HT-1080 tumors in nude mice administered i.v. docetaxel-containing nanoparticles was more effective treatment than free docetaxel or encapsulated docetaxel without irradiation. Irradiation at the tumor site also resulted in less systemic toxicity than if the nanoparticles were irradiated before injection, presumably because of less systemically distributed free drug. The enhanced efficacy of nanoparticles in irradiated tumors may have been related to the observed enhanced tumor penetration by nanoparticles and decompression of tumor blood vessels, which may also increase nanoparticle delivery into tumors.
Collapse
|
224
|
Abstract
Cancer nanomedicines approved so far minimize toxicity, but their efficacy is often limited by physiological barriers posed by the tumour microenvironment. Here, we discuss how these barriers can be overcome through innovative nanomedicine design and through creative manipulation of the tumour microenvironment.
Collapse
Affiliation(s)
- Vikash P. Chauhan
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rakesh K. Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
225
|
Liu Y, Gao FP, Zhang D, Fan YS, Chen XG, Wang H. Molecular structural transformation regulated dynamic disordering of supramolecular vesicles as pH-responsive drug release systems. J Control Release 2013; 173:140-7. [PMID: 24188958 DOI: 10.1016/j.jconrel.2013.10.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/02/2013] [Accepted: 10/26/2013] [Indexed: 01/19/2023]
Abstract
The spontaneous release of drug payloads in the whole body always results in the compromised drug bioavailability and ultimate therapeutic efficacy. To achieve enhanced therapeutic efficacy and reduced side effects, pH-responsive targeted drug delivery systems have been studied due to their enhanced tumor accumulation and controllable maximum drug release feature. The present study described a co-assembly constructed by a pH responsive molecule (i.e., malachite green carbinol base (MG)) and liposome for highly efficient doxorubicin (DOX) release in tumor cells (MG-DOX⊂L). The structural transformation of MG effectively regulates the drug release profile in acidic environment. The pH-responsive sensitivity of co-assembly can be fine-tuned by altering the mixing ratios of building blocks with pH responders (i.e., MG molecules). MG-DOX⊂L was beneficial for the DOX release at pH5.0 and showed a higher cytotoxicity in KB cells owing to the pH-responsive drug release in acidic organelles following endocytosis pathway. In vivo tumor targetability and growth inhibition were evaluated in KB cell-xenografted nude mice. We have demonstrated that effective tumor growth inhibition in vivo is attributed to the synergistic contributions from highly efficient cellular entry and responsive intracellular release of DOX from MG-DOX⊂L.
Collapse
Affiliation(s)
- Ya Liu
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, China; College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, China
| | - Fu-Ping Gao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Di Zhang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Yun-Shan Fan
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, China.
| | - Hao Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, China.
| |
Collapse
|
226
|
GRAHAM ELIZABETHG, MACNEILL CHRISTOPHERM, LEVI-POLYACHENKO NICOLEH. REVIEW OF METAL, CARBON AND POLYMER NANOPARTICLES FOR INFRARED PHOTOTHERMAL THERAPY. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793984413300021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this review is to provide an up-to-date overview of nanoparticles developed for use as photothermal therapy agents (PTT) over the past five years. The main emphasis is on nanoparticles that absorb near infrared (NIR) light for PTT of cancer. Mild hyperthermia, including drug delivery, versus thermal ablation is also discussed. Recent advances in the synthesis of highly anisotropic novel metal nanoparticles for PTT are described. New metals and metal oxide complexes, as well as the use of quantum dots for PTT and as imaging agents are newer areas of development that are explained. This review also highlights current progress in the development of carbon nanoparticles, including reduced graphene oxide for both thermal ablation as well as drug delivery. The review culminates in the recent use electrically conductive polymer nanoparticles for hyperthermia. The advantages and unique features of these contemporary nanoparticles being used for PTT are highlighted. The goal of the present work is to describe the recent evolution of nanoparticles for NIR stimulated PTT, and highlight the innovations and future directions.
Collapse
Affiliation(s)
- ELIZABETH G. GRAHAM
- Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - CHRISTOPHER M. MACNEILL
- Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - NICOLE H. LEVI-POLYACHENKO
- Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
227
|
FRAP in Pharmaceutical Research: Practical Guidelines and Applications in Drug Delivery. Pharm Res 2013; 31:255-70. [DOI: 10.1007/s11095-013-1146-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
|
228
|
Kong M, Park H, Cheng X, Chen X. Spatial-temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy. J Control Release 2013; 172:281-291. [PMID: 24004884 DOI: 10.1016/j.jconrel.2013.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/14/2013] [Accepted: 08/17/2013] [Indexed: 12/18/2022]
Abstract
In cancer therapy, drug delivery is a complex process that aims to transit the cargo to the destination with as little damage to the normal tissue as possible. In the last decade, tremendous development and research on nanomedicine have been exploring an ideal system with efficient drug transportation and release property. For this end, series of barriers need to be circumvented by nanomedicine, including systemic barriers, such as biosurface adsorption, phagocytic clearance, bloodstream washing, interstitial pressure, degradation, as well as intracellular barriers, such as cell membrane reorganization and internalization, endo/lysosomal escape, cytosolic or subcellular localization. Rather than being random, these barriers follow a specific spatial-temporal sequence. Therefore, the nanocarriers have to be endowed with characteristics that are adaptive to particular biological milieu on systemic and intracellular levels. To this end, we reviewed the correlations between the spatial-temporal sequences of drug delivery and nanocarrier characteristics in cancer therapy, as well as strategies to achieve efficient drug delivery upon both systemic and intracellular levels.
Collapse
Affiliation(s)
- Ming Kong
- Biochemistry and biomaterial key laboratory of Shandong colleges and universities, College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Hyunjin Park
- Graduate School Biotechnology, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Xiaojie Cheng
- Biochemistry and biomaterial key laboratory of Shandong colleges and universities, College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Xiguang Chen
- Biochemistry and biomaterial key laboratory of Shandong colleges and universities, College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
229
|
Zhang L, Wang Y, Cao Y, Lou D, Wang B. Transport barriers and strategies of antitumor nanocarriers delivery system. J Biomed Mater Res A 2013; 101:3661-9. [DOI: 10.1002/jbm.a.34635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/23/2012] [Accepted: 12/31/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Lin Zhang
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Yazhou Wang
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Yang Cao
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Deshuai Lou
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| | - Bochu Wang
- College of Bioengineering, Chongqing University; Chongqing 400030 People's Republic of China
| |
Collapse
|
230
|
|
231
|
Abstract
Diffusion of solutes and macromolecules in the extracellular space (ECS) in brain is important for non-synaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. Diffusion in tumor ECS is important for delivery of anti-tumor drugs. The ECS in brain comprises ∼20% of brain parenchymal volume and contains cell-cell gaps down to ∼50 nm. We have developed fluorescence methods to quantify solute diffusion in the ECS, allowing measurements deep in solid tissues using microfiberoptics with micron tip size. Diffusion through the tortuous ECS in brain is generally slowed by ∼3-5-fold compared with that in water, with approximately half of the slowing due to tortuous ECS geometry and half due to the mildly viscous extracellular matrix (ECM). Mathematical modeling of slowed diffusion in an ECS with reasonable anatomical accuracy is in good agreement with experiment. In tumor tissue, diffusion of small macromolecules is only mildly slowed (<3-fold slower than in water) in superficial tumor, but is greatly slowed (>10-fold) at a depth of few millimeters as the tumor tissue becomes more compact. Slowing by ECM components such as collagen contribute to the slowed diffusion. Therefore, as found within cells, cellular crowding and highly tortuous transport can produce only minor slowing of diffusion in the ECS.
Collapse
Affiliation(s)
- A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| |
Collapse
|
232
|
Choi IK, Strauss R, Richter M, Yun CO, Lieber A. Strategies to increase drug penetration in solid tumors. Front Oncol 2013; 3:193. [PMID: 23898462 PMCID: PMC3724174 DOI: 10.3389/fonc.2013.00193] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022] Open
Abstract
Despite significant improvement in modalities for treatment of cancer that led to a longer survival period, the death rate of patients with solid tumors has not changed during the last decades. Emerging studies have identified several physical barriers that limit the therapeutic efficacy of cancer therapeutic agents such as monoclonal antibodies, chemotherapeutic agents, anti-tumor immune cells, and gene therapeutics. Most solid tumors are of epithelial origin and, although malignant cells are de-differentiated, they maintain intercellular junctions, a key feature of epithelial cells, both in the primary tumor as well as in metastatic lesions. Furthermore, nests of malignant epithelial tumor cells are shielded by layers of extracellular matrix (ECM) proteins (e.g., collagen, elastin, fibronectin, laminin) whereby tumor vasculature rarely penetrates into the tumor nests. In this chapter, we will review potential strategies to modulate the ECM and epithelial junctions to enhance the intratumoral diffusion and/or to remove physical masking of target receptors on malignant cells. We will focus on peptides that bind to the junction protein desmoglein 2 and trigger intracellular signaling, resulting in the transient opening of intercellular junctions. Intravenous injection of these junction openers increased the efficacy and safety of therapies with monoclonal antibodies, chemotherapeutics, and T cells in mouse tumor models and was safe in non-human primates. Furthermore, we will summarize approaches to transiently degrade ECM proteins or downregulate their expression. Among these approaches is the intratumoral expression of relaxin or decorin after adenovirus- or stem cell-mediated gene transfer. We will provide examples that relaxin-based approaches increase the anti-tumor efficacy of oncolytic viruses, monoclonal antibodies, and T cells.
Collapse
Affiliation(s)
- Il-Kyu Choi
- Department of Bioengineering, College of Engineering, Hanyang University , Seoul , South Korea
| | | | | | | | | |
Collapse
|
233
|
Huang C, Jin H, Qian Y, Qi S, Luo H, Luo Q, Zhang Z. Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS NANO 2013; 7:5791-5800. [PMID: 23790040 DOI: 10.1021/nn400683s] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cytolytic peptide melittin is a potential anticancer candidate that may be able to overcome tumor drug resistance due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, which is especially pronounced following intravenous administration. Here, we designed a hybrid cytolytic peptide, α-melittin, in which the N-terminus of melittin is linked to the C-terminus of an amphipathic α-helical peptide (α-peptide) via a GSG linker. The strong α-helical configuration allows α-melittin to interact with phospholipids and self-assemble into lipid nanoparticles, with a high efficiency for α-melittin encapsulation (>80%) and a strong ability to control the structure of the nanoparticle (~20 nm). This α-melittin-based lipid nanoparticle (α-melittin-NP) efficiently shields the positive charge of melittin (18.70 ± 0.90 mV) within the phospholipid monolayer, resulting in the generation of a neutral nanoparticle (2.45 ± 0.56 mV) with reduced cytotoxicity and a widened safe dosage range. Confocal imaging data confirmed that α-melittin peptides were efficiently released from the nanoparticles and were cytotoxic to the melanoma cells. Finally, α-melittin-NPs were administered to melanoma-bearing mice via intravenous injection. The growth of the melanoma cells was blocked by the α-melittin-NPs, with an 82.8% inhibition rate relative to the PBS-treated control group. No side effects of treatment were found in this study. Thus, the excellent properties of α-melittin-NP give it potential clinical applications in solid tumor therapeutics through intravenous administration.
Collapse
Affiliation(s)
- Chuan Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
234
|
Jain RK, Munn LL, Fukumura D. Measuring interstitial diffusion, convection, and binding parameters in mouse tumors. Cold Spring Harb Protoc 2013; 2013:678-80. [PMID: 23818670 DOI: 10.1101/pdb.prot075721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noninvasive techniques have been developed for the assessment of various parameters in normal and diseased tissues of mice. This protocol describes the measurement of extravascular parameters, including interstitial diffusion, convection, and binding parameters, in mouse tumors. A fluorescently labeled molecule of interest is infused into the tumor interstitium, followed by imaging using single-photon microscopy or multiphoton laser-scanning microscopy (MPLSM). Fluorescence recovery after photobleaching (FRAP) with spatial Fourier analysis is performed. To measure interstitial diffusion coefficients, multiphoton FRAP is performed.
Collapse
|
235
|
Yang W, Li Z, Zhang W, Luo C, Ouyang Q, Yang G, Wang Y. A novel density control device for the study of cancer cell autocrine effect. Biomed Microdevices 2013; 15:683-689. [PMID: 23784259 DOI: 10.1007/s10544-013-9783-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this paper, we propose a novel cell self-loading and patterning device for quantitatively study density effect on cell behaviors. Using this device, it is easy to gather different cell density colonies in different sizes of micro-chambers using one homogeneous cell solution. As a demonstration, we show that the cell number of self-patterning MCF-7 colony is in proportion to the size of liquid-absorbing cavity in the device, from single cell to tens of cells. This device can easily be used to compare the cancer cells' proliferation in different micro-environments, such as the same number of cells in micro-cavities with different sizes, or different numbers of cells in micro-cavities with the same size, or with different FBS concentrations. Our studies imply a plausible positive correlation between the local concentration of autocrine factors and tumor cell proliferation, which is also quantitative analyzed by a simple model.
Collapse
Affiliation(s)
- Wei Yang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, People's Republic of China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Zhaojun Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Weilin Zhang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, People's Republic of China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China.
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, People's Republic of China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
236
|
Rejniak KA, Estrella V, Chen T, Cohen AS, Lloyd MC, Morse DL. The role of tumor tissue architecture in treatment penetration and efficacy: an integrative study. Front Oncol 2013; 3:111. [PMID: 23717812 PMCID: PMC3650652 DOI: 10.3389/fonc.2013.00111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/22/2013] [Indexed: 12/02/2022] Open
Abstract
Despite the great progress that has been made in understanding cancer biology and the potential molecular targets for its treatment, the majority of drugs fail in the clinical trials. This may be attributed (at least in part) to the complexity of interstitial drug transport in the patient’s body, which is hard to test experimentally. Similarly, recent advances in molecular imaging have led to the development of targeted biomarkers that can predict pharmacological responses to therapeutic interventions. However, both the drug and biomarker molecules need to access the tumor tissue and be taken up into individual cells in concentrations sufficient to exert the desired effect. To investigate the process of drug penetration at the mesoscopic level we developed a computational model of interstitial transport that incorporates the biophysical properties of the tumor tissue, including its architecture and interstitial fluid flow, as well as the properties of the agents. This model is based on the method of regularized Stokeslets to describe the fluid flow coupled with discrete diffusion-advection-reaction equations to model the dynamics of the drugs. Our results show that the tissue cellular porosity and density influence the depth of penetration in a non-linear way, with sparsely packed tissues being traveled through more slowly than the denser tissues. We demonstrate that irregularities in the cell spatial configurations result in the formation of interstitial corridors that are followed by agents leading to the emergence of tissue zones with less exposure to the drugs. We describe how the model can be integrated with in vivo experiments to test the extravasation and penetration of the targeted biomarkers through the tumor tissue. A better understanding of tissue- or compound-specific factors that limit the penetration through the tumors is important for non-invasive diagnoses, chemotherapy, the monitoring of treatment responses, and the detection of tumor recurrence.
Collapse
Affiliation(s)
- Katarzyna A Rejniak
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute Tampa, FL, USA ; Department of Oncologic Sciences, College of Medicine, University of South Florida Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
237
|
Toy R, Hayden E, Camann A, Berman Z, Vicente P, Tran E, Meyers J, Pansky J, Peiris PM, Hu H, Exner A, Wilson D, Ghaghada KB, Karathanasis E. Multimodal in vivo imaging exposes the voyage of nanoparticles in tumor microcirculation. ACS NANO 2013; 7:3118-29. [PMID: 23464827 PMCID: PMC3640526 DOI: 10.1021/nn3053439] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tumors present numerous biobarriers to the successful delivery of nanoparticles. Decreased blood flow and high interstitial pressure in tumors dictate the degree of resistance to extravasation of nanoparticles. To understand how a nanoparticle can overcome these biobarriers, we developed a multimodal in vivo imaging methodology, which enabled the noninvasive measurement of microvascular parameters and deposition of nanoparticles at the microscopic scale. To monitor the spatiotemporal progression of tumor vasculature and its vascular permeability to nanoparticles at the microcapillary level, we developed a quantitative in vivo imaging method using an iodinated liposomal contrast agent and a micro-CT. Following perfusion CT for quantitative assessment of blood flow, small animal fluorescence molecular tomography was used to image the in vivo fate of cocktails containing liposomes of different sizes labeled with different NIR fluorophores. The animal studies showed that the deposition of liposomes depended on local blood flow. Considering tumor regions of different blood flow, the deposition of liposomes followed a size-dependent pattern. In general, the larger liposomes effectively extravasated in fast flow regions, while smaller liposomes performed better in slow flow regions. We also evaluated whether the tumor retention of nanoparticles is dictated by targeting them to a receptor overexpressed by the cancer cells. Targeting of 100 nm liposomes showed no benefits at any flow rate. However, active targeting of 30 nm liposomes substantially increased their deposition in slow flow tumor regions (∼12-fold increase), which suggested that targeting prevented the washout of the smaller nanoparticles from the tumor interstitium back to blood circulation.
Collapse
Affiliation(s)
- Randall Toy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Elliott Hayden
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Andrew Camann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zachary Berman
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Peter Vicente
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Emily Tran
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Joseph Meyers
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jenna Pansky
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Pubudu M. Peiris
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hanping Hu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
| | - Agata Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - David Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ketan B. Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas 77030
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
- Author to whom correspondence should be addressed: Efstathios Karathanasis, Wickenden Bldg. MS 7207, 10900 Euclid Ave, Cleveland, Ohio 44106, United States of America, Phone: 216.844.5281; Fax: 216.844.4987;
| |
Collapse
|
238
|
Ng KK, Lovell JF, Vedadi A, Hajian T, Zheng G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS NANO 2013; 7:3484-3490. [PMID: 23464857 DOI: 10.1021/nn400418y] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The abilities to deliver and subsequently activate a therapeutic at the intended site of action are two important challenges in the synthesis of novel nanoparticles. Poor tumor permeability as a result of a dense microenvironment can impede the delivery of nanoparticles to the site of action. The design of a sub-40 nm activatable porphyrin nanodisc, based on protein-induced lipid constriction, is described. The biophotonic nanoparticle, self-assembled from aggregated porphyrin-lipid, is stabilized by an amphipathic alpha helical protein and becomes photoactive when its structure is perturbed. Enzymatic cleavage of the constricting protein leads to conversion of the particle from a disc- to a vesicle-shaped structure and provides further evidence that the apolipoprotein serves a functional role on the nanodisc. Fluorescence measurements of these nanodiscs in a detergent show that fluorescence is over 99% quenched in the intact state with a 12-fold increase in singlet oxygen generation upon disruption. Cellular fluorescence unquenching and dose-dependent phototoxicity demonstrate that these nanodiscs can be internalized and unquenched intracellularly. Finally, nanodiscs were found to display a 5-fold increase in diffusion coefficient when compared with the protein-free control ((3.5±0.1)×10(-7) vs (0.7±0.03)×10(-7) cm2 s(-1)). The ability to incorporate large amounts of photosensitizer drugs into its compact structure allows for phototherapeutic action, fluorescence diagnostic applications, and the potential to effectively deliver photosensitizers deep into poorly permeable tumors.
Collapse
Affiliation(s)
- Kenneth K Ng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
239
|
Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Mol Pharm 2013; 10:2111-26. [PMID: 23517188 DOI: 10.1021/mp3005947] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Altug Ozcelikkale
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Soham Ghosh
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Bumsoo Han
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| |
Collapse
|
240
|
Chou CY, Huang CK, Lu KW, Horng TL, Lin WL. Investigation of the spatiotemporal responses of nanoparticles in tumor tissues with a small-scale mathematical model. PLoS One 2013; 8:e59135. [PMID: 23565142 PMCID: PMC3615073 DOI: 10.1371/journal.pone.0059135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/13/2013] [Indexed: 12/16/2022] Open
Abstract
The transport and accumulation of anticancer nanodrugs in tumor tissues are affected by many factors including particle properties, vascular density and leakiness, and interstitial diffusivity. It is important to understand the effects of these factors on the detailed drug distribution in the entire tumor for an effective treatment. In this study, we developed a small-scale mathematical model to systematically study the spatiotemporal responses and accumulative exposures of macromolecular carriers in localized tumor tissues. We chose various dextrans as model carriers and studied the effects of vascular density, permeability, diffusivity, and half-life of dextrans on their spatiotemporal concentration responses and accumulative exposure distribution to tumor cells. The relevant biological parameters were obtained from experimental results previously reported by the Dreher group. The area under concentration-time response curve (AUC) quantified the extent of tissue exposure to a drug and therefore was considered more reliable in assessing the extent of the overall drug exposure than individual concentrations. The results showed that 1) a small macromolecule can penetrate deep into the tumor interstitium and produce a uniform but low spatial distribution of AUC; 2) large macromolecules produce high AUC in the perivascular region, but low AUC in the distal region away from vessels; 3) medium-sized macromolecules produce a relatively uniform and high AUC in the tumor interstitium between two vessels; 4) enhancement of permeability can elevate the level of AUC, but have little effect on its uniformity while enhancement of diffusivity is able to raise the level of AUC and improve its uniformity; 5) a longer half-life can produce a deeper penetration and a higher level of AUC distribution. The numerical results indicate that a long half-life carrier in plasma and a high interstitial diffusivity are the key factors to produce a high and relatively uniform spatial AUC distribution in the interstitium.
Collapse
Affiliation(s)
- Cheng-Ying Chou
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Huang
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuo-Wei Lu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Medical Engineering Research Division, National Health Research Institutes, Miaoli, Taiwan
| | - Tzyy-Leng Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan
- * E-mail: (WLL); (TLL)
| | - Win-Li Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Medical Engineering Research Division, National Health Research Institutes, Miaoli, Taiwan
- * E-mail: (WLL); (TLL)
| |
Collapse
|
241
|
EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv 2013; 4:421-3. [DOI: 10.4155/tde.13.8] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
242
|
Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett 2013; 587:1504-9. [PMID: 23542036 DOI: 10.1016/j.febslet.2013.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR), one of the main reasons for diminishing efficacy of prolonged chemotherapy, is frequently caused by the elevated expression of the ABCB1/MDR1 gene encoding PGP (P-glycoprotein). EAPP (E2F Associated PhosphoProtein) is a frequently overexpressed protein in human tumor cells. It inhibits apoptosis in a p21-dependent manner. We show here that EAPP stimulates the MDR1 promoter resulting in higher PGP levels. Independently of EAPP, E2F1 also increases the activity of the MDR1 promoter. Co-expression of pRb inhibits E2F1-, but not EAPP-dependent promoter activation. The upregulation of PGP might contribute to the survival of tumor cells during chemotherapy and worsen the prognosis for the patient.
Collapse
|
243
|
Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials 2013; 34:4667-79. [PMID: 23537667 DOI: 10.1016/j.biomaterials.2013.03.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/03/2013] [Indexed: 01/13/2023]
Abstract
Boronic acid-rich chitosan-poly(N-3-acrylamidophenylboronic acid) nanoparticles (CS-PAPBA NPs) with the tunable size were successfully prepared by polymerizing N-3-acrylamidophenylboronic acid in the presence of chitosan in an aqueous solution. The CS-PAPBA NPs were then functionalized by a tumor-penetrating peptide iRGD and loading doxorubicin (DOX). The interaction between boronic acid groups of hydrophobic PAPBA and the amino groups of hydrophilic chitosan inside the nanoparticles was examined by solid-state NMR measurement. The size and morphology of nanoparticles were characterized by dynamic light scattering and electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using three-dimensional (3-D) multicellular spheroids (MCs) as the in vitro model and H22 tumor-bearing mice as the in vivo model. It was found that the iRGD-conjugated nanoparticles significantly improved the efficiency of DOX penetration in MCs, compared with free DOX and non-conjugated nanoparticles, resulting in the efficient cell killing in the MCs. In vivo antitumor activity examination indicated that iRGD-conjugated CS-PAPBA nanoparticles promoted the accumulation of nanoparticles in tumor tissue and enhanced their penetration in tumor areas, both of which improved the efficiency of DOX-loaded nanoparticles in restraining tumor growth and prolonging the life time of H22 tumor-bearing mice.
Collapse
|
244
|
Ying CT, Wang J, Lamm RJ, Kamei DT. Mathematical Modeling of Vesicle Drug Delivery Systems 2. ACTA ACUST UNITED AC 2013; 18:46-62. [DOI: 10.1177/2211068212458265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
245
|
Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 2013; 4:149ra119. [PMID: 22932224 DOI: 10.1126/scitranslmed.3003594] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114 nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm and that more than one-quarter of all pores are ≥ 100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible.
Collapse
Affiliation(s)
- Elizabeth A Nance
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, Stylianopoulos T, Mousa AS, Han X, Adstamongkonkul P, Popović Z, Huang P, Bawendi MG, Boucher Y, Jain RK. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 2013; 4:2516. [PMID: 24084631 PMCID: PMC3806395 DOI: 10.1038/ncomms3516] [Citation(s) in RCA: 722] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors -inexpensive drugs with decades of safe use - could be rapidly repurposed as cancer therapeutics.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensins/antagonists & inhibitors
- Angiotensins/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Hypoxia
- Collagen/metabolism
- Connective Tissue Growth Factor/genetics
- Connective Tissue Growth Factor/metabolism
- Drug Repositioning
- Drug Synergism
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Hyaluronic Acid/metabolism
- Losartan/pharmacology
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mechanotransduction, Cellular
- Mice
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Stress, Mechanical
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Vikash P. Chauhan
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- These authors contributed equally to this work
| | - John D. Martin
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- These authors contributed equally to this work
| | - Hao Liu
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Delphine A. Lacorre
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Saloni R. Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sergey V. Kozin
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Triantafyllos Stylianopoulos
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Mechanical and Manufacturing Engineering, University of Cyprus CY-1678, Nicosia, Cyprus
| | - Ahmed S. Mousa
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Xiaoxing Han
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Pichet Adstamongkonkul
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zoran Popović
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peigen Huang
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yves Boucher
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Rakesh K. Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
247
|
Li W, Zhang X, Hao X, Jie J, Tian B, Zhang X. Shape design of high drug payload nanoparticles for more effective cancer therapy. Chem Commun (Camb) 2013; 49:10989-91. [DOI: 10.1039/c3cc46718j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
248
|
Nichols JW, Bae YH. Odyssey of a cancer nanoparticle: from injection site to site of action. NANO TODAY 2012; 7:606-618. [PMID: 23243460 PMCID: PMC3519442 DOI: 10.1016/j.nantod.2012.10.010] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
No chemotherapeutic drug can be effective until it is delivered to its target site. Nano-sized drug carriers are designed to transport therapeutic or diagnostic materials from the point of administration to the drug's site of action. This task requires the nanoparticle carrying the drug to complete a journey from the injection site to the site of action. The journey begins with the injection of the drug carrier into the bloodstream and continues through stages of circulation, extravasation, accumulation, distribution, endocytosis, endosomal escape, intracellular localization and-finally-action. Effective nanoparticle design should consider all of these stages to maximize drug delivery to the entire tumor and effectiveness of the treatment.
Collapse
Affiliation(s)
- Joseph W Nichols
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84108
| | | |
Collapse
|
249
|
Shao Y, Huang W, Shi C, Atkinson ST, Luo J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv 2012; 3:1409-27. [PMID: 23323559 PMCID: PMC3575096 DOI: 10.4155/tde.12.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Polymer micelles have proven to be one of the most versatile nanocarriers for anticancer drug delivery. However, the in vitro and in vivo stability of micelles remains a challenge due to the dynamic nature of these self-assembled systems, which leads to premature drug release and nonspecific biodistribution in vivo. Recently, reversibly crosslinked micelles have been developed to provide solutions to stabilize nanocarriers in blood circulation. Increased stability allows nanoparticles to accumulate at tumor sites efficiently via passive and/or active tumor targeting, while cleavage of the micelle crosslinkages, through internal or external stimuli, facilitates on-demand drug release. In this review, various crosslinking chemistries as well as the choices for reversible linkages in these nanocarriers will be introduced. Then, the development of reversibly crosslinked micelles for on-demand drug release in response to single or dual stimuli in the tumor microenvironment is discussed, for example, acidic pH, reducing microenvironment, enzymatic microenvironment, photoirradiation and the administration of competitive reagents postmicelle delivery.
Collapse
Affiliation(s)
- Yu Shao
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenzhe Huang
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sean T Atkinson
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
250
|
Huang CY, Pourgholami MH, Allen BJ. Optimizing radioimmunoconjugate delivery in the treatment of solid tumor. Cancer Treat Rev 2012; 38:854-60. [DOI: 10.1016/j.ctrv.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 02/08/2023]
|