201
|
Riaz SK, Iqbal Y, Malik MFA. Diagnostic and therapeutic implications of the vascular endothelial growth factor family in cancer. Asian Pac J Cancer Prev 2016; 16:1677-82. [PMID: 25773809 DOI: 10.7314/apjcp.2015.16.5.1677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer progression is attained by uncontrolled cell division and metastasis. Increase in tumor size triggers different vascular channel formation to address cell nutritional demands. These channels are responsible for transferring of nutrients and gaseous to the cancer cells. Cancer vascularization is regulated by numerous factors including vascular endothelial growth factors (VEGFs). These factors play an important role during embryonic development. Members included in this group are VEGFA, VEGFB, VEGFC, PIGF and VEGFD which markedly influence cellular growth and apoptosis. Being freely diffusible these proteins act in both autocrine and paracrine fashions. In this review, genetic characterization these molecules and their putative role in cancer staging has been elaborated. Prognostic significance of these molecules along with different stages of cancer has also been summarized. Brief outline of ongoing efforts to target hot spot target sites against these VEGFs and their cognate limitations for therapeutic implications are also highlighted.
Collapse
Affiliation(s)
- Syeda Kiran Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan E-mail :
| | | | | |
Collapse
|
202
|
Barresi V, Spampinato G, Musso N, Trovato Salinaro A, Rizzarelli E, Condorelli DF. ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs. J Inorg Biochem 2016; 156:145-52. [PMID: 26784148 DOI: 10.1016/j.jinorgbio.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 11/17/2022]
Abstract
Copper is a catalytic cofactor required for the normal function of many enzymes involved in fundamental biological processes but highly cytotoxic when in excess. Therefore its homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones. ATOX1 (antioxidant protein 1) is a copper chaperone that plays a role in copper homeostasis by binding and transporting cytosolic copper to ATPase proteins in the trans-Golgi network. In the present study the Caco-2 cell line, a colon carcinoma cell line, was used as an in vitro model to evaluate if ATOX1 deficiency could affect sensitivity to experimentally induced copper dyshomeostasis. Silencing of ATOX1 increased toxicity of a short treatment with a high concentration of Cu(2+). Copper ionophores, such as 5-chloro-8-hydroxyquinoline, induced a copper-dependent cell toxicity which was significantly potentiated after ATOX1 silencing. The copper chelator TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) produced a form of cell toxicity that was reversed by the addition of Cu(2+). ATOX1 silencing increased Caco-2 cell sensitivity to TPEN toxicity. Our results suggest the possibility of a therapy with copper-chelating or ionophore drugs in subtypes of tumors showing specific alterations in ATOX1 expression.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania, Italy
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania, Italy
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimaging, National Council of Research, UOS Catania, Italy
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania, Italy.
| |
Collapse
|
203
|
Abstract
OBJECTIVE To identify genetic variants associated with the severity of postburn hypertrophic scarring (HTS) using a genome-wide approach. BACKGROUND Risk of severe postburn HTS is known to depend on race, but the genetic determinants of HTS are unknown. METHODS We conducted a genome-wide association study (GWAS) in a prospective cohort of adults admitted with deep-partial-thickness burns from 2007 through 2014. Scar severity was assessed over time using the Vancouver Scar Scale (VSS), and DNA was genotyped with a >500,000-marker array. We performed association testing of single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) >0.01 using linear regression of VSS height score on genotype adjusted for patient and injury characteristics as well as population genetic structure. Array-wide significance was based on Bonferroni correction for multiple testing. RESULTS Of 538 patients (median age 40 years, median burn size 6.0% of body surface area), 71% were men and 76% were White. The mean VSS height score was 1.2 (range: 0-3). Of 289,639 SNPs tested, a variant in the CUB and Sushi multiple domains 1 (CSMD1) gene (rs11136645; MAF = 0.49), was significantly associated with decreased scar height (regression coefficient = -0.23, P = 7.9 × 10). CONCLUSIONS In the first published GWAS of HTS, we report that a common intronic variant in the CSMD1 gene is associated with reduced severity of postburn HTS. If this association is confirmed in an independent cohort, investigating the potential role of CSMD1 in wound healing may elucidate HTS pathophysiology.
Collapse
|
204
|
Schell MJ, Yang M, Missiaglia E, Delorenzi M, Soneson C, Yue B, Nebozhyn MV, Loboda A, Bloom G, Yeatman TJ. A Composite Gene Expression Signature Optimizes Prediction of Colorectal Cancer Metastasis and Outcome. Clin Cancer Res 2015; 22:734-45. [PMID: 26446941 DOI: 10.1158/1078-0432.ccr-15-0143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE We previously found that an epithelial-to-mesenchymal transition (EMT)-based gene expression signature was highly correlated with the first principal component (PC1) of 326 colorectal cancer tumors and was prognostic. This study was designed to improve these signatures for better prediction of metastasis and outcome. EXPERIMENTAL DESIGN A total of 468 colorectal cancer tumors including all stages (I-IV) and metastatic lesions were used to develop a new prognostic score (ΔPC1.EMT) by subtracting the EMT signature score from its correlated PC1 signature score. The score was validated on six other independent datasets with a total of 3,697 tumors. RESULTS ΔPC1.EMT was found to be far more predictive of metastasis and outcome than its parent scores. It performed well in stages I to III, among microsatellite instability subtypes, and across multiple mutation-based subclasses, demonstrating a refined capacity to predict distant metastatic potential even in tumors with a "good" prognosis. For example, in the PETACC-3 clinical trial dataset, it predicted worse overall survival in an adjusted multivariable model for stage III patients (HR standardized by interquartile range [IQR] = 1.50; 95% confidence interval, 1.25-1.81; P = 0.000016, N = 644). The improved performance of ΔPC1.EMT was related to its propensity to identify epithelial-like subpopulations as well as mesenchymal-like subpopulations. Biologically, the signature was correlated positively with RAS signaling but negatively with mitochondrial metabolism. ΔPC1.EMT was a "best of assessed" prognostic score when compared with 10 other known prognostic signatures. CONCLUSIONS The study developed a prognostic signature score with a propensity to detect non-EMT features, including epithelial cancer stem cell-related properties, thereby improving its potential to predict metastasis and poorer outcome in stage I-III patients.
Collapse
Affiliation(s)
| | - Mingli Yang
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina
| | | | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland. Ludwig Center for Cancer Research, University of Lausanne (CH), Lausanne, Switzerland. Department of Oncology, University of Lausanne (CH), Lausanne, Switzerland
| | | | - Binglin Yue
- Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | - Gregory Bloom
- Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Timothy J Yeatman
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina.
| |
Collapse
|
205
|
Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal 2015; 13:39. [PMID: 26369938 PMCID: PMC4570748 DOI: 10.1186/s12964-015-0118-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called “redox signaling” includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an increased H2O2 production rate and an impaired redox balance thereby affecting the microenvironment as well as the anti-tumoral immune response. This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells. In addition it will be discussed how the targeting of H2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Ludger A Wessjohann
- Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle /Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany.
| |
Collapse
|
206
|
Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies. BMC SYSTEMS BIOLOGY 2015; 9 Suppl 5:S4. [PMID: 26356760 PMCID: PMC4565135 DOI: 10.1186/1752-0509-9-s5-s4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease. RESULTS We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations.
Collapse
|
207
|
Piersma SR, Knol JC, de Reus I, Labots M, Sampadi BK, Pham TV, Ishihama Y, Verheul HM, Jimenez CR. Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines. J Proteomics 2015; 127:247-58. [DOI: 10.1016/j.jprot.2015.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/13/2015] [Accepted: 03/05/2015] [Indexed: 02/03/2023]
|
208
|
Langlois B, Saupe F, Rupp T, Arnold C, van der Heyden M, Orend G, Hussenet T. AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, correlates with poor prognosis for glioma and colorectal cancer patients. Oncotarget 2015; 5:10529-45. [PMID: 25301723 PMCID: PMC4279391 DOI: 10.18632/oncotarget.2470] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/06/2014] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis represents a rate-limiting step during tumor progression. Targeting angiogenesis is already applied in cancer treatment, yet limits of anti-angiogenic therapies have emerged, notably because tumors adapt and recur after treatment. Therefore, there is a strong need to better understand the molecular and cellular mechanisms underlying tumor angiogenesis. Using the RIP1-Tag2 transgenic murine model, we identified 298 genes that are deregulated during the angiogenic switch, revealing an ingression/expansion of specific stromal cell types including endothelial cells and pericytes, but also macrophages and perivascular mesenchymal cells. Canonical TGF-β signaling is up-regulated during the angiogenic switch, especially in tumor-associated macrophages and fibroblasts. The matrisome, comprising extracellular matrix (ECM) and ECM-associated molecules, is significantly enriched, which allowed us to define the AngioMatrix signature as the 110 matrisomal genes induced during the RIP1-Tag2 angiogenic switch. Several AngioMatrix molecules were validated at expression level. Ablation of tenascin-C, one of the most highly induced ECM molecules during the switch, resulted in reduced angiogenesis confirming its important role. In human glioma and colorectal samples, the AngioMatrix signature correlates with the expression of endothelial cell markers, is increased with tumor progression and finally correlates with poor prognosis demonstrating its diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Benoit Langlois
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Falk Saupe
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Tristan Rupp
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Christiane Arnold
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Michaël van der Heyden
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Gertraud Orend
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Thomas Hussenet
- Inserm U1109, MN3T team, Molière, Strasbourg, 67200, France. Université de Strasbourg, Strasbourg, 67000, France. LabEx Medalis, Université de Strasbourg, Strasbourg, 67000, France. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| |
Collapse
|
209
|
Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 2015; 35:2011-9. [PMID: 26257062 DOI: 10.1038/onc.2015.304] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) results from the accumulation of genetic alterations, and somatic copy number alterations (CNAs) are crucial for the development of CRC. Genome-wide survey of CNAs provides opportunities for identifying cancer driver genes in an unbiased manner. The detection of aberrant CNAs may provide novel markers for the early diagnosis and personalized treatment of CRC. A major challenge in array-based profiling of CNAs is to distinguish the alterations that play causative roles from the random alterations that accumulate during colorectal carcinogenesis. In this view, we systematically discuss the frequent CNAs in CRC, focusing on functional genes that have potential diagnostic, prognostic and therapeutic significance.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - L Liang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J-Y Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J Xu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
210
|
Radulovich N, Leung L, Ibrahimov E, Navab R, Sakashita S, Zhu CQ, Kaufman E, Lockwood WW, Thu KL, Fedyshyn Y, Moffat J, Lam WL, Tsao MS. Coiled-coil domain containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic ductal adenocarcinoma. Oncogene 2015; 34:4238-47. [PMID: 25381825 PMCID: PMC5153324 DOI: 10.1038/onc.2014.357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Using integrative genomics and functional screening, we identified coiled-coil domain containing 68 (CCDC68) as a novel putative tumor suppressor gene (TSG) in pancreatic ductal adenocarcinoma (PDAC). CCDC68 allelic losses were documented in 48% of primary PDAC patient tumors, 50% of PDAC cell lines and 30% of primary patient derived xenografts. We also discovered a single nucleotide polymorphism (SNP) variant (SNP rs1344011) that leads to exon skipping and generation of an unstable protein isoform CCDC68Δ(69-114) in 31% of PDAC patients. Overexpression of full length CCDC68 (CCDC68(wt)) in PANC-1 and Hs.766T PDAC cell lines lacking CDCC68 expression decreased proliferation and tumorigenicity in scid mice. In contrast, the downregulation of endogenous CCDC68 in MIAPaca-2 cells increased tumor growth rate. These effects were not observed with the deletion-containing isoform, CCDC68Δ(69-114).
Collapse
Affiliation(s)
- Nikolina Radulovich
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology Department, University of Toronto, Ontario, Canada
| | - Lisa Leung
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Emin Ibrahimov
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Chang-Qi Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Ethan Kaufman
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - William W. Lockwood
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Kelsie L. Thu
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Yaroslav Fedyshyn
- Department of Molecular Genetics, Banting & Best Department of Medical Research, University of Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Banting & Best Department of Medical Research, University of Toronto, ON, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology Department, University of Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| |
Collapse
|
211
|
Erstad DJ, Tumusiime G, Cusack JC. Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon. Ann Surg Oncol 2015. [DOI: 10.1245/s10434-015-4706-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
212
|
Ouaret D, Larsen AK. Protein kinase C β inhibition by enzastaurin leads to mitotic missegregation and preferential cytotoxicity toward colorectal cancer cells with chromosomal instability (CIN). Cell Cycle 2015; 13:2697-706. [PMID: 25486357 DOI: 10.4161/15384101.2015.945383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enzastaurin is a selective inhibitor of protein kinase C β and a potent inhibitor of tumor angiogenesis. In addition, enzastaurin shows direct cytotoxic activity toward a subset of tumor cells including colorectal cancer cells (CRC). In spite of promising results in animal models, the clinical activity of enzastaurin in CRC patients has been disappointing although a subset of patients seems to derive benefit. In the present study we investigated the biological and cytotoxic activities of enzastaurin toward a panel of well-characterized CRC cell lines in order to clarify the mechanistic basis for the cytotoxic activity. Our results show that enzastaurin is significantly more cytotoxic toward CRC cells with chromosome instability (CIN) compared to cells with microsatellite instability (MSI). Since CIN is usually attributed to mitotic dysfunction, the influence of enzastaurin on cell cycle progression and mitotic transit was characterized for representative CIN and MSI cell lines. Enzastaurin exposure was accompanied by prolonged metaphase arrest in CIN cells followed by the appearance of tetraploid and micronuclei-containing cells as well as by increased apoptosis, whereas no detectable mitotic dysfunctions were observed in MSI cells exposed to isotoxic doses of enzastaurin. Our study identifies enzastaurin as a new, context dependent member of a heterogeneous group of anticancer compounds that induce "mitotic catastrophe," that is mitotic dysfunction accompanied by cell death. These data provide novel insight into the mechanism of action of enzastaurin and may allow the identification of biomarkers useful to identify CRC patients particularly likely, or not, to benefit from treatment with enzastaurin.
Collapse
Key Words
- CIN, chromosome instability
- CRC, colorectal cancer
- DMSO, Dimethyl sulfoxide
- MAP, mitogen-activated protein
- MEK, mitogen-activated protein kinase kinase
- MMC, mitomycin C
- MN, micronuclei
- MSI, microsatellite instability
- PKC, protein kinase C
- RACK, receptor of activated protein kinase C
- TP53, tumor protein p53
- VEGF, vascular endothelial cell growth factor
- VEGFR, vascular endothelial cell growth factor receptor
- chromosome instability (CIN)
- colorectal cancer (CRC)
- enzastaurin
- mitotic catastrophe
- protein kinase C (PKC) β inhibition
Collapse
Affiliation(s)
- Djamila Ouaret
- a Laboratory of Cancer Biology and Therapeutics; Center de Recherche Saint-Antoine ; Paris , France
| | | |
Collapse
|
213
|
Dai Y, Jiang JB, Wang YL, Jin ZT, Hu SY. Functional and protein‑protein interaction network analysis of colorectal cancer induced by ulcerative colitis. Mol Med Rep 2015; 12:4947-58. [PMID: 26239378 PMCID: PMC4581825 DOI: 10.3892/mmr.2015.4102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 06/17/2015] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a well‑recognized complication of ulcerative colitis (UC), and patients with UC have a higher incidence of CRC, compared with the general population. However, the properties of CRC induced by UC have not been clarified using an interaction network to analyze and compare gene sets. In the present study, six microarray datasets of CRC and UC were extracted from the Array Express database, and gene signatures were identified using the genome‑wide relative significance (GWRS) method. Functional analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Prediction of the genes and microRNA were performed using a hypergeometric method. A protein‑protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/proteins, and clusters were obtained through the Molecular Complex Detection algorithm. Topological centrality and a novel analyzing method, based on the rank value of GWGS, were used to characterize the biological importance of the clusters. A total of 217 differentially expressed (DE) genes of CRC were identified, 341 DE genes were identified in UC, and 62 common genes existed in the two. Several KEGG pathways were the same in CRC and UC. Collagenase, progesterone, heparin, urokinase, nadh and adenosine drugs demonstrated potential for use in treatment of CRC and UC. In the PPI network of CRC, 210 nodes and 752 edges were observed, wheras 314 nodes and 882 edges were identified in UC. Cluster 3 in UC had the highest GWGS, while the topological centrality of Cluster 3 in UC had the lowest degree and betweenness. PPI network analysis provided an effective way to estimate and understand the likelihood of the potential connections between proteins/genes. The results obtained following the use of GWGS to analyze differences between clusters did not agree with the topological degree and betweenness centrality, which indicated that gene fold change based GWGS was controversial with degree here in CRC and UC.
Collapse
Affiliation(s)
- Yong Dai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jin-Bo Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan-Lei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zu-Tao Jin
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
214
|
Seo AN, Park KU, Choe G, Kim WH, Kim DW, Kang SB, Lee HS. Clinical and prognostic value of MET gene copy number gain and chromosome 7 polysomy in primary colorectal cancer patients. Tumour Biol 2015; 36:9813-21. [PMID: 26159851 DOI: 10.1007/s13277-015-3726-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022] Open
Abstract
We aimed to explore the clinical and prognostic influence of numeric alterations of MET gene copy number (GCN) and chromosome 7 (CEP7) CN in colorectal cancer (CRC) patients. MET GCN and CEP7 CN were investigated in tissue arrayed tumors from 170 CRC patients using silver in situ hybridization (SISH). MET GCN gain was defined as ≥4 copies of MET, and CEP7 polysomy was prespecified as ≥3 copies of CEP7. Additionally, MET messenger RNA (mRNA) transcription was evaluated using mRNA ISH and compared with MET GCN. MET GCN gain was observed in 14.7 % (25/170), which correlated with advanced stage (P = 0.037), presence of distant metastasis (P = 0.006), and short overall survival (OS) (P = 0.009). In contrast, CEP7 polysomy was found in 6.5 % (11/170), which was related to tumor location in the left colon (P = 0.027) and poor OS (P = 0.029). MET GCN positively correlated with CEP7 CN (R = 0.659, P < 0.001) and mRNA transcription (R = 0.239, P = 0.002). Of note, MET GCN gain and CEP7 polysomy were also associated with poor OS (P = 0.016 and P < 0.001, respectively) in stage II/III CRC patients (n = 123). In multivariate analysis, CEP7 polysomy was an independent prognostic factor for poor OS in all patients (P = 0.009; hazard ratio [HR], 2.220; 95 % confidence interval [CI], 1.233-3.997) and in stage II/III CRC patients (P < 0.001; HR, 20.781; 95 % CI, 4.600-93.882). MET GCN gain and CEP7 polysomy could predict a poor outcome in CRC patients, especially CEP7 polysomy has the most powerful prognostic impact in stage II/III CRC patients.
Collapse
Affiliation(s)
- An Na Seo
- Department of Pathology, Kyungpook National University Medical Center, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.
| |
Collapse
|
215
|
Maia ARR, de Man J, Boon U, Janssen A, Song JY, Omerzu M, Sterrenburg JG, Prinsen MBW, Willemsen-Seegers N, de Roos JADM, van Doornmalen AM, Uitdehaag JCM, Kops GJPL, Jonkers J, Buijsman RC, Zaman GJR, Medema RH. Inhibition of the spindle assembly checkpoint kinase TTK enhances the efficacy of docetaxel in a triple-negative breast cancer model. Ann Oncol 2015; 26:2180-92. [PMID: 26153498 DOI: 10.1093/annonc/mdv293] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Triple-negative breast cancers (TNBC) are considered the most aggressive type of breast cancer, for which no targeted therapy exists at the moment. These tumors are characterized by having a high degree of chromosome instability and often overexpress the spindle assembly checkpoint kinase TTK. To explore the potential of TTK inhibition as a targeted therapy in TNBC, we developed a highly potent and selective small molecule inhibitor of TTK, NTRC 0066-0. RESULTS AND CONCLUSIONS The compound is characterized by long residence time on the target and inhibits the proliferation of a wide variety of human cancer cell lines with potency in the same range as marketed cytotoxic agents. In cell lines and in mice, NTRC 0066-0 inhibits the phosphorylation of a TTK substrate and induces chromosome missegregation. NTRC 0066-0 inhibits tumor growth in MDA-MB-231 xenografts as a single agent after oral application. To address the effect of the inhibitor in breast cancer, we used a well-defined mouse model that spontaneously develops breast tumors that share key morphologic and molecular features with human TNBC. Our studies show that combination of NTRC 0066-0 with a therapeutic dose of docetaxel resulted in doubling of mouse survival and extended tumor remission, without toxicity. Furthermore, we observed that treatment efficacy is only achieved upon co-administration of the two compounds, which suggests a synergistic in vivo effect. Therefore, we propose TTK inhibition as a novel therapeutic target for neoadjuvant therapy in TNBC.
Collapse
Affiliation(s)
- A R R Maia
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | - J de Man
- Netherlands Translational Research Center B.V., Oss
| | - U Boon
- Division of Molecular Pathology and Cancer Genomics Centre
| | - A Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | - J-Y Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | | | | | | | | - G J P L Kops
- Department of Medical Oncology Department of Cancer Genomics Netherlands, UMC Utrecht, Utrecht, The Netherlands
| | - J Jonkers
- Division of Molecular Pathology and Cancer Genomics Centre Department of Cancer Genomics Netherlands, UMC Utrecht, Utrecht, The Netherlands
| | - R C Buijsman
- Netherlands Translational Research Center B.V., Oss
| | - G J R Zaman
- Netherlands Translational Research Center B.V., Oss
| | - R H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam Department of Cancer Genomics Netherlands, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
216
|
Jamal-Hanjani M, A'Hern R, Birkbak NJ, Gorman P, Grönroos E, Ngang S, Nicola P, Rahman L, Thanopoulou E, Kelly G, Ellis P, Barrett-Lee P, Johnston SRD, Bliss J, Roylance R, Swanton C. Extreme chromosomal instability forecasts improved outcome in ER-negative breast cancer: a prospective validation cohort study from the TACT trial. Ann Oncol 2015; 26:1340-6. [PMID: 26003169 DOI: 10.1093/annonc/mdv178] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/28/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chromosomal instability (CIN) has been shown to be associated with drug resistance and poor clinical outcome in several cancer types. However, in oestrogen receptor (ER)-negative breast cancer we have previously demonstrated that extreme CIN is associated with improved clinical outcome, consistent with a negative impact of CIN on tumour fitness and growth. The aim of this current study was to validate this finding using previously defined CIN thresholds in a much larger prospective cohort from a randomised, controlled, clinical trial. PATIENTS AND METHODS As a surrogate measurement of CIN, dual centromeric fluorescence in situ hybridisation was performed for both chromosomes 2 and 15 on 1173 tumours from the breast cancer TACT trial (CRUK01/001). Each tumour was scored manually and the mean percentage of cells deviating from the modal centromere number was used to define four CIN groups (MCD1-4), where tumours in the MCD4 group were defined as having extreme CIN. RESULTS In a multivariate analysis of disease-free survival, with a median follow-up of 91 months, increasing CIN was associated with improved outcome in patients with ER-negative cancer (P trend = 0.03). A similar pattern was seen in ER-negative/HER2-negative cancers (Ptrend = 0.007). CONCLUSIONS This prospective validation cohort study further substantiated the association between extreme CIN and improved outcome in ER-negative breast cancers. Identifying such patients with extreme CIN may help distinguish good from poor prognostic groups, and therefore support treatment and risk stratification in this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- M Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London
| | - R A'Hern
- ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London
| | - N J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London The Francis Crick Institute, 44 Lincoln's Inn Fields, London
| | - P Gorman
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London
| | - E Grönroos
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London
| | - S Ngang
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London
| | - P Nicola
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London
| | - L Rahman
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London
| | - E Thanopoulou
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London
| | - G Kelly
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London
| | - P Ellis
- Guy's and St Thomas' NHS Trust, London
| | | | | | - J Bliss
- ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London
| | - R Roylance
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - C Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London The Francis Crick Institute, 44 Lincoln's Inn Fields, London
| |
Collapse
|
217
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
218
|
Wang D, Zhu ZZ, Jiang H, Zhu J, Cong WM, Wen BJ, He SQ, Liu SF. Multiple genes identified as targets for 20q13.12-13.33 gain contributing to unfavorable clinical outcomes in patients with hepatocellular carcinoma. Hepatol Int 2015; 9:438-46. [PMID: 26067772 DOI: 10.1007/s12072-015-9642-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/19/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recurrent chromosome 20q gain is implicated in progressive cancer behaviors and has been associated with clinical outcomes in multiple types of cancer; however, its prognostic significance in hepatocellular carcinoma (HCC) and the involved genes remain unclear. METHODS Array comparative genomic hybridization and expression arrays were used to detect copy number alterations (CNAs) and expression levels, respectively. The associations between CNAs in 20q and outcomes were analyzed on 66 patients, for which the follow-up period was 2.6-73.3 months. One hundred seventeen tumors were further investigated to identify target genes in the potentially outcome-related CNAs. RESULTS Regional or whole 20q gain was detected in 24 (36.4%) of the 66 HCC cases. The most recurrent gains were 20q11.21-12, 20q12-13.12, 20q13.12-13.33 and 20q13.33. Of the CNAs, 20q13.12-13.33 gain was significantly associated with reduced extrohepatic metastasis-free and overall survival, as well as with elevated postoperative AFP level, tumor vascular invasion and advanced tumor stage. Multivariate Cox analysis identified 20q13.12-13.33 gain as an independent prognostic marker for metastasis (HR 3.73, 95% CI 1.08-12.87) and death (HR 3.00, 95% CI 1.26-7.13). A panel of 19 genes in 20q13.12-13.33 was significantly overexpressed in HCCs with gain compared to HCCs without. High expression (greater than median) for 5 of the 19 genes, DDX27, B4GALT5, RNF114, ZFP64 and PFDN4, correlated significantly with vascular invasion, and high RNF114 expression also with advanced tumor stage. CONCLUSIONS Gain at 20q13.12-13.33 is a prognostic marker of metastasis and death, and DDX27, B4GALT5, RNF114, ZFP64, and PFDN4 are probable target genes which may be involved together in the unfavorable outcomes of HCC patients.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China,
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Nicholson JM, Macedo JC, Mattingly AJ, Wangsa D, Camps J, Lima V, Gomes AM, Dória S, Ried T, Logarinho E, Cimini D. Chromosome mis-segregation and cytokinesis failure in trisomic human cells. eLife 2015; 4. [PMID: 25942454 PMCID: PMC4443816 DOI: 10.7554/elife.05068] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is sufficient for the cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome. DOI:http://dx.doi.org/10.7554/eLife.05068.001 The DNA in a human cell is divided between forty-six structures called chromosomes. Before a cell divides, it copies every chromosome so that each daughter cell will have the same DNA as the parent cell. These chromosomes align in the center of the cell and then the matching chromosomes are separated and pulled to opposite ends. However, in some cases the separation process does not work properly, which can produce cells that either have too many, or too few, chromosomes. Abnormal numbers of chromosomes within cells—called aneuploidy—is a leading cause of miscarriage and birth defects in humans. Aneuploidy is also a common feature of cancer cells. It is common for the chromosomes in cancer cells to be distributed unequally when the cell divides. This phenomenon is known as chromosomal instability, but the link between aneuploidy and chromosomal instability in cancer cells is not fully understood. Here, Nicholson et al. used live-cell imaging techniques to analyze healthy human cells and cancer cells that had either the normal forty-six chromosomes, or a defined extra chromosome. Nicholson et al. found that when the cells divided, the chromosomes in the cells that had an extra copy of chromosome 7 or 13 were more prone to distributing chromosomes unequally, compared to cells with a normal number of chromosomes. Nicholson et al. also observed that the cells with an extra chromosome 13 were unable to properly divide into two. These cells had increased levels of a protein called Spartin—which is important for the last stage in cell division—and this was responsible for the failure to produce two daughter cells. These findings show that aneuploidy can cause chromosomal instability in human cells. Furthermore, Nicholson et al. have identified a defect in cell division that is specifically caused by the presence of an extra chromosome 13 in human cells. A future challenge will be to determine how, and to what extent, different chromosomes can affect chromosome stability. This could be useful in the development of therapies against cancer cells with aneuploidy. DOI:http://dx.doi.org/10.7554/eLife.05068.002
Collapse
Affiliation(s)
- Joshua M Nicholson
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| | - Joana C Macedo
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Aaron J Mattingly
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jordi Camps
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vera Lima
- Department of Genetics, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Ana M Gomes
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sofia Dória
- Department of Genetics, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Elsa Logarinho
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| |
Collapse
|
220
|
Huang Z, Wen P, Kong R, Cheng H, Zhang B, Quan C, Bian Z, Chen M, Zhang Z, Chen X, Du X, Liu J, Zhu L, Fushimi K, Hua D, Wu JY. USP33 mediates Slit-Robo signaling in inhibiting colorectal cancer cell migration. Int J Cancer 2015; 136:1792-802. [PMID: 25242263 PMCID: PMC4323690 DOI: 10.1002/ijc.29226] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/16/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Abstract
Originally discovered in neuronal guidance, the Slit-Robo pathway is emerging as an important player in human cancers. However, its involvement and mechanism in colorectal cancer (CRC) remains to be elucidated. Here, we report that Slit2 expression is reduced in CRC tissues compared with adjacent noncancerous tissues. Extensive promoter hypermethylation of the Slit2 gene has been observed in CRC cells, which provides a mechanistic explanation for the Slit2 downregulation in CRC. Functional studies showed that Slit2 inhibits CRC cell migration in a Robo-dependent manner. Robo-interacting ubiquitin-specific protease 33 (USP33) is required for the inhibitory function of Slit2 on CRC cell migration by deubiquitinating and stabilizing Robo1. USP33 expression is downregulated in CRC samples, and reduced USP33 mRNA levels are correlated with increased tumor grade, lymph node metastasis and poor patient survival. Taken together, our data reveal USP33 as a previously unknown tumor-suppressing gene for CRC by mediating the inhibitory function of Slit-Robo signaling on CRC cell migration. Our work suggests the potential value of USP33 as an independent prognostic marker of CRC.
Collapse
Affiliation(s)
- Zhaohui Huang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haipeng Cheng
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Binbin Zhang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Cao Quan
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zehua Bian
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Mengmeng Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kazuo Fushimi
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Dong Hua
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Jane Y. Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
221
|
Zarzour P, Boelen L, Luciani F, Beck D, Sakthianandeswaren A, Mouradov D, Sieber OM, Hawkins NJ, Hesson LB, Ward RL, Wong JWH. Single nucleotide polymorphism array profiling identifies distinct chromosomal aberration patterns across colorectal adenomas and carcinomas. Genes Chromosomes Cancer 2015; 54:303-14. [PMID: 25726927 DOI: 10.1002/gcc.22243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/11/2015] [Indexed: 11/07/2022] Open
Abstract
The progression of benign colorectal adenomas into cancer is associated with the accumulation of chromosomal aberrations. Even though patterns and frequencies of chromosomal aberrations have been well established in colorectal carcinomas, corresponding patterns of aberrations in adenomas are less well documented. The aim of this study was to profile chromosomal aberrations across colorectal adenomas and carcinomas to provide a better insight into key changes during tumor initiation and progression. Single nucleotide polymorphism array analysis was performed on 216 colorectal tumor/normal matched pairs, comprising 60 adenomas and 156 carcinomas. While many chromosomal aberrations were specific to carcinomas, those with the highest frequency in carcinomas (amplification of chromosome 7, 13q, and 20q; deletion of 17p and chromosome 18; LOH of 1p, chromosome 4, 5q, 8p, 17p, chromosome 18, and 20p) were also identified in adenomas. Hierarchical clustering using chromosomal aberrations revealed three distinct subtypes. Interestingly, these subtypes were only partially dependent on tumor staging. A cluster of colorectal cancer patients with frequent chromosomal deletions had the least favorable prognosis, and a number of adenomas (n = 9) were also present in the cluster suggesting that, at least in some tumors, the chromosomal aberration pattern is determined at a very early stage of tumor formation. Finally, analysis of LOH events revealed that copy-neutral/gain LOH (CN/G-LOH) is frequent (>10%) in carcinomas at 5q, 11q, 15q, 17p, chromosome 18, 20p, and 22q. Deletion of the corresponding region is sometimes present in adenomas, suggesting that LOH at these loci may play an important role in tumor initiation.
Collapse
Affiliation(s)
- Peter Zarzour
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Martin CM, Astbury K, Kehoe L, O'Crowley JB, O'Toole S, O'Leary JJ. The use of MYBL2 as a novel candidate biomarker of cervical cancer. Methods Mol Biol 2015; 1249:241-251. [PMID: 25348311 DOI: 10.1007/978-1-4939-2013-6_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cervical cancer is the third most common cancer affecting women worldwide. It is characterized by chromosomal aberrations and alteration in the expression levels of many cell cycle regulatory proteins, driven primarily by transforming human papillomavirus (HPV) infection. MYBL2 is a member of the MYB proto-oncogene family that encodes DNA binding proteins. These proteins are involved in cell proliferation and control of cellular differentiation. We have previously demonstrated the utility of MYBL2 as a putative biomarker for cervical pre-cancer and cancer. In this chapter we describe the methodological approach for testing MYBL2 protein expression in tissue biopsies from cases of cervical intraepithelial neoplasia (CIN) and cervical cancer, using immunohistochemistry techniques on the automated immunostaining platform, the Ventana BenchMark LT. The protocol outlines the various steps in the procedure from cutting tissue sections, antibody optimization, antigen retrieval, immunostaining, and histological review.
Collapse
Affiliation(s)
- Cara M Martin
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland,
| | | | | | | | | | | |
Collapse
|
223
|
Koutras A, Kotoula V, Fountzilas G. Prognostic and predictive role of vascular endothelial growth factor polymorphisms in breast cancer. Pharmacogenomics 2015; 16:79-94. [DOI: 10.2217/pgs.14.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Current evidence indicates that angiogenesis plays an important role in the pathogenesis of several malignancies, including breast cancer. The vascular endothelial growth factor (VEGF) pathway has been investigated extensively, due to its important role in angiogenesis. The major mediator of tumor angiogenesis is VEGF-A, frequently referred to as VEGF, which activates the VEGF receptor-2. The VEGF gene is located on chromosome 6 and constitutes a highly polymorphic gene. Numerous SNPs in the promoter, 5′- and 3′-untranslated regions (UTR) of VEGF gene have been recognized. This genetic variability possibly influences the production and function of VEGF. Subsequently, the VEGF SNPs may have an impact on breast cancer risk and disease outcome. Moreover, these SNPs may be of predictive value in patients receiving agents targeting the VEGF pathway. This review presents an update on the potential role of VEGF SNPs as prognostic and/or predictive markers in patients with breast cancer.
Collapse
Affiliation(s)
- Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Rion 26504, Greece
| | - Vasiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, ‘Papageorgiou’ Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| |
Collapse
|
224
|
Mlecnik B, Bindea G, Angell HK, Sasso MS, Obenauf AC, Fredriksen T, Lafontaine L, Bilocq AM, Kirilovsky A, Tosolini M, Waldner M, Berger A, Fridman WH, Rafii A, Valge-Archer V, Pagès F, Speicher MR, Galon J. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med 2014; 6:228ra37. [PMID: 24648340 DOI: 10.1126/scitranslmed.3007240] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is host to a complex network of cytokines that contribute to shaping the intratumoral immune reaction. Chromosomal gains and losses, coupled with expression analysis, of 59 cytokines and receptors and their functional networks were investigated in colorectal cancers. Changes in local expression for 13 cytokines were shown. Metastatic patients exhibited an increased frequency of deletions of cytokines from chromosome 4. Interleukin 15 (IL15) deletion corresponded with decreased IL15 expression, a higher risk of tumor recurrence, and reduced patient survival. Decreased IL15 expression affected the local proliferation of B and T lymphocytes. Patients with proliferating B and T cells at the invasive margin and within the tumor center had significantly prolonged disease-free survival. These results delineate chromosomal instability as a mechanism of modulating local cytokine expression in human tumors and underline the major role of IL15. Our data provide further mechanisms resulting in changes of specific immune cell densities within the tumor, and the importance of local active lymphocyte proliferation for patient survival.
Collapse
Affiliation(s)
- Bernhard Mlecnik
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris F-75006, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Mayrhofer M, Kultima HG, Birgisson H, Sundström M, Mathot L, Edlund K, Viklund B, Sjöblom T, Botling J, Micke P, Påhlman L, Glimelius B, Isaksson A. 1p36 deletion is a marker for tumour dissemination in microsatellite stable stage II-III colon cancer. BMC Cancer 2014; 14:872. [PMID: 25420937 PMCID: PMC4251789 DOI: 10.1186/1471-2407-14-872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022] Open
Abstract
Background The clinical behaviour of colon cancer is heterogeneous. Five-year overall survival is 50-65% with all stages included. Recurring somatic chromosomal alterations have been identified and some have shown potential as markers for dissemination of the tumour, which is responsible for most colon cancer deaths. We investigated 115 selected stage II-IV primary colon cancers for associations between chromosomal alterations and tumour dissemination. Methods Follow-up was at least 5 years for stage II-III patients without distant recurrence. Affymetrix SNP 6.0 microarrays and allele-specific copy number analysis were used to identify chromosomal alterations. Fisher’s exact test was used to associate alterations with tumour dissemination, detected at diagnosis (stage IV) or later as recurrent disease (stage II-III). Results Loss of 1p36.11-21 was associated with tumour dissemination in microsatellite stable tumours of stage II-IV (odds ratio = 5.5). It was enriched to a similar extent in tumours with distant recurrence within stage II and stage III subgroups, and may therefore be used as a prognostic marker at diagnosis. Loss of 1p36.11-21 relative to average copy number of the genome showed similar prognostic value compared to absolute loss of copies. Therefore, the use of relative loss as a prognostic marker would benefit more patients by applying also to hyperploid cancer genomes. The association with tumour dissemination was supported by independent data from the The Cancer Genome Atlas. Conclusion Deletions on 1p36 may be used to guide adjuvant treatment decisions in microsatellite stable colon cancer of stages II and III. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-872) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Box 3056, Uppsala 750 03, Sweden.
| |
Collapse
|
226
|
Lee KW, Lee SS, Kim SB, Sohn BH, Lee HS, Jang HJ, Park YY, Kopetz S, Kim SS, Oh SC, Lee JS. Significant association of oncogene YAP1 with poor prognosis and cetuximab resistance in colorectal cancer patients. Clin Cancer Res 2014; 21:357-64. [PMID: 25388162 DOI: 10.1158/1078-0432.ccr-14-1374] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Activation of YAP1, a novel oncogene in the Hippo pathway, has been observed in many cancers, including colorectal cancer. We investigated whether activation of YAP1 is significantly associated with prognosis or treatment outcomes in colorectal cancer. EXPERIMENTAL DESIGN A gene expression signature reflecting YAP1 activation was identified in colorectal cancer cells, and patients with colorectal cancer were stratified into two groups according to this signature: activated YAP1 colorectal cancer (AYCC) or inactivated YAP1 colorectal cancer (IYCC). Stratified patients in five test cohorts were evaluated to determine the effect of the signature on colorectal cancer prognosis and response to cetuximab treatment. RESULTS The activated YAP1 signature was associated with poor prognosis for colorectal cancer in four independent patient cohorts with stage I-III disease (total n = 1,028). In a multivariate analysis, the impact of the YAP1 signature on disease-free survival was independent of other clinical variables [hazard ratio (HR), 1.63; 95% confidence interval (CI), 1.25-2.13; P < 0.001]. In patients with stage IV colorectal cancer and wild-type KRAS, IYCC patients had a better disease control rate and progression-free survival (PFS) after cetuximab monotherapy than did AYCC patients; however, in patients with KRAS mutations, PFS duration after cetuximab monotherapy was not different between IYCC and AYCC patients. In multivariate analysis, the effect of YAP1 activation on PFS was independent of KRAS mutation status and other clinical variables (HR, 1.82; 95% CI, 1.05-3.16; P = 0.03). CONCLUSIONS Activation of YAP1 is highly associated with poor prognosis for colorectal cancer and may be useful in identifying patients with metastatic colorectal cancer resistant to cetuximab.
Collapse
Affiliation(s)
- Keun-Wook Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Korea
| | - Sung Sook Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Hematology-Oncology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Sang-Bae Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bo Hwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hyun-Sung Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Thoracic Surgery, Center for Lung Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Hee-Jin Jang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Thoracic Surgery, Center for Lung Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Yun-Yong Park
- ASAN Institute for Life Sciences, ASAN Medical Center, Department of Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang Cheul Oh
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
227
|
Establishing a biological profile for interval colorectal cancers. Dig Dis Sci 2014; 59:2390-402. [PMID: 24839919 DOI: 10.1007/s10620-014-3210-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) remains the second leading cause of cancer-related deaths in North America. Screening for CRC and its precursor lesions is highly effective in reducing the incidence and deaths due to the disease. However, there remain a substantial number of individuals who are diagnosed with CRC soon after a negative/clearing colonoscopy with no documented evidence of CRC. The occurrence of these interval CRCs (I-CRCs) reduces the effectiveness of CRC screening and detection tests and has only recently attracted wide spread attention. I-CRCs can be subdivided into those that occur most likely due to the failure of the colonoscopy examination (missed CRC and CRC that developed from missed or incompletely resected precursor lesions) and those that develop rapidly after the colonoscopy (de novo I-CRCs). In this review, we discuss the current literature and present both the clinical and biological factors that have been identified to account for I-CRCs, with a particular focus on the aberrant molecular features that are candidate causative agents for I-CRCs. We conclude additional studies are required to fully understand the molecular features that lead to the development of I-CRCs, which in turn is essential to develop measures to prevent the occurrence of this group of CRCs and thereby improve CRC screening and detection strategies.
Collapse
|
228
|
Anomalies in network bridges involved in bile Acid metabolism predict outcomes of colorectal cancer patients. PLoS One 2014; 9:e107925. [PMID: 25259881 PMCID: PMC4178056 DOI: 10.1371/journal.pone.0107925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Biomarkers prognostic for colorectal cancer (CRC) would be highly desirable in clinical practice. Proteins that regulate bile acid (BA) homeostasis, by linking metabolic sensors and metabolic enzymes, also called bridge proteins, may be reliable prognostic biomarkers for CRC. Based on a devised metric, "bridgeness," we identified bridge proteins involved in the regulation of BA homeostasis and identified their prognostic potentials. The expression patterns of these bridge proteins could distinguish between normal and diseased tissues, suggesting that these proteins are associated with CRC pathogenesis. Using a supervised classification system, we found that these bridge proteins were reproducibly prognostic, with high prognostic ability compared to other known markers.
Collapse
|
229
|
Ragusa S, Cheng J, Ivanov KI, Zangger N, Ceteci F, Bernier-Latmani J, Milatos S, Joseph JM, Tercier S, Bouzourene H, Bosman FT, Letovanec I, Marra G, Gonzalez M, Cammareri P, Sansom OJ, Delorenzi M, Petrova TV. PROX1 promotes metabolic adaptation and fuels outgrowth of Wnt(high) metastatic colon cancer cells. Cell Rep 2014; 8:1957-1973. [PMID: 25242332 DOI: 10.1016/j.celrep.2014.08.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 07/08/2014] [Accepted: 08/19/2014] [Indexed: 11/21/2022] Open
Abstract
The Wnt pathway is abnormally activated in the majority of colorectal cancers, and significant knowledge has been gained in understanding its role in tumor initiation. However, the mechanisms of metastatic outgrowth in colorectal cancer remain a major challenge. We report that autophagy-dependent metabolic adaptation and survival of metastatic colorectal cancer cells is regulated by the target of oncogenic Wnt signaling, homeobox transcription factor PROX1, expressed by a subpopulation of colon cancer progenitor/stem cells. We identify direct PROX1 target genes and show that repression of a pro-apoptotic member of the BCL2 family, BCL2L15, is important for survival of PROX1(+) cells under metabolic stress. PROX1 inactivation after the establishment of metastases prevented further growth of lesions. Furthermore, autophagy inhibition efficiently targeted metastatic PROX1(+) cells, suggesting a potential therapeutic approach. These data identify PROX1 as a key regulator of the transcriptional network contributing to metastases outgrowth in colorectal cancer.
Collapse
Affiliation(s)
- Simone Ragusa
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland
| | - Jianpin Cheng
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland
| | - Konstantin I Ivanov
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland
| | - Nadine Zangger
- SIB Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Fatih Ceteci
- Cancer Research UK Beatson Institute, G61 1BD Glasgow, UK
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland
| | - Stavros Milatos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland
| | - Jean-Marc Joseph
- Service de Chirurgie Pédiatrique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1011, Switzerland
| | - Stephane Tercier
- Service de Chirurgie Pédiatrique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1011, Switzerland
| | - Hanifa Bouzourene
- UNISciences, University of Lausanne, UniLabs, Lausanne 1066, Switzerland
| | - Fredrik T Bosman
- Institut Universitaire de Pathologie, CHUV, Lausanne 1011, Switzerland
| | - Igor Letovanec
- Institut Universitaire de Pathologie, CHUV, Lausanne 1011, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Michel Gonzalez
- Division of Thoracic Surgery, CHUV, Lausanne 1011, Switzerland
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, G61 1BD Glasgow, UK
| | - Mauro Delorenzi
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland; SIB Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Ludwig Center for Cancer Research, University of Lausanne, Lausanne 1066, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1066, Switzerland; Department of Biochemistry, University of Lausanne, Lausanne 1066, Switzerland; Swiss Institute for Cancer Research, EPFL, Lausanne 1015, Switzerland.
| |
Collapse
|
230
|
Domany E. Using High-Throughput Transcriptomic Data for Prognosis: A Critical Overview and Perspectives. Cancer Res 2014; 74:4612-21. [DOI: 10.1158/0008-5472.can-13-3338] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
231
|
Shin HW, Choi H, So D, Kim YI, Cho K, Chung HJ, Lee KH, Chun YS, Cho CH, Kang GH, Kim WH, Park JW. ITF2 prevents activation of the β-catenin-TCF4 complex in colon cancer cells and levels decrease with tumor progression. Gastroenterology 2014; 147:430-442.e8. [PMID: 24846398 DOI: 10.1053/j.gastro.2014.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Immunoglobulin transcription factor 2 (ITF2) was believed to promote neoplastic transformation via activation of β-catenin. However, ITF2 recently was reported to suppress colon carcinogenesis. We investigated the roles of ITF2 in colorectal cancer cell lines and tumor formation and growth in mice. METHODS Levels of ITF2, β-catenin, and c-Myc were measured in 12 human colorectal tumor samples and by immunohistochemistry. ITF2 regulation of β-catenin and T-cell factor (TCF) were analyzed using luciferase reporter, reverse-transcription quantitative polymerase chain reaction, flow cytometry, and immunoblot analyses. Mice were given subcutaneous injections of human colorectal cancer cell lines that stably express ITF2, small hairpin RNAs to reduce levels of ITF2, or control plasmids; xenograft tumor growth was assessed. Human colorectal carcinoma tissue arrays were used to associate levels of ITF2 expression and clinical outcomes. RESULTS Levels of β-catenin, cMyc, and ITF2 were increased in areas of human colon adenomas and carcinomas, compared with nontumor areas of the same tissues. ITF2 levels were reduced and cMyc levels were increased in areas of carcinoma, compared with adenoma. In human colorectal cancer cell lines, activation of the β-catenin-TCF4 complex and expression of its target genes were regulated negatively by ITF2. ITF2 inhibited formation of the β-catenin-TCF4 complex by competing with TCF4 for β-catenin binding. Stable transgenic expression of ITF2 in human colorectal cancer cell lines reduced their proliferation and tumorigenic potential in mice, whereas small hairpin RNA knockdown of ITF2 promoted growth of xenograft tumors in mice. In an analysis of colorectal tumor tissue arrays, loss of ITF2 from colorectal tumor tissues was associated with poor outcomes of patients. A gene set enrichment analysis supported the negative correlation between the level of ITF2 and activity of the β-catenin-TCF4 complex. CONCLUSIONS In human colorectal cancer cell lines and tissue samples, ITF2 appears to prevent activation of the β-catenin-TCF4 complex and transcription of its gene targets. Loss of ITF2 promotes the ability of colorectal cancer cells to form xenograft tumors, and is associated with tumor progression and shorter survival times of patients.
Collapse
Affiliation(s)
- Hyun-Woo Shin
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunsung Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Daeho So
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Im Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Kumsun Cho
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Joon Chung
- Seoul National University Biomedical Informatics, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Hwa Lee
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Yang-Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
232
|
Xie T, Cho YB, Wang K, Huang D, Hong HK, Choi YL, Ko YH, Nam DH, Jin J, Yang H, Fernandez J, Deng S, Rejto PA, Lee WY, Mao M. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing. Genomics 2014; 104:234-41. [PMID: 25066378 DOI: 10.1016/j.ygeno.2014.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) patients have poor prognosis after formation of distant metastasis. Understanding the molecular mechanisms by which genetic changes facilitate metastasis is critical for the development of targeted therapeutic strategies aimed at controlling disease progression while minimizing toxic side effects. A comprehensive portrait of somatic alterations in CRC and the changes between primary and metastatic tumors has yet to be developed. We performed whole genome sequencing of two primary CRC tumors and their matched liver metastases. By comparing to matched germline DNA, we catalogued somatic alterations at multiple scales, including single nucleotide variations, small insertions and deletions, copy number aberrations and structural variations in both the primary and matched metastasis. We found that the majority of these somatic alterations are present in both sites. Despite the overall similarity, several de novo alterations in the metastases were predicted to be deleterious, in genes including FBXW7, DCLK1 and FAT2, which might contribute to the initiation and progression of distant metastasis. Through careful examination of the mutation prevalence among tumor cells at each site, we also proposed distinct clonal evolution patterns between primary and metastatic tumors in the two cases. These results suggest that somatic alterations may play an important role in driving the development of colorectal cancer metastasis and present challenges and opportunities when considering the choice of treatment.
Collapse
Affiliation(s)
- Tao Xie
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Kai Wang
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| | - Donghui Huang
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Juyoun Jin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Julio Fernandez
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| | - Shibing Deng
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| | - Paul A Rejto
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Mao Mao
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, CA, USA.
| |
Collapse
|
233
|
Naba A, Clauser KR, Whittaker CA, Carr SA, Tanabe KK, Hynes RO. Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 2014; 14:518. [PMID: 25037231 PMCID: PMC4223627 DOI: 10.1186/1471-2407-14-518] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/30/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer is the third most frequently diagnosed cancer and the third cause of cancer deaths in the United States. Despite the fact that tumor cell-intrinsic mechanisms controlling colorectal carcinogenesis have been identified, novel prognostic and diagnostic tools as well as novel therapeutic strategies are still needed to monitor and target colon cancer progression. We and others have previously shown, using mouse models, that the extracellular matrix (ECM), a major component of the tumor microenvironment, is an important contributor to tumor progression. In order to identify candidate biomarkers, we sought to define ECM signatures of metastatic colorectal cancers and their metastases to the liver. METHODS We have used enrichment of extracellular matrix (ECM) from human patient samples and proteomics to define the ECM composition of primary colon carcinomas and their metastases to liver in comparison with normal colon and liver samples. RESULTS We show that robust signatures of ECM proteins characteristic of each tissue, normal and malignant, can be defined using relatively small samples from small numbers of patients. Comparisons with gene expression data from larger cohorts of patients confirm the association of subsets of the proteins identified by proteomic analysis with tumor progression and metastasis. CONCLUSIONS The ECM protein signatures of metastatic primary colon carcinomas and metastases to liver defined in this study, offer promise for development of diagnostic and prognostic signatures of metastatic potential of colon tumors. The ECM proteins defined here represent candidate serological or tissue biomarkers and potential targets for imaging of occult metastases and residual or recurrent tumors and conceivably for therapies. Furthermore, the methods described here can be applied to other tumor types and can be used to investigate other questions such as the role of ECM in resistance to therapy.
Collapse
Affiliation(s)
- Alexandra Naba
- David H, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
234
|
Wong YH, Chen RH, Chen BS. Core and specific network markers of carcinogenesis from multiple cancer samples. J Theor Biol 2014; 362:17-34. [PMID: 25016045 DOI: 10.1016/j.jtbi.2014.05.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023]
Abstract
Cancer is the leading cause of death worldwide and is generally caused by mutations in multiple proteins or the dysregulation of pathways. Understanding the causes and the underlying carcinogenic mechanisms can help fight this disease. In this study, a systems biology approach was used to construct the protein-protein interaction (PPI) networks of four cancers and the non-cancers by their corresponding microarray data, PPI modeling and database-mining. By comparing PPI networks between cancer and non-cancer samples to find significant proteins with large PPI changes during carcinogenesis process, core and specific network markers were identified by the intersection and difference of significant proteins, respectively, with carcinogenesis relevance values (CRVs) for each cancer. A total of 28 significant proteins were identified as core network markers in the carcinogenesis of four types of cancer, two of which are novel cancer-related proteins (e.g., UBC and PSMA3). Moreover, seven crucial common pathways were found among these cancers based on their core network markers, and some specific pathways were particularly prominent based on the specific network markers of different cancers (e.g., the RIG-I-like receptor pathway in bladder cancer, the proteasome pathway and TCR pathway in liver cancer, and the HR pathway in lung cancer). Additional validation of these network markers using the literature and new tested datasets could strengthen our findings and confirm the proposed method. From these core and specific network markers, we could not only gain an insight into crucial common and specific pathways in the carcinogenesis, but also obtain a high promising PPI target for cancer therapy.
Collapse
Affiliation(s)
- Yung-Hao Wong
- Lab of Control and Systems Biology, Department of Electrical Engineering National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ru-Hong Chen
- Lab of Control and Systems Biology, Department of Electrical Engineering National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Bor-Sen Chen
- Lab of Control and Systems Biology, Department of Electrical Engineering National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
235
|
Ye L, Yao XD, Wan FN, Qu YY, Liu ZY, Shen XX, Li S, Liu XJ, Yue F, Wang N, Dai B, Ye DW. MS4A8B promotes cell proliferation in prostate cancer. Prostate 2014; 74:911-22. [PMID: 24789009 DOI: 10.1002/pros.22802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/18/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Prostate cancer cells must maintain or achieve the further ability of proliferation during the progression. The molecular mechanisms, however, remain poorly understood. We identified a novel oncogene, termed membrane-spanning 4-domains, subfamily A, member 8B (MS4A8B), over-expressed in prostate cancer. METHODS We firstly detected MS4A8B mRNA in 13 types of paired human normal and cancer tissues by real-time polymerase chain reaction (RT-PCR). In 140 clinically localized prostate cancer samples from radical prostatectomy, immunohistochemical staining was performed to study MS4A8B and PCNA protein level as an index of proliferative activity, TUNEL staining as an index of apoptosis. As MS4A8B RNAi and cDNA transfection technologies were used, the effect of MS4A8B on cellular vitality was determined in vitro and in vivo. RESULTS MS4A8B mRNA was over-expressed specifically in prostate cancer. Positive ratios of MS4A8B protein expression were 1.94%, 5.92%, and 62.8% in benign, HPIN and prostate cancer, respectively. Moreover, MS4A8B was positively associated with Gleason score, the proliferation index. In vitro, MS4A8B knockdown resulted in G1 -S cell cycle arrest and descended vitality, MS4A8B over-expression with accelerated S phase entry, elevated vitality in prostate cancer cells. Moreover, it was also found that expression of MS4A8B led to changes of Cyclin D1 , Cyclin E1 and PCNA. LNCaP cells transfected with sh-MS4A8B lentivirus particles grew more slowly when subcutaneously injected into the flanks of nude mice. CONCLUSIONS We conclude that the expression of MS4A8B expression promotes cell proliferation and plays an important role in carcinogenesis and progression of prostate cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/physiology
- Cell Cycle Checkpoints/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Flow Cytometry
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Kallikreins/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostate-Specific Antigen/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Real-Time Polymerase Chain Reaction
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Lin Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Elf3 drives β-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death Dis 2014; 5:e1263. [PMID: 24874735 PMCID: PMC4047871 DOI: 10.1038/cddis.2014.206] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/14/2023]
Abstract
Aberrant regulation of the Wnt/β-catenin pathway plays important roles in colorectal carcinogenesis, with over 90% of cases of sporadic colon cancer featuring β-catenin accumulation. While ubiquitination-mediated degradation is widely accepted as a major route for β-catenin protein turnover, little is known about the regulation of β-catenin in transcriptional level. Here we show that Elf3, a member of the E-twenty-six family of transcription factors, drives β-catenin transactivation and associates with poor survival of colorectal cancer (CRC) patients. We first found recurrent amplification and upregulation of Elf3 in CRC tissues, and further Gene Set Enrichment Analysis identified significant association between Elf3 expression and activity of WNT/β-catenin pathway. Chromatin immunoprecipitation and electrophoretic mobility shift assay consistently revealed that Elf3 binds to and transactivates β-catenin promoter. Ectopic expression of Elf3 induces accumulation of β-catenin in both nucleus and cytoplasm, causing subsequent upregulation of several effector genes including c-Myc, VEGF, CCND1, MMP-7 and c-Jun. Suppressing Elf3 in CRC cells attenuates β-catenin signaling and decreases cell proliferation, migration and survival. Targeting Elf3 in xenograft tumors suppressed tumor progression in vivo. Taken together, our data identify Elf3 as a pivotal driver for β-catenin signaling in CRC, and highlight potential prognostic and therapeutic significance of Elf3 in CRC.
Collapse
|
237
|
Adler AS, McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E, Quinones G, Modrusan Z, Seshagiri S, Torres E, Chopra VS, Haley B, Zhang Z, Blackwood EM, Singh M, Junttila M, Stephan JP, Liu J, Pau G, Fearon ER, Jiang Z, Firestein R. An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev 2014; 28:1068-84. [PMID: 24788092 PMCID: PMC4035536 DOI: 10.1101/gad.237206.113] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The spliceosome machinery is composed of multimeric protein complexes that generate a diverse repertoire of mRNA. Here, Adler et al. discover that PRPF6, a member of the tri-snRNP spliceosome complex, drives cancer proliferation. Inhibition of PRPF6 and other tri-snRNP complex proteins selectively abrogated growth in cancer cells with high tri-snRNP levels. Reducing PRPF6 altered the splicing of a discrete number of genes, including an oncogenic isoform of the ZAK kinase. This study identifies an essential role for PRPF6 in cancer via splicing of distinct growth-related gene products. The spliceosome machinery is composed of multimeric protein complexes that generate a diverse repertoire of mRNA through coordinated splicing of heteronuclear RNAs. While somatic mutations in spliceosome components have been discovered in several cancer types, the molecular bases and consequences of spliceosome aberrations in cancer are poorly understood. Here we report for the first time that PRPF6, a member of the tri-snRNP (small ribonucleoprotein) spliceosome complex, drives cancer proliferation by preferential splicing of genes associated with growth regulation. Inhibition of PRPF6 and other tri-snRNP complex proteins, but not other snRNP spliceosome complexes, selectively abrogated growth in cancer cells with high tri-snRNP levels. High-resolution transcriptome analyses revealed that reduced PRPF6 alters the constitutive and alternative splicing of a discrete number of genes, including an oncogenic isoform of the ZAK kinase. These findings implicate an essential role for PRPF6 in cancer via splicing of distinct growth-related gene products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eric Torres
- Department of Biochemical and Cellular Pharmacology
| | | | | | - Zemin Zhang
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | - Jinfeng Liu
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California 94080, USA
| | - Gregoire Pau
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California 94080, USA
| | - Eric R Fearon
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhaoshi Jiang
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
238
|
Ali Hassan NZ, Mokhtar NM, Kok Sin T, Mohamed Rose I, Sagap I, Harun R, Jamal R. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues. PLoS One 2014; 9:e92553. [PMID: 24694993 PMCID: PMC3973632 DOI: 10.1371/journal.pone.0092553] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 02/24/2014] [Indexed: 12/24/2022] Open
Abstract
Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.
Collapse
Affiliation(s)
- Nur Zarina Ali Hassan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- * E-mail: (NMM); (RJ)
| | - Teow Kok Sin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ismail Sagap
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- * E-mail: (NMM); (RJ)
| |
Collapse
|
239
|
Li J, Li X, Kong X, Luo Q, Zhang J, Fang L. MiRNA-26b inhibits cellular proliferation by targeting CDK8 in breast cancer. Int J Clin Exp Med 2014; 7:558-565. [PMID: 24753748 PMCID: PMC3992393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVES MicroRNA-26b (miR-26b) has been reported to be down-regulated in a wide range of malignant tumors, However, the mechanism by which miR-26b is implicated in breast cancer tumorigenesis is incompletely understood. This study was undertaken to evaluate the expression pattern of miR-26b and characterize its biological role in human breast cancer. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify the expression levels of miR-26b in breast cancer and adjacent non-cancerous breast tissues. MTT, colony formation assay and cell cycle assay were carried out to characterize the miR-26b function. Finally, to validate the target gene of miR-26b, luciferase reporter assay was employed, followed by RT-PCR and Western blot confirmation. RESULTS Here, we found that miR-26b expression was relatively downregulated in breast cancer specimens (P<0.01). Overexpression of miR-26b dramatically suppressed cell proliferation, colony formation and induced G0/G1 cell cycle arrest of MDA-MB-231 and Mcf-7 cells. Luciferase assays revealed that miR-26b directly targeted the 3'UTR of CDK8. Overexpression of miR-26b led to the downregulation of CDK8 and β-catenin expression. Similarly, CDK8 knockdown by siRNA suppressed cell growth and subsequent β-catenin expression. CONCLUSIONS These findings suggest that miR-26b exerts a tumor suppressive role in breast cancer and the miR-26b-mediated growth inhibition is achieved through suppression of a new target gene CDK8.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, College of Medicine, Tongji University Shanghai, China
| | - Xiaoyu Li
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, College of Medicine, Tongji University Shanghai, China
| | - Xiangjie Kong
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, College of Medicine, Tongji University Shanghai, China
| | - Qifeng Luo
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, College of Medicine, Tongji University Shanghai, China
| | - Junfeng Zhang
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, College of Medicine, Tongji University Shanghai, China
| | - Lin Fang
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, College of Medicine, Tongji University Shanghai, China
| |
Collapse
|
240
|
Orsetti B, Selves J, Bascoul-Mollevi C, Lasorsa L, Gordien K, Bibeau F, Massemin B, Paraf F, Soubeyran I, Hostein I, Dapremont V, Guimbaud R, Cazaux C, Longy M, Theillet C. Impact of chromosomal instability on colorectal cancer progression and outcome. BMC Cancer 2014; 14:121. [PMID: 24559140 PMCID: PMC4233623 DOI: 10.1186/1471-2407-14-121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/07/2014] [Indexed: 01/16/2023] Open
Abstract
Background It remains presently unclear whether disease progression in colorectal carcinoma (CRC), from early, to invasive and metastatic forms, is associated to a gradual increase in genetic instability and to a scheme of sequentially occurring Copy Number Alterations (CNAs). Methods In this work we set to determine the existence of such links between CRC progression and genetic instability and searched for associations with patient outcome. To this aim we analyzed a set of 162 Chromosomal Instable (CIN) CRCs comprising 131 primary carcinomas evenly distributed through stage 1 to 4, 31 metastases and 14 adenomas by array-CGH. CNA profiles were established according to disease stage and compared. We, also, asked whether the level of genomic instability was correlated to disease outcome in stage 2 and 3 CRCs. Two metrics of chromosomal instability were used; (i) Global Genomic Index (GGI), corresponding to the fraction of the genome involved in CNA, (ii) number of breakpoints (nbBP). Results Stage 1, 2, 3 and 4 tumors did not differ significantly at the level of their CNA profiles precluding the conventional definition of a progression scheme based on increasing levels of genetic instability. Combining GGI and nbBP,we classified genomic profiles into 5 groups presenting distinct patterns of chromosomal instability and defined two risk classes of tumors, showing strong differences in outcome and hazard risk (RFS: p = 0.012, HR = 3; OS: p < 0.001, HR = 9.7). While tumors of the high risk group were characterized by frequent fractional CNAs, low risk tumors presented predominantly whole chromosomal arm CNAs. Searching for CNAs correlating with negative outcome we found that losses at 16p13.3 and 19q13.3 observed in 10% (7/72) of stage 2–3 tumors showed strong association with early relapse (p < 0.001) and death (p < 0.007, p < 0.016). Both events showed frequent co-occurrence (p < 1x10-8) and could, therefore, mark for stage 2–3 CRC susceptible to negative outcome. Conclusions Our data show that CRC disease progression from stage 1 to stage 4 is not paralleled by increased levels of genetic instability. However, they suggest that stage 2–3 CRC with elevated genetic instability and particularly profiles with fractional CNA represent a subset of aggressive tumors.
Collapse
|
241
|
|
242
|
Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer. PLoS One 2013; 8:e83859. [PMID: 24367615 PMCID: PMC3867468 DOI: 10.1371/journal.pone.0083859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.
Collapse
|
243
|
Powell AGMT, Ferguson J, Al-Mulla F, Orange C, McMillan DC, Horgan PG, Edwards J, Going JJ. The relationship between genetic profiling, clinicopathological factors and survival in patients undergoing surgery for node-negative colorectal cancer: 10-year follow-up. J Cancer Res Clin Oncol 2013; 139:2013-20. [PMID: 24072233 DOI: 10.1007/s00432-013-1521-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/05/2013] [Indexed: 12/24/2022]
Abstract
PURPOSE The introduction of the bowel cancer screening programme has resulted in increasing numbers of patients being diagnosed with node-negative disease. Unfortunately, approximately 30 % will develop recurrence following surgery. Given the toxicity associated with adjuvant chemotherapy, it is important to identify high-risk patients who may benefit from adjuvant therapy. This study aims to identify which clinicopathological factors and genetic profiling markers predict outcome in node-negative disease. METHODS Forty-nine microsatellite stable (MSS) patients undergoing curative resection between 1991 and 1993 were included. Local immune response was assessed by Klintrup criteria and vascular invasion status assessed through Miller's elastin staining. Comparative genomic hybridisation (CGH) on a range of loci provided data on allelic imbalance. Analysis of survival included clinicopathological and CGH data in a multivariate (Cox) model. RESULTS On binary logistical regression analysis, 4p deletion was independently associated with low Klintrup score (HR 0.16; 95 % CI (0.03-0.96); P = 0.045), venous invasion (HR 4.19; 95 % CI (1.08-16.29); P = 0.039) and higher Dukes' stage (HR 6.43; 95 % CI (1.22-33.97); P = 0.028). Minimum follow-up was 109 months and there were 24 cancer deaths. On multivariate analysis, high Klintrup score (HR 0.33; 95 % CI (0.12-0.93); P = 0.036), 4p- (HR 4.01; 95 % CI (1.58-10.21); P = 0.004) and 5q- (HR 3.81; 95 % CI (1.54-9.47); P = 0.004) were significantly associated with survival. CONCLUSION 4p-, 5q- and low Klintrup score were independently associated with poor cancer-specific survival in node-negative MSS colorectal cancer. Confirmatory work in a larger cohort is needed to determine whether these markers may be used to identify patients who may benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Arfon G M T Powell
- Unit of Experimental Therapeutics, Institute of Cancer Science, University of Glasgow, McGregor Building, Western Infirmary Glasgow, Glasgow, G11 6NT, UK,
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Pancione M, Remo A, Zanella C, Sabatino L, Di Blasi A, Laudanna C, Astati L, Rocco M, Bifano D, Piacentini P, Pavan L, Purgato A, Greco F, Talamini A, Bonetti A, Ceccarelli M, Vendraminelli R, Manfrin E, Colantuoni V. The chromatin remodelling component SMARCB1/INI1 influences the metastatic behavior of colorectal cancer through a gene signature mapping to chromosome 22. J Transl Med 2013; 11:297. [PMID: 24286138 PMCID: PMC4220786 DOI: 10.1186/1479-5876-11-297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background INI1 (Integrase interactor 1), also known as SMARCB1, is the most studied subunit of chromatin remodelling complexes. Its role in colorectal tumorigenesis is not known. Methods We examined SMARCB1/INI1 protein expression in 134 cases of colorectal cancer (CRC) and 60 matched normal mucosa by using tissue microarrays and western blot and categorized the results according to mismatch repair status (MMR), CpG island methylator phenotype, biomarkers of tumor differentiation CDX2, CK20, vimentin and p53. We validated results in two independent data sets and in cultured CRC cell lines. Results Herein, we show that negative SMARCB1/INI1 expression (11% of CRCs) associates with loss of CDX2, poor differentiation, liver metastasis and shorter patients’ survival regardless of the MMR status or tumor stage. Unexpectedly, even CRCs displaying diffuse nuclear INI1 staining (33%) show an adverse prognosis and vimentin over-expression, in comparison with the low expressing group (56%). The negative association of SMARCB1/INI1-lack of expression with a metastatic behavior is enhanced by the TP53 status. By interrogating global gene expression from two independent cohorts of 226 and 146 patients, we confirm the prognostic results and identify a gene signature characterized by SMARCB1/INI1 deregulation. Notably, the top genes of the signature (BCR, COMT, MIF) map on the long arm of chromosome 22 and are closely associated with SMARCB1/INI1. Conclusion Our findings suggest that SMARCB1/INI1-dysregulation and genetic hot-spots on the long arm of chromosome 22 might play an important role in the CRC metastatic behavior and be clinically relevant as novel biomarkers.
Collapse
Affiliation(s)
- Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11 82100 Benevento, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
An integrative framework identifies alternative splicing events in colorectal cancer development. Mol Oncol 2013; 8:129-41. [PMID: 24189147 DOI: 10.1016/j.molonc.2013.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/17/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) is a common mechanism which creates diverse RNA isoforms from a single gene, potentially increasing protein variety. Growing evidence suggests that this mechanism is closely related to cancer progression. In this study, whole transcriptome analysis was performed with GeneChip Human exon 1.0 ST Array from 80 samples comprising 23 normal colon mucosa, 30 primary colorectal cancer and 27 liver metastatic specimens from 46 patients, to identify AS events in colorectal cancer progression. Differentially expressed genes and exons were estimated and AS events were reconstructed by combining exon-level analyses with AltAnalyze algorithms and transcript-level estimations (MMBGX probabilistic method). The number of AS genes in the transition from normal colon mucosa to primary tumor was the most abundant, but fell considerably in the next transition to liver metastasis. 206 genes with probable AS events in colon cancer development and progression were identified, that are involved in processes and pathways relevant to tumor biology, as cell-cell and cell-matrix interactions. Several AS events in VCL, CALD1, B3GNT6 and CTHRC1 genes, differentially expressed during tumor development were validated, at RNA and at protein level. Taken together, these results demonstrate that cancer-specific AS is common in early phases of colorectal cancer natural history.
Collapse
|
246
|
Gavert N, Shvab A, Sheffer M, Ben-Shmuel A, Haase G, Bakos E, Domany E, Ben-Ze'ev A. c-Kit is suppressed in human colon cancer tissue and contributes to L1-mediated metastasis. Cancer Res 2013; 73:5754-63. [PMID: 24008320 DOI: 10.1158/0008-5472.can-13-0576] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transmembrane neural cell adhesion receptor L1 is a Wnt/β-catenin target gene expressed in many tumor types. In human colorectal cancer, L1 localizes preferentially to the invasive front of tumors and when overexpressed in colorectal cancer cells, it facilitates their metastasis to the liver. In this study, we investigated genes that are regulated in human colorectal cancer and by the L1-NF-κB pathway that has been implicated in liver metastasis. c-Kit was the most highly suppressed gene in both colorectal cancer tissue and the L1-NF-κB pathway. c-Kit suppression that resulted from L1-mediated signaling relied upon NF-κB, which directly inhibited the transcription of SP1, a major activator of the c-Kit gene promoter. Reconstituting c-Kit expression in L1-transfected cells blocked the biological effects conferred by L1 overexpression in driving motility and liver metastasis. We found that c-Kit expression in colorectal cancer cells is associated with a more pronounced epithelial morphology, along with increased expression of E-cadherin and decreased expression of Slug. Although c-Kit overexpression inhibited the motility and metastasis of L1-expressing colorectal cancer cells, it enhanced colorectal cancer cell proliferation and tumorigenesis, arguing that separate pathways mediate tumorigenicity and metastasis by c-Kit. Our findings provide insights into how colorectal cancer metastasizes to the liver, the most common site of dissemination in this cancer.
Collapse
Affiliation(s)
- Nancy Gavert
- Authors' Affiliations: Departments of Molecular Cell Biology; and Physics and Complex Systems, The Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Del Rio M, Mollevi C, Vezzio-Vie N, Bibeau F, Ychou M, Martineau P. Specific extracellular matrix remodeling signature of colon hepatic metastases. PLoS One 2013; 8:e74599. [PMID: 24023955 PMCID: PMC3762755 DOI: 10.1371/journal.pone.0074599] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/02/2013] [Indexed: 12/29/2022] Open
Abstract
To identify genes implicated in metastatic colonization of the liver in colorectal cancer, we collected pairs of primary tumors and hepatic metastases before chemotherapy in 13 patients. We compared mRNA expression in the pairs of patients to identify genes deregulated during metastatic evolution. We then validated the identified genes using data obtained by different groups. The 33-gene signature was able to classify 87% of hepatic metastases, 98% of primary tumors, 97% of normal colon mucosa, and 95% of normal liver tissues in six datasets obtained using five different microarray platforms. The identified genes are specific to colon cancer and hepatic metastases since other metastatic locations and hepatic metastases originating from breast cancer were not classified by the signature. Gene Ontology term analysis showed that 50% of the genes are implicated in extracellular matrix remodeling, and more precisely in cell adhesion, extracellular matrix organization and angiogenesis. Because of the high efficiency of the signature to classify colon hepatic metastases, the identified genes represent promising targets to develop new therapies that will specifically affect hepatic metastasis microenvironment.
Collapse
Affiliation(s)
- Maguy Del Rio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Caroline Mollevi
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Nadia Vezzio-Vie
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Frédéric Bibeau
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Marc Ychou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
248
|
Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Beert E, Catchen JM, Farrington S, Postlethwait JH, Legius E, Hopkins N, Lees JA. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery. PLoS Genet 2013; 9:e1003734. [PMID: 24009526 PMCID: PMC3757083 DOI: 10.1371/journal.pgen.1003734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/05/2013] [Indexed: 01/11/2023] Open
Abstract
The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs) are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs). Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.
Collapse
Affiliation(s)
- GuangJun Zhang
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Sebastian Hoersch
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Bioinformatics Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Eline Beert
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sarah Farrington
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Eric Legius
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Nancy Hopkins
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
249
|
Sánchez-Aragó M, Formentini L, Cuezva JM. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid Redox Signal 2013; 19:285-98. [PMID: 22901241 PMCID: PMC3691914 DOI: 10.1089/ars.2012.4883] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Since the signing of the National Cancer Act in 1971, cancer still remains a major cause of death despite significant progresses made in understanding the biology and treatment of the disease. After many years of ostracism, the peculiar energy metabolism of tumors has been recognized as an additional phenotypic trait of the cancer cell. RECENT ADVANCES While the enhanced aerobic glycolysis of carcinomas has already been translated to bedside for precise tumor imaging and staging of cancer patients, accepting that an impaired bioenergetic function of mitochondria is pivotal to understand energy metabolism of tumors and in its progression is debated. However, mitochondrial bioenergetics and cell death are tightly connected. CRITICAL ISSUES Recent clinical findings indicate that H(+)-ATP synthase, a core component of mitochondrial oxidative phosphorylation, is repressed at both the protein and activity levels in human carcinomas. This review summarizes the relevance that mitochondrial function has to understand energy metabolism of tumors and explores the connection between the bioenergetic function of the organelle and the activity of mitochondria as tumor suppressors. FUTURE DIRECTIONS The reversible nature of energy metabolism in tumors highlights the relevance that the microenvironment has for tumor progression. Moreover, the stimulation of mitochondrial activity or the inhibition of glycolysis suppresses tumor growth. Future research should elucidate the mechanisms promoting the silencing of oxidative phosphorylation in carcinomas. The aim is the development of new therapeutic strategies tackling energy metabolism to eradicate tumors or at least, to maintain tumor dormancy and transform cancer into a chronic disease.
Collapse
Affiliation(s)
- María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras, Centro de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | | |
Collapse
|
250
|
Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hanada R, Tanaka Y, Kato K, Maeda D, Fukayama M, Sanada M, Hayashi Y, Ogawa S. Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci 2013; 104:856-64. [PMID: 23578105 DOI: 10.1111/cas.12173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/19/2013] [Accepted: 03/30/2013] [Indexed: 12/20/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a common solid tumor in childhood divided into two histological subtypes, embryonal (ERMS) and alveolar (ARMS). The ARMS subtype shows aggressive clinical behavior with poor prognosis, while the ERMS subtype has a more favorable outcome. Because of the rarity, diagnostic diversity and heterogeneity of this tumor, its etiology remains to be completely elucidated. Thus, to identify genetic alterations associated with RMS development, we performed single nucleotide polymorphism array analyses of 55 RMS samples including eight RMS-derived cell lines. The ERMS subtype was characterized by hyperploidy, significantly associated with gains of chromosomes 2, 8 and 12, whereas the majority of ARMS cases exhibited near-diploid copy number profiles. Loss of heterozygosity of 15q was detected in 45.5% of ARMS that had been unrecognized in RMS to date. Novel amplifications were also detected, including IRS2 locus in two fusion-positive tumors, and KRAS or NRAS loci in three ERMS cases. Of note, gain of 13q was significantly associated with good patient outcome in ERMS. We also identified possible application of an ALK inhibitor to RMS, as ALK amplification and frequent expression of ALK were detected in our RMS cohort. These findings enhance our understanding of the genetic mechanisms underlying RMS pathogenesis and support further studies for therapeutic development of RMS.
Collapse
Affiliation(s)
- Riki Nishimura
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|