201
|
Tanos T, Rojo L, Echeverria P, Brisken C. ER and PR signaling nodes during mammary gland development. Breast Cancer Res 2012; 14:210. [PMID: 22809143 PMCID: PMC3680919 DOI: 10.1186/bcr3166] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ovarian hormones estrogen and progesterone orchestrate postnatal mammary gland development and are implicated in breast cancer. Most of our understanding of the molecular mechanisms of estrogen receptor (ER) and progesterone receptor (PR) signaling stems from in vitro studies with hormone receptor-positive cell lines. They have shown that ER and PR regulate gene transcription either by binding to DNA response elements directly or via other transcription factors and recruiting co-regulators. In addition they cross-talk with other signaling pathways through nongenomic mechanisms. Mouse genetics combined with tissue recombination techniques have provided insights about the action of these two hormones in vivo. It has emerged that hormones act on a subset of mammary epithelial cells and relegate biological functions to paracrine factors. With regards to hormonal signaling in breast carcinomas, global gene expression analyses have led to the identification of gene expression signatures that are characteristic of ERα-positive tumors that have stipulated functional studies of hitherto poorly understood transcription factors. Here, we highlight what has been learned about ER and PR signaling nodes in these different systems and attempt to lay out in which way the insights may converge.
Collapse
|
202
|
Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, Jacobsen BM, Sartorius CA, Richer JK. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 2012; 32:2555-64. [PMID: 22751119 DOI: 10.1038/onc.2012.275] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The female hormone progesterone (P4) promotes the expansion of stem-like cancer cells in estrogen receptor (ER)- and progesterone receptor (PR)-positive breast tumors. The expanded tumor cells lose expression of ER and PR, express the tumor-initiating marker CD44, the progenitor marker cytokeratin 5 (CK5) and are more resistant to standard endocrine and chemotherapies. The mechanisms underlying this hormone-stimulated reprogramming have remained largely unknown. In the present study, we investigated the role of microRNAs in progestin-mediated expansion of this dedifferentiated tumor cell population. We demonstrate that P4 rapidly downregulates miR-29 family members, particularly in the CD44(+) cell population. Downregulation of miR-29 members potentiates the expansion of CK5(+) and CD44(+) cells in response to progestins, and results in increased stem-like properties in vitro and in vivo. We demonstrate that miR-29 directly targets Krüppel-like factor 4 (KLF4), a transcription factor required for the reprogramming of differentiated cells to pluripotent stem cells, and for the maintenance of breast cancer stem cells. These results reveal a novel mechanism, whereby progestins increase the stem cell-like population in hormone-responsive breast cancers, by decreasing miR-29 to augment PR-mediated upregulation of KLF4. Elucidating the mechanisms whereby hormones mediate the expansion of stem-like cells furthers our understanding of the progression of hormone-responsive breast cancers.
Collapse
Affiliation(s)
- D M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
204
|
Lee HJ, Ormandy CJ. Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Mol Cell Endocrinol 2012; 357:101-7. [PMID: 21945475 DOI: 10.1016/j.mce.2011.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/08/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
Progesterone and prolactin remodel mammary morphology during pregnancy by acting on the mammary epithelial cell hierarchy. The roles of each hormone in mammary development have been well studied, but evidence of signalling cross-talk between progesterone and prolactin is still emerging. Factors such as receptor activator of NFkB ligand (RANKL) may integrate signals from both hormones to orchestrate their joint actions on the epithelial cell hierarchy. Common targets of progesterone and prolactin signalling are also likely to integrate their pro-proliferative actions in breast cancer. Therefore, a thorough understanding of the interplay between progesterone and prolactin in mammary development may reveal therapeutic targets for breast cancer. This review summarises our understanding of Pg and PRL action in mammary gland development before focusing on molecular mechanisms of signalling cross-talk and the implications for breast cancer.
Collapse
Affiliation(s)
- Heather J Lee
- Cancer Research Program, Garvan Institute, Sydney, NSW, Australia.
| | | |
Collapse
|
205
|
Rajaram RD, Brisken C. Paracrine signaling by progesterone. Mol Cell Endocrinol 2012; 357:80-90. [PMID: 21945477 DOI: 10.1016/j.mce.2011.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/18/2011] [Accepted: 09/11/2011] [Indexed: 12/23/2022]
Abstract
Steroid hormones coordinate and control the development and function of many organs and are implicated in many pathological processes. Progesterone signaling, in particular, is essential for several important female reproductive functions. Physiological effects of progesterone are mediated by its cognate receptor, expressed in a subset of cells in target tissues. Experimental evidence has accumulated that progesterone acts through both cell intrinsic as well as paracrine signaling mechanisms. By relegating the hormonal stimulus to paracrine signaling cascades the systemic signal gets amplified locally and signaling reaches different cell types that are devoid of hormone receptors. Interestingly, distinct biological responses to progesterone in different target tissues rely on several tissue-specific and some common paracrine factors that coordinate biological responses in different cell types. Evidence is forthcoming that the intercellular signaling pathways that control development and physiological functions are important in tumorigenesis.
Collapse
Affiliation(s)
- Renuga Devi Rajaram
- Ecole Polytechnique Fédérale de Lausanne, ISREC - Swiss Institute for Experimental Cancer Research, NCCR Molecular Oncology, SV2832 Station 19, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
206
|
Wetendorf M, DeMayo FJ. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol Cell Endocrinol 2012; 357:108-18. [PMID: 22115959 PMCID: PMC3443857 DOI: 10.1016/j.mce.2011.10.028] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/29/2011] [Accepted: 10/26/2011] [Indexed: 11/22/2022]
Abstract
Many women are affected by infertility and reproductive-associated disease such as endometriosis or endometrial cancer. Successful pregnancy is dependent on a healthy uterus that is fit to receive and support a fertilized embryo. The uterus is an endocrine organ, responsive to the presence of the ovarian steroid hormones, estrogen and progesterone, which activate transcription of target genes through the binding of their cognate receptors, the estrogen receptor and the progesterone receptor. Progesterone signaling has been demonstrated to be critical for the initiation and continuance of pregnancy. Through the induction of Ihh, Wnt, and Bmp pathways within the epithelial and stromal compartments of the uterus, embryo attachment and implantation occur followed by decidualization of the surrounding stroma. Furthermore, these pathways have been shown to be involved in uterine glandular development. This review highlights the integral role of uterine progesterone-mediated paracrine signaling in gland development and pregnancy.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Interdepartmental Program in Cell & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
207
|
Axlund SD, Sartorius CA. Progesterone regulation of stem and progenitor cells in normal and malignant breast. Mol Cell Endocrinol 2012; 357:71-9. [PMID: 21945473 PMCID: PMC3288619 DOI: 10.1016/j.mce.2011.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/26/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
Progesterone plays an important, if not controversial, role in mammary epithelial cell proliferation and differentiation. Evidence supports that progesterone promotes rodent mammary carcinogenesis under some conditions, progesterone receptors (PR) are necessary for murine mammary gland tumorigenesis, and exogenous progestin use in post-menopausal women increases breast cancer risk. Thus, the progesterone/PR signaling axis can promote mammary tumorigenesis, albeit in a context-dependent manner. A mechanistic basis for the tumor promoting actions of progesterone has thus far remained unknown. Recent studies, however, have identified a novel role for progesterone in controlling the number and function of stem and progenitor cell populations in the normal human and mouse mammary glands, and in human breast cancers. These discoveries promise to reshape our perception of progesterone function in the mammary gland, and have spawned new hypotheses for how progestins may increase the risk of breast cancer. Here we review studies on progesterone regulation of mammary stem cells in normal and malignant tissue, and their implications for breast cancer risk, tumorigenesis, and tumor behavior.
Collapse
Affiliation(s)
| | - Carol A. Sartorius
- Corresponding author at: University of Colorado Anschutz Medical Center, 12801 E 17th Ave. MS8104, Aurora, CO 80045, United States. Tel: +1 303-724-3937; Fax: +1 303-724-3712. (C.A. Sartorius)
| |
Collapse
|
208
|
Fernandez-Valdivia R, Lydon JP. From the ranks of mammary progesterone mediators, RANKL takes the spotlight. Mol Cell Endocrinol 2012; 357:91-100. [PMID: 21964466 PMCID: PMC3253322 DOI: 10.1016/j.mce.2011.09.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 12/18/2022]
Abstract
Whether during the diestrus phase of the estrous cycle or with pregnancy onset, the mitogenic effects of progesterone are well-established in the murine mammary epithelium. Importantly, progesterone-induced mitogenicity is critical for mammary tumor promotion, providing one explanation for the increase in breast cancer-risk observed with prolonged progestin-based hormone therapy. At the cellular level, progesterone projects its mitogenic influence through an evolutionary conserved paracrine mechanism of action. In this regard, recent studies provide compelling support for receptor activator of NF-kB ligand (RANKL) as a key paracrine mediator of the progesterone mitogenic signal. Induction of RANKL is sufficient to elicit mammary ductal side-branching and alveologenesis, the very morphogenetic responses elicited by progesterone during pregnancy and at diestrus. Significantly, the proliferative and pro-survival signals triggered by RANKL are also required for progestin-promotion of mammary tumorigenesis, underscoring a dual role for RANKL in progesterone-dependent mammary morphogenesis and tumorigenesis. Recently, RANKL has been shown to be critical for progesterone-induced expansion of the mammary stem cell population (and its lineal descendents), thereby advancing our conceptual understanding not only of RANKL's involvement in normal mammary morphogenesis but also in breast cancer risk associated with sustained hormone exposure. Finally, these studies together suggest that chemotherapeutic intervention of RANKL signaling represents a feasible approach for the effective prevention and/or treatment of hormone-responsive breast cancers.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Valdivia
- Brown Foundation, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, 77030
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030
- Corresponding Author: Telephone: 713-798-3534 Fax: 713-790-1275
| |
Collapse
|
209
|
Hagan CR, Daniel AR, Dressing GE, Lange CA. Role of phosphorylation in progesterone receptor signaling and specificity. Mol Cell Endocrinol 2012; 357:43-9. [PMID: 21945472 PMCID: PMC3265648 DOI: 10.1016/j.mce.2011.09.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
Progesterone receptors (PR), in concert with peptide growth factor-initiated signaling pathways, initiate massive expansion of the epithelial cell compartment associated with the process of alveologenesis in the developing mammary gland. PR-dependent signaling events also contribute to inappropriate proliferation observed in breast cancer. Notably, PR-B isoform-specific cross talk with growth factor-driven pathways is required for the proliferative actions of progesterone. Indeed, PRs act as heavily phosphorylated transcription factor "sensors" for mitogenic protein kinases that are often elevated and/or constitutively activated in invasive breast cancers. In addition, phospho-PR-target genes frequently include the components of mitogenic signaling pathways, revealing a mechanism for feed-forward signaling that confers increased responsiveness of, PR +mammary epithelial cells to these same mitogenic stimuli. Understanding the mechanisms and isoform selectivity of PR/kinase interactions may yield further insight into targeting altered signaling networks in breast and other hormonally responsive cancers (i.e. lung, uterine and ovarian) in the clinic. This review focuses on PR phosphorylation by mitogenic protein kinases and mechanisms of PR-target gene selection that lead to increased cell proliferation.
Collapse
Affiliation(s)
- Christy R Hagan
- University of Minnesota, Departments of Medicine and Pharmacology, Division of Hematology, Oncology, and Transplantation, Women's Cancer Program, Masonic Cancer Center, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|
210
|
Joshi PA, Di Grappa MA, Khokha R. Active allies: hormones, stem cells and the niche in adult mammopoiesis. Trends Endocrinol Metab 2012; 23:299-309. [PMID: 22613704 DOI: 10.1016/j.tem.2012.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 01/17/2023]
Abstract
Adult stem cells are recruited in response to specific physiological demands to regenerate, repair or maintain essential cellular components of tissues, while preserving self-renewal capacity. Signals that activate adult stem cells are not simply cell autonomous and stem cells are part of a larger dynamic framework, the stem cell 'niche', which integrates systemic and local cues to sustain stem cell functionality. The mammary stem cell niche responds readily to hormonal stimuli, generating pertinent signals that activate stem cells, culminating in stem cell expansion and tissue growth. We review here current knowledge of the mammary stem cell niche with attention to the potent stimulation rendered by ovarian hormones, relevant cellular and molecular players, and the implication of a deregulated niche, for breast cancer risk.
Collapse
Affiliation(s)
- Purna A Joshi
- Ontario Cancer Insitute, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | | | | |
Collapse
|
211
|
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Molecular gene expression studies have divided breast cancer into several categories, i.e. basal-like, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A, luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor alpha (ERα) and respond to antiestrogen therapies. Most of these ER+ tumors also express progesterone receptors (PRs), the expression of which has been considered as a reliable marker of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have different roles in breast cancer cell growth, and antiprogestins have already been clinically used in patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
Collapse
Affiliation(s)
- Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
212
|
Toh MF, Sohn J, Chen SN, Yao P, Bolton JL, Burdette JE. Biological characterization of non-steroidal progestins from botanicals used for women's health. Steroids 2012; 77:765-73. [PMID: 22484153 PMCID: PMC3601661 DOI: 10.1016/j.steroids.2012.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022]
Abstract
Progesterone plays a central role in women's reproductive health. Synthetic progestins, such as medroxyprogesterone acetate (MPA) are often used in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Although MPA is clinically effective, it also promiscuously binds to androgen and glucocorticoid receptors (AR/GR) leading to many undesirable side effects including cardiovascular diseases and breast cancers. Therefore, identifying alternative progestins is clinically significant. The purpose of this study was to biologically characterize non-steroidal progestins from botanicals by investigating theirinteraction and activation of progesterone receptor (PR). Eight botanicals commonly used to alleviate menopausal symptoms were investigated to determine if they contain progestins using a progesterone responsive element (PRE) luciferase reporter assay and a PR polarization competitive binding assay. Red clover extract stimulated PRE-luciferase and bound to PR. A library of purified compounds previously isolated from red clover was screened using the luciferase reporter assay. Kaempferol identified in red clover and a structurally similar flavonoid, apigenin, bound to PR and induced progestegenic activity and P4 regulated genes in breast epithelial cells and human endometrial stromal cells (HESC). Kaempferol and apigenin demonstrated higher progestegenic potency in the HESC compared to breast epithelial cells. Furthermore, phytoprogestins were able to activate P4 signaling in breast epithelial cells without downregulating PR expression. These data suggest that botanical extracts used for women's health may contain compounds capable of activating progesterone receptor signaling.
Collapse
Affiliation(s)
- M F Toh
- Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
213
|
Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Guo DE, Villadsen R, Park M, Petersen OW, Borowsky AD, Stampfer MR, Labarge MA. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res 2012; 72:3687-701. [PMID: 22552289 DOI: 10.1158/0008-5472.can-12-0157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Women older than 50 years account for 75% of new breast cancer diagnoses, and the majority of these tumors are of a luminal subtype. Although age-associated changes, including endocrine profiles and alterations within the breast microenvironment, increase cancer risk, an understanding of the cellular and molecular mechanisms that underlies these observations is lacking. In this study, we generated a large collection of normal human mammary epithelial cell strains from women ages 16 to 91 years, derived from primary tissues, to investigate the molecular changes that occur in aging breast cells. We found that in finite lifespan cultured and uncultured epithelial cells, aging is associated with a reduction of myoepithelial cells and an increase in luminal cells that express keratin 14 and integrin-α6, a phenotype that is usually expressed exclusively in myoepithelial cells in women younger than 30 years. Changes to the luminal lineage resulted from age-dependent expansion of defective multipotent progenitors that gave rise to incompletely differentiated luminal or myoepithelial cells. The aging process therefore results in both a shift in the balance of luminal/myoepithelial lineages and to changes in the functional spectrum of multipotent progenitors, which together increase the potential for malignant transformation. Together, our findings provide a cellular basis to explain the observed vulnerability to breast cancer that increases with age.
Collapse
Affiliation(s)
- James C Garbe
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab 2012; 97:E719-30. [PMID: 22419721 PMCID: PMC3339884 DOI: 10.1210/jc.2011-3251] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT Progesterone promotes uterine relaxation during pregnancy and its withdrawal induces labor. Progesterone withdrawal in human parturition is mediated in part by changes in the relative levels of the nuclear progesterone receptor isoforms, PR-A and PR-B, in myometrial cells. Parturition also involves myometrial inflammation; however, the functional link between nuclear PR-mediated progesterone actions and inflammation in human myometrial cells is unclear. OBJECTIVE Our objective was to determine how PR-A and PR-B regulate progesterone action in human myometrial cells and specifically the expression of genes encoding contraction-associated proteins and proinflammatory mediators. DESIGN Effects of PR-A and PR-B on the capacity for progesterone to modulate gene expression was determined using an immortalized human myometrial cell line stably transfected with inducible PR-A and PR-B expression transgenes and conditioned to express various PR-A and PR-B levels. Gene expression was assessed by genome wide transcriptome analysis, quantitative RT-PCR and immunoblotting. RESULTS PR-A and PR-B were each transcriptionally active in response to progesterone and affected the expression of distinct gene cohorts. The capacity for progesterone to affect gene expression was dependent on the PR-A to PR-B ratio. This was especially apparent for the expression of proinflammatory genes. Progesterone decreased proinflammatory gene expression when the PR-A to PR-B ratio favored PR-B and increased proinflammatory gene expression when the ratio favored PR-A. Progesterone via PR-B increased expression of inhibitor-κBα, a repressor of the nuclear factor-κB transcription factor, and inhibited basal and lipopolysaccharide-induced proinflammatory gene expression. Both of those PR-B-mediated effects were inhibited by PR-A. CONCLUSIONS Our data suggest that during most of human pregnancy, when myometrial cells are PR-B dominant, progesterone promotes myometrial quiescence through PR-B-mediated antiinflammatory actions. At parturition, the rise in PR-A expression promotes labor by inhibiting the antiinflammatory actions of PR-B and stimulating proinflammatory gene expression in response to progesterone.
Collapse
Affiliation(s)
- Huiqing Tan
- Department of Reproductive Biology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland Ohio 44106-5034, USA
| | | | | | | | | |
Collapse
|
215
|
Rubel CA, Franco HL, Jeong JW, Lydon JP, DeMayo FJ. GATA2 is expressed at critical times in the mouse uterus during pregnancy. Gene Expr Patterns 2012; 12:196-203. [PMID: 22476030 DOI: 10.1016/j.gep.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 11/27/2022]
Abstract
In mammals, such as mouse and human, timely production of the progesterone receptor (PR) in the proper uterine compartments is critical for preparing the uterus for the initiation and maintenance of pregnancy. Developmentally, the expression of GATA2, a member of the six member zinc-finger family of transcription factors, has been shown to be necessary for multiple non-related tissues, such as the hematopoietic system, adipose maturation and the urogential system. We recently identified Gata2 as a potential progesterone target gene in the mouse uterus; however, the expression of the GATA genes in the mouse uterus during pregnancy has not been demonstrated. In the present study, we examined the expression of GATA2 protein during the phases of pregnancy, including early pregnancy where progesterone (P4) signaling is critical in order to facilitate the window of receptivity for embryo implantation and during the decidualization of the uterine stroma, a process of cellular proliferation and differentiation which is necessary for maintenance of the invading embryo until placentation occurs. Here, we report that GATA2 protein is expressed in the uterine luminal and glandular epithelium pre-implantation, spatio-temporally co-localizing with that of the PR. Additionally, GATA2 continues to be expressed in the decidualized stroma throughout early pregnancy indicating a role in the maintenance of decidual cells. Based on these findings, we conclude that GATA2 is expressed during critical phases of early pregnancy, similar to that of the PR, and that it may play a major role in mediating P4 signaling in the mouse uterus.
Collapse
Affiliation(s)
- Cory A Rubel
- One Baylor Plaza, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
216
|
Wagner GP, Tong Y, Emera D, Romero R. An evolutionary test of the isoform switching hypothesis of functional progesterone withdrawal for parturition: humans have a weaker repressive effect of PR-A than mice. J Perinat Med 2012; 40:345-51. [PMID: 22752763 PMCID: PMC4151568 DOI: 10.1515/jpm-2011-0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/09/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND A decrease in maternal serum progesterone (P4) concentrations precedes the onset of labor in most placental mammals. Humans differ by maintaining high levels of P4 throughout birth. Parturition in humans probably includes mechanisms that undercut the pregnancy sustaining function of P4. One attractive hypothesis is the isoform switching hypothesis (ISH). ISH is supported by in vitro evidence that progesterone receptor isoform A (PR-A) inhibits PR-B and that the PR-A/PR-B ratio increases towards term. MATERIALS AND METHODS Here, we test the hypothesis that isoform switching is an adaptation to high levels of P4 at term, predicting that, in humans, PR-A mediated repression of PR-B is stronger than in mouse. We use reporter assays with human and mouse PRs to detect species differences in the repressive effects of PR-A. RESULTS We found that human PR-B is less sensitive to repression by human PR-A than mouse PR-B, contrary to our prediction. The difference between human and mouse PR-B sensitivity is most pronounced at PR-A/PR-B ratios typical for the preterm myometrium. CONCLUSIONS Our results are inconsistent with the ISH. We speculate that, instead, the lower sensitivity of human PR-B to PR-A may be relevant for the maintenance of pregnancy at high progesterone levels and increasing PR-A concentrations towards term.
Collapse
Affiliation(s)
- GP Wagner
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA,Corresponding Author: Yale Systems Biology Institute Department of Ecology and Evolutionary Biology Yale University 165 Prospect Street New Haven, CT 06410 USA Phone: 203-432-9998 (main) 203-737-3091 (west campus) Fax: 203-737-3109
| | - Y Tong
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - D Emera
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - R Romero
- Perinatology Research Branch, NICHD, Detroit, MI, USA
| |
Collapse
|
217
|
Wang N, Geng L, Zhang S, He B, Wang J. Expression of PRB, FKBP52 and HB-EGF relating with ultrasonic evaluation of endometrial receptivity. PLoS One 2012; 7:e34010. [PMID: 22448285 PMCID: PMC3309003 DOI: 10.1371/journal.pone.0034010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To explore the molecular basis of the different ultrasonic patterns of the human endometrium, and the molecular marker basis of local injury. METHODOLOGY/PRINCIPAL FINDINGS The mRNA and protein expression of FKBP52, progesterone receptor A (PRA), progesterone receptor B (PRB), and HB-EGF were detected in different patterns of the endometrium by real-time RTPCR and immunohistochemistry. There were differences in the mRNA and protein expression of FKBP52, PRB, and HB-EGF in the triple line (Pattern A) and homogeneous (Pattern C) endometrium in the window of implantation. No difference was detected in PRA expression. After local injury, the mRNA expression of HB-EGF significantly increased. In contrast, there was no difference in the mRNA expression of FKBP52, PRB, or PRA. The protein expression of FKBP52, PRB, and HB-EGF increased after local injury. There was no difference in the PRA expression after local injury. CONCLUSIONS PRB, FKBP52, and HB-EGF may be the molecular basis for the classification of the ultrasonic patterns. HB-EGF may be the molecular basis of local injury. Ultrasonic evaluation on the day of ovulation can be effective in predicting the outcome of implantation.
Collapse
Affiliation(s)
| | | | | | | | - Jiedong Wang
- National Research Institute for Family Planning, Beijing, China
- * E-mail:
| |
Collapse
|
218
|
Leach RE, Jessmon P, Coutifaris C, Kruger M, Myers ER, Ali-Fehmi R, Carson SA, Legro RS, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Leppert PC, Giudice L, Diamond MP, Armant DR. High throughput, cell type-specific analysis of key proteins in human endometrial biopsies of women from fertile and infertile couples. Hum Reprod 2012; 27:814-28. [PMID: 22215622 PMCID: PMC3279126 DOI: 10.1093/humrep/der436] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/17/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although histological dating of endometrial biopsies provides little help for prediction or diagnosis of infertility, analysis of individual endometrial proteins, proteomic profiling and transcriptome analysis have suggested several biomarkers with altered expression arising from intrinsic abnormalities, inadequate stimulation by or in response to gonadal steroids or altered function due to systemic disorders. The objective of this study was to delineate the developmental dynamics of potentially important proteins in the secretory phase of the menstrual cycle, utilizing a collection of endometrial biopsies from women of fertile (n = 89) and infertile (n = 89) couples. METHODS AND RESULTS Progesterone receptor-B (PGR-B), leukemia inhibitory factor, glycodelin/progestagen-associated endometrial protein (PAEP), homeobox A10, heparin-binding EGF-like growth factor, calcitonin and chemokine ligand 14 (CXCL14) were measured using a high-throughput, quantitative immunohistochemical method. Significant cyclic and tissue-specific regulation was documented for each protein, as well as their dysregulation in women of infertile couples. Infertile patients demonstrated a delay early in the secretory phase in the decline of PGR-B (P < 0.05) and premature mid-secretory increases in PAEP (P < 0.05) and CXCL14 (P < 0.05), suggesting that the implantation interval could be closing early. Correlation analysis identified potential interactions among certain proteins that were disrupted by infertility. CONCLUSIONS This approach overcomes the limitations of a small sample number. Protein expression and localization provided important insights into the potential roles of these proteins in normal and pathological development of the endometrium that is not attainable from transcriptome analysis, establishing a basis for biomarker, diagnostic and targeted drug development for women with infertility.
Collapse
Affiliation(s)
- Richard E. Leach
- Michigan State University-Spectrum Health Medical Group, Grand Rapids, MI, USA
| | - Philip Jessmon
- Wayne State University, Detroit, MI, USA
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | | | | | | | | | | - Bruce R. Carr
- University of Texas-Southwestern Medical Center, Dallas, TX, USA
| | | | - Susan Silva
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Linda Giudice
- University of California San Francisco, San Francisco, CA, USA
| | | | - D. Randall Armant
- Wayne State University, Detroit, MI, USA
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
219
|
Nangia JR, Ma JD, Nguyen CM, Mendes MAS, Trivedi MV. Denosumab for treatment of breast cancer bone metastases and beyond. Expert Opin Biol Ther 2012; 12:491-501. [DOI: 10.1517/14712598.2012.664634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
220
|
Lora V, Grings AO, Capp E, von Eye Corleta H, Brum IS. Gene and protein expression of progesterone receptor isoforms A and B, p53 and p21 in myometrium and uterine leiomyoma. Arch Gynecol Obstet 2012; 286:119-24. [PMID: 22350293 DOI: 10.1007/s00404-012-2245-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess gene and protein expression of progesterone receptor isoforms A and B, cell cycle regulators p53 and p21 in leiomyoma and myometrium. METHODS Samples were collected from 14 patients in reproductive age who underwent abdominal hysterectomy. Gene expression of PRA, PRB, p53 and p21 was analyzed by real-time PCR. Protein expression was assessed by Western blots. RESULTS There was no change in gene and protein expression of PRA and PRB in both tissues. The ratio between isoforms (PRA:PRB) was not different between tissues and showed a strong correlation (r = 0.767, P = 0.004). The analysis of gene expression and protein showed increased levels of mRNA and protein p53 in leiomyoma compared to myometrium (P = 0.030 and P = 0.002, respectively). The same increase was observed in p21 mRNA levels (P = 0.016) and protein p21 levels (P = 0.026) in samples of uterine leiomyoma. CONCLUSIONS PRA:PRB ratio is similar in normal myometrium and leiomyomas. p53 and p21 mRNA and protein levels are increased in leiomyomas.
Collapse
Affiliation(s)
- Vanessa Lora
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
221
|
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
222
|
Blanks A, Brosens J. Progesterone action in the myometrium and decidua in preterm birth. Facts Views Vis Obgyn 2012; 4:33-43. [PMID: 24753902 PMCID: PMC3991401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Progesterone is central to many reproductive processes and is critical in regulating the menstrual cycle and maintaining pregnancy. We discuss here similarities in the molecular mechanisms that regulate the process of decidualisation in endometrial stromal cells and uterine quiescence in myometrial smooth muscle cells. We discuss recent evidence that the decidua may be an important mediator of progesterone actions in the onset of labor in mammalian species lacking progesterone withdrawal. These observations have relevance to recent clinical observations of the effect of progesterone administration in the prevention of preterm labor. We suggest that further research is required to understand the role of progesterone in maintaining the decidua in late pregnancy and particular focus should be given to the mechanisms that increase prostaglandin production in the uterus at term.
Collapse
|
223
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
INTRODUCTION Progesterone receptor (PR) agonists (progestins) and antagonists are developed for female contraceptives. However, non-contraceptive applications of newer progestins and PR modulators are being given more attention. AREAS COVERED The newer PR agonists including drospirenone, nomegestrol, trimegestone, dienogest and nestorone are being evaluated as contraceptives with health benefits because of their unique pharmacological properties. The selective PR modulators (SPRM; PR antagonists with PR agonistic properties) are under development not only for emergency contraception but also for other health benefits such as the treatment of endometritis and leiomyoma. After searching the literature from PubMed, clinicaltrials.gov and patent database, this review focuses on the effects and mechanisms of these progestins, and SPRMs as contraceptives with other health benefits. EXPERT OPINION PR agonists and antagonists that have novel properties may generate better contraceptive effects with other health benefits.
Collapse
Affiliation(s)
- Ying Su
- The 2nd Affiliated Hospital, Wenzhou Medical College, 109 Xueyuan Road, Wenzhou, Zhejiang 325000, China
| | | | | |
Collapse
|
225
|
Nuclear progesterone receptor isoforms and their functions in the female reproductive tract. Pol J Vet Sci 2011; 14:149-58. [DOI: 10.2478/v10181-011-0024-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear progesterone receptor isoforms and their functions in the female reproductive tract
Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of pregnancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells' nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the reproductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity. Alternative splicing and insertion of additional exons may lead to the formation of different PGR isoforms. This paper summarizes the available data on the progesterone receptor isoforms and its regulatory action within the female reproductive system.
Collapse
|
226
|
Abstract
The differentiation of primordial germ cells (PGCs) into functional oocytes is important for the continuation of species. In mammals, PGCs begin to differentiate into oocytes during embryonic development. Oocytes develop in clusters called germ line cysts. During fetal or neonatal development, germ cell cysts break apart into single oocytes that become surrounded by pregranulosa cells to form primordial follicles. During the process of cyst breakdown, a subset of cells in each cyst undergoes cell death with only one-third of the initial number of oocytes surviving to form primordial follicles. The mechanisms that control cyst breakdown, oocyte survival, and follicle assembly are currently under investigation. This review describes the mechanisms that have been implicated in the control of primordial follicle formation, which include programmed cell death regulation, growth factor and other signaling pathways, regulation by transcription factors and hormones, meiotic progression, and changes in cell adhesion. Elucidation of mechanisms leading to formation of the primordial follicle pool will help research efforts in ovarian biology and improve treatments of female infertility, premature ovarian failure, and reproductive cancers.
Collapse
Affiliation(s)
- Melissa E Pepling
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| |
Collapse
|
227
|
Bouchard P, Chabbert-Buffet N, Fauser BCJM. Selective progesterone receptor modulators in reproductive medicine: pharmacology, clinical efficacy and safety. Fertil Steril 2011; 96:1175-89. [PMID: 21944187 DOI: 10.1016/j.fertnstert.2011.08.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 11/19/2022]
|
228
|
Stute P, Sielker S, Wood CE, Register TC, Lees CJ, Dewi FN, Williams JK, Wagner JD, Stefenelli U, Cline JM. Life stage differences in mammary gland gene expression profile in non-human primates. Breast Cancer Res Treat 2011; 133:617-34. [PMID: 22037779 DOI: 10.1007/s10549-011-1811-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/28/2011] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is the most common malignancy of women in the developed world. To better understand its pathogenesis, knowledge of normal breast development is crucial, as BC is the result of disregulation of physiologic processes. The aim of this study was to investigate the impact of reproductive life stages on the transcriptional profile of the mammary gland in a primate model. Comparative transcriptomic analyses were carried out using breast tissues from 28 female cynomolgus macaques (Macaca fascicularis) at the following life stages: prepubertal (n = 5), adolescent (n = 4), adult luteal (n = 5), pregnant (n = 6), lactating (n = 3), and postmenopausal (n = 5). Mammary gland RNA was hybridized to Affymetrix GeneChip(®) Rhesus Macaque Genome Arrays. Differential gene expression was analyzed using ANOVA and cluster analysis. Hierarchical cluster analysis revealed distinct separation of life stage groups. More than 2,225 differentially expressed mRNAs were identified. Gene families or pathways that changed across life stages included those related to estrogen and androgen (ESR1, PGR, TFF1, GREB1, AR, 17HSDB2, 17HSDB7, STS, HSD11B1, AKR1C4), prolactin (PRLR, ELF5, STAT5, CSN1S1), insulin-like growth factor signaling (IGF1, IGFBP1, IGFBP5), extracellular matrix (POSTN, TGFB1, COL5A2, COL12A1, FOXC1, LAMC1, PDGFRA, TGFB2), and differentiation (CD24, CD29, CD44, CD61, ALDH1, BRCA1, FOXA1, POSTN, DICER1, LIG4, KLF4, NOTCH2, RIF1, BMPR1A, TGFB2). Pregnancy and lactation displayed distinct patterns of gene expression. ESR1 and IGF1 were significantly higher in the adolescent compared to the adult animals, whereas differentiation pathways were overrepresented in adult animals and pregnancy-associated life stages. Few individual genes were distinctly different in postmenopausal animals. Our data demonstrate characteristic patterns of gene expression during breast development. Several of the pathways activated during pubertal development have been implicated in cancer development and metastasis, supporting the idea that other developmental markers may have application as biomarkers for BC.
Collapse
Affiliation(s)
- Petra Stute
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Women's Hospital, Berne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Díaz-Cruz ES, Sugimoto Y, Gallicano GI, Brueggemeier RW, Furth PA. Comparison of increased aromatase versus ERα in the generation of mammary hyperplasia and cancer. Cancer Res 2011; 71:5477-87. [PMID: 21840986 DOI: 10.1158/0008-5472.can-10-4652] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Factors associated with increased estrogen synthesis increase breast cancer risk. Increased aromatase and estrogen receptor α (ERα) in both normal epithelium and ductal carcinoma in situ lesions are found in conjunction with breast cancer, leading to the idea that altered estrogen signaling pathways predispose the mammary gland to cancer development. Here, we developed a transgenic mouse that conditionally expresses aromatase in the mammary gland, and used it along with a deregulated ERα expression model to investigate the molecular pathways involved in the development of mammary gland preneoplasia and carcinoma. Both increased ERα and aromatase expression led to the development of preneoplasia, but increased preneoplasia, in addition to carcinoma, was found in aromatase overexpressing mice. Increased prevalence of mammary pathologic changes in mice expressing aromatase correlated with increased cyclin E and cyclin-dependent kinase 2 expression. Gain of both ERα and aromatase increased expression of ERα and progesterone receptor, but aromatase produced a higher increase than ERα, accompanied by higher levels of downstream target genes Ccnd1, Myc, and Tnfsf11. In summary, whereas gain of both ERα and aromatase activate abnormal growth pathways in the mammary gland, aromatase induced a wider range of abnormalities that was associated with a higher prevalence of mammary preneoplasia and cancer progression.
Collapse
Affiliation(s)
- Edgar S Díaz-Cruz
- Departments of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia,
| | | | | | | | | |
Collapse
|
230
|
Survival and differentiation of mammary epithelial cells in mammary gland development require nuclear retention of Id2 due to RANK signaling. Mol Cell Biol 2011; 31:4775-88. [PMID: 21947283 DOI: 10.1128/mcb.05646-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RANKL plays an essential role in mammary gland development during pregnancy. However, the molecular mechanism by which RANK signaling leads to mammary gland development is largely unknown. We report here that RANKL stimulation induces phosphorylation of Id2 at serine 5, which leads to nuclear retention of Id2. In lactating Id2Tg; RANKL(-/-) mice, Id2 was not phosphorylated and was localized in the cytoplasm. In addition, in lactating Id2(S5A)Tg mice, Id2(S5A) (with serine 5 mutated to alanine) was exclusively localized in the cytoplasm of mammary epithelial cells (MECs), while endogenous Id2 was localized in the nucleus. Intriguingly, nuclear expression of Id2(S5A) rescued increased apoptosis and defective differentiation of MECs in RANKL(-/-) mice. Our results demonstrate that nuclear retention of Id2 due to RANK signaling plays a decisive role in the survival and differentiation of MECs during mammary gland development.
Collapse
|
231
|
Yudt MR, Russo LA, Berrodin TJ, Jelinsky SA, Ellis D, Cohen JC, Cooch N, Haglund E, Unwalla RJ, Fensome A, Wrobel J, Zhang Z, Nagpal S, Winneker RC. Discovery of a novel mechanism of steroid receptor antagonism: WAY-255348 modulates progesterone receptor cellular localization and promoter interactions. Biochem Pharmacol 2011; 82:1709-19. [PMID: 21854761 DOI: 10.1016/j.bcp.2011.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
WAY-255348 is a potent nonsteroidal progesterone receptor (PR) antagonist previously characterized in rodents and nonhuman primates. This report describes the novel mechanism by which WAY-255348 inhibits the activity of progesterone. Most PR antagonists bind to and block PR action by inducing a unique "antagonist" conformation of the PR. However, WAY-255348 lacks the bulky side chains or chemical groups that have been associated with the conformation changes of helix 12 that lead to functional antagonism. We show that WAY-255348 achieves antagonist activity by binding to and subsequently preventing progesterone-induced nuclear accumulation, phosphorylation and promoter interactions of the PR. This effect was concentration dependent, as high concentrations of WAY-255348 alone are able to induce nuclear translocation, phosphorylation and subsequent promoter interactions resulting in partial agonist activity at these concentrations. However, at lower concentrations where nuclear accumulation and phosphorylation are prevented, the progesterone-induced DNA binding is blocked along with PR-dependent gene expression. Analysis of the PR conformation induced by WAY-255348 using a limited protease digestion assay, suggested that the WAY-255348 bound PR conformation was similar to that of a progesterone agonist-bound PR and distinct from steroidal antagonist-bound PR conformations. Furthermore, the recruitment and binding of peptides derived from nuclear receptor co-activators is consistent with WAY-255348 inducing an agonist-like conformation. Taken together, these data suggest that WAY-255348 inhibits PR action through a novel molecular mechanism that is distinct from previously studied PR modulators and may be a useful tool to further understanding of PR signaling pathways. Development of therapeutic molecules with this 'passive' antagonism mechanism may provide distinct advantages for patients with reproductive disorders or PR positive breast cancers.
Collapse
|
232
|
A Chuffa LG, Seiva FRF, Fávaro WJ, Teixeira GR, Amorim JPA, Mendes LO, Fioruci BA, Pinheiro PFF, Fernandes AAH, Franci JAA, Delella FK, Martinez M, Martinez FE. Melatonin reduces LH, 17 beta-estradiol and induces differential regulation of sex steroid receptors in reproductive tissues during rat ovulation. Reprod Biol Endocrinol 2011; 9:108. [PMID: 21810236 PMCID: PMC3161940 DOI: 10.1186/1477-7827-9-108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. METHODS Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL+95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle+melatonin [100 μg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a.m. RESULTS Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. CONCLUSIONS We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Collapse
Affiliation(s)
- Luiz Gustavo A Chuffa
- Department of Structural and Cellular Biology, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas-SP 13083-863, Brazil
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - Fábio RF Seiva
- Department of Chemistry and Biochemistry, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - Wagner José Fávaro
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - Giovana R Teixeira
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - João PA Amorim
- Department of Structural and Cellular Biology, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas-SP 13083-863, Brazil
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - Leonardo O Mendes
- Department of Structural and Cellular Biology, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas-SP 13083-863, Brazil
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - Beatriz A Fioruci
- Department of Structural and Cellular Biology, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas-SP 13083-863, Brazil
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | | | - Ana Angélica H Fernandes
- Department of Chemistry and Biochemistry, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| | - Janete AA Franci
- Department of Morphology, Stomatology and Physiology, USP - Universidade de São Paulo, Ribeirão Preto-SP 14040-900, Brazil
| | - Flávia K Delella
- Department of Structural and Cellular Biology, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas-SP 13083-863, Brazil
| | - Marcelo Martinez
- Department of Morphology and Pathology, UFSCar - Universidade Federal de São Carlos, São Carlos-SP 13565-905, Brazil
| | - Francisco E Martinez
- Department of Anatomy, Bioscience Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP 18618-000, Brazil
| |
Collapse
|
233
|
Sun Z, Shushanov S, LeRoith D, Wood TL. Decreased IGF type 1 receptor signaling in mammary epithelium during pregnancy leads to reduced proliferation, alveolar differentiation, and expression of insulin receptor substrate (IRS)-1 and IRS-2. Endocrinology 2011; 152:3233-45. [PMID: 21628386 PMCID: PMC3138223 DOI: 10.1210/en.2010-1296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IGFs and the IGF type 1 receptor (IGF-1R) are essential mediators of normal mammary gland development in mice. IGF-I and the IGF-1R have demonstrated functions in formation and proliferation of terminal end buds and in ductal outgrowth and branching during puberty. To study the functions of IGF-1R during pregnancy and lactation, we established transgenic mouse lines expressing a human dominant-negative kinase dead IGF-1R (dnhIGF-1R) under the control of the whey acidic protein promoter. We provide evidence that the IGF-1R pathway is necessary for normal epithelial proliferation and alveolar formation during pregnancy. Furthermore, we demonstrate that the whey acidic protein-dnhIGF-1R transgene causes a delay in alveolar differentiation including lipid droplet formation, lumen expansion, and β-casein protein expression. Analysis of IGF-1R signaling pathways showed a decrease in P-IGF-1R and P-Akt resulting from expression of the dnhIGF-1R. We further demonstrate that disruption of the IGF-1R decreases mammary epithelial cell expression of the signaling intermediates insulin receptor substrate (IRS)-1 and IRS-2. No alterations were observed in downstream signaling targets of prolactin and progesterone, suggesting that activation of the IGF-1R may directly regulate expression of IRS-1/2 during alveolar development and differentiation. These data show that IGF-1R signaling is necessary for normal alveolar proliferation and differentiation, in part, through induction of signaling intermediates that mediate alveolar development.
Collapse
Affiliation(s)
- Zhaoyu Sun
- Department Neurology & Neuroscience, Cancer Center H1200, New Jersey Medical School/University of Medicine and Dentistry of New Jersey, 205 South Orange Avenue, Newark, New Jersey 07101-1709, USA
| | | | | | | |
Collapse
|
234
|
Heijmans J, Muncan V, Jacobs RJ, de Jonge-Muller ESM, Graven L, Biemond I, Ederveen AG, Groothuis PG, Mosselman S, Hardwick JC, Hommes DW, van den Brink GR. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models. PLoS One 2011; 6:e22620. [PMID: 21818351 PMCID: PMC3144908 DOI: 10.1371/journal.pone.0022620] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/26/2011] [Indexed: 01/06/2023] Open
Abstract
Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR) is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO) to the ApcMin/+ mouse, a model for spontaneous intestinal polyposis. PRKO-ApcMin/+mice exhibited no change in polyp number, size or localization compared to ApcMin/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Jarom Heijmans
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail: (JH); (GRvdB)
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Rutger J. Jacobs
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laura Graven
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Izak Biemond
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antwan G. Ederveen
- Merck, Sharpe and Dohme, Women's Health Department, Oss, The Netherlands
| | | | - Sietse Mosselman
- Merck, Sharpe and Dohme, Women's Health Department, Oss, The Netherlands
| | - James C. Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel W. Hommes
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs R. van den Brink
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail: (JH); (GRvdB)
| |
Collapse
|
235
|
Bodoor K, Lontay B, Safi R, Weitzel DH, Loiselle D, Wei Z, Lengyel S, McDonnell DP, Haystead TA. Smoothelin-like 1 protein is a bifunctional regulator of the progesterone receptor during pregnancy. J Biol Chem 2011; 286:31839-51. [PMID: 21771785 DOI: 10.1074/jbc.m111.270397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During pregnancy, uterine smooth muscle (USM) coordinately adapts its contractile phenotype in order to accommodate the developing fetus and then prepare for delivery. Herein we show that SMTNL1 plays a major role in pregnancy to promote adaptive responses in USM and that this process is specifically mediated through interactions of SMTNL1 with the steroid hormone receptor PR-B. In vitro and in vivo SMTNL1 selectively binds PR and not other steroid hormone receptors. The physiological relationship between the two proteins was also established in global gene expression and transcriptional reporter studies in pregnant smtnl1(-/-) mice and by RNA interference in progesterone-sensitive cell lines. We show that the contraction-associated and progestin-sensitive genes (oxytocin receptor, connexin 43, and cyclooxygenase-2) and prolactins are down-regulated in pregnant smtnl1(-/-) mice. We suggest that SMTNL1 is a bifunctional co-regulator of PR-B signaling and thus provides a molecular mechanism whereby PR-B is targeted to alter gene expression patterns within USM cells to coordinately promote alterations in USM function during pregnancy.
Collapse
Affiliation(s)
- Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Yellon SM, Oshiro BT, Chhaya TY, Lechuga TJ, Dias RM, Burns AE, Force L, Apostolakis EM. Remodeling of the cervix and parturition in mice lacking the progesterone receptor B isoform. Biol Reprod 2011; 85:498-502. [PMID: 21613631 DOI: 10.1095/biolreprod.111.091983] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Withdrawal of progestational support for pregnancy is part of the final common pathways for parturition, but the role of nuclear progesterone receptor (PGR) isoforms in this process is not known. To determine if the PGR-B isoform participates in cervical remodeling at term, cervices were obtained from mice lacking PGR-B (PGR-BKO) and from wild-type (WT) controls before or after birth. PGR-BKO mice gave birth to viable pups at the same time as WT controls during the early morning of Day 19 postbreeding. Morphological analyses indicated that by the day before birth, cervices from PGR-BKO and WT mice had increased in size, with fewer cell nuclei/area as well as diminished collagen content and structure, as evidenced by optical density of picrosirius red-stained sections, compared to cervices from nonpregnant mice. Moreover, increased numbers of resident macrophages, but not neutrophils, were found in the prepartum cervix of PGR-BKO compared to nonpregnant mice, parallel to findings in WT mice. These results suggest that PGR-B does not contribute to the growth or degradation of the extracellular matrix or proinflammatory processes associated with recruitment of macrophages in the cervix leading up to birth. Rather, other receptors may contribute to the progesterone-dependent mechanism that promotes remodeling of the cervix during pregnancy and in the proinflammatory process associated with ripening before parturition.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Asselin-Labat ML, Lindeman GJ, Visvader JE. Mammary stem cells and their regulation by steroid hormones. Expert Rev Endocrinol Metab 2011; 6:371-381. [PMID: 30754117 DOI: 10.1586/eem.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sustained exposure to estrogen and progesterone is a well-established risk factor for breast cancer. These hormones play a central role in the female reproductive cycle, in which they control morphogenesis of the mammary gland during puberty, ovulatory cycles and pregnancy. Mouse mammary stem cells (MaSCs) have recently been discovered to be highly responsive to female hormones, despite lacking expression of the estrogen and progesterone receptors. The inhibition of MaSCs by hormone receptor antagonists further suggests that these cells contribute to oncogenesis. Identification of paracrine mediators of hormone signaling to MaSCs may lead to the development of novel inhibitors that drive MaSCs into a more quiescent state. In this context, inhibition of the receptor activator of NF-κB/receptor activator of NF-κB ligand signaling pathway has profound implications for the prevention of breast cancer.
Collapse
Affiliation(s)
- Marie-Liesse Asselin-Labat
- a Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- b Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Geoffrey J Lindeman
- a Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- c Department of Medical Oncology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- d Department of Medicine, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jane E Visvader
- a Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- b Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- e
| |
Collapse
|
238
|
Schramek D, Sigl V, Penninger JM. RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 2011; 22:188-94. [PMID: 21470874 DOI: 10.1016/j.tem.2011.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 01/11/2023]
Abstract
The receptor activator of nuclear factor-κB (RANK) and its ligand RANKL are best known for their essential function in bone remodeling and bone-related pathologies such as osteoporosis and arthritis. In humans, dysregulation of the RANK-RANKL system is the major cause of osteoporosis in postmenopausal women. Furthermore, appropriate RANKL signaling is also required for the formation of a lactating mammary gland. Both RANKL and RANK are expressed by mammary epithelial cells under the control of sex hormones. Recent data also indicate that RANK and RANKL control the preferential metastasis of breast cancer cells to the bone as well as sex hormone-driven primary mammary cancer. Here we critically review these data with special attention on mammary cancer development.
Collapse
Affiliation(s)
- Daniel Schramek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
239
|
ck2-dependent phosphorylation of progesterone receptors (PR) on Ser81 regulates PR-B isoform-specific target gene expression in breast cancer cells. Mol Cell Biol 2011; 31:2439-52. [PMID: 21518957 DOI: 10.1128/mcb.01246-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Progesterone receptors (PR) are critical mediators of mammary gland development and contribute to breast cancer progression. Progestin-induced rapid activation of cytoplasmic protein kinases leads to selective regulation of growth-promoting genes by phospho-PR species. Herein, we show that phosphorylation of PR Ser81 is ck2 dependent and progestin regulated in intact cells but also occurs in the absence of PR ligands when cells enter the G(1)/S phase of the cell cycle. T47D breast cancer cells stably expressing a PR-B mutant receptor that cannot be phosphorylated at Ser79/81 (S79/81A) formed fewer soft agar colonies. Regulation of selected genes by PR-B, but not PR-A, also required Ser79/81 phosphorylation for basal and/or progestin-regulated (BIRC3, HSD11β2, and HbEGF) expression. Additionally, wild-type (wt) PR-B, but not S79/81A mutant PR, was robustly recruited to a progesterone response element (PRE)-containing transcriptional enhancer region of BIRC3; abundant ck2 also associated with this region in cells expressing wt but not S79/81A PR. We conclude that phospho-Ser81 PR provides a platform for ck2 recruitment and regulation of selected PR-B target genes. Understanding how ligand-independent PRs function in the context of high levels of kinase activities characteristic of breast cancer is critical to understanding the basis of tumor-specific changes in gene expression and will speed the development of highly selective treatments.
Collapse
|
240
|
González-Suárez E. RANKL inhibition: a promising novel strategy for breast cancer treatment. Clin Transl Oncol 2011; 13:222-8. [DOI: 10.1007/s12094-011-0646-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
241
|
Yang S, Thiel KW, Leslie KK. Progesterone: the ultimate endometrial tumor suppressor. Trends Endocrinol Metab 2011; 22:145-52. [PMID: 21353793 PMCID: PMC4062362 DOI: 10.1016/j.tem.2011.01.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/11/2011] [Accepted: 01/20/2011] [Indexed: 01/05/2023]
Abstract
The uterine endometrium is exquisitely sensitive to steroid hormones that act through well-described nuclear receptors. Estrogen drives epithelial proliferation, and progesterone inhibits growth and causes cell differentiation. The importance of progesterone as a key inhibitor of carcinogenesis is reflected by the observation that women who ovulate and produce progesterone almost never get endometrial cancer. In this review we describe seminal research findings that define progesterone as the major endometrial tumor suppressor. We discuss the genes and diverse signaling pathways that are controlled by progesterone through progesterone receptors (PRs) and also the multiple factors that regulate progesterone/PR activity. By defining these progesterone-regulated factors and pathways we identify the principal therapeutic opportunities to control the growth of endometrial cancer.
Collapse
Affiliation(s)
- Shujie Yang
- Department of Obstetrics & Gynecology and Holden Comprehensive Cancer Center,The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
242
|
Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R, Margossian AL, Hilsenbeck SG, Issa JPJ, Oesterreich S. Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 2011; 17:4177-86. [PMID: 21459801 DOI: 10.1158/1078-0432.ccr-10-2950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE ERα and PR levels are critical determinants for breast cancer prognosis and response to endocrine therapy. Although PR is known to be silenced by methylation of its promoter, few studies have correlated methylation with PR levels and outcome in breast cancer. There is only one previous small study comparing methylation of the two PR isoforms, PRA and PRB, which are expressed from different promoters, and finally, there is no prior knowledge of associations between isoform-specific methylation and outcome. EXPERIMENTAL DESIGN We conducted a cohort-based study to test for associations between PRA and PRB methylation, expression, and clinical outcome in tamoxifen-treated patients (n = 500), and in patients who underwent surgery only (n = 500). Methylation and PR levels were measured by bisulfite pyrosequencing and ligand-binding assay, respectively. RESULTS Low PR levels were significantly associated with worse outcome in all patients. PRA and PRB promoters were methylated in 9.6% and 14.1% of the breast tumors, respectively. The majority (74%) of PR-negative tumors were not methylated despite the significant inverse correlation of methylation and PR levels. PRA methylation was significantly associated with PRB methylation, although a subset of tumors had PRA only (3.9%) or PRB only (8.3%) methylated. Methylation of PRA, but not PRB was significantly associated with worse outcome in the tamoxifen-treated group. CONCLUSIONS Mechanisms other than promoter methylation may be more dominant for loss of PR. Isoform-specific methylation events suggest independent regulation of PRA and PRB. Finally, this article shows for the first time that PRA methylation plays a unique role in tamoxifen-resistant breast cancer.
Collapse
|
243
|
Temporal expression pattern of progesterone receptor in the uterine luminal epithelium suggests its requirement during early events of implantation. Fertil Steril 2011; 95:2087-93. [PMID: 21371703 DOI: 10.1016/j.fertnstert.2011.01.160] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the precise timing of progesterone receptor (PR) disappearing from the uterine luminal epithelium (LE) to help understand the significance of the dynamic PR expression in the LE during embryo implantation. DESIGN Experimental rodent models. SETTING University research laboratories. ANIMAL(S) Mice and hamsters. INTERVENTION(S) Pseudopregnancy and artificial decidualization. MAIN OUTCOME MEASURE(S) Blue dye injection for detecting embryo attachment; immunohistochemistry, immunofluorescence, and in situ hybridization for detecting gene expression. RESULT(S) Progesterone receptor remained expressed in the LE up to 6 hours after the initial detection of blue dye reaction in mice (day 3, 22:00 hours), but disappeared first from LE cells at the implantation site and subsequently from the entire LE layer by day 4, 06:00 hours, when uterine stromal decidualization had become obvious. Progesterone receptor remained highly expressed in the LE of day 4 at 11:00 hours in pseudopregnant mice, but it disappeared from the entire LE layer by day 4 at 06:00 hours in artificially decidualized pseudopregnant mice. CONCLUSION(S) Progesterone receptor disappears from the LE after implantation has initiated and before the histologic decidualization manifests, suggesting an active role of continued PR expression in the LE for the initial implantation process. The disappearance of PR expression in the LE is regulated by uterine factor(s) produced upon embryo attachment.
Collapse
|
244
|
Petrie WK, Hovey RC. A local basis for progesterone action during mammary tumorigenesis - no longer RANK and file. Breast Cancer Res 2011; 13:301. [PMID: 21345282 PMCID: PMC3109564 DOI: 10.1186/bcr2802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two recent reports provide compelling insights into the role for RANK and its ligand, RANKL, in progestin-dependent mammary tumorigenesis. These findings build upon a considerable body of evidence pointing to the RANK signaling pathway as being a key mediator of progestin action in the mammary glands.
Collapse
Affiliation(s)
- Whitney K Petrie
- Department of Animal Science, University of California Davis, 2145 Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
245
|
Tanos T, Brisken C. High hopes for RANKL: will the mouse model live up to its promise? Breast Cancer Res 2011; 13:302. [PMID: 21345281 PMCID: PMC3109567 DOI: 10.1186/bcr2805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The steroid hormones, estrogens and progesterone are key drivers of postnatal breast development and are linked to breast carcinogenesis. Experiments in the mouse mammary gland have revealed that they rely on paracrine factors to relegate their signal locally and to amplify it. In particular, RANKL is a key mediator of progesterone action. Systemic inhibition of RANKL blocked proliferation in the mammary epithelium with potential clinical implications: a RANKL-inhibiting antibody, Denosumab (Amgen), has been approved by the US Food and Drug Administration for osteoporosis treatment. Two publications now provide evidence that progestin-driven mouse mammary tumorigenesis can be blocked by ablating RANK signaling. Can the osteoporosis drug help breast cancer patients? The burning question now is whether the role of this pathway is conserved in the human breast and whether RANKL signaling has a role in the pathogenesis of one or more subtypes of breast cancer.
Collapse
Affiliation(s)
- Tamara Tanos
- Ecole polytechnique fédérale de Lausanne, ISREC - Swiss Institute for Experimental Cancer Research, NCCR Molecular Oncology, SV2,832 Station 19, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
246
|
Stingl J. Estrogen and progesterone in normal mammary gland development and in cancer. Discov Oncol 2010; 2:85-90. [PMID: 21761331 DOI: 10.1007/s12672-010-0055-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/28/2010] [Indexed: 12/23/2022] Open
Abstract
There is emerging evidence that the mammary epithelium in both mice and humans is arranged as a hierarchy that spans from stem cells to differentiated hormone-sensing, milk-producing and myoepithelial cells. It is well established that estrogen is an important mediator of mammary gland morphogenesis and exposure to this hormone is associated with increased breast cancer risk. Yet surprisingly, the primitive cells of the mammary epithelium do not express the estrogen receptor-α (ERα) or the progesterone receptor. This article will review the mammary epithelial cell hierarchy, possible cells of origin of different types of breast tumors, and the potential mechanisms on how estrogen and progesterone may influence the different subcomponents in normal development and in cancer. Also presented are some hypothetical scenarios on how this underlying biology may be reflected in the behavior of ERα(+) and ERα(-) breast tumors.
Collapse
Affiliation(s)
- John Stingl
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK.
| |
Collapse
|
247
|
Dave B, Wynne R, Su Y, Korourian S, Chang JC, Simmen RCM. Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats. Nutr Cancer 2010; 62:774-82. [PMID: 20661826 DOI: 10.1080/01635581.2010.494334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-methyl-N-nitrosourea, dietary intake of soy protein isolate (SPI) reduced mammary tumor occurrence but increased incidence of more invasive tumors in tumored rats, relative to the control diet casein. Here we evaluated whether mammary tumor progression in tumor-bearing rats lifetime exposed to SPI is associated with deregulated progesterone receptor (PR) isoform expression. In histologically normal mammary glands of rats with invasive ductal carcinoma lesions, PR-A protein levels were higher for SPI- than casein-fed rats, whereas PR-B was undetectable for both groups. Increased mammary PR-A expression was associated with higher transforming growth factor-beta1, stanniocalcin-1, and CD44 transcript levels; lower E-cadherin and estrogen receptor-alpha expression; and reduced apoptotic status in ductal epithelium. Serum progesterone (ng/ml) (CAS: 25.94 +/- 3.81; SPI: 13.19 +/- 2.32) and estradiol (pg/ml) (CAS: 27.9 +/- 4.49; SPI: 68.48 +/- 23.87) levels differed with diet. However, sera from rats of both diet groups displayed comparable mammosphere-forming efficiency in human MCF-7 cells. Thus, soy-rich diets may influence the development of more aggressive tumors by enhancing PR-A-dependent signaling in premalignant breast tissues.
Collapse
Affiliation(s)
- Bhuvanesh Dave
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, and Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
248
|
Mukherjee A, Soyal SM, Li J, Ying Y, He B, DeMayo FJ, Lydon JP. Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 2010; 24:4408-19. [PMID: 20605949 PMCID: PMC2974417 DOI: 10.1096/fj.10-157982] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/24/2010] [Indexed: 11/11/2022]
Abstract
Despite support for receptor of activated NF-κB ligand (RANKL) as a mediator of mammary progesterone action, the extent to which this cytokine can functionally contribute to established progesterone-induced mammary morphogenetic responses in the absence of other presumptive effectors is still unclear. To address this uncertainty, we developed an innovative bigenic system for the doxycycline-inducible expression of RANKL in the mammary epithelium of the progesterone receptor knockout (PRKO) mouse. In response to acute doxycycline exposure, RANKL is specifically expressed in the estrogen receptor α (ER) positive/progesterone receptor negative (ER(+)/PR(-)) cell type in the PRKO mammary epithelium, a cell type that is equivalent to the ER(+)/PR(+) cell type in the wild-type (WT) mammary epithelium. Notably, the ER(+)/PR(+) mammary cell normally expresses RANKL in the WT mammary epithelium during pregnancy. In this PRKO bigenic system, acute doxycycline-induced expression of RANKL results in ordered mammary ductal side branching and alveologenesis, morphological changes that normally occur in the parous WT mouse. This mammary epithelial expansion is accompanied by significant RANKL-induced luminal epithelial proliferation, which is driven, in part, by indirect induction of cyclin D1. Collectively, our findings support the conclusion that RANKL represents a critical mediator of mammary PR action and that restricted expression of this effector to the ER(+)/PR(+) mammary cell-type is necessary for a spatially ordered morphogenetic response to progesterone.
Collapse
Affiliation(s)
- Atish Mukherjee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Selma M. Soyal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jie Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Ying
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
249
|
Affiliation(s)
- Sam Mesiano
- Departments of Reproductive Biology and Obstetrics & Gynecology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Yuguang Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Errol R. Norwitz
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
250
|
Muschler J, Streuli CH. Cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 2010; 2:a003202. [PMID: 20702598 PMCID: PMC2944360 DOI: 10.1101/cshperspect.a003202] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammary gland is an organ that at once gives life to the young, but at the same time poses one of the greatest threats to the mother. Understanding how the tissue develops and functions is of pressing importance in determining how its control mechanisms break down in breast cancer. Here we argue that the interactions between mammary epithelial cells and their extracellular matrix (ECM) are crucial in the development and function of the tissue. Current strategies for treating breast cancer take advantage of our knowledge of the endocrine regulation of breast development, and the emerging role of stromal-epithelial interactions (Fig. 1). Focusing, in addition, on the microenvironmental influences that arise from cell-matrix interactions will open new opportunities for therapeutic intervention. We suggest that ultimately a three-pronged approach targeting endocrine, growth factor, and cell-matrix interactions will provide the best chance of curing the disease.
Collapse
Affiliation(s)
- John Muschler
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | |
Collapse
|