201
|
Zimmerman MG, Quicke KM, O'Neal JT, Arora N, Machiah D, Priyamvada L, Kauffman RC, Register E, Adekunle O, Swieboda D, Johnson EL, Cordes S, Haddad L, Chakraborty R, Coyne CB, Wrammert J, Suthar MS. Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages. Cell Host Microbe 2019; 24:731-742.e6. [PMID: 30439342 DOI: 10.1016/j.chom.2018.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022]
Abstract
Zika virus (ZIKV), which emerged in regions endemic to dengue virus (DENV), is vertically transmitted and results in adverse pregnancy outcomes. Antibodies to DENV can cross-react with ZIKV, but whether these antibodies influence ZIKV vertical transmission remains unclear. Here, we find that DENV antibodies increase ZIKV infection of placental macrophages (Hofbauer cells [HCs]) from 10% to over 80% and enhance infection of human placental explants. ZIKV-anti-DENV antibody complexes increase viral binding and entry into HCs but also result in blunted type I interferon, pro-inflammatory cytokine, and antiviral responses. Additionally, ZIKV infection of HCs and human placental explants is enhanced in an immunoglobulin G subclass-dependent manner, and targeting FcRn reduces ZIKV replication in human placental explants. Collectively, these findings support a role for pre-existing DENV antibodies in enhancement of ZIKV infection of select placental cell types and indicate that pre-existing immunity to DENV should be considered when addressing ZIKV vertical transmission.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Kendra M Quicke
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Justin T O'Neal
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Nitin Arora
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deepa Machiah
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; Molecular Pathology Core Lab, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Lalita Priyamvada
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Robert C Kauffman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Emery Register
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Oluwaseyi Adekunle
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Dominika Swieboda
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erica L Johnson
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah Cordes
- Department of Gynecology and Obstetrics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Lisa Haddad
- Department of Gynecology and Obstetrics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Rana Chakraborty
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC (University of Pittsburgh Medical Center), Pittsburgh, PA 15224, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
202
|
Fowler AM, Tang WW, Young MP, Mamidi A, Viramontes KM, McCauley MD, Carlin AF, Schooley RT, Swanstrom J, Baric RS, Govero J, Diamond MS, Shresta S. Maternally Acquired Zika Antibodies Enhance Dengue Disease Severity in Mice. Cell Host Microbe 2019; 24:743-750.e5. [PMID: 30439343 DOI: 10.1016/j.chom.2018.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/21/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
Antibody (Ab)-dependent enhancement can exacerbate dengue virus (DENV) infection due to cross-reactive Abs from an initial DENV infection, facilitating replication of a second DENV. Zika virus (ZIKV) emerged in DENV-endemic areas, raising questions about whether existing immunity could affect these related flaviviruses. We show that mice born with circulating maternal Abs against ZIKV develop severe disease upon DENV infection. Compared with pups of naive mothers, those born to ZIKV-immune mice lacking type I interferon receptor in myeloid cells (LysMCre+Ifnar1fl/fl) exhibit heightened disease and viremia upon DENV infection. Passive transfer of IgG isolated from mice born to ZIKV-immune mothers resulted in increased viremia in naive recipient mice. Treatment with Abs blocking inflammatory cytokine tumor necrosis factor linked to DENV disease or Abs blocking DENV entry improved survival of DENV-infected mice born to ZIKV-immune mothers. Thus, the maternal Ab response to ZIKV infection or vaccination might predispose to severe dengue disease in infants.
Collapse
Affiliation(s)
- Angela M Fowler
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - William W Tang
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Matthew P Young
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Anila Mamidi
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Karla M Viramontes
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Melanie D McCauley
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Aaron F Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert T Schooley
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jesica Swanstrom
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer Govero
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sujan Shresta
- Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
203
|
Prem K, Lau MSY, Tam CC, Ho MZJ, Ng LC, Cook AR. Inferring who-infected-whom-where in the 2016 Zika outbreak in Singapore-a spatio-temporal model. J R Soc Interface 2019; 16:20180604. [PMID: 31213175 PMCID: PMC6597776 DOI: 10.1098/rsif.2018.0604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Singapore experienced its first known Zika outbreak in 2016. Given the lack of herd immunity, the suitability of the climate for pathogen transmission, and the year-round presence of the vector—Aedes aegypti—Zika had the potential to become endemic, like dengue. Guillain–Barré syndrome and microcephaly are severe complications associated elsewhere with Zika and the risk of these complications makes understanding its spread imperative. We investigated the spatio-temporal spread of locally transmitted Zika in Singapore and assessed the relevance of non-residential transmission of Zika virus infections, by inferring the possible infection tree (i.e. who-infected-whom-where) and comparing inferences using geographically resolved data on cases' home, their work, or their home and work. We developed a spatio-temporal model using time of onset and both addresses of the Zika-confirmed cases between July and September 2016 to estimate the infection tree using Bayesian data augmentation. Workplaces were involved in a considerable fraction (64.2%) of infections, and homes and workplaces may be distant relative to the scale of transmission, allowing ambulant infected persons may act as the ‘vector’ infecting distant parts of the country. Contact tracing is a challenge for mosquito-borne diseases, but inferring the geographically structured transmission tree sheds light on the spatial transmission of Zika to immunologically naive regions of the country.
Collapse
Affiliation(s)
- Kiesha Prem
- 1 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System , Tahir Foundation Building, 12 Science Drive 2, #10-01, Singapore 117549 , Republic of Singapore
| | - Max S Y Lau
- 2 Department of Ecology and Evolutionary Biology, Princeton University , Princeton, NJ 08544 , USA
| | - Clarence C Tam
- 1 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System , Tahir Foundation Building, 12 Science Drive 2, #10-01, Singapore 117549 , Republic of Singapore.,3 London School of Hygiene and Tropical Medicine , Keppel Street, London WC1E 7HT , UK
| | - Marc Z J Ho
- 4 Ministry of Health , 16 College Road, Singapore 169854 , Republic of Singapore
| | - Lee-Ching Ng
- 5 Environmental Health Institute, National Environment Agency , 11 Biopolis Way, Singapore 138667 , Republic of Singapore
| | - Alex R Cook
- 1 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System , Tahir Foundation Building, 12 Science Drive 2, #10-01, Singapore 117549 , Republic of Singapore
| |
Collapse
|
204
|
Li L, Meng W, Horton M, DiStefano DR, Thoryk EA, Pfaff JM, Wang Q, Salazar GT, Barnes T, Doranz BJ, Bett AJ, Casimiro DR, Vora KA, An Z, Zhang N. Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes. PLoS Pathog 2019; 15:e1007716. [PMID: 31170257 PMCID: PMC6553876 DOI: 10.1371/journal.ppat.1007716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies. Dengue virus (DENV) is a leading cause of human illness in the tropics and subtropics, with about 40% of the world’s population living in areas at risk for infection. There are four DENV serotypes. Patients who have previously been infected by one dengue serotype may develop more severe symptoms such as bleeding and endothelial leakage upon secondary infection with another dengue serotype. This study reports the extensive cloning and analysis of 780 monoclonal antibodies (mAbs) from single B cells of rhesus macaques after immunization with an experimental dengue vaccine. We identified a panel of potent neutralizing mAbs with diverse epitopes on the DENV envelope protein. Antibodies in this panel were found to bind to the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and the loops of DI. We also isolated one mAb (d448) that can neutralize all four dengue serotypes and binds to a novel epitope at the interface of the DENV envelope and membrane proteins. Further investigation of these neutralizing monoclonal antibodies is warranted for better vaccine efficacy evaluation and vaccine design.
Collapse
Affiliation(s)
- Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weixu Meng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Melanie Horton
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Daniel R. DiStefano
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Elizabeth A. Thoryk
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Qihui Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Georgina T. Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Trevor Barnes
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Bett
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Danilo R. Casimiro
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Kalpit A. Vora
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| |
Collapse
|
205
|
Vertically transmitted chikungunya, Zika and dengue virus infections: The pathogenesis from mother to fetus and the implications of co-infections and vaccine development. Int J Pediatr Adolesc Med 2019; 7:107-111. [PMID: 33094137 PMCID: PMC7567994 DOI: 10.1016/j.ijpam.2019.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/01/2019] [Accepted: 05/26/2019] [Indexed: 01/23/2023]
Abstract
Chikungunya (CHIKV), Zika (ZIKV), and Dengue viruses (DENV) exhibit similar epidemiological and clinical patterns but have different pathophysiological mechanisms of disease manifestations. Differences occur in the severity of clinical presentations with the highest mortality in the general population attributed to DENV and neurological morbidity due to ZIKV. ZIKV and DENV infections can cause fetal loss with ZIKV exhibiting teratogenesis. CHIKV is associated with severe complications in the newborn. Co-circulation of the three viruses and the cross-reactive immune response between ZIKV and DENV viruses has implications for an attenuated clinical response and future vaccine development. Co-infections could increase due to the epidemiologic synergy, but there is limited evidence about the clinical effects, especially for the vulnerable newborn. The purpose of this paper is to review the pathophysiological basis for vertically transmission manifestations due to CHIKV, DENV, and ZIKV, to determine the potential effects of co-circulation on newborn outcomes and the potential for vaccine protection. Inflammatory cytokines are responsible for placental breaches in DENV and ZIKV; Hofbauer cells facilitate the transfer of ZIKV from the placenta to the fetal brain, and high viral loads and mechanical placental disruption facilitate the transmission of CHIKV. Co-infection of these viruses can present with severe manifestations, but the clinical and serologic evidence suggests that one virus predominates which may influence fetal transmission. All three viruses are in different stages of vaccine development with DENV vaccine being fully licensed. Antibody-enhanced infections in seronegative vaccinated candidates who develop natural infection to dengue limit its use and have implications for ZIKV vaccine development. Targeting transmission capacity in the vector could prevent transmission to all three viruses, and breast milk immunity could provide further clues for vaccine development.
Collapse
|
206
|
Wang R, Gao N, Li Y, Fan D, Zhen Z, Feng K, Chen H, An J. Cross-Protection Against Four Serotypes of Dengue Virus in Mice Conferred by a Zika DNA Vaccine. Front Cell Infect Microbiol 2019; 9:147. [PMID: 31139577 PMCID: PMC6517860 DOI: 10.3389/fcimb.2019.00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Both Zika virus (ZIKV) and four serotypes of dengue virus (DENV1–4) are antigenically related mosquito-borne flaviviruses that co-circulate in overlapping geographic distributions. The considerable amino acid sequence homology and structural similarities between ZIKV and DENV1–4 may be responsible for the complicated immunological cross-reactivity observed for these viruses. Thus, a successful Zika vaccine needs to not only confer protection from ZIKV infection but must also be safe during secondary exposures with other flavivirus, especially DENVs. In this study, we used a Zika DNA vaccine candidate (pV-ZME) expressing the ZIKV premembrane and envelop proteins to immunize BALB/c mice and evaluated the potential cross-reactive immune responses to DENV1–4. We observed that three doses of the pV-ZME vaccine elicited the production of cross-reactive antibodies, cytokines and CD8+ T cell responses and generated cross-protection against DENV1–4. Our results demonstrate a novel approach for design and development of safe Zika and/or dengue vaccines.
Collapse
Affiliation(s)
- Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zida Zhen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
207
|
Dinh TC, Bac ND, Minh LB, Ngoc VTN, Pham VH, Vo HL, Tien NLB, Van Thanh V, Tao Y, Show PL, Chu DT. Zika virus in Vietnam, Laos, and Cambodia: are there health risks for travelers? Eur J Clin Microbiol Infect Dis 2019; 38:1585-1590. [PMID: 31044332 DOI: 10.1007/s10096-019-03563-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
Vietnam, Laos, and Cambodia have reported first cases of Zika virus (ZIKV) infection since 2010 (Cambodia) and 2016 (Vietnam and Laos). One case of ZIKV-related microcephaly was recognized among a hundred infected cases in these areas, raising a great concern about the health risk related to this virus infection. At least 5 cases of ZIKV infection among travelers to Vietnam, Laos, and Cambodia were recorded. It is noticeable that ZIKV in these areas can cause birth defects. This work aims to discuss the current epidemics of ZIKV in Vietnam, Laos, and Cambodia and update the infection risk of ZIKV for travelers to these areas.
Collapse
Affiliation(s)
- Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, 03 QuangTrung, Danang, Vietnam
| | | | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City, Vietnam
| | | | - Van-Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Hoang-Long Vo
- Institute for Preventive Medicine & Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi, Vietnam
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 8, 210095, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, JalanBroga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Dinh-Toi Chu
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Vietnam.
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
208
|
Binder M, Pilyugin SS. Stability analysis of a deterministic model of Zika/Dengue co-circulation. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We consider a deterministic model of Zika and Dengue viruses co-circulating in a human population. We study the system of differential equations modeling the dynamics of the diseases that can either be transmitted directly (host-to-host) or indirectly (host-vector-host). We use an SIR model for hosts and an SI model for vectors in the homogeneous populations. The stability of the model has been analyzed both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Mike Binder
- Department of Mathematics, University of Florida, USA
| | | |
Collapse
|
209
|
Warnecke JM, Lattwein E, Saschenbrecker S, Stöcker W, Schlumberger W, Steinhagen K. Added value of IgA antibodies against Zika virus non-structural protein 1 in the diagnosis of acute Zika virus infections. J Virol Methods 2019; 267:8-15. [DOI: 10.1016/j.jviromet.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
|
210
|
Rockstroh A, Moges B, Berneck BS, Sattler T, Revilla-Fernández S, Schmoll F, Pacenti M, Sinigaglia A, Barzon L, Schmidt-Chanasit J, Nowotny N, Ulbert S. Specific detection and differentiation of tick-borne encephalitis and West Nile virus induced IgG antibodies in humans and horses. Transbound Emerg Dis 2019; 66:1701-1708. [PMID: 30985075 DOI: 10.1111/tbed.13205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 11/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) are important arthropod-borne zoonotic flaviviruses. Due to the emergence of WNV in TBEV-endemic regions co-circulation of both viruses is increasing. Flaviviruses are structurally highly similar, which leads to cross-reacting antibodies upon infection. Currently available serological assays for TBEV and WNV infections are therefore compromised by false-positive results, especially in IgG measurements. In order to discriminate both infections novel diagnostic methods are needed. We describe an ELISA to measure IgG antibodies specific for TBEV and WNV, applicable to human and horse sera. Mutant envelope proteins were generated, that lack conserved parts of the fusion loop domain, a predominant target for cross-reacting antibodies. These were incubated with equine and human sera with known TBEV, WNV or other flavivirus infections. For WNV IgG, specificities and sensitivities were 100% and 87.9%, respectively, for horse sera, and 94.4% and 92.5%, respectively, for human sera. TBEV IgG was detected with specificities and sensitivities of 95% and 96.7%, respectively, in horses, and 98.9% and 100%, respectively, in humans. Specificities increased to 100% by comparing individual samples on both antigens. The antigens could form the basis for serological TBEV- and WNV-assays with improved specificities.
Collapse
Affiliation(s)
- Alexandra Rockstroh
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Beyene Moges
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Beatrice S Berneck
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tatjana Sattler
- Institute for Veterinary Disease Control Mödling, Austrian Agency of Health and Food Safety, Mödling, Austria.,Clinic for Ruminants and Swine, University Leipzig, Leipzig, Germany
| | - Sandra Revilla-Fernández
- Institute for Veterinary Disease Control Mödling, Austrian Agency of Health and Food Safety, Mödling, Austria
| | - Friedrich Schmoll
- Institute for Veterinary Disease Control Mödling, Austrian Agency of Health and Food Safety, Mödling, Austria
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy.,Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
211
|
Collins MH. Serologic Tools and Strategies to Support Intervention Trials to Combat Zika Virus Infection and Disease. Trop Med Infect Dis 2019; 4:E68. [PMID: 31010134 PMCID: PMC6632022 DOI: 10.3390/tropicalmed4020068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
Zika virus is an emerging mosquito-borne flavivirus that recently caused a large epidemic in Latin America characterized by novel disease phenotypes, including Guillain-Barré syndrome, sexual transmission, and congenital anomalies, such as microcephaly. This epidemic, which was declared an international public health emergency by the World Health Organization, has highlighted shortcomings in our current understanding of, and preparation for, emerging infectious diseases in general, as well as challenges that are specific to Zika virus infection. Vaccine development for Zika virus has been a high priority of the public health response, and several candidates have shown promise in pre-clinical and early phase clinical trials. The optimal selection and implementation of imperfect serologic assays are among the crucial issues that must be addressed in order to advance Zika vaccine development. Here, I review key considerations for how best to incorporate into Zika vaccine trials the existing serologic tools, as well as those on the horizon. Beyond that, this discussion is relevant to other intervention strategies to combat Zika and likely other emerging infectious diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030, USA.
| |
Collapse
|
212
|
Langerak T, Mumtaz N, Tolk VI, van Gorp ECM, Martina BE, Rockx B, Koopmans MPG. The possible role of cross-reactive dengue virus antibodies in Zika virus pathogenesis. PLoS Pathog 2019; 15:e1007640. [PMID: 30998804 PMCID: PMC6472811 DOI: 10.1371/journal.ppat.1007640] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) has been known for decades to circulate in Africa and Asia. However, major complications of a ZIKV infection have recently become apparent for reasons that are still not fully elucidated. One of the hypotheses for the seemingly increased pathogenicity of ZIKV is that cross-reactive dengue antibodies can enhance a ZIKV infection through the principle of antibody-dependent enhancement (ADE). Recently, ADE in ZIKV infection has been studied, but conclusive evidence for the clinical importance of this principle in a ZIKV infection is lacking. Conversely, the widespread circulation of ZIKV in dengue virus (DENV)-endemic regions raises new questions about the potential contribution of ZIKV antibodies to DENV ADE. In this review, we summarize the results of the evidence to date and elaborate on other possible detrimental effects of cross-reactive flavivirus antibodies, both for ZIKV infection and the risk of ZIKV-related congenital anomalies, DENV infection, and dengue hemorrhagic fever.
Collapse
Affiliation(s)
- Thomas Langerak
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Noreen Mumtaz
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Vera I. Tolk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Byron E. Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
213
|
Collins MH, Tu HA, Gimblet-Ochieng C, Liou GJA, Jadi RS, Metz SW, Thomas A, McElvany BD, Davidson E, Doranz BJ, Reyes Y, Bowman NM, Becker-Dreps S, Bucardo F, Lazear HM, Diehl SA, de Silva AM. Human antibody response to Zika targets type-specific quaternary structure epitopes. JCI Insight 2019; 4:124588. [PMID: 30996133 DOI: 10.1172/jci.insight.124588] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas has revealed rare but serious manifestations of infection. ZIKV has emerged in regions endemic for dengue virus (DENV), a closely related mosquito-borne flavivirus. Cross-reactive antibodies confound studies of ZIKV epidemiology and pathogenesis. The immune responses to ZIKV may be different in people, depending on their DENV immune status. Here, we focus on the human B cell and antibody response to ZIKV as a primary flavivirus infection to define the properties of neutralizing and protective antibodies generated in the absence of preexisting immunity to DENV. The plasma antibody and memory B cell response is highly ZIKV type-specific, and ZIKV-neutralizing antibodies mainly target quaternary structure epitopes on the viral envelope. To map viral epitopes targeted by protective antibodies, we isolated 2 type-specific monoclonal antibodies (mAbs) from a ZIKV case. Both mAbs were strongly neutralizing in vitro and protective in vivo. The mAbs recognize distinct epitopes centered on domains I and II of the envelope protein. We also demonstrate that the epitopes of these mAbs define antigenic regions commonly targeted by plasma antibodies in individuals from endemic and nonendemic regions who have recovered from ZIKV infections.
Collapse
Affiliation(s)
- Matthew H Collins
- Department of Medicine, Emory University, Atlanta, Georgia, USA, and Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia, USA.,Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Huy A Tu
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, Vermont, USA.,Vaccine Testing Center, Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Ciara Gimblet-Ochieng
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Guei-Jiun Alice Liou
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ramesh S Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ashlie Thomas
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin D McElvany
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, Pennsylvania, USA
| | | | - Yaoska Reyes
- Department of Microbiology, Faculty of Medical Sciences, National Autonomous University of León, Nicaragua
| | - Natalie M Bowman
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Schools of Medicine and Public Health, Chapel Hill, North Carolina, USA
| | - Filemón Bucardo
- Department of Microbiology, Faculty of Medical Sciences, National Autonomous University of León, Nicaragua
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sean A Diehl
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, Vermont, USA.,Vaccine Testing Center, Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
214
|
Krol E, Brzuska G, Szewczyk B. Production and Biomedical Application of Flavivirus-like Particles. Trends Biotechnol 2019; 37:1202-1216. [PMID: 31003718 DOI: 10.1016/j.tibtech.2019.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
Many viruses belonging to the Flaviviridae family are transmitted by invertebrate vectors. Among those transmitted by mosquitos, there are many human pathogens of great medical importance, such as Japanese encephalitis virus, West Nile virus, dengue virus, Zika virus, or yellow fever virus. Millions of people contract mosquito-borne diseases each year, leading to thousands of deaths. Co-circulation of genetically similar flaviviruses in the same areas result in the generation of crossreactive antibodies, which is of serious concern for the development of effective vaccines and diagnostic tests. This review provides comprehensive insight into the potential use of virus-like particles as safe and effective antigens in both diagnostics tests, as well as in the development of vaccines against several mosquito-borne flaviviruses.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
215
|
Priyamvada L, Suthar MS, Ahmed R, Wrammert J. Humoral Immune Responses Against Zika Virus Infection and the Importance of Preexisting Flavivirus Immunity. J Infect Dis 2019; 216:S906-S911. [PMID: 29267924 DOI: 10.1093/infdis/jix513] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The recent emergence of Zika virus (ZIKV) in the western hemisphere has been linked to Guillain-Barre syndrome, congenital microcephaly, and devastating ophthalmologic and neurologic developmental abnormalities. The vast geographic spread and adverse disease outcomes of the 2015-2016 epidemic have elevated ZIKV from a previously understudied virus to one of substantial public health interest worldwide. Recent efforts to dissect immunological responses to ZIKV have provided significant insights into the functional quality and antigenic targets of ZIKV-induced B-cell responses. Several groups have demonstrated immunological cross-reactivity between ZIKV and other flaviviruses and have identified antibodies capable of both cross-neutralization, as well as antibody-dependent enhancement (ADE) of ZIKV infection. However, the impact of preexisting flavivirus immunity on ZIKV pathogenesis, the generation of protective responses, and in utero transmission of ZIKV infection remain unclear. Given the widespread endemicity of DENV in the areas most effected by the current ZIKV outbreak, the possibility of ADE is especially concerning and may pose unique challenges to the development and deployment of safe and immunogenic ZIKV vaccines. Here, we review current literature pertaining to ZIKV-induced B-cell responses and humoral cross-reactivity and discuss relevant considerations for the development of vaccines and therapeutics against ZIKV.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Mehul S Suthar
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jens Wrammert
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
216
|
Lima GP, Rozenbaum D, Pimentel C, Frota ACC, Vivacqua D, Machado ES, Sztajnbok F, Abreu T, Soares RA, Hofer CB. Factors associated with the development of Congenital Zika Syndrome: a case-control study. BMC Infect Dis 2019; 19:277. [PMID: 30902046 PMCID: PMC6431070 DOI: 10.1186/s12879-019-3908-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We aim to investigate possible maternal- and pregnancy-related factors associated with the development of Congenital Zika Syndrome (CZS) in children of mothers with probable gestational infection. METHODS This case-control study, we recruited mother-infant pairs between May 2015 and October 2017 in a pediatric infectious disease clinic in Rio de Janeiro. Inclusion criteria required either that the mother reported Zika infection symptoms during pregnancy or that the infant presented with clinical or imaging features of the CZS. Exclusion criteria included detection of an alternative cause for the patient's presentation or negative polymerase chain reaction assays for Zika in all specimens tested within 12 days from the beginning of maternal symptoms. Infants with CZS (CDC definition) were selected as cases and infants without CZS, but with probable maternal Zika virus infection during pregnancy, were selected as controls. Maternal and pregnancy-related informations were collected and their relationship to the presence of congenital anomalies due to CZS was assessed by Fisher exact or Mann-Whitney test. RESULTS Out of the 42 included neonates, 24 (57.1%) were diagnosed with CZS (cases). The mean maternal age at the birth was 21 years old. The early occurrence of maternal symptoms during pregnancy was the only variable associated with CZS (odds ratio = 0.87, 95% CI: 0.78-0.97). Case's mothers presented symptoms until the 25th week of gestational age (GA), while control's mothers presented until 36th weeks of GA. Income; illicit drug, alcohol, or tobacco use during pregnancy; other infections during pregnancy (including previous dengue infection) were not associated with CZS. CONCLUSIONS Our study corroborates the hypothesis that Zika virus infection earlier in pregnancy is a risk factor to the occurrence of congenital anomalies in their fetuses.
Collapse
Affiliation(s)
- Giulia P. Lima
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Daniel Rozenbaum
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Clarisse Pimentel
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Ana Cristina Cisne Frota
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Daniela Vivacqua
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Elizabeth S. Machado
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Fernanda Sztajnbok
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Thalita Abreu
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Raquel A. Soares
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Cristina B. Hofer
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, R Bruno Lobo, 50, Ilha do Fundao, Rio de Janeiro, Brazil
| |
Collapse
|
217
|
da Silva MHM, Moises RNC, Alves BEB, Pereira HWB, de Paiva AAP, Morais IC, Nascimento YM, Monteiro JD, de Souto JT, Nascimento MSL, de Araújo JMG, da Guedes PMM, Fernandes JV. Innate immune response in patients with acute Zika virus infection. Med Microbiol Immunol 2019; 208:703-714. [PMID: 30879197 DOI: 10.1007/s00430-019-00588-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Innate immunity receptors (Toll-like receptors/TLRs and RIG-like receptors/RLRs) are important for the initial recognition of Zika virus (ZIKV), modulation of protective immune response, and IFN-α and IFN-β production. Immunological mechanisms involved in protection or pathology during ZIKV infection have not yet been determined. In this study, we evaluated the mRNA expression of innate immune receptors (TLR3, TLR7, TLR8, TLR9, melanoma differentiation-associated protein 5/MDA-5, and retinoic acid inducible gene/RIG-1), its adapter molecules (Myeloid Differentiation Primary Response Gene 88/Myd88, Toll/IL-1 Receptor Domain-Containing Adaptor-Inducing IFN-β/TRIF), and cytokines (IL-6, IL-12, TNF-α, IFN-α, IFN-β, and IFN-γ) in the acute phase of patients infected by ZIKV using real-time PCR in peripheral blood. Patients with acute ZIKV infection had high expression of TLR3, IFN-α, IFN-β, and IFN-γ when compared to healthy controls. In addition, there was a positive correlation between TLR3 expression compared to IFN-α and IFN-β. Moreover, viral load is positively correlated with TLR8, RIG-1, MDA-5, IFN-α, and IFN-β. On the other hand, patients infected by ZIKV showed reduced expression of RIG-1, TLR8, Myd88, and TNF-α molecules, which are also involved in antiviral immunity. Similar expressions of TLR7, TLR9, MDA-5, TRIF, IL-6, and IL-12 were observed between the group of patients infected with ZIKV and control subjects. Our results indicate that acute infection (up to 5 days after the onset of symptoms) by ZIKV in patients induces the high mRNA expression of TLR3 correlated to high expression of IFN-γ, IFN-α, and IFN-β, even though the high viral load is correlated to high expression of TLR8, RIG-1, MDA-5, IFN-α, and IFN-β in ZIKV patients.
Collapse
Affiliation(s)
- Marcelo Henrique Matias da Silva
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Raiza Nara Cunha Moises
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Brenda Elen Bizerra Alves
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hannaly Wana Bezerra Pereira
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Anne Aline Pereira de Paiva
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ingryd Câmara Morais
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Yasmim Mesquita Nascimento
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Joelma Dantas Monteiro
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Janeusa Trindade de Souto
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Manuela Sales Lima Nascimento
- Edmond and Lily Safra International Institute of Neuroscience (ELS-IIN), Santos Dumont Institute, Macaíba, RN, Brazil
| | - Josélio Maria Galvão de Araújo
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.,Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo Marcos Matta da Guedes
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil. .,Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.
| | - José Veríssimo Fernandes
- Graduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil. .,Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande Do Norte, Brazil.
| |
Collapse
|
218
|
Wen J, Shresta S. Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine? Curr Opin Immunol 2019; 59:1-8. [PMID: 30884384 DOI: 10.1016/j.coi.2019.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Zika and the four serotypes of dengue are closely related flaviviruses that share a high degree of structural and sequence homology and co-circulate in many regions of the world. Here, we review recent studies investigating antigenic cross-reactivity between the two viruses. We discuss the pathogenic and protective roles of cross-reactive anti-viral antibody and T cell responses, respectively, in modulating the outcome of secondary dengue or Zika infection. Based on recent findings and increased incidence of severe disease in seronegative recipients of the first dengue vaccine to be licensed, we propose that the time has come to focus on developing pan-flavivirus vaccines that protect against Zika and four dengue serotypes by eliciting protective cross-reactive T cell responses while concomitantly reducing production of cross-reactive antibodies that can exacerbate disease.
Collapse
Affiliation(s)
- Jinsheng Wen
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Microbiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
219
|
Ciota AT. The role of co-infection and swarm dynamics in arbovirus transmission. Virus Res 2019; 265:88-93. [PMID: 30879977 DOI: 10.1016/j.virusres.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted by hematophagous insects, primarily mosquitoes. The geographic range and prevalence of mosquito-borne viruses and their vectors has dramatically increased over the last 50 years. As a result, the most medically important arboviurses now co-exist in many regions, resulting in an increased frequency of co-infections in hosts and vectors. In addition to concurrent infections with human pathogens, mosquito-only viruses and/or enzootic viruses not associated with human disease are ubiquitous in mosquito populations. Moreover, mosquito-borne viruses are largely RNA viruses that exist within individual hosts as a diverse and dynamic swarm of closely related genotypes. Interactions among co-infecting viruses and genotypes can have profound effects on virulence, fitness and evolution. Here, we review our understanding of how these complex interactions influence transmission of mosquito-borne viruses, focusing on the often-neglected virus interactions in the mosquito vector, and identify gaps in our knowledge that should guide future studies.
Collapse
Affiliation(s)
- Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.
| |
Collapse
|
220
|
Li PC, Jang J, Hsia CY, Groomes PV, Lian W, de Wispelaere M, Pitts JD, Wang J, Kwiatkowski N, Gray NS, Yang PL. Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy in Vivo. ACS Infect Dis 2019; 5:460-472. [PMID: 30608640 DOI: 10.1021/acsinfecdis.8b00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccines and antivirals to combat dengue, Zika, and other flavivirus pathogens present a major, unmet medical need. Vaccine development has been severely challenged by the antigenic diversity of these viruses and the propensity of non-neutralizing, cross-reactive antibodies to facilitate cellular infection and increase disease severity. As an alternative, direct-acting antivirals targeting the flavivirus envelope protein, E, have the potential to act via an analogous mode of action without the risk of antibody-dependent enhancement of infection and disease. We previously discovered that structurally diverse small molecule inhibitors of the dengue virus E protein exhibit varying levels of antiviral activity against other flaviviruses in cell culture. Here, we demonstrate that the broad-spectrum activity of several cyanohydrazones against dengue, Zika, and Japanese encephalitis viruses is due to specific inhibition of E-mediated membrane fusion during viral entry and provide proof of concept for pharmacological inhibition of E as an antiviral strategy in vivo.
Collapse
Affiliation(s)
- Pi-Chun Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Jaebong Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Chih-Yun Hsia
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrice V. Groomes
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Wenlong Lian
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Melissanne de Wispelaere
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jared D. Pitts
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Priscilla L. Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
221
|
Comprehensive Evaluation of Differential Serodiagnosis between Zika and Dengue Viral Infections. J Clin Microbiol 2019; 57:JCM.01506-18. [PMID: 30541932 DOI: 10.1128/jcm.01506-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Diagnostic testing for Zika virus (ZIKV) or dengue virus (DENV) infection can be accomplished by a nucleic acid detection method; however, a negative result does not exclude infection due to the low virus titer during infection depending on the timing of sample collection. Therefore, a ZIKV- or DENV-specific serological assay is essential for the accurate diagnosis of patients and to mitigate potential severe health outcomes. A retrospective study design with dual approaches of collecting human serum samples for testing was developed. All serum samples were extensively evaluated by using both noninfectious wild-type (wt) virus-like particles (VLPs) and soluble nonstructural protein 1 (NS1) in the standard immunoglobulin M (IgM) antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Both ZIKV-derived wt-VLP- and NS1-MAC-ELISAs were found to have similar sensitivities for detecting anti-premembrane/envelope and NS1 antibodies from ZIKV-infected patient sera, although lower cross-reactivity to DENV2/3-NS1 was observed. Furthermore, group cross-reactive (GR)-antibody-ablated homologous fusion peptide-mutated (FP)-VLPs consistently showed higher positive-to-negative values than homologous wt-VLPs. Therefore, we used DENV-2/3 and ZIKV FP-VLPs to develop a novel, serological algorithm for differentiating ZIKV from DENV infection. Overall, the sensitivity and specificity of the FP-VLP-MAC-ELISA and the NS1-MAC-ELISA were each higher than 80%, with no statistical significance. The accuracy can reach up to 95% with the combination of FP-VLP and NS1 assays. In comparison to current guidelines using neutralization tests to measure ZIKV antibody, this approach can facilitate laboratory screening for ZIKV infection, especially in regions where DENV infection is endemic and capacity for neutralization testing does not exist.
Collapse
|
222
|
Andrade P, Gimblet-Ochieng C, Modirian F, Collins M, Cárdenas M, Katzelnick LC, Montoya M, Michlmayr D, Kuan G, Balmaseda A, Coloma J, de Silva AM, Harris E. Impact of pre-existing dengue immunity on human antibody and memory B cell responses to Zika. Nat Commun 2019; 10:938. [PMID: 30808875 PMCID: PMC6391383 DOI: 10.1038/s41467-019-08845-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
Little is known about enduring memory B cell (MBC) responses to Zika virus (ZIKV) and their relationship with circulating antibodies. Here we comprehensively assess MBC frequency and specificity alongside serum binding and neutralizing antibody responses to ZIKV ~2 weeks and ~8 months postinfection in 31 pediatric subjects with 0, 1 or >1 prior infections with the related dengue virus (DENV). ZIKV infection elicits a robust type-specific MBC response, and the majority of late convalescent anti-ZIKV serum neutralizing activity is attributable to ZIKV-specific antibodies. The number of prior DENV infections does not influence type-specific or cross-reactive MBC responses, although ZIKV has the highest cross-reactivity with DENV3. DENV cross-reactive MBCs expanded by ZIKV infection decline in number and proportion by late convalescence. Finally, ZIKV induces greater cross-reactivity in the MBC pool than in serum antibodies. Our data suggest immunity to DENV only modestly shapes breadth and magnitude of enduring ZIKV antibody responses.
Collapse
Affiliation(s)
- Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, EC170157, Ecuador
| | - Ciara Gimblet-Ochieng
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
| | - Faraz Modirian
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Matthew Collins
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, 30030, USA
| | - Maritza Cárdenas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA.
| |
Collapse
|
223
|
Siedner MJ, Ryan ET, Bogoch II. Gone or forgotten? The rise and fall of Zika virus. LANCET PUBLIC HEALTH 2019. [PMID: 29519697 DOI: 10.1016/s2468-2667(18)30029-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mark J Siedner
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Edward T Ryan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Isaac I Bogoch
- Department of Medicine, University of Toronto, and Divisions of General Internal Medicine and Infectious Diseases, University Health Network, Toronto, ON, Canada
| |
Collapse
|
224
|
Woon YL, Lim MF, Tg Abd Rashid TR, Thayan R, Chidambaram SK, Syed Abdul Rahim SS, Mudin RN, Sivasampu S. Zika virus infection in Malaysia: an epidemiological, clinical and virological analysis. BMC Infect Dis 2019; 19:152. [PMID: 30760239 PMCID: PMC6375198 DOI: 10.1186/s12879-019-3786-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/06/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A major outbreak of the Zika virus (ZIKV) has been reported in Brazil in 2015. Since then, it spread further to other countries in the Americas and resulted in declaration of the Public Health Emergency of International Concern (PHEIC) by World Health Organization. In 2016, Singapore reported its first minor ZIKV epidemic. Malaysia shares similar ecological environment as Brazil and Singapore which may also favor ZIKV transmission. However, no ZIKV outbreak has been reported in Malaysia to date. This study aimed to discuss all confirmed ZIKV cases captured under Malaysia ZIKV surveillance system after declaration of the PHEIC; and explore why Malaysia did not suffer a similar ZIKV outbreak as the other two countries. METHODS This was an observational study reviewing all confirmed ZIKV cases detected in Malaysia through the ZIKV clinical surveillance and Flavivirus laboratory surveillance between June 2015 and December 2017. All basic demographic characteristics, co-morbidities, clinical, laboratory and outcome data of the confirmed ZIKV cases were collected from the source documents. RESULTS Only eight out of 4043 cases tested positive for ZIKV infection during that period. The median age of infected patients was 48.6 years and majority was Chinese. Two of the subjects were pregnant. The median interval between the onset of disease and the first detection of ZIKV Ribonucleic Acid (RNA) in body fluid was 3 days. Six cases had ZIKV RNA detected in both serum and urine samples. Phylogenetic analysis suggests that isolates from the 7 cases of ZIKV infection came from two clusters, both of which were local circulating strains. CONCLUSION Despite similar ecological background characteristics, Malaysia was not as affected by the recent ZIKV outbreak compared to Brazil and Singapore. This could be related to pre-existing immunity against ZIKV in this population, which developed after the first introduction of the ZIKV in Malaysia decades ago. A serosurvey to determine the seroprevalence of ZIKV in Malaysia was carried out in 2017. The differences in circulating ZIKV strains could be another reason as to why Malaysia seemed to be protected from an outbreak.
Collapse
Affiliation(s)
- Yuan Liang Woon
- Clinical Epidemiology Unit, National Clinical Research Centre, Ministry of Health Malaysia, Level 2, Block B4, National Institute of Health, Jalan Setia Murni U13/52, Seksyen U13, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Mei Fong Lim
- Healthcare Statistics Unit, National Clinical Research Centre, Ministry of Health Malaysia, Level 4, Block B4, National Institute of Health, Jalan Setia Murni U13/52, Seksyen U13, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Tg Rogayah Tg Abd Rashid
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Suresh Kumar Chidambaram
- Department of General Medicine, Hospital Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Selangor Darul Ehsan, Malaysia
| | | | - Rose Nani Mudin
- Sector of Vector-Borne Disease, Disease Control Division, Ministry of Health Malaysia, 62590, Putrajaya, Malaysia
| | - Sheamini Sivasampu
- Healthcare Statistics Unit, National Clinical Research Centre, Ministry of Health Malaysia, Level 4, Block B4, National Institute of Health, Jalan Setia Murni U13/52, Seksyen U13, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
225
|
Zika virus: Epidemiological surveillance of the Mexican Institute of Social Security. PLoS One 2019; 14:e0212114. [PMID: 30742671 PMCID: PMC6370238 DOI: 10.1371/journal.pone.0212114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/27/2019] [Indexed: 11/21/2022] Open
Abstract
Introduction At the end of 2015, the first cases of Zika were identified in southern Mexico. During 2016, Zika spread as an outbreak to a large part of the country's coastal zones. Methodology The Zika epidemiological surveillance system records cases with clinical symptoms of Zika virus disease (ZVD) and those confirmed by means of a reverse polymerase chain reaction (RT-PCR) assay. This report includes the suspected and confirmed cases from 2016. Incidence rates were estimated by region and in pregnant women based on the proportion of confirmed cases. Results In total, 43,725 suspected cases of ZVD were reported. The overall incidence of suspected cases of ZVD was 82.0 per 100,000 individuals and 25.3 per 100,000 Zika cases. There were 4,168 pregnant women with suspected symptoms of ZVD, of which infection was confirmed in 1,082 (26%). The estimated incidence rate of ZVD for pregnant women nationwide was 186.1 positive Zika cases per 100,000 pregnant women. Conclusions The incidence of Zika in Mexico is higher than that reported previously in the National System of Epidemiological Surveillance. Positive cases of Zika must be estimated and reported.
Collapse
|
226
|
Rodriguez-Barraquer I, Costa F, Nascimento EJM, Nery N, Castanha PMS, Sacramento GA, Cruz J, Carvalho M, De Olivera D, Hagan JE, Adhikarla H, Wunder EA, Coêlho DF, Azar SR, Rossi SL, Vasilakis N, Weaver SC, Ribeiro GS, Balmaseda A, Harris E, Nogueira ML, Reis MG, Marques ETA, Cummings DAT, Ko AI. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 2019; 363:607-610. [PMID: 30733412 PMCID: PMC8221194 DOI: 10.1126/science.aav6618] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023]
Abstract
The clinical outcomes associated with Zika virus (ZIKV) in the Americas have been well documented, but other aspects of the pandemic, such as attack rates and risk factors, are poorly understood. We prospectively followed a cohort of 1453 urban residents in Salvador, Brazil, and, using an assay that measured immunoglobulin G3 (IgG3) responses against ZIKV NS1 antigen, we estimated that 73% of individuals were infected during the 2015 outbreak. Attack rates were spatially heterogeneous, varying by a factor of 3 within a community spanning 0.17 square kilometers. Preexisting high antibody titers to dengue virus were associated with reduced risk of ZIKV infection and symptoms. The landscape of ZIKV immunity that now exists may affect the risk for future transmission.
Collapse
Affiliation(s)
| | - Federico Costa
- Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Eduardo J M Nascimento
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nivison Nery
- Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Priscila M S Castanha
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz/MS, Recife, Pernambuco, Brazil
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Jaqueline Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Mayara Carvalho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Daiana De Olivera
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - José E Hagan
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Elsio A Wunder
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Danilo F Coêlho
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz/MS, Recife, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE 50740-540, Brazil
| | - Sasha R Azar
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Guilherme S Ribeiro
- Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Maurício L Nogueira
- Faculdade de Medicina de São Jose do Rio Preto, São Jose do Rio Preto, São Paulo, Brazil
| | - Mitermayer G Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ernesto T A Marques
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz/MS, Recife, Pernambuco, Brazil
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Albert I Ko
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
227
|
Brown JA, Singh G, Acklin JA, Lee S, Duehr JE, Chokola AN, Frere JJ, Hoffman KW, Foster GA, Krysztof D, Cadagan R, Jacobs AR, Stramer SL, Krammer F, García-Sastre A, Lim JK. Dengue Virus Immunity Increases Zika Virus-Induced Damage during Pregnancy. Immunity 2019; 50:751-762.e5. [PMID: 30737148 DOI: 10.1016/j.immuni.2019.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023]
Abstract
Zika virus (ZIKV) has recently been associated with birth defects and pregnancy loss after maternal infection. Because dengue virus (DENV) and ZIKV co-circulate, understanding the role of antibody-dependent enhancement in the context of pregnancy is critical. Here, we showed that the presence of DENV-specific antibodies in ZIKV-infected pregnant mice significantly increased placental damage, fetal growth restriction, and fetal resorption. This was associated with enhanced viral replication in the placenta that coincided with an increased frequency of infected trophoblasts. ZIKV-infected human placental tissues also showed increased replication in the presence of DENV antibodies, which was reversed by FcγR blocking antibodies. Furthermore, ZIKV-mediated fetal pathogenesis was enhanced in mice in the presence of a DENV-reactive monoclonal antibody, but not in the presence of the LALA variant, indicating a dependence on FcγR engagement. Our data suggest a possible mechanism for the recent increase in severe pregnancy outcomes after ZIKV infection in DENV-endemic areas.
Collapse
Affiliation(s)
- Julia A Brown
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gursewak Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silviana Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James E Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anupa N Chokola
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin J Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin W Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Richard Cadagan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam R Jacobs
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
228
|
Wong R, Bhattacharya D. Basics of memory B-cell responses: lessons from and for the real world. Immunology 2019; 156:120-129. [PMID: 30488482 PMCID: PMC6328991 DOI: 10.1111/imm.13019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The production of pathogen-specific B cells and antibodies underlies protective immunity elicited by most vaccines and many infections. Humoral immunity follows a regulated process by which high-affinity antibody-secreting plasma cells and memory B cells are generated. Yet for certain pathogens, protective immunity is inefficiently generated and/or maintained. For example, Dengue virus infections lead to lasting immunity against re-infection by the same serotype. However, if infected with a different Dengue serotype, the individual is predisposed to more severe disease than if he/she was completely naive. As another example, both natural infections with or vaccination against malaria do not necessarily lead to lasting immunity, as the same individual can be re-infected many times over the course of a lifetime. In this review, we discuss how these real-world problems can both instruct and be informed by recent basic studies using model organisms and antigens. An emphasis is placed on protective epitopes and functional distinctions between memory B-cell subsets in both mice and humans. Using flavivirus and Plasmodium infections as examples, we also speculate on the differences between ineffective B-cell responses that actually occur in the real world, and perfect-world responses that would generate lasting immunity.
Collapse
Affiliation(s)
- Rachel Wong
- Division of Biological and Biomedical SciencesWashington UniversitySt LouisMOUSA
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| | - Deepta Bhattacharya
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| |
Collapse
|
229
|
Salvador E, Pires de Souza G, Cotta Malaquias L, Wang T, Leomil Coelho L. Identification of relevant regions on structural and nonstructural proteins of Zika virus for vaccine and diagnostic test development: an in silico approach. New Microbes New Infect 2019; 29:100506. [PMID: 30858979 PMCID: PMC6396434 DOI: 10.1016/j.nmni.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family and the genus Flavivirus. Infection with ZIKV causes a mild, self-limiting febrile illness called Zika fever. However, ZIKV infection has been recently associated with microcephaly and Guillain-Barré syndrome. Vaccines for the disease are a high priority of World Health Organization. Several studies are currently being conducted to develop a vaccine against ZIKV, but until now there is no licensed ZIKV vaccine. This study used a novel immunoinformatics approach to identify potential T-cell immunogenic epitopes present in the structural and nonstructural proteins of ZIKV. Fourteen T-cell candidate epitopes were identified on ZIKV structural and nonstructural proteins: pr36-50; C61-75; C103-117; E374-382; E477-491; NS2a90-104; NS2a174-188; NS2a179-193; NS2a190-204; NS2a195-209; NS2a200-214; NS3175-189; and NS4a82-96; NS4a99-113. Among these epitopes, only E374-382 is a human leukocyte antigen (HLA) type I restricted epitope. All identified epitopes showed a low similarity with other important flaviviruses but had a high conservation rate among the ZIKV strains and a high population coverage rate. Therefore, these predicted T-cell epitopes are potential candidates targets for development of vaccines to prevent ZIKV infection.
Collapse
Affiliation(s)
- E.A. Salvador
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - G.A. Pires de Souza
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - L.C. Cotta Malaquias
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - T. Wang
- Department of Microbiology & Immunology, Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - L.F. Leomil Coelho
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
- Corresponding author: L. F. Leomil Coelho, Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro, 700 Centro, Alfenasm Minas Gerais, 37130-001, Brazil.
| |
Collapse
|
230
|
Combination of Nonstructural Protein 1-Based Enzyme-Linked Immunosorbent Assays Can Detect and Distinguish Various Dengue Virus and Zika Virus Infections. J Clin Microbiol 2019; 57:JCM.01464-18. [PMID: 30429254 DOI: 10.1128/jcm.01464-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
The recent outbreaks of Zika virus (ZIKV) and associated birth defects in regions of dengue virus (DENV) endemicity emphasize the need for sensitive and specific serodiagnostic tests. We reported previously that enzyme-linked immunosorbent assays (ELISAs) based on the nonstructural protein 1 (NS1) of DENV serotype 1 (DENV1) and ZIKV can distinguish primary DENV1, secondary DENV, and ZIKV infections. Whether ELISAs based on NS1 proteins of other DENV serotypes can discriminate various DENV and ZIKV infections remains unknown. We herein developed DENV2, DENV3, and DENV4 NS1 IgG ELISAs to test convalescent- and postconvalescent-phase samples from reverse transcription-PCR-confirmed cases, including 25 primary DENV1, 24 primary DENV2, 10 primary DENV3, 67 secondary DENV, 36 primary West Nile virus, 38 primary ZIKV, and 35 ZIKV with previous DENV infections as well as 55 flavivirus-naive samples. Each ELISA detected primary DENV infection with a sensitivity of 100% for the same serotype and 23.8% to 100% for different serotypes. IgG ELISA using a mixture of DENV1-4 NS1 proteins detected different primary and secondary DENV infections with a sensitivity of 95.6% and specificity of 89.5%. The ZIKV NS1 IgG ELISA detected ZIKV infection with a sensitivity of 100% and specificity of 82.9%. On the basis of the relative optical density ratio, the combination of DENV1-4 and ZIKV NS1 IgG ELISAs distinguished ZIKV with previous DENV and secondary DENV infections with a sensitivity of 91.7% to 94.1% and specificity of 87.0% to 95.0%. These findings have important applications to serodiagnosis, serosurveillance, and monitoring of both DENV and ZIKV infections in regions of endemicity.
Collapse
|
231
|
Masel J, McCracken MK, Gleeson T, Morrison B, Rutherford G, Imrie A, Jarman RG, Koren M, Pollett S. Does prior dengue virus exposure worsen clinical outcomes of Zika virus infection? A systematic review, pooled analysis and lessons learned. PLoS Negl Trop Dis 2019; 13:e0007060. [PMID: 30682026 PMCID: PMC6370234 DOI: 10.1371/journal.pntd.0007060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/11/2019] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) recently caused a pandemic complicated by Guillain-Barre syndrome (GBS) and birth defects. ZIKV is structurally similar to the dengue viruses (DENV) and in vitro studies suggest antibody dependent enhancement occurs in ZIKV infections preceded by DENV; however, the clinical significance of this remains unclear. We undertook a PRISMA-adherent systematic review of all current human and non-human primate (NHP) data to determine if prior infection with DENV, compared to DENV-naïve hosts, is associated with a greater risk of ZIKV clinical complications or greater ZIKV peak viremia in vivo. We identified 1146 studies in MEDLINE, EMBASE and the grey literature, of which five studies were eligible. One human study indicated no increase in the risk of GBS in ZIKV infections with prior DENV exposure. Two additional human studies showed a small increase in ZIKV viremia in those with prior DENV exposure; however, this was not statistically significant nor was it associated with an increase in clinical severity or adverse pregnancy outcomes. While no meta-analysis was possible using human data, a pooled analysis of the two NHP studies leveraging extended data provided only weak evidence of a 0.39 log10 GE/mL rise in ZIKV viremia in DENV experienced rhesus macaques compared to those with no DENV exposure (p = 0.22). Using a customized quality grading criteria, we further show that no existing published human studies have offered high quality measurement of both acute ZIKV and antecedent DENV infections. In conclusion, limited human and NHP studies indicate a small and non-statistically significant increase in ZIKV viremia in DENV-experienced versus DENV-naïve hosts; however, there is no evidence that even a possible small increase in ZIKV viremia would correlate with a change in ZIKV clinical phenotype. More data derived from larger sample sizes and improved sero-assays are needed to resolve this question, which has major relevance for clinical prognosis and vaccine design. Zika virus (ZIKV) is a mosquito borne virus that recently caused a large epidemic with some cases complicated by ascending paralysis (Guillain-Barre syndrome) and birth defects. One major concern is that such complications may be more common in those who have had previous infection with the closely related mosquito-borne dengue virus (DENV) which also circulates in the tropics. Here, we undertook a thorough, structured review of all human and high-order animal literature to synthesize the current evidence about whether ZIKV outcomes are worse in those with previous DENV exposure. We further undertook a pooled analysis across the two major non-human primate studies to improve statistical power. We summarize that, in humans and in non-human primates, prior DENV exposure may lead to a small increase in ZIKV viral load during infection. However, we do not show that any possible increase in ZIKV viral replication is associated with a higher rate of Zika complications or Zika clinical severity. We further graded the quality of these published literature and indicate that substantial improvements in the immunological measurement of ZIKV and DENV exposure in humans are needed to answer these and other pertinent questions about these two epidemic pathogens.
Collapse
Affiliation(s)
- Jennifer Masel
- Department of Medicine, USUHS, Bethesda, MD, United States of America
| | - Michael K. McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Todd Gleeson
- Department of Medicine, USUHS, Bethesda, MD, United States of America
| | - Brian Morrison
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - George Rutherford
- Institute for Global Health Sciences, University of California, San Francisco, CA, United States of America
| | - Allison Imrie
- University of Western Australia, Perth, WA, Australia
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Michael Koren
- Department of Medicine, USUHS, Bethesda, MD, United States of America
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Department of Preventive Medicine & Biostatistics, USUHS, Bethesda, MD, United States of America
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Camperdown, NSW, Australia
- * E-mail:
| |
Collapse
|
232
|
Challenges in diagnosing Zika-experiences from a reference laboratory in a non-endemic setting. Eur J Clin Microbiol Infect Dis 2019; 38:771-778. [PMID: 30680570 DOI: 10.1007/s10096-019-03472-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Diagnosing a patient with Zika infection is not always straightforward. Here, we aim to describe our data collected from December 2015 to December 2017 and discuss the implemented algorithm and diagnostic challenges we encountered. At the National Reference Center for Arboviruses at the Institute of Tropical Medicine, Antwerp, Belgium (ITM), a commercial Zika virus (ZIKV) enzyme-linked immunosorbent assay (ELISA) detecting immunoglobulin (Ig) M and IgG, a commercial ZIKV immunofluorescence assay (IFA) detecting IgM, and an in-house Zika virus neutralization test (VNT) were implemented. For molecular detection of ZIKV, an in-house and a commercial real-time RT-PCR were applied. An algorithm, adapted from the European Centre for Disease Control and Prevention (ECDC), was implemented. Between December 2015 and December 2017, we tested 6417 patients for ZIKV. Of those, according to ECDC criteria, 127 (2.0%) were classified as a confirmed Zika infection of which 39 by RT-PCR (0.6%), 15 (0.2%) as a probable Zika infection, 73 (1.1%) as undefined, and 65 (1.0%) as false positive reactions. Main challenges were the brief window for detection of IgM, cross-reactivity of antibodies with other flaviviruses and malaria, and low VNT titers in the acute phase. In RT-PCR negative samples, classification of ZIKV infection as recent or past proved difficult, when IgM was negative. The majority of patients could be classified according to ECDC criteria, though 1.1% of patients remained "undefined" and 1.0% were ELISA false positive reactions. Complementary IFA IgM was of added value to increase IgM detection rates. Improved serological assays and more longitudinal data on antibody kinetics are needed.
Collapse
|
233
|
Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope. Proc Natl Acad Sci U S A 2019; 116:1591-1596. [PMID: 30642974 DOI: 10.1073/pnas.1815432116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus in the Flaviviridae family. In contrast to most other insect-transmitted flaviviruses, ZIKV also can be transmitted sexually and from mother to fetus in humans. During recent outbreaks, ZIKV infections have been linked to microcephaly, congenital disease, and Guillain-Barré syndrome. Neutralizing antibodies have potential as therapeutic agents. We report here a 4-Å-resolution cryo-electron microscopy structure of the ZIKV virion in complex with Fab fragments of the potently neutralizing human monoclonal antibody ZIKV-195. The footprint of the ZIKV-195 Fab fragment expands across two adjacent envelope (E) protein protomers. ZIKV neutralization by this antibody is presumably accomplished by cross-linking the E proteins, which likely prevents formation of E protein trimers required for fusion of the viral and cellular membranes. A single dose of ZIKV-195 administered 5 days after virus inoculation showed marked protection against lethality in a stringent mouse model of infection.
Collapse
|
234
|
Gorshkov K, Shiryaev SA, Fertel S, Lin YW, Huang CT, Pinto A, Farhy C, Strongin AY, Zheng W, Terskikh AV. Zika Virus: Origins, Pathological Action, and Treatment Strategies. Front Microbiol 2019; 9:3252. [PMID: 30666246 PMCID: PMC6330993 DOI: 10.3389/fmicb.2018.03252] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023] Open
Abstract
The Zika virus (ZIKV) global epidemic prompted the World Health Organization to declare it a 2016 Public Health Emergency of International Concern. The overwhelming experience over the past several years teaches us that ZIKV and the associated neurological complications represent a long-term world-wide challenge to public health. Although the number of ZIKV cases in the Western Hemisphere has dropped since 2016, the need for basic research and anti-ZIKV drug development remains strong. Re-emerging viruses like ZIKV are an ever-present threat in the 21st century where fast transcontinental travel lends itself to viral epidemics. Here, we first present the origin story for ZIKV and review the rapid progress researchers have made toward understanding of the ZIKV pathology and in the design, re-purposing, and testing–particularly in vivo–drug candidates for ZIKV prophylaxis and therapy ZIKV. Quite remarkably, a short, but intensive, drug-repurposing effort has already resulted in several readily available FDA-approved drugs that are capable of effectively combating the virus in infected adult mouse models and, most importantly, in both preventing maternal-fetal transmission and severe microcephaly in newborns in pregnant mouse models.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sophie Fertel
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yi-Wen Lin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Antonella Pinto
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Chen Farhy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
235
|
The distribution of important sero-complexes of flaviviruses in Malaysia. Trop Anim Health Prod 2019; 51:495-506. [PMID: 30604332 DOI: 10.1007/s11250-018-01786-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022]
Abstract
Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.
Collapse
|
236
|
Gharbaran R, Somenarain L. Putative Cellular and Molecular Roles of Zika Virus in Fetal and Pediatric Neuropathologies. Pediatr Dev Pathol 2019; 22:5-21. [PMID: 30149771 DOI: 10.1177/1093526618790742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the World Health Organization declared an end to the recent Zika virus (ZIKV) outbreak and its association with adverse fetal and pediatric outcome, on November 18, 2016, the virus still remains a severe public health threat. Laboratory experiments thus far supported the suspicions that ZIKV is a teratogenic agent. Evidence indicated that ZIKV infection cripples the host cells' innate immune responses, allowing productive replication and potential dissemination of the virus. In addition, studies suggest potential transplacental passage of the virus and subsequent selective targeting of neural progenitor cells (NPCs). Depletion of NPCs by ZIKV is associated with restricted brain growth. And while microcephaly can result from infection at any gestational stages, the risk is greater during the first trimester. Although a number of recent studies revealed some of specific molecular and cellular roles of ZIKV proteins of this mosquito-borne flavivirus, the mechanisms by which it produces it suspected pathophysiological effects are not completely understood. Thus, this review highlights the cellular and molecular evidence that implicate ZIKV in fetal and pediatric neuropathologies.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- 1 Department of Biological Sciences, Bronx Community College, The City University of New York, Bronx, New York
| | - Latchman Somenarain
- 1 Department of Biological Sciences, Bronx Community College, The City University of New York, Bronx, New York
| |
Collapse
|
237
|
White SL, Rawlinson W, Boan P, Sheppeard V, Wong G, Waller K, Opdam H, Kaldor J, Fink M, Verran D, Webster A, Wyburn K, Grayson L, Glanville A, Cross N, Irish A, Coates T, Griffin A, Snell G, Alexander SI, Campbell S, Chadban S, Macdonald P, Manley P, Mehakovic E, Ramachandran V, Mitchell A, Ison M. Infectious Disease Transmission in Solid Organ Transplantation: Donor Evaluation, Recipient Risk, and Outcomes of Transmission. Transplant Direct 2019; 5:e416. [PMID: 30656214 PMCID: PMC6324914 DOI: 10.1097/txd.0000000000000852] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
In 2016, the Transplantation Society of Australia and New Zealand, with the support of the Australian Government Organ and Tissue authority, commissioned a literature review on the topic of infectious disease transmission from deceased donors to recipients of solid organ transplants. The purpose of this review was to synthesize evidence on transmission risks, diagnostic test characteristics, and recipient management to inform best-practice clinical guidelines. The final review, presented as a special supplement in Transplantation Direct, collates case reports of transmission events and other peer-reviewed literature, and summarizes current (as of June 2017) international guidelines on donor screening and recipient management. Of particular interest at the time of writing was how to maximize utilization of donors at increased risk for transmission of human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, given the recent developments, including the availability of direct-acting antivirals for hepatitis C virus and improvements in donor screening technologies. The review also covers emerging risks associated with recent epidemics (eg, Zika virus) and the risk of transmission of nonendemic pathogens related to donor travel history or country of origin. Lastly, the implications for recipient consent of expanded utilization of donors at increased risk of blood-borne viral disease transmission are considered.
Collapse
Affiliation(s)
- Sarah L White
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - William Rawlinson
- Serology and Virology Division, NSW Health Pathology Prince of Wales Hospital, Sydney, Australia
- Women's and Children's Health and Biotechnology and Biomolecular Sciences, University of New South Wales Schools of Medicine, Sydney, Australia
| | - Peter Boan
- Departments of Infectious Diseases and Microbiology, Fiona Stanley Hospital, Perth, Australia
- PathWest Laboratory Medicine, Perth, Australia
| | - Vicky Sheppeard
- Communicable Diseases Network Australia, New South Wales Health, Sydney, Australia
| | - Germaine Wong
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Karen Waller
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Helen Opdam
- Austin Health, Melbourne, Australia
- The Organ and Tissue Authority, Australian Government, Canberra, Australia
| | - John Kaldor
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael Fink
- Austin Health, Melbourne, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Deborah Verran
- Transplantation Services, Royal Prince Alfred Hospital, Sydney, Australia
| | - Angela Webster
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Kate Wyburn
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Lindsay Grayson
- Austin Health, Melbourne, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Allan Glanville
- Department of Thoracic Medicine and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
| | - Nick Cross
- Department of Nephrology, Canterbury District Health Board, Christchurch Hospital, Christchurch, New Zealand
| | - Ashley Irish
- Department of Nephrology, Fiona Stanley Hospital, Perth, Australia
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Australia
| | - Toby Coates
- Renal and Transplantation, Royal Adelaide Hospital, Adelaide, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Anthony Griffin
- Renal Transplantation, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Greg Snell
- Lung Transplant, Alfred Health, Melbourne, Victoria, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Scott Campbell
- Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Steven Chadban
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Peter Macdonald
- Department of Cardiology, St Vincent's Hospital, Sydney, Australia
- St Vincent's Hospital Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | - Paul Manley
- Kidney Disorders, Auckland District Health Board, Auckland City Hospital, Auckland, New Zealand
| | - Eva Mehakovic
- The Organ and Tissue Authority, Australian Government, Canberra, Australia
| | - Vidya Ramachandran
- Serology and Virology Division, NSW Health Pathology Prince of Wales Hospital, Sydney, Australia
| | - Alicia Mitchell
- Department of Thoracic Medicine and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | - Michael Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
238
|
Elong Ngono A, Young MP, Bunz M, Xu Z, Hattakam S, Vizcarra E, Regla-Nava JA, Tang WW, Yamabhai M, Wen J, Shresta S. CD4+ T cells promote humoral immunity and viral control during Zika virus infection. PLoS Pathog 2019; 15:e1007474. [PMID: 30677097 PMCID: PMC6345435 DOI: 10.1371/journal.ppat.1007474] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Several Zika virus (ZIKV) vaccines designed to elicit protective antibody (Ab) responses are currently under rapid development, but the underlying mechanisms that control the magnitude and quality of the Ab response remain unclear. Here, we investigated the CD4+ T cell response to primary intravenous and intravaginal infection with ZIKV. Using the LysMCre+Ifnar1fl/fl (myeloid type I IFN receptor-deficient) C57BL/6 mouse models, we identified six I-Ab-restricted ZIKV epitopes that stimulated CD4+ T cells with a predominantly cytotoxic Th1 phenotype in mice primed with ZIKV. Intravenous and intravaginal infection with ZIKV effectively induced follicular helper and regulatory CD4+ T cells. Treatment of mice with a CD4+ T cell-depleting Ab reduced the plasma cell, germinal center B cell, and IgG responses to ZIKV without affecting the CD8+ T cell response. CD4+ T cells were required to protect mice from a lethal dose of ZIKV after infection intravaginally, but not intravenously. However, adoptive transfer and peptide immunization experiments showed a role for memory CD4+ T cells in ZIKV clearance in mice challenged intravenously. These results demonstrate that CD4+ T cells are required mainly for the generation of a ZIKV-specific humoral response but not for an efficient CD8+ T cell response. Thus, CD4+ T cells could be important mediators of protection against ZIKV, depending on the infection or vaccination context.
Collapse
Affiliation(s)
- Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Matthew P Young
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Maximilian Bunz
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Zhigang Xu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sararat Hattakam
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Edward Vizcarra
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - William W Tang
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Montarop Yamabhai
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jinsheng Wen
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
239
|
El Sahly HM, Gorchakov R, Lai L, Natrajan MS, Patel SM, Atmar RL, Keitel WA, Hoft DF, Barrett J, Bailey J, Edupuganti S, Raabe V, Wu HM, Fairley J, Rouphael N, Murray KO, Mulligan MJ. Clinical, Virologic, and Immunologic Characteristics of Zika Virus Infection in a Cohort of US Patients: Prolonged RNA Detection in Whole Blood. Open Forum Infect Dis 2019; 6:ofy352. [PMID: 30697574 PMCID: PMC6343961 DOI: 10.1093/ofid/ofy352] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Clinical, virologic, and immunologic characteristics of Zika virus (ZIKV) infections in US patients are poorly defined. METHODS US subjects with suspected ZIKV infection were enrolled. Clinical data and specimens were prospectively collected for ZIKV RNA detection and serologic and cellular assays. Confirmed ZIKV infection (cases) and ZIKV-negative (controls) subjects were compared. Dengue-experienced and dengue-naïve cases were also compared. RESULTS We enrolled 45 cases and 14 controls. Commonly reported symptoms among cases and controls were maculopapular rash (97.8% and 81.8%), fatigue (86.7% and 81.8%), and arthralgia (82.2% and 54.5%), respectively. The sensitivity (94%) and duration of infection detection (80% positivity at 65-79 days after disease onset) by polymerase chain reaction were highest in whole-blood specimens. ZIKV-neutralizing antibodies had a half-life of 105 days and were significantly higher in dengue virus-experienced cases than naïve ones (P = .046). In intracellular cytokine staining assays, the ZIKV proteins targeted most often by peripheral blood mononuclear cells from cases were structural proteins C and E for CD4+ T cells and nonstructural proteins NS3, NS5, and NS4B for CD8+ T cells. CONCLUSIONS ZIKV RNA detection was more frequent and prolonged in whole-blood specimens. Immunoglobulin G (IgG) and neutralizing antibodies, but not IgM, were influenced by prior dengue infection. Robust cellular responses to E and nonstructural proteins have potential vaccine development implications.
Collapse
Affiliation(s)
- Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Rodion Gorchakov
- Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lilin Lai
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Muktha S Natrajan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Shital M Patel
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Robert L Atmar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Wendy A Keitel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Daniel F Hoft
- Departments of Molecular Microbiology & Immunology and Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University, St. Louis, Missouri
| | | | | | - Srilatha Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Vanessa Raabe
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Henry M Wu
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Jessica Fairley
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Kristy O Murray
- Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Mark J Mulligan
- Division of Infectious Diseases and Microbiology and NYU Langone Vaccine Center, New York University, New York City, New York
| |
Collapse
|
240
|
Pre-Existing Dengue Immunity Drives a DENV-Biased Plasmablast Response in ZIKV-Infected Patient. Viruses 2018; 11:v11010019. [PMID: 30597938 PMCID: PMC6356269 DOI: 10.3390/v11010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/14/2023] Open
Abstract
The re-emergence of Zika virus (ZIKV) in the western hemisphere has most significantly affected dengue virus (DENV) endemic regions. Due to the geographical overlap between these two closely related flaviviruses, numerous individuals who suffered ZIKV infection during recent outbreaks may have also previously been exposed to DENV. As such, the impact of pre-existing dengue immunity on immune responses to ZIKV has been an area of focused research and interest. To understand how B cell responses to a ZIKV infection may be modulated by prior dengue exposures, we compared and contrasted plasmablast repertoire and specificity between two ZIKV-infected individuals, one dengue-naïve (ZK018) and the other dengue-experienced (ZK016). In addition to examining serological responses, we generated 59 patient plasmablast-derived monoclonal antibodies (mAbs) to define the heterogeneity of the early B cell response to ZIKV. Both donors experienced robust ZIKV-induced plasmablast expansions early after infection, with comparable mutational frequencies in their antibody variable genes. However, notable differences were observed in plasmablast clonality and functional reactivity. Plasmablasts from the dengue-experienced donor ZK016 included cells with shared clonal origin, while ZK018 mAbs were entirely clonally unrelated. Both at the mAb and plasma level, ZK016 antibodies displayed extensive cross-reactivity to DENV1-4, and preferentially neutralized DENV compared to ZIKV. In contrast, the neutralization activity of ZK018 mAbs was primarily directed towards ZIKV, and fewer mAbs from this donor were cross-reactive, with the cross-reactive phenotype largely limited to fusion loop-specific mAbs. ZK016 antibodies caused greater enhancement of DENV2 infection of FcRγ-expressing cells overall compared to ZK018, with a striking difference at the plasma level. Taken together, these data strongly suggest that the breadth and protective capacity of the initial antibody responses after ZIKV infection may depend on the dengue immune status of the individual. These findings have implications for vaccine design, given the likelihood that future epidemics will involve both dengue-experienced and naïve populations.
Collapse
|
241
|
Kim YC, Lopez-Camacho C, Nettleship JE, Rahman N, Hill ML, Silva-Reyes L, Ortiz-Martinez G, Figueroa-Aguilar G, Mar MA, Vivanco-Cid H, Rollier CS, Zitzmann N, Viveros-Sandoval ME, Owens RJ, Reyes-Sandoval A. Optimization of Zika virus envelope protein production for ELISA and correlation of antibody titers with virus neutralization in Mexican patients from an arbovirus endemic region. Virol J 2018; 15:193. [PMID: 30587198 PMCID: PMC6307127 DOI: 10.1186/s12985-018-1104-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) has become a global threat with immediate need for accurate diagnostics, efficacious vaccines and therapeutics. Several ZIKV envelope (Env)-based vaccines have been developed recently. However, many commercially available ZIKV Env are based on the African lineage and produced in insect cells. Here, we sought to produce Asian-lineage ZIKV Env in mammalian cells for research and clinical applications. METHODS We designed various gene expression constructs to optimize the production of ZIKV using prM-Env and full or C-terminal truncations of Env; with or without a rat CD4 fusion partner to allow large-scale production of soluble protein in mammalian HEK293 cells. Protein expression was verified by mass spectrometry and western-blot with a pan-flavivirus antibody, a ZIKV Env monoclonal antibody and with immune sera from adenoviral (ChAdOx1) ZIKV Env-vaccinated mice. The resulting Env-CD4 was used as a coating reagent for immunoassay (ELISA) using both mouse and human seropositive sera. RESULTS Replacement of the C-terminus transmembrane Env domain by a rat CD4 and addition of prM supported optimal expression and secretion of Env. Binding between the antigens and the antibodies was similar to binding when using commercially available ZIKV Env reagents. Furthermore, antibodies from ZIKV patients bound ZIKV Env-CD4 in ELISA assays, whereas sera from healthy blood donors yielded minimal OD background. The serological outcomes of this assay correlated also with ZIKV neutralisation capacity in vitro. CONCLUSIONS Results obtained from this study indicate the potential of the Asian-lineage Zika Env-CD4 and Env proteins in ELISA assays to monitor humoral immune responses in upcoming clinical trials as well as a sero-diagnostic tool in ZIKV infection.
Collapse
Affiliation(s)
- Young Chan Kim
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Oxford, OX3 7DQ, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Cesar Lopez-Camacho
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Joanne E Nettleship
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.,Rutherford Appleton Laboratory, OPPF-UK, Research Complex at Harwell, Oxford, UK
| | - Nahid Rahman
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.,Rutherford Appleton Laboratory, OPPF-UK, Research Complex at Harwell, Oxford, UK
| | - Michelle L Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Georgina Ortiz-Martinez
- Laboratorio de Hemostasia y Biología Vascular. División de Estudios de Posgrado. Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, UMSNH, Morelia, Mexico.,UMSNH-Oxford University of Oxford Clinical Research Laboratory (UMOCRL), Faculty of Biological and Medical Sciences "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Gloria Figueroa-Aguilar
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Michoacán, Morelia, Michoacán, Mexico
| | - María Antonieta Mar
- HGZMF No. 12 Lázaro Cárdenas Michoacán dirección av. Lázaro Cárdenas No. 154 Col. Centro Lázaro Cárdenas Michoacán, Veracruz, Mexico
| | - Héctor Vivanco-Cid
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martha Eva Viveros-Sandoval
- Laboratorio de Hemostasia y Biología Vascular. División de Estudios de Posgrado. Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, UMSNH, Morelia, Mexico.,UMSNH-Oxford University of Oxford Clinical Research Laboratory (UMOCRL), Faculty of Biological and Medical Sciences "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Raymond J Owens
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.,Rutherford Appleton Laboratory, OPPF-UK, Research Complex at Harwell, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
242
|
Zainal N, Tan KK, Johari J, Hussein H, Wan Musa WR, Hassan J, Lin YS, AbuBakar S. Sera of patients with systemic lupus erythematosus cross-neutralizes dengue viruses. Microbiol Immunol 2018; 62:659-672. [PMID: 30259549 DOI: 10.1111/1348-0421.12652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
Dengue is the most prevalent mosquito-borne disease in Southeast Asia, where the incidence of systemic lupus erythematosus (SLE) is approximately 30 to 53 per 100,000. Severe dengue, however, is rarely reported among individuals with SLE. Here, whether sera of patients with SLE cross-neutralize dengue virus (DENV) was investigated. Serum samples were obtained from individuals with SLE who were dengue IgG and IgM serology negative. Neutralization assays were performed against the three major DENV serotypes. Of the dengue serology negative sera of individuals with SLE, 60%, 61% and 52% of the sera at 1/320 dilution showed more than 50% inhibition against dengue type-1 virus (DENV-1), DENV-2 and DENV-3, respectively. The neutralizing capacity of the sera was significantly greater against DENV-1 (P < 0.001) and DENV-3 (P < 0.01) than against DENV-2 (P < 0.05). Neutralization against the DENV correlated with dengue-specific IgG serum titers below the cut-off point for dengue positivity. Depletion of total IgG from the sera of patients with SLE resulted in significant decreases of up to 80% in DENV inhibition, suggesting that IgG plays an important role. However, some of the SLE sera was still able to neutralize DENV, even with IgG titers <0.1 OD absorbance. Our findings suggest that sera of patients with SLE contain IgG, and possibly other type of antibodies, that can cross-neutralize DENV, which may explain the rarity of severe dengue in individuals with SLE. Further studies, are needed to further substantiate this finding and to elucidate the specific neutralizing epitopes recognized by the sera of individuals with SLE.
Collapse
Affiliation(s)
- Nurhafiza Zainal
- Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kim-Kee Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Jefree Johari
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Jamiyah Hassan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Centre of Infectious Disease and Signalling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sazaly AbuBakar
- Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
243
|
Hay JA, Nouvellet P, Donnelly CA, Riley S. Potential inconsistencies in Zika surveillance data and our understanding of risk during pregnancy. PLoS Negl Trop Dis 2018; 12:e0006991. [PMID: 30532143 PMCID: PMC6301717 DOI: 10.1371/journal.pntd.0006991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/20/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023] Open
Abstract
Background A significant increase in microcephaly incidence was reported in Northeast Brazil at the end of 2015, which has since been attributed to an epidemic of Zika virus (ZIKV) infections earlier that year. Further incidence of congenital Zika syndrome (CZS) was expected following waves of ZIKV infection throughout Latin America; however, only modest increases in microcephaly and CZS incidence have since been observed. The quantitative relationship between ZIKV infection, gestational age and congenital outcome remains poorly understood. Methodology/Principle findings We characterised the gestational-age-varying risk of microcephaly given ZIKV infection using publicly available incidence data from multiple locations in Brazil and Colombia. We found that the relative timings and shapes of ZIKV infection and microcephaly incidence curves suggested different gestational risk profiles for different locations, varying in both the duration and magnitude of gestational risk. Data from Northeast Brazil suggested a narrow window of risk during the first trimester, whereas data from Colombia suggested persistent risk throughout pregnancy. We then used the model to estimate which combination of behavioural and reporting changes would have been sufficient to explain the absence of a second microcephaly incidence wave in Bahia, Brazil; a population for which we had two years of data. We found that a 18.9-fold increase in ZIKV infection reporting rate was consistent with observed patterns. Conclusions Our study illustrates how surveillance data may be used in principle to answer key questions in the absence of directed epidemiological studies. However, in this case, we suggest that currently available surveillance data are insufficient to accurately estimate the gestational-age-varying risk of microcephaly from ZIKV infection. The methods used here may be of use in future outbreaks and may help to inform improved surveillance and interpretation in countries yet to experience an outbreak of ZIKV infection. Zika virus (ZIKV) infection is associated with the rise of microcephaly cases observed in Northeast Brazil at the end of 2015. For women in endemic or at-risk areas, understanding how the relationship between time of infection and microcephaly risk varies through pregnancy is important in informing family planning. However, a relatively modest number of congenital Zika syndrome cases have been observed following subsequent waves of ZIKV infection, limiting our understanding of gestational risk. We used a mathematical model to quantify the shape and magnitude of the gestational-age-varying risk to a fetus. Although the risk profile should be conserved regardless of location, we estimated different profiles when using surveillance data from locations in Northeast Brazil and Colombia. Our results suggest that time-dependent reporting changes likely confound the interpretation of currently available surveillance data. Furthermore, we investigated a range of behavioural and reporting rate changes that could explain two waves of ZIKV infection in Bahia, Brazil despite only one wave of microcephaly. Plausible changes in reporting could explain these data whilst remaining consistent with the hypothesis that ZIKV infection carries a significant risk of microcephaly. Further evidence is needed to disentangle the true risk of congenital Zika syndrome from time-varying reporting changes.
Collapse
Affiliation(s)
- James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Pierre Nouvellet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Christl A. Donnelly
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
- * E-mail:
| |
Collapse
|
244
|
Gunawardana SA, Shaw RH. Cross-reactive dengue virus-derived monoclonal antibodies to Zika virus envelope protein: Panacea or Pandora's box? BMC Infect Dis 2018; 18:641. [PMID: 30526531 PMCID: PMC6288897 DOI: 10.1186/s12879-018-3572-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/30/2018] [Indexed: 11/12/2022] Open
Abstract
Background Dengue Virus (DENV) and Zika Virus (ZIKV) are closely related flaviviruses, circulating in overlapping geographical regions. The recent ZIKV epidemic has been linked to an explosion in reports of microcephaly and neurological defects. It is conceivable that our knowledge of DENV might potentiate the development of a ZIKV vaccine due to the close phylogenetic relationship between these flaviviruses and cross-reactive antibodies, principally to the envelope protein (E protein). Alternatively, cross-reactive antibodies that are generated following vaccination or infection, might become damaging during subsequent infections. Main body The aims of this review are to collate and analyse data from a recent series of DENV-derived monoclonal antibody (mAb) panels from different research groups. These panels measured DENV-mAb activity against ZIKV in terms of antibody-dependent enhancement (ADE) and neutralisation. Methodology used across groups was compared and critiqued. Furthermore, the specific antibody targets on E protein were considered and their therapeutic potential evaluated. Shortcomings of hmAb panels suggest ADE may be over-estimated and neutralisation underestimated, as compared to clinical situations. It remains unknown whether preference of enhancement or neutralisation by antibodies to ZIKV E protein is dictated by quantitative aspects of antibody titre or epitope specific variation. Additionally, little is known about how duration between flavivirus reinfections affect secondary antibody response. Conclusion This review concludes that our current knowledge of cross-reactive antibodies to E protein is inadequate to anticipate the outcome of deploying an E protein based vaccine to regions co-infected by DENV and ZIKV.
Collapse
Affiliation(s)
| | - Robert H Shaw
- Oxford University Hospitals, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
245
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
246
|
Tavakoli A, Esghaei M, Karbalaie Niya MH, Marjani A, Tabibzadeh A, Karimzadeh M, Monavari SH. A comprehensive review of Zika virus infection. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.5.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
247
|
Kudchodkar SB, Choi H, Reuschel EL, Esquivel R, Jin-Ah Kwon J, Jeong M, Maslow JN, Reed CC, White S, Kim JJ, Kobinger GP, Tebas P, Weiner DB, Muthumani K. Rapid response to an emerging infectious disease - Lessons learned from development of a synthetic DNA vaccine targeting Zika virus. Microbes Infect 2018; 20:676-684. [PMID: 29555345 PMCID: PMC6593156 DOI: 10.1016/j.micinf.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/07/2023]
Abstract
Vaccines are considered one of the greatest advances in modern medicine. The global burden of numerous infectious diseases has been significantly reduced, and in some cases, effectively eradicated through the deployment of specific vaccines. However, efforts to develop effective new vaccines against infectious pathogens such as influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), Ebola virus, and Zika virus (ZIKV) have proven challenging. Zika virus is a mosquito-vectored flavivirus responsible for periodic outbreaks of disease in Africa, Southeast Asia, and the Pacific Islands dating back over 50 years. Over this period, ZIKV infections were subclinical in most infected individuals and resulted in mild cases of fever, arthralgia, and rash in others. Concerns about ZIKV changed over the past two years, however, as outbreaks in Brazil, Central American countries, and Caribbean islands revealed novel aspects of infection including vertical and sexual transmission modes. Cases have been reported showing dramatic neurological pathologies including microcephaly and other neurodevelopmental problems in babies born to ZIKV infected mothers, as well as an increased risk of Guillain-Barre syndrome in adults. These findings prompted the World Health Organization to declare ZIKV a public health emergency in 2016, which resulted in expanded efforts to develop ZIKV vaccines and immunotherapeutics. Several ZIKV vaccine candidates that are immunogenic and effective at blocking ZIKV infection in animal models have since been developed, with some of these now being evaluated in the clinic. Additional therapeutics under investigation include anti-ZIKV monoclonal antibodies (mAbs) that have been shown to neutralize infection in vitro as well as protect against morbidity in mouse models of ZIKV infection. In this review, we summarize the current understanding of ZIKV biology and describe our efforts to rapidly develop a vaccine against ZIKV.
Collapse
Affiliation(s)
- Sagar B Kudchodkar
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Hyeree Choi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Emma L Reuschel
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rianne Esquivel
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - Scott White
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | - J Joseph Kim
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | | | - Pablo Tebas
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
248
|
High-throughput neutralization assay for multiple flaviviruses based on single-round infectious particles using dengue virus type 1 reporter replicon. Sci Rep 2018; 8:16624. [PMID: 30413742 PMCID: PMC6226426 DOI: 10.1038/s41598-018-34865-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Diseases caused by the genus Flavivirus, including dengue virus (DENV) and Zika virus (ZIKV), have a serious impact on public health worldwide. Due to serological cross-reactivity among flaviviruses, current enzyme-linked immunosorbent assay (ELISA) for IgM/G cannot reliably distinguish between infection by different flaviviruses. In this study, we developed a reporter-based neutralization assay using single-round infectious particles (SRIPs) derived from representative flaviviruses. SRIPs were generated by transfection of human embryonic kidney 293 T cells with a plasmid encoding premembrane and envelope (prME) proteins from DENV1-4, ZIKV, Japanese encephalitis virus, West Nile virus, yellow fever virus, Usutu virus, and tick-borne encephalitis virus, along with a plasmid carrying DENV1 replicon containing the luciferase gene and plasmid for expression of DENV1 capsid. Luciferase activity of SRIPs-infected cells was well correlated with number of infected cells, and each reporter SRIP was specifically neutralized by sera from mice immunized with each flavivirus antigen. Our high-throughput reporter SRIP-based neutralization assay for multiple flaviviruses is a faster, safer, and less laborious diagnostic method than the conventional plaque reduction neutralization test to screen the cause of primary flavivirus infection. The assay may also contribute to the evaluation of vaccine efficacy and assist in routine surveillance and outbreak response to flaviviruses.
Collapse
|
249
|
Herrada CA, Kabir MA, Altamirano R, Asghar W. Advances in Diagnostic Methods for Zika Virus Infection. J Med Device 2018; 12:0408021-4080211. [PMID: 30662580 DOI: 10.1115/1.4041086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
The Zika virus (ZIKV) is one of the most infamous mosquito-borne flavivirus on recent memory due to its potential association with high mortality rates in fetuses, microcephaly and neurological impairments in neonates, and autoimmune disorders. The severity of the disease, as well as its fast spread over several continents, has urged the World Health Organization (WHO) to declare ZIKV a global health concern. In consequence, over the past couple of years, there has been a significant effort for the development of ZIKV diagnostic methods, vaccine development, and prevention strategies. This review focuses on the most recent aspects of ZIKV research which includes the outbreaks, genome structure, multiplication and propagation of the virus, and more importantly, the development of serological and molecular detection tools such as Zika IgM antibody capture enzyme-linked immunosorbent assay (Zika MAC-ELISA), plaque reduction neutralization test (PRNT), reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR), reverse transcription-loop mediated isothermal amplification (RT-LAMP), localized surface plasmon resonance (LSPR) biosensors, nucleic acid sequence-based amplification (NASBA), and recombinase polymerase amplification (RPA). Additionally, we discuss the limitations of currently available diagnostic methods, the potential of newly developed sensing technologies, and also provide insight into future areas of research.
Collapse
Affiliation(s)
- Carlos A Herrada
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Md Alamgir Kabir
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Rommel Altamirano
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
250
|
Diamond MS, Ledgerwood JE, Pierson TC. Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annu Rev Med 2018; 70:121-135. [PMID: 30388054 DOI: 10.1146/annurev-med-040717-051127] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) emerged at a global level when it spread to the Americas and began causing congenital malformations and microcephaly in 2015. A rapid response by academia, government, public health infrastructure, and industry has enabled the expedited development and testing of a suite of vaccine platforms aiming to control and eliminate ZIKV-induced disease. Analysis of key immunization and pathogenesis studies in multiple animal models, including during pregnancy, has begun to define immune correlates of protection. Nonetheless, the deployment of ZIKV vaccines, along with the confirmation of their safety and efficacy, still has major challenges, one of which is related to the waning of the epidemic. In this review, we discuss the measures that enabled rapid progress and highlight the path forward for successful deployment of ZIKV vaccines.
Collapse
Affiliation(s)
- Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|