201
|
Neddermann P, Clementi A, De Francesco R. Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J Virol 1999; 73:9984-91. [PMID: 10559312 PMCID: PMC113049 DOI: 10.1128/jvi.73.12.9984-9991.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonstructural protein NS5A of hepatitis c virus (HCV) has been demonstrated to be a phosphoprotein with an apparent molecular mass of 56 kDa. In the presence of other viral proteins, p56 is converted into a slower-migrating form of NS5A (p58) by additional phosphorylation events. In this report, we show that the presence of NS3, NS4A, and NS4B together with NS5A is necessary and sufficient for the generation of the hyperphosphorylated form of NS5A (p58) and that all proteins must be encoded on the same polyprotein (in cis). Kinetic studies of NS5A synthesis and pulse-chase experiments demonstrate that fully processed NS5A is the substrate for the formation of p58 and that p56 is converted to p58. To investigate the role of NS3 in NS5A hyperphosphorylation, point and deletion mutations were introduced into NS3 in the context of a polyprotein containing the proteins from NS3 to NS5A. Mutation of the catalytic serine residue into alanine abolished protease activity of NS3 and resulted in total inhibition of NS5A hyperphosphorylation, even if polyprotein processing was allowed by addition of NS3 and NS4A in trans. The same result was obtained by deletion of the first 10 or 28 N-terminal amino acids of NS3, which are known to be important for the formation of a stable complex between NS3 and its cofactor NS4A. These data suggest that the formation of p58 is closely connected to HCV polyprotein processing events. Additional data obtained with NS3 containing the 34 C-terminal residues of NS2 provide evidence that in addition to NS3 protease activity the authentic N-terminal sequence is required for NS5A hyperphosphorylation.
Collapse
Affiliation(s)
- P Neddermann
- Istituto di Ricerche di Biologia Molecolare "P. Angeletti," 00040 Pomezia (Roma), Italy.
| | | | | |
Collapse
|
202
|
Yao N, Reichert P, Taremi SS, Prosise WW, Weber PC. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 1999; 7:1353-63. [PMID: 10574797 DOI: 10.1016/s0969-2126(00)80025-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) currently infects approximately 3% of the world's population. HCV RNA is translated into a polyprotein that during maturation is cleaved into functional components. One component, nonstructural protein 3 (NS3), is a 631-residue bifunctional enzyme with protease and helicase activities. The NS3 serine protease processes the HCV polyprotein by both cis and trans mechanisms. The structural aspects of cis processing, the autoproteolysis step whereby the protease releases itself from the polyprotein, have not been characterized. The structural basis for inclusion of protease and helicase activities in a single polypeptide is also unknown. RESULTS We report here the 2.5 A resolution structure of an engineered molecule containing the complete NS3 sequence and the protease activation domain of nonstructural protein 4A (NS4A) in a single polypeptide chain (single chain or scNS3-NS4A). In the molecule, the helicase and protease domains are segregated and connected by a single strand. The helicase necleoside triphosphate and RNA interaction sites are exposed to solvent. The protease active site of scNS3-NS4A is occupied by the NS3 C terminus, which is part of the helicase domain. Thus, the intramolecular complex shows one product of NS3-mediated cleavage at the NS3-NS4A junction of the HCV polyprotein bound at the protease active site. CONCLUSIONS The scNS3-NS4A structure provides the first atomic view of polyprotein cis processing. Both local and global structural rearrangements follow the cis cleavage reaction, and large segments of the polyprotein can be folded prior to proteolytic processing. That the product complex of the cis cleavage reaction exists in a stable molecular conformation suggests autoinhibition and substrate-induced activation mechanisms for regulation of NS3 protease activity.
Collapse
Affiliation(s)
- N Yao
- Structural Chemistry Department, Schering-Plough Research Institute, Kenilworth, NJ 07033-0539, USA
| | | | | | | | | |
Collapse
|
203
|
Lemon SM. Current status of antiviral therapy for chronic hepatitis C. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 458:29-37. [PMID: 10549377 DOI: 10.1007/978-1-4615-4743-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- S M Lemon
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston 77555-1019, USA
| |
Collapse
|
204
|
Abstract
Hepatitis C virus (HCV) is an important cause of chronic liver disease worldwide. HCV is a positive-strand genotype RNA virus with extensive genetic heterogeneity; HCV isolates define 6 major genotypes, and HCV circulates within an infected individual as a number of closely related but distinct species, termed a quasispecies. This article reviews characteristic aspects of HCV molecular biology and their implications for treatment and vaccine development.
Collapse
Affiliation(s)
- X Forns
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
205
|
Nagayama K, Kurosaki M, Enomoto N, Maekawa SY, Miyasaka Y, Tazawa J, Izumi N, Marumo F, Sato C. Time-related changes in full-length hepatitis C virus sequences and hepatitis activity. Virology 1999; 263:244-53. [PMID: 10544098 DOI: 10.1006/viro.1999.9924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The activity of hepatitis varies in chronic hepatitis C virus (HCV) infection. Some patients show persistently normal serum alanine aminotransferase (ALT) values, whereas the others show high-ALT values and progress to liver cirrhosis or hepatocellular carcinoma. However, virological mechanisms causing hepatitis have not fully been elucidated. We analyzed serial changes in full-length HCV sequences in 10 patients with various profiles of hepatitis activity. In the nonstructural 5A (NS5A) and NS5B, the rate of amino acid changes, as well as the proportion of nonsilent ones, was low in patients with normal ALT values compared with those with abnormal ALT (for the rate of amino acid changes, 0 x 10(-3) vs 3.19 x 10(-3) changes/site/year (P = 0.037) in NS5A and 0 x 10(-3) vs 1.22 x 10(-3) changes/site/year (P = 0.023) for NS5B, for the proportion of nonsilent changes, 4 vs 22% (P = 0.017) in NS5A and 0 vs 16% (P = 0. 039) in NS5B). Also, the flare-up of hepatitis coincided with higher nucleotide/amino acid substitution rates in NS5B. In conclusion, the genomic structures of the NS5A and NS5B regions may correlate with hepatitis activity in chronic hepatitis C.
Collapse
Affiliation(s)
- K Nagayama
- Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.
Collapse
Affiliation(s)
- C Lin
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
207
|
Zhong W, Ingravallo P, Wright-Minogue J, Skelton A, Uss AS, Chase R, Yao N, Lau JY, Hong Z. Nucleoside triphosphatase and RNA helicase activities associated with GB virus B nonstructural protein 3. Virology 1999; 261:216-26. [PMID: 10497107 DOI: 10.1006/viro.1999.9871] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GB virus B (GBV-B) is a positive-stranded RNA virus that belongs to the Flaviviridae family. This virus is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species). Nonstructural protein 3 (NS3) of GBV-B contains sequence motifs predictive of three enzymatic activities: serine protease, nucleoside triphosphatase (NTPase), and RNA helicase. The N-terminal serine protease has been characterized and shown to share similar substrate specificity with the HCV NS3 protease. In this report, a full-length GBV-B NS3 protein was expressed in Escherichia coli and purified to homogeneity. This recombinant protein was shown to possess polynucleotide-stimulated NTPase and double-stranded RNA (dsRNA) unwinding activities. Both activities were abolished by a single amino acid substitution, from the Lys (K) residue in the conserved walker motif A (or Ia) "AXXXXGK(210)S" to an Ala (A), confirming that they are intrinsic to GBV-B NS3. Kinetic parameters (K(m) and k(cat)) for hydrolysis of various NTPs or dNTPs were obtained. The dsRNA unwinding activity depends on the presence of divalent metal ions and ATP and requires an RNA duplex substrate with 3' unpaired regions (RNAs with 5' unpaired regions only or with blunt ends are not suitable substrates for this enzyme). This indicates that GBV-B NS3 RNA helicase unwinds dsRNA in the 3' to 5' direction. Direct interaction of the GBV-B NS3 protein with a single-stranded RNA was established using a gel-based RNA bandshift assay. Finally, a homology model of GBV-B NS3 RNA helicase domain based on the 3-dimensional structure of the HCV NS3 helicase that shows a great similarity in overall structure and surface charge distribution between the two proteins was proposed.
Collapse
Affiliation(s)
- W Zhong
- Department of Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-0539, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Koch JO, Bartenschlager R. Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B. J Virol 1999; 73:7138-46. [PMID: 10438800 PMCID: PMC104237 DOI: 10.1128/jvi.73.9.7138-7146.1999] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.
Collapse
Affiliation(s)
- J O Koch
- Institute for Virology, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
209
|
Abstract
The NS3 serine proteinase is regarded as one of the preferred targets for the development of therapeutic agents against hepatitis C virus (HCV). Possible mechanisms of NS3 inhibitors include: (i) interference with the activation of the enzyme by its NS4A cofactor; (ii) binding to the structural zinc site; and (iii) binding to the active site. These mechanisms have been explored in detail by structural analysis of the enzyme. (i) The NS4A cofactor binds to the amino-terminal beta-barrel domain of the NS3 proteinase bringing about several conformational changes that result in enzyme activation. The interaction between NS3 and NS4A involves a very large surface area and therefore it is not a likely target for the development of inhibitors. (ii) The NS3 proteinase contains a structural zinc binding site. Spectroscopic studies have shown that changes in the conformation of this metal-binding site correlate with changes in the specific activity of the enzyme, and the NS3 proteinase is inhibited by compounds capable of extracting zinc from its native coordination sphere. (iii) Based on the observation that the NS3 proteinase undergoes inhibition by its cleavage products, potent, active site-directed inhibitors have been generated. Kinetic studies, site-directed mutagenesis, and molecular modelling have been used to characterize the interactions between the NS3 proteinase and its product inhibitors.
Collapse
Affiliation(s)
- R De Francesco
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Pomezia, Italy
| | | | | |
Collapse
|
210
|
Zhang R, Beyer BM, Durkin J, Ingram R, Njoroge FG, Windsor WT, Malcolm BA. A continuous spectrophotometric assay for the hepatitis C virus serine protease. Anal Biochem 1999; 270:268-75. [PMID: 10334844 DOI: 10.1006/abio.1999.4109] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatitis C virus (HCV) encodes a chymotrypsin-like serine protease responsible for the processing of HCV nonstructural proteins and which is a promising target for antiviral intervention. Its relatively low catalytic efficiency has made standard approaches to continuous assay development only modestly successful. In this report, four continuous spectrophotometric substrates suitable for both high-throughput screening and detailed kinetic analysis are described. One of these substrates, Ac-DTEDVVP(Nva)-O-4-phenylazophenyl ester, is hydrolyzed by HCV protease with a second-order rate constant (kcat/Km) of 80,000 +/- 10,000 M-1 s-1. Together with its negligible rate of nonenzymatic hydrolysis under assay conditions (0.01 h-1), analysis of as little as 2 nM protease can be completed in under 10 min.
Collapse
Affiliation(s)
- R Zhang
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Bartenschlager R. The NS3/4A proteinase of the hepatitis C virus: unravelling structure and function of an unusual enzyme and a prime target for antiviral therapy. J Viral Hepat 1999; 6:165-81. [PMID: 10607229 DOI: 10.1046/j.1365-2893.1999.00152.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hepatitis C virus (HCV) is a major causative agent of transfusion-acquired and sporadic non-A, non-B hepatitis worldwide. Infections most often persist and lead, in approximately 50% of all patients, to chronic liver disease. As is characteristic for a member of the family Flaviviridae, HCV has a plus-strand RNA genome encoding a polyprotein, which is cleaved co- and post-translationally into at least 10 different products. These cleavages are mediated, among others, by a virally encoded chymotrypsin-like serine proteinase located in the N-terminal domain of non-structural protein 3 (NS3). Activity of this enzyme requires NS4A, a 54-residue polyprotein cleavage product, to form a stable complex with the NS3 domain. This review will describe the biochemical properties of the NS3/4A proteinase, its X-ray crystal structure and current attempts towards development of efficient inhibitors.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
212
|
Hepatitis C NS3 protease inhibitors. Expert Opin Ther Pat 1999. [DOI: 10.1517/13543776.9.5.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
213
|
Liu Q, Bhat RA, Prince AM, Zhang P. The hepatitis C virus NS2 protein generated by NS2-3 autocleavage is required for NS5A phosphorylation. Biochem Biophys Res Commun 1999; 254:572-7. [PMID: 9920780 DOI: 10.1006/bbrc.1998.9986] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis C virus (HCV) is dependent on NS2-3 autocleavage and NS5A phosphorylation for its life cycle. We demonstrate that NS5A, when released from the NS2-5 polyprotein of the BK virus strain, is phosphorylated as two distinct forms, pp56 and pp58. Deletion analysis indicates that the appearance of pp58 requires NS2 in cis, while pp56 is NS2 independent. Disruption of NS2-3 autoproteolysis by directed mutagenesis results in loss of pp58. Expression of a construct producing NS2-3 is sufficient to restore pp58 in trans. These data indicate that generation of functional NS2 via autocleavage of the NS2-3 precursor and NS5A phosphorylation are consecutive processes, suggesting coordinate regulation during virus propagation in vivo.
Collapse
Affiliation(s)
- Q Liu
- Laboratory of Virology, The Lindsley F. Kimball Research Institute of the New York Blood Center, 310 East 67th Street, New York, New York, 10021, USA
| | | | | | | |
Collapse
|
214
|
Pasquo A, Nardi MC, Dimasi N, Tomei L, Steinkühler C, Delmastro P, Tramontano A, De Francesco R. Rational design and functional expression of a constitutively active single-chain NS4A-NS3 proteinase. FOLDING & DESIGN 1999; 3:433-41. [PMID: 9889156 DOI: 10.1016/s1359-0278(98)00060-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The proteinase domain of the hepatitis C virus NS3 protein is involved in the maturation of the viral polyprotein. A central hydrophobic domain of the NS4A protein is required as a cofactor for its proteolytic activity. The three-dimensional structure of the proteinase domain alone and complexed with an NS4A-derived peptide has been solved recently and revealed that the N terminus of the proteinase is in near proximity to the C terminus of the cofactor. To study the molecular basis of the enzyme activation by its cofactor and to overcome the difficulties of structural and functional investigation associated with a two-species complex, we rationally designed a link to bridge the two molecules in order to have a single polypeptide construct. RESULTS The engineered construct led to the production of a stable, monomeric protein with proteolytic activity that is independent from the addition of a synthetic peptide representing the cofactor domain of the NS4A protein. The protein is active on both protein and synthetic peptide substrates. Spectroscopic and kinetic analysis of the recombinant NS4A-NS3 single-chain proteinase demonstrated features superimposable with the isolated NS3 proteinase domain complexed with the NS4A cofactor. CONCLUSIONS We designed a very tight connection between the NS3 and NS4A polypeptide chains with the rationale that this would allow a more stable structure to be formed. The engineered single-chain enzyme was indistinguishable from the NS3 proteinase complexed with its NS4A cofactor in all enzymatic and physico-chemical properties investigated.
Collapse
Affiliation(s)
- A Pasquo
- Istituto di Ricerche di Biologia Molecolare (IRBM), P. Angeletti, Pomezia (Rome), Italy
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Cerretani M, Di Renzo L, Serafini S, Vitelli A, Gennari N, Bianchi E, Pessi A, Urbani A, Colloca S, De Francesco R, Steinkühler C, Altamura S. A high-throughput radiometric assay for hepatitis C virus NS3 protease. Anal Biochem 1999; 266:192-7. [PMID: 9888975 DOI: 10.1006/abio.1998.2948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel radiometric in vitro assay for discovery of inhibitors of hepatitis C viral protease activity, suitable for high-throughput screening, was developed. The NS3 protein of hepatitis C virus (HCV) contains a serine protease, whose function is to process the majority of the nonstructural proteins of the viral polyprotein. The viral NS4A protein is a cofactor of NS3 protease activity in the cleavage of NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B junctions. To establish an in vitro assay system we used NS3 proteases from different HCV strains, purified from Escherichia coli and a synthetic radiolabeled peptide substrate that mimics the NS4A-NS4B junction. Upon incubation with the enzyme the substrate was separated from the radiolabeled cleavage product by addition of an ion exchange resin. The assay was performed in a microtiter plate format and offered the potential for assaying numerous samples using a laboratory robot. Taking advantage of these features, we used the assay to optimize reaction conditions by simultaneously varying different buffer components. We showed that physicochemical conditions affect NS3 protease activity in a strain-specific way. Furthermore, the sensitivity of the assay makes it suitable for detection and detailed mechanistic characterization of inhibitors with low-nanomolar affinities for the HCV serine protease.
Collapse
Affiliation(s)
- M Cerretani
- Istituto di Ricerche di Biologia Molecolare (IRBM) "P. Angeletti,", Pomezia, Rome, 00040, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Filocamo G, Pacini L, Nardi C, Bartholomew L, Scaturro M, Delmastro P, Tramontano A, De Francesco R, Migliaccio G. Selection of functional variants of the NS3-NS4A protease of hepatitis C virus by using chimeric sindbis viruses. J Virol 1999; 73:561-75. [PMID: 9847361 PMCID: PMC103862 DOI: 10.1128/jvi.73.1.561-575.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NS3-NS4A serine protease of hepatitis C virus (HCV) mediates four specific cleavages of the viral polyprotein and its activity is considered essential for the biogenesis of the HCV replication machinery. Despite extensive biochemical and structural characterization, the analysis of natural variants of this enzyme has been limited by the lack of an efficient replication system for HCV in cultured cells. We have recently described the generation of chimeric HCV-Sindbis viruses whose propagation depends on the NS3-NS4A catalytic activity. NS3-NS4A gene sequences were fused to the gene coding for the Sindbis virus structural polyprotein in such a way that processing of the chimeric polyprotein, nucleocapsid assembly, and production of infectious viruses required NS3-NS4A-mediated proteolysis (G. Filocamo, L. Pacini, and G. Migliaccio, J. Virol. 71:1417-1427, 1997). Here we report the use of these chimeric viruses to select and characterize active variants of the NS3-NS4A protease. Our original chimeric viruses displayed a temperature-sensitive phenotype and formed lysis plaques much smaller than those formed by wild-type (wt) Sindbis virus. By serially passaging these chimeric viruses on BHK cells, we have selected virus variants which formed lysis plaques larger than those produced by their progenitors and produced NS3-NS4A proteins different in size and/or sequence from those of the original viruses. Characterization of the selected protease variants revealed that all of the mutated proteases still efficiently processed the chimeric polyprotein in infected cells and also cleaved an HCV substrate in vitro. One of the selected proteases was expressed in a bacterial system and showed a catalytic efficiency comparable to that of the wt recombinant protease.
Collapse
Affiliation(s)
- G Filocamo
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Dammacco F, Gatti P, Sansonno D. Hepatitis C virus infection, mixed cryoglobulinemia, and non-Hodgkin's lymphoma: an emerging picture. Leuk Lymphoma 1998; 31:463-76. [PMID: 9922037 DOI: 10.3109/10428199809057606] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA agent which expresses its genetic informations in the form of a single, large polyprotein encoded by an open reading frame (ORF) that extends through most of its genomic RNA. Proteolytic cleavage of the ORF product is essential for the virogenesis and the production of viral progeny. HCV is responsible for chronic liver disease, cirrhosis and possibly hepatocellular carcinoma. Viral persistence is considered the greatest problem in the management of HCV infection. It may result from several mechanisms, two of which are established. In the first, the high rate of genetic variations during viral replication results in the production of mutants capable of escaping the immune attack. In the second, the virus infects cells of the immune system itself, which represent a privileged site that cannot be reached by virus-specific T cell response. Involvement of lymphoid cells in the early stages of HCV infection may provide insight into the pathobiologic patterns of extrahepatic dissemination (lymph nodes, major salivary glands, kidneys, blood vessels). Dissemination of HCV-infected lymphoid cells throughout the organism is likely to maintain a mobile and extensive reservoir of the virus. In this respect, extrahepatic sites may act as a source of continuous reinfection of hepatocytes. Studies of intrahepatic B lymphocytes indicate that they are infected with HCV, clonally expanded and activated to secrete IgM molecules with rheumatoid factor activity. This strongly suggests that HCV directly stimulates B cell expansion, which may result in an indolent stage of lymphoproliferation (i.e., mixed cryoglobulinemia) or in frank B cell non-Hodgkin's lymphoma (NHL). The frequency of NHL, however, is much lower than that of HCV infection, suggesting that HCV alone is not able to induce tumors and that cellular events, in addition to the presence of virus and virus-encoded products, are necessary in order to obtain a malignant B cell phenotype. The demonstration of HCV productive infection in bone marrow-recruited and circulating pluripotent hematopoietic CD34+ stem cells indicates that HCV replication occurs in the early differentiation stages of hematopoietic progenitors. These are stable cell populations and are likely to represent the initial site of infection and a continuous source of virus production.
Collapse
Affiliation(s)
- F Dammacco
- Department of Biomedical Sciences, University of Bari Medical School, Italy
| | | | | |
Collapse
|
218
|
Abstract
Currently, there are a number of approved antiviral agents for use in the treatment of viral infections. However, many instances exist in which the use of a second antiviral agent would be beneficial because it would allow the option of either an alternative or a combination therapeutic approach. Accordingly, virus-encoded proteases have emerged as new targets for antiviral intervention. Molecular studies have indicated that viral proteases play a critical role in the life cycle of many viruses by effecting the cleavage of high-molecular-weight viral polyprotein precursors to yield functional products or by catalyzing the processing of the structural proteins necessary for assembly and morphogenesis of virus particles. This review summarizes some of the important general features of virus-encoded proteases and highlights new advances and/or specific challenges that are associated with the research and development of viral protease inhibitors. Specifically, the viral proteases encoded by the herpesvirus, retrovirus, hepatitis C virus, and human rhinovirus families are discussed.
Collapse
Affiliation(s)
- A K Patick
- Agouron Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | |
Collapse
|
219
|
Birkenmeyer LG, Desai SM, Muerhoff AS, Leary TP, Simons JN, Montes CC, Mushahwar IK. Isolation of a GB virus-related genome from a chimpanzee. J Med Virol 1998; 56:44-51. [PMID: 9700632 DOI: 10.1002/(sici)1096-9071(199809)56:1<44::aid-jmv8>3.0.co;2-n] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, two new flaviviruses, GB virus A (GBV-A) and GB virus B (GBV-B), were identified in the plasma of a tamarin infected with the hepatitis GB agent. A third virus, GB virus C (GBV-C), was subsequently identified in humans. In the current study, representational difference analysis (RDA) was used to search for a new virus in the serum of a chimpanzee that developed acute resolving hepatitis following inoculation with a pool of chimpanzee plasma. The plasma pool originated from serial passages of a human sample containing virus-like particles. Numerous cDNA clones were obtained that exhibited 62-80% identity with GBV-C. With the exception of the extreme 5' and 3' ends, the complete viral genome was sequenced, revealing a single large open reading frame encoding a 2833 amino acid polyprotein that contains two envelope proteins, two proteases, a helicase, and an RNA-dependent RNA polymerase. Phylogenetic analysis of the new virus indicates that it is closely related to GBV-C, yet still sufficiently divergent as to be placed in a separate group, tentatively labeled GB virus Ctroglodytes (GBV-Ctro). Numerous human samples were screened by reverse transcriptase-polymerase chain reaction (RT-PCR), but GBV-Ctro sequence was not detected. However, a second chimpanzee inoculated with the same plasma pool was shown to develop a GBV-Ctro infection. Although isolated from an Old World primate with hepatitis, the primary host of GBV-Ctro and any association with disease remains to be determined.
Collapse
Affiliation(s)
- L G Birkenmeyer
- Virus Discovery Group, Experimental Biology Research, Abbott Laboratories, North Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Gallinari P, Brennan D, Nardi C, Brunetti M, Tomei L, Steinkühler C, De Francesco R. Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus. J Virol 1998; 72:6758-69. [PMID: 9658124 PMCID: PMC109884 DOI: 10.1128/jvi.72.8.6758-6769.1998] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) contains at least two domains associated with multiple enzymatic activities; a serine protease activity resides in the N-terminal one-third of the protein, whereas RNA helicase activity and RNA-stimulated nucleoside triphosphatase activity are associated with the C-terminal portion. To study the possible mutual influence of these enzymatic activities, a full-length NS3 polypeptide of 67 kDa was expressed as a nonfusion protein in Escherichia coli, purified to homogeneity, and shown to retain all three enzymatic activities. The protease activity of the full-length NS3 was strongly dependent on the activation by a synthetic peptide spanning the central hydrophobic core of the NS4A cofactor. Once complexed with the NS4A-derived peptide, the full-length NS3 protein and the isolated N-terminal protease domain cleaved synthetic peptide substrates with comparable efficiency. We show that, as in the case of the isolated protease domain, the protease activity of full-length NS3 undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B and NS5A-NS5B. We have also characterized and quantified the NS3 ATPase, RNA helicase, and RNA-binding activities under optimized reaction conditions. Compared with the isolated N-terminal and C-terminal domains, recombinant full-length NS3 did not show significant differences in the three enzymatic activities analyzed in independent in vitro assays. We have further explored the possible interdependence of the NS3 N-terminal and C-terminal domains by analyzing the effect of polynucleotides on the modulation of all NS3 enzymatic functions. Our results demonstrated that the observed inhibition of the NS3 proteolytic activity by single-stranded RNA is mediated by direct interaction with the protease domain rather than with the helicase RNA-binding domain.
Collapse
Affiliation(s)
- P Gallinari
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), 00040 Pomezia (Rome), Italy
| | | | | | | | | | | | | |
Collapse
|
221
|
Chen M, Sällberg M, Sönnerborg A, Jin L, Birkett A, Peterson D, Weiland O, Milich DR. Human and murine antibody recognition is focused on the ATPase/helicase, but not the protease domain of the hepatitis C virus nonstructural 3 protein. Hepatology 1998; 28:219-24. [PMID: 9657115 DOI: 10.1002/hep.510280128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The hepatitis C virus (HCV) nonstructural (NS) 3 protein has been shown to possess at least two enzymatic domains. The amino terminal third contains a serine-protease domain, whereas the carboxy terminal two thirds is comprised of an adenosine triphosphatase (ATPase)/helicase domain. These domains are essential for the maturation of the carboxy-terminal portion of the HCV polyprotein and catalyze the cap synthesis of the RNA genome. In this report, human and murine antibody responses induced by NS3 were characterized using a recombinant full-length NS3 (NS3-FL) protein, or the isolated protease or ATPase/ helicase domains, expressed and purified from Escherichia coli. Sera from 40 patients with chronic HCV infection were assayed in enzyme-linked immunoassays (EIAs) for antibody binding to the panel of NS3 proteins. Virtually all patient sera contained antibodies specific for NS3-FL and the ATPase/helicase domain, whereas only 10% of sera reacted with the protease domain of NS3. Human antibodies reactive with NS3-FL were highly restricted to the immunoglobulin G1 (IgG1) isotype and were inhibited by soluble ATPase/helicase, but not by the protease domain. The anti-NS3 (ATPase/helicase) reactivity decreased on denaturation by sodium dodecyl sulfate (SDS) and beta-mercaptoethanol (2ME), suggesting the recognition of nonlinear or conformational B-cell determinants. Similar to infected humans, mice immunized with NS3-FL developed high-titered primary antibody responses to the NS3 ATPase/ helicase domain, whereas an anti-NS3 protease response was not observed after primary or secondary immunizations. Thus, the human and murine humoral immune responses to the HCV NS3 protein are focused on the ATPase/helicase domain, are restricted to the IgG1 isotype in humans, and are conformationally dependent. Unexpectedly, in both species, the NS3 protease domain, present in the context of the full-length NS3, appears to possess low intrinsic immunogenicity in terms of antibody production.
Collapse
Affiliation(s)
- M Chen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Yamada K, Mori A, Seki M, Kimura J, Yuasa S, Matsuura Y, Miyamura T. Critical point mutations for hepatitis C virus NS3 proteinase. Virology 1998; 246:104-12. [PMID: 9656998 DOI: 10.1006/viro.1998.9184] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus NS3 proteinase plays an essential role in processing of HCV nonstructural precursor polyprotein. To detect its processing activity, we developed a simple trans-cleavage assay. Two recombinant plasmids expressing the NS3 proteinase region and a chimeric substrate polyprotein containing the NS5A/5B cleavage site between maltose binding protein and protein A were co-introduced into Escherichia coli cells. The proteinase processed the substrate at the single site during their polyprotein expression. Deletion analysis indicated that the functionally minimal domain of the NS3 proteinase was composed of 146 amino acids, 1059 to 1204. We isolated several cDNA clones encoding the functional domain of the NS3 proteinase from the sera of patients chronically infected with HCV and determined their proteinase activity by this trans-cleavage assay. Both active and inactive clones existed in the same patients. Comparative sequence analyses of these clones suggested that certain point mutations seemed to be related to the loss of proteolytic activity. This was confirmed by back mutation experiments. Among the critical mutations, Pro-1168 to Thr and Arg-1135 to Gly were intriguing. These amino acids, which are situated near the oxyanion hole, seem to be essential for maintaining the conformation of the active center of the NS3 proteinase.
Collapse
Affiliation(s)
- K Yamada
- Molecular Medicine Laboratory, Yokohama Research Center, Mitsubishi Chemical Corp., Japan
| | | | | | | | | | | | | |
Collapse
|
223
|
Yamashita T, Kaneko S, Shirota Y, Qin W, Nomura T, Kobayashi K, Murakami S. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem 1998; 273:15479-86. [PMID: 9624134 DOI: 10.1074/jbc.273.25.15479] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRP), which is the central catalytic enzyme of HCV replicase. We established a new method to purify soluble HCV NS5B in the glutathione S-transferase-fused form NS5Bt from Escherichia coli which lacks the C-terminal 21 amino acid residues encompassing a putative anchoring domain (anino acids 2990-3010). The recombinant soluble protein exhibited RdRP activity in vitro which was dependent upon the template and primer, but it did not exhibit the terminal transferase activity that has been reported to be associated with the recombinant NS5B protein from insect cells. The RdRP activity of purified glutathione S-transferase-NS5Bt and thrombin-cleavaged non-fused NS5Bt shares most of the properties. Substitution mutations of NS5Bt at the GDD motif, which is highly conserved among viral RdRPs, and at the clustered basic residues (amino acids 2919-2924 and 2693-2699) abolished the RdRP activity. The C-terminal region of NS5B, which is dispensable for the RdRP activity, dramatically affected the subcellular localization of NS5B retaining it in perinuclear sites in transiently overexpressed mammalian cells. These results may provide some clues to dissecting the molecular mechanism of the HCV replication and also act as a basis for developing new anti-viral drugs.
Collapse
Affiliation(s)
- T Yamashita
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
224
|
Seong YR, Lee CH, Im DS. Characterization of the structural proteins of hepatitis C virus expressed by an adenovirus recombinant. Virus Res 1998; 55:177-85. [PMID: 9725670 DOI: 10.1016/s0168-1702(98)00043-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human adenoviruses have been used for mammalian expression vectors and recombinant vaccines for heterologous antigens. We constructed and characterized an infectious adenovirus recombinant containing core-E1-E2 genes of hepatitis C virus (HCV). The core protein was produced mainly during the early phase of viral infection. Expression of HCV E1 and E2 envelope proteins was detected by an immunoprecipitation with HCV-positive patient's sera. The purified E1 and E2 proteins appeared to be composed of mainly a heterodimeric form via noncovalent interaction, as previously observed in other mammalian expression systems. A small portion of E1 and E2 monomers as well as E1E2 aggregates by interdisulfide linkage were detected. Apparently heterodimeric E1E2 complexes were serologically reactive. The results suggest that adenovirus is an useful HCV antigen-expression vector.
Collapse
Affiliation(s)
- Y R Seong
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Taejeon, South Korea
| | | | | |
Collapse
|
225
|
Kümmerer BM, Stoll D, Meyers G. Bovine viral diarrhea virus strain Oregon: a novel mechanism for processing of NS2-3 based on point mutations. J Virol 1998; 72:4127-38. [PMID: 9557702 PMCID: PMC109642 DOI: 10.1128/jvi.72.5.4127-4138.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) isolates can either be cytopathogenic (cp) or noncytopathogenic (noncp). While both biotypes express the nonstructural protein NS2-3, generation of NS3 strictly correlates with the cp phenotype. The production of NS3 is usually caused by cp specific genome alterations, which were found to be due to RNA recombination. Molecular analyses of the cp BVDV strain Oregon revealed that it does not possess such genome alterations but nevertheless is able to generate NS3 via processing of NS2-3. The NS3 serine protease is not involved in this cleavage, which, according to protein sequencing, occurs between amino acids 1589 and 1590 of the BVDV Oregon polyprotein. Transient-expression studies indicated that important information for the cleavage of NS2-3 is located within NS2. This was verified by expression of chimeric constructs containing cDNA fragments derived from BVDV Oregon and a noncp BVDV. It could be shown that the C-terminal part of NS2 plays a crucial role in NS2-3 cleavage. These data, together with results obtained by site-specific exchanges in this region, revealed a new mechanism for NS2-3 processing which is based on point mutations within NS2.
Collapse
Affiliation(s)
- B M Kümmerer
- Department of Clinical Virology, Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany
| | | | | |
Collapse
|
226
|
Cho YG, Yang SH, Sung YC. In vivo assay for hepatitis C viral serine protease activity using a secreted protein. J Virol Methods 1998; 72:109-15. [PMID: 9672138 DOI: 10.1016/s0166-0934(98)00010-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatitis C virus (HCV) is a major pathogen of community-acquired and post-transfusional non-A, non-B hepatitis. Since an in vitro replication system is not available, it is crucial to develop an efficient and sensitive assay system for screening inhibitors of HCV. The fact that the activity of HCV NS3 protease is responsible for the maturation of the nonstructural proteins and viral replication, suggests that NS3 protease is a suitable target for anti-HCV drug development. To devise an assay system in cell culture, we constructed NS3/4A-SEAP (secreted alkaline phosphatase) chimeric gene, in which the SEAP gene was fused in-frame to downstream of NS4A/4B cleavage site. In this system, the SEAP would be secreted into the extracellular media depending on the cleavage activity of the NS3 protease. Our results demonstrate that the NS3/4A-SEAP expression vector encoding wild type NS3 protease, but not mutant NS3 protease, could produce high SEAP activity in the media of both transfected cells and stable expression cell lines. Since the activity of SEAP in the culture media can be monitored quantitatively and continuously by the chemiluminescent method, this assay system will be useful for screening potential inhibitors of HCV protease.
Collapse
Affiliation(s)
- Y G Cho
- Department of Life Science, Center for Biofunctional Molecules, School of Environmental Engineering, Pohang University of Science and Technology, Kyungbuk, South Korea
| | | | | |
Collapse
|
227
|
Bassett SE, Brasky KM, Lanford RE. Analysis of hepatitis C virus-inoculated chimpanzees reveals unexpected clinical profiles. J Virol 1998; 72:2589-99. [PMID: 9525575 PMCID: PMC109692 DOI: 10.1128/jvi.72.4.2589-2599.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1997] [Accepted: 12/22/1997] [Indexed: 02/06/2023] Open
Abstract
The clinical course of hepatitis C virus (HCV) infections in a chimpanzee cohort was examined to better characterize the outcome of this valuable animal model. Results of a cross-sectional study revealed that a low percentage (39%) of HCV-inoculated chimpanzees were viremic based on reverse transcription (RT-PCR) analysis. A correlation was observed between viremia and the presence of anti-HCV antibodies. The pattern of antibodies was dissimilar among viremic chimpanzees and chimpanzees that cleared the virus. Viremic chimpanzees had a higher prevalence of antibody reactivity to NS3, NS4, and NS5. Since an unexpectedly low percentage of chimpanzees were persistently infected with HCV, a longitudinal analysis of the virological profile of a small panel of HCV-infected chimpanzees was performed to determine the kinetics of viral clearance and loss of antibody. This study also revealed that a low percentage (33%) of HCV-inoculated chimpanzees were persistently viremic. Analysis of serial bleeds from six HCV-infected animals revealed four different clinical profiles. Viral clearance with either gradual or rapid loss of anti-HCV antibody was observed in four animals within 5 months postinoculation. A chronic-carrier profile characterized by persistent HCV RNA and anti-HCV antibody was observed in two animals. One of these chimpanzees was RT-PCR positive, antibody negative for 5 years and thus represented a silent carrier. If extrapolated to the human population, these data would imply that a significant percentage of unrecognized HCV infections may occur and that silent carriers may represent potentially infectious blood donors.
Collapse
Affiliation(s)
- S E Bassett
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| | | | | |
Collapse
|
228
|
De Francesco R, Pessi A, Steinkühler C. The Hepatitis C Virus NS3 Proteinase: Structure and Function of a Zinc-Containing Serine Proteinase. Antivir Ther 1998. [DOI: 10.1177/135965359800303s01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hepatitis C virus (HCV) NS3 protein contains a serine proteinase domain implicated in the maturation of the viral polyprotein. NS3 forms a stable heterodimer with NS4A, a viral memebrane protein that acts as an activator of the IMS3 proteinase. The three-dimensional structure of the NS3 proteinase complexed with an NS4A-derived peptide has been determined. The NS3 proteinase adopts a chymotrypsin-like fold. A β-strand contributed by NS4A is clamped between two β-strands within the N terminus of NS3. Consistent with the requirement for extraordinarily long peptide substrates (P6-P4’), the structure of the NS3 proteinase reveals a very long, solvent-exposed substrate-binding site. The primary specificity pocket of the enzyme is shallow and closed at its bottm by Phe-154, explaining the preference of the NS3 proteinase for cysteine residues in the substrate P, position. Another important feature of the NS3 proteinase is the presence of a tetrahedral zinc-binding site formed by residues Cys-97, Cys-99, Cys-145 and His-149. The zinc-binding site has a role in maintaining the structural stability and guiding the folding of the NS3 serine proteinase domain. Inhibition of the NS3 proteinase activity is regarded as a promising strategy to control the disease caused by HCV. Remarkably, the NS3 proteinase is susceptible to inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A/NS4B, NS4B/NS5A and NS5A/NS5B cleavage sites. The Ki values of the inhibitory products are lower than the Km values of the respective substrates and follow the order NS4A<NS5A<NS4B. Starting from the observation that the NS3 proteinase undergoes product inhibition, very potent, active site-directed inhibitors have been generated using a combinatorial peptide chemistry approach.
Collapse
Affiliation(s)
| | - Antonello Pessi
- Istituto di Ricerche di Biologia Molecolare ‘P Angeletti’, Pomezia, Rome, Italy
| | | |
Collapse
|
229
|
Behrens SE, Grassmann CW, Thiel HJ, Meyers G, Tautz N. Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol 1998; 72:2364-72. [PMID: 9499097 PMCID: PMC109536 DOI: 10.1128/jvi.72.3.2364-2372.1998] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As an initial approach to define the requirements for the replication of bovine viral diarrhea virus (BVDV), a member of the Flaviviridae family with a positive-strand RNA genome, full-length genomic and subgenomic RNAs were originated by in vitro transcription of diverse BVDV cDNA constructs and transfected into eucaryotic host cells. RNA replication was measured either directly by an RNase protection method or by monitoring the synthesis of viral protein. When full-length BVDV cRNA was initially applied, the synthesis of negative-strand RNA intermediates as well as progeny positive-strand RNA was detected posttransfection in the cytoplasm of the host cells. Compared to the negative-strand RNA intermediate, an excess of positive-strand RNA was synthesized. Surprisingly, a subgenomic RNA molecule, DI9c, corresponding to a previously characterized defective interfering particle, was found to support both steps of RNA replication in the absence of a helper virus as well, thus functioning as an autonomous replicon. DI9c comprises the 5' and 3' untranslated regions of the BVDV genome and the coding regions of the autoprotease Npro and the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. Most interestingly, the NS2 polypeptide was thus determined to be nonessential for RNA replication. As expected, deletion of the genomic 3' end as well as abolition of the catalytic function of the virus-encoded serine protease resulted in DI9c molecules that were unable to replicate. Deletion of the entire Npro gene also destroyed the ability of DI9c molecules to replicate. On the other hand, DI9c derivatives in which the 5' third of the Npro gene was fused to a ubiquitin gene, allowing the proteolytic release of NS3 in trans, turned out to be replication competent. These results suggest that the RNA sequence located at the 5' end of the open reading frame exerts an essential role during BVDV replication. Replication of DI9c and DI9c derivatives was found not to be limited to host cells of bovine origin, indicating that cellular factors functioning as potential parts of the viral replication machinery are well conserved between different mammalian cells. Our data provide an important step toward the ready identification and characterization of viral factors and genomic elements involved in the life cycle of pestiviruses. The implications for other Flaviviridae and, in particular, the BVDV-related human hepatitis C virus are discussed.
Collapse
Affiliation(s)
- S E Behrens
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, Germany.
| | | | | | | | | |
Collapse
|
230
|
Wu Z, Yao N, Le HV, Weber PC. Mechanism of autoproteolysis at the NS2-NS3 junction of the hepatitis C virus polyprotein. Trends Biochem Sci 1998; 23:92-4. [PMID: 9581498 DOI: 10.1016/s0968-0004(98)01180-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Z Wu
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | | | |
Collapse
|
231
|
Belyaev AS, Chong S, Novikov A, Kongpachith A, Masiarz FR, Lim M, Kim JP. Hepatitis G virus encodes protease activities which can effect processing of the virus putative nonstructural proteins. J Virol 1998; 72:868-72. [PMID: 9420302 PMCID: PMC109451 DOI: 10.1128/jvi.72.1.868-872.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1997] [Accepted: 09/20/1997] [Indexed: 02/05/2023] Open
Abstract
The genome of a recently identified virus, hepatitis G virus (HGV), shows considerable homology to hepatitis C virus (HCV). Two HGV proteases similar to nonstructural proteins NS2 and NS3 of HCV were identified, and their cleavage site specificity was investigated. Amino acids essential for the protease activities were determined by mutation analysis. NS4A of HGV was demonstrated to be a cofactor for NS3-mediated proteolysis, with a region critical for activity residing between Leu1561, and Ala1598.
Collapse
Affiliation(s)
- A S Belyaev
- Genelabs Technologies, Inc., Redwood City, California 94063, USA.
| | | | | | | | | | | | | |
Collapse
|
232
|
Ide Y, Tanimoto A, Sasaguri Y, Padmanabhan R. Hepatitis C virus NS5A protein is phosphorylated in vitro by a stably bound protein kinase from HeLa cells and by cAMP-dependent protein kinase A-alpha catalytic subunit. Gene 1997; 201:151-8. [PMID: 9409782 DOI: 10.1016/s0378-1119(97)00440-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) has a positive-strand RNA genome that codes for a polyprotein precursor, which is processed co- and post-translationally by cellular and viral proteinases into three structural and at least six non-structural (NS) proteins. The NS5A protein, expressed in mammalian cells, exists in two phosphorylated forms of 56-kDa and 58-kDa. In this study, we provide evidence for a stable association between NS5A and a protein kinase from HeLa cells and hepatocellular carcinoma (HepG2) cells by co-immunoprecipitation and by affinity to immobilized glutathione-S-transferase (GST)-NS5A fusion protein produced in E. coli. This protein kinase could phosphorylate in vitro the native NS5A on serine residues, (GST)-NS5A, histone H1, and casein as substrates. In addition, the GST-NS5A was also phosphorylated in vitro by the cAMP-dependent protein kinase A-alpha catalytic subunit.
Collapse
Affiliation(s)
- Y Ide
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160-7421, USA
| | | | | | | |
Collapse
|
233
|
Abstract
Advances in molecular biology techniques have allowed the cloning of HCV and the characterization of this virus. This article provides a short summary of our current knowledge on the genomic organization of HCV, the implications of its genetic heterogeneous nature, and the probable replication strategy of this virus.
Collapse
Affiliation(s)
- J W Fang
- Department of Medicine, University of Florida Health Science Center, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
234
|
Koch JO, Bartenschlager R. Determinants of substrate specificity in the NS3 serine proteinase of the hepatitis C virus. Virology 1997; 237:78-88. [PMID: 9344909 DOI: 10.1006/viro.1997.8760] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Processing of the nonstructural polyprotein of the hepatitis C virus (HCV) requires the serine-type proteinase located in the amino-terminal domain of NS3. To identify residues within NS3 determining substrate specificity, a mutation analysis was performed. Using sequence alignments and three-dimensional structure predictions, amino acids assumed to be important for specificity were replaced and the enzymes were tested in an intracellular trans-processing assay for their effects on cleavage of an NS4B-5B substrate. For some of the substitutions at positions 133, 134, 135, 136, 138, 152, 155, 157, and 169, slightly reduced processing efficiencies were observed but in no case was the substrate specificity altered. In contrast, substitutions of the phenylalanine at position 154 resulted in a modified cleavage pattern, suggesting an important role for this residue in substrate specificity. To substantiate this assumption, a panel of NS4B-5B substrates carrying different P1 residues at the NS4B/5A site were tested for cleavage by these altered proteinases. We found that substitution of Phe-154 by alanine, by valine, and particularly by threonine generated enzymes with the following affinities for aliphatic P1 residues: C > L > I > V for 154 F --> A, C = L > I > V for 154 F --> V and L > C > I > V for 154 F --> T. Neither leucine nor isoleucine nor valine was accepted by the parental NS3 proteinase, showing that Phe-154 is an important determinant for substrate specificity. Furthermore, we present evidence that Ala-157 plays an additional but minor role for this property.
Collapse
Affiliation(s)
- J O Koch
- Institute for Virology, Johannes-Gutenberg University, Obere Zahlbacher Strasse 67, Mainz, 55101, Germany
| | | |
Collapse
|
235
|
Sudo K, Matsumoto Y, Matsushima M, Fujiwara M, Konno K, Shimotohno K, Shigeta S, Yokota T. Novel hepatitis C virus protease inhibitors: thiazolidine derivatives. Biochem Biophys Res Commun 1997; 238:643-7. [PMID: 9299567 DOI: 10.1006/bbrc.1997.7358] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study evaluated the inhibitory effects of thiazolidine derivatives on hepatitis C virus (HCV) protease and other human serine proteases. The inhibition efficacy was tested with a reversed-phase high-performance liquid chromatography (HPLC) assay system using a NS3-NS4A fusion protein as the HCV protease and a synthetic peptide substrate that mimics the NS5A-5B junction. Nine thiazolidine derivatives showed more than 50% inhibition at 50 microg/ml. The most potent derivative was RD4-6250, with 50% inhibition at a concentration of 2.3 microg/ml; this concentration was lower than those of other protease inhibitors reported previously. The most selective derivative was RD4-6205, with 50% inhibition at a concentration of 6.4 microg/ml, a lower concentration than those on other serine proteases (chymotrypsin, trypsin, plasmin, and elastase). These results suggest that the RD4-6205 skeleton is an important structure for inhibitory activity on the HCV protease NS3-NS4A.
Collapse
Affiliation(s)
- K Sudo
- Rational Drug Design Laboratories, 4-1-1, Misato, Fukushima, Matsukawa-Machi, 960-12, Japan
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Pieroni L, Santolini E, Fipaldini C, Pacini L, Migliaccio G, La Monica N. In vitro study of the NS2-3 protease of hepatitis C virus. J Virol 1997; 71:6373-80. [PMID: 9261354 PMCID: PMC191910 DOI: 10.1128/jvi.71.9.6373-6380.1997] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Processing at the C terminus of the NS2 protein of hepatitis C virus (HCV) is mediated by a virus-encoded protease which spans most of the NS2 protein and part of the NS3 polypeptide. In vitro cotranslational cleavage at the 2-3 junction is stimulated by the presence of microsomal membranes and ultimately results in the membrane insertion of the NS2 polypeptide. To characterize the biochemical properties of this viral protease, we have established an in vitro assay whereby the NS2-3 protease of HCV BK can be activated posttranslationally by the addition of detergents. The cleavage proficiency of several deletion and single point mutants was the same as that observed with microsomal membranes, indicating that the overall sequence requirements for proper cleavage at this site are maintained even under these artificial conditions. The processing efficiency of the NS2-3 protease varied according to the type of detergent used and its concentration. Also, the incubation temperature affected the cleavage at the 2-3 junction. The autoproteolytic activity of the NS2-3 protease could be inhibited by alkylating agents such as iodoacetamide and N-ethylmaleimide. Metal chelators such as EDTA and phenanthroline also inhibited the viral enzyme. The EDTA inhibition of NS2-3 cleavage could be reversed, at least in part, by the addition of ZnCl2 and CdCl2. Among the common protease inhibitors tested, tosyl phenylalanyl chloromethyl ketone and soybean trypsin inhibitor inactivated the NS2-3 protease. By means of gel filtration analysis, it was observed that the redox state of the reaction mixture greatly influenced the processing efficiency at the 2-3 site and that factors present in the rabbit reticulocyte lysate, wheat germ extract, and HeLa cell extract were required for efficient processing at this site. Thus, the in vitro assay should allow further characterization of the biochemical properties of the NS2-3 protease of HCV and the identification of host components that contribute to the efficient processing at the 2-3 junction.
Collapse
Affiliation(s)
- L Pieroni
- I.R.B.M. Instituto di Ricerche di Biologia Molecolare P. Angeletti, Italy
| | | | | | | | | | | |
Collapse
|
237
|
Lin C, Wu JW, Hsiao K, Su MS. The hepatitis C virus NS4A protein: interactions with the NS4B and NS5A proteins. J Virol 1997; 71:6465-71. [PMID: 9261364 PMCID: PMC191920 DOI: 10.1128/jvi.71.9.6465-6471.1997] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus encodes a large polyprotein precursor that is proteolytically processed into at least 10 distinct products, in the order NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. A serine proteinase encoded in the N-terminal 181 residues of the NS3 nonstructural protein is responsible for cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the nonstructural region. NS4A, a 54-residue nonstructural protein which forms a stable complex with the NS3 proteinase, is required as a cofactor for cleavage at the 3/4A and 4B/5A sites and enhances processing at the 4A/4B and 5A/5B sites. Recently reported crystal structures demonstrated that NS4A forms an integral part of the NS3 serine proteinase. In this report, we present evidence that NS4A forms a nonionic-detergent-stable complex with the NS4B5A polyprotein substrate, which may explain the requirement of NS4A for the 4B/5A cleavage. Isoleucine-29 of NS4A, which has been previously shown to be essential for its proteinase cofactor activity and formation of the NS3 complex, was found to be important for the interaction between NS4A and the NS4B5A substrate. In addition, two more hydrophobic residues in the NS4A central region (valine-23 and isoleucine-25) were also shown to be essential for the cofactor activity and for the interaction with either the NS3 proteinase or the NS4B5A polyprotein substrate. Finally, the possible mechanisms by which these viral proteins interact with each other are discussed.
Collapse
Affiliation(s)
- C Lin
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139-4242, USA.
| | | | | | | |
Collapse
|
238
|
Zhang R, Durkin J, Windsor WT, McNemar C, Ramanathan L, Le HV. Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. J Virol 1997; 71:6208-13. [PMID: 9223519 PMCID: PMC191885 DOI: 10.1128/jvi.71.8.6208-6213.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We probed the substrate specificity of a recombinant noncovalent complex of the full-length hepatitis C virus (HCV) NS3 serine protease and NS4A cofactor, using a series of small synthetic peptides derived from the three trans-cleavage sites of the HCV nonstructural protein sequence. We observed a distinct cleavage site preference exhibited by the enzyme complex. The values of the turnover number (k(cat)) for the most efficient NS4A/4B, 4B/5A, and 5A/5B peptide substrates were 1.6, 11, and 8 min(-1), respectively, and the values for the corresponding Michaelis-Menten constants (Km) were 280, 160, and 16 microM, providing catalytic efficiency values (k(cat)/Km) of 92, 1,130, and 8,300 M(-1) s(-1). An alanine-scanning study for an NS5A/5B substrate (P6P4') revealed that P1 Cys and P3 Val were critical. Finally, substitutions at the scissile P1 Cys residue by homocysteine (Hcy), S-methylcysteine (Mcy), Ala, S-ethylcysteine (Ecy), Thr, Met, D-Cys, Ser, and penicillamine (Pen) produced progressively less efficient substrates, revealing a stringent stereochemical requirement for a Cys residue at this position.
Collapse
Affiliation(s)
- R Zhang
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | |
Collapse
|
239
|
Xu J, Mendez E, Caron PR, Lin C, Murcko MA, Collett MS, Rice CM. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol 1997; 71:5312-22. [PMID: 9188600 PMCID: PMC191768 DOI: 10.1128/jvi.71.7.5312-5322.1997] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication.
Collapse
Affiliation(s)
- J Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Muramatsu S, Ishido S, Fujita T, Itoh M, Hotta H. Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization. J Virol 1997; 71:4954-61. [PMID: 9188558 PMCID: PMC191726 DOI: 10.1128/jvi.71.7.4954-4961.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Subcellular localization of the NS2 and NS3 proteins of hepatitis C virus was analyzed. In stable Ltk transfectants inducibly expressing an NS2-NS3 polyprotein (amino acids [aa] 810 to 1463), processed full-size NS2 (aa 810 to 1026) was detected exclusively in a cytoplasmic membrane fraction. On the other hand, the other processed product, carboxy-truncated NS3 (NS3 deltaC1463; aa 1027 to 1463), was present in both cytoplasmic and nuclear fractions. To further analyze subcellular localization of NS3, NS3 deltaC1459 (aa 1027 to 1459), full-size NS3 (NS3F; aa 1027 to 1657), and both amino- and carboxy-truncated NS3 (NS3 deltaNdeltaC; aa 1201 to 1459) were expressed in HeLa cells by using a vaccinia virus-T7 hybrid expression system. NS3 deltaC1459 and NS3F accumulated in the nucleus as well as in the cytoplasm, exhibiting a dot-like staining pattern. On the other hand, NS3 deltaNdeltaC was localized predominantly in the cytoplasm, suggesting the presence of a nuclear localization signal(s) in the amino-terminal sequence of NS3. NS4A, a viral cofactor for the NS3 protease, inhibited nuclear transport of NS3 deltaC1459 and NS3F, with the latter inhibited to a lesser extent than was the former. Interestingly, wild-type p53 tumor suppressor augmented nuclear localization of NS3 deltaC1459 and NS3F, whereas mutant-type p53 inhibited nuclear localization and augmented cytoplasmic localization of NS3 deltaC1459. However, subcellular localization of NS3 deltaNdeltaC was not affected by either type of p53. Wild-type p53-mediated nuclear accumulation of NS3 deltaC1459 and NS3F was inhibited partially, but not completely, by coexpressed NS4A, with NS3F again affected less prominently than was NS3 deltaC1459.
Collapse
Affiliation(s)
- S Muramatsu
- Department of Microbiology, Kobe University School of Medicine, Hyogo, Japan
| | | | | | | | | |
Collapse
|
241
|
Morgenstern KA, Landro JA, Hsiao K, Lin C, Gu Y, Su MS, Thomson JA. Polynucleotide modulation of the protease, nucleoside triphosphatase, and helicase activities of a hepatitis C virus NS3-NS4A complex isolated from transfected COS cells. J Virol 1997; 71:3767-75. [PMID: 9094652 PMCID: PMC191527 DOI: 10.1128/jvi.71.5.3767-3775.1997] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) is a 70-kDa multifunctional enzyme with three known catalytic activities segregated in two somewhat independent domains. The essential machinery of a serine protease is localized in the N-terminal one-third of the protein, and nucleoside triphosphatase (NTPase) and helicase activities reside in the remaining C-terminal region. NS4A is a 54-residue protein expressed immediately downstream of NS3 in the viral polyprotein, and a central stretch of hydrophobic residues in NS4A form an integral structural component of the NS3 serine protease domain. There is no evidence to suggest that the two domains of NS3 are separated by proteolytic processing in vivo. This may reflect economical packaging of essential viral replicative components, but it could also mean that there is functional interdependence between the two domains. In this study, a full-length NS3-NS4A complex was isolated after expression and autoprocessing in transiently transfected COS cells. The protein was used to examine the effects of polynucleotides on the NTPase, helicase, and protease activities. Unlike the previously reported behavior of a separately expressed NS3 helicase domain, the full NS3-NS4A complex demonstrated optimal NTPase activity between pH 7.5 and 8.5. All three NS3-NS4A activities were modulated by polynucleotides, with poly(U) having the most remarkable effect. These findings suggest that the domains within NS3 may influence the activity of one another and that the interplay of HCV genomic elements may regulate the enzyme activities of this complex HCV replicase component.
Collapse
Affiliation(s)
- K A Morgenstern
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139-4242, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Stempniak M, Hostomska Z, Nodes BR, Hostomsky Z. The NS3 proteinase domain of hepatitis C virus is a zinc-containing enzyme. J Virol 1997; 71:2881-6. [PMID: 9060645 PMCID: PMC191414 DOI: 10.1128/jvi.71.4.2881-2886.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NS3 proteinase of hepatitis C virus (HCV), contained within the N-terminal domain of the NS3 protein, is a chymotrypsin-like serine proteinase responsible for processing of the nonstructural region of the HCV polyprotein. In this study, we examined the sensitivity of the NS3 proteinase to divalent metal ions, which is unusual behavior for this proteinase class. By using a cell-free coupled transcription-translation system, we found that HCV polyprotein processing can be activated by Zn2+ (and, to a lesser degree, by Cd2+, Pb2+, and Co2+) and inhibited by Cu2+ and Hg2+ ions. Elemental analysis of the purified NS3 proteinase domain revealed the presence of zinc in an equimolar ratio. The zinc content was unchanged in a mutated NS3 proteinase in which active-site residues His-57 and Ser-139 were replaced with Ala, suggesting that the zinc atom is not directly involved in catalysis but rather may have a structural role. Based on data from site-directed mutagenesis combined with zinc content determination, we propose that Cys-97, Cys-99, Cys-145, and His-149 coordinate the structural zinc in the HCV NS3 proteinase. A similar metal binding motif is found in 2A proteinases of enteroviruses and rhinoviruses, suggesting that these 2A proteinases and HCV NS3 proteinase are structurally related.
Collapse
Affiliation(s)
- M Stempniak
- Agouron Pharmaceuticals, Inc., San Diego, California 92121, USA
| | | | | | | |
Collapse
|
243
|
Mori A, Yuasa S, Yamada K, Nagami Y, Miyamura T. The N-terminal region of NS3 serine proteinase of hepatitis C virus is important to maintain its enzymatic integrity. Biochem Biophys Res Commun 1997; 231:738-42. [PMID: 9070884 DOI: 10.1006/bbrc.1997.6180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus codes a serine proteinase in nonstructural protein 3 (NS3) to produce viral replicative machinery. Recently, we reported that the activity of NS3 proteinase (region 1050-1214) was efficiently inhibited by some chelators. Kinetic analysis revealed that its K(m) value was 3.9 mM. In contrast, an enzyme covering region 1027-1214 (including N-terminal region of NS3) was found to show an improved K(m) of 0.3 mM and a remarkably reduced susceptibility to EDTA. These results suggest that the N-terminal region of NS3 is not essential for the proteinase activity but indispensable to maintain its structural integrity.
Collapse
Affiliation(s)
- A Mori
- Molecular Medicine, Laboratory, Yokohama Research Center, Mitsubishi Chemical Corp, Japan
| | | | | | | | | |
Collapse
|
244
|
Filocamo G, Pacini L, Migliaccio G. Chimeric Sindbis viruses dependent on the NS3 protease of hepatitis C virus. J Virol 1997; 71:1417-27. [PMID: 8995667 PMCID: PMC191198 DOI: 10.1128/jvi.71.2.1417-1427.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hepatitis C virus (HCV) NS3 protease cleaves the viral polyprotein at specific sites to release the putative components of the HCV replication machinery. Selective inhibition of this enzyme is predicted to block virus replication, and NS3 is thus considered an attractive candidate for development of anti-HCV therapeutics. To set up a system for analysis of NS3 protease activity in cultured cells, we constructed a family of chimeric Sindbis viruses which carry sequences coding for NS3 and its activator, NS4A, in their genomes. HCV sequences were fused to the gene coding for the Sindbis virus structural polyprotein via an NS3-specific cleavage site, with the expectation that processing of the chimeric polyprotein, nucleocapsid assembly, and generation of viable viral particles would occur only upon NS3-dependent proteolysis. Indeed, the chimeric genomes encoding an active NS3 protease produced infectious viruses in mammalian cells, while those encoding NS3 inactivated by alanine substitution of the catalytic serine did not. However, in infected cells chimeric genomes recombined, splicing out HCV sequences and reverting to pseudo-wild-type Sindbis virus. To force retention of HCV sequences, we modified one of the initial chimeras by introducing a second NS3 cleavage site in the Sindbis virus portion of the recombinant polyprotein, anticipating that revertants not encoding an active NS3 protease would not be viable. The resulting chimera produced infectious viruses which replicated at a lower rate than the parental construct and displayed a marked temperature dependence in the formation of lysis plaques yet stably expressed NS3.
Collapse
Affiliation(s)
- G Filocamo
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, (Rome), Italy
| | | | | |
Collapse
|
245
|
|
246
|
Liu Q, Tackney C, Bhat RA, Prince AM, Zhang P. Regulated processing of hepatitis C virus core protein is linked to subcellular localization. J Virol 1997; 71:657-62. [PMID: 8985397 PMCID: PMC191098 DOI: 10.1128/jvi.71.1.657-662.1997] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Posttranslational processing and subcellular localization of the HCV core protein are critical steps involved in the assembly of hepatitis C virus (HCV). In this study, both of these events were investigated by in vitro translation and transient COS-1 cell transfection of core protein expression constructs. Mutations at amino acid residues 173 to 174 and 191 to 192 disrupted processing events at the two putative cleavage sites in the C-terminal hydrophobic region of the core protein, indicating that these residues are implicated in the pathway of core protein maturation. As a result, two forms of core protein, C173 and C191, were detected by immunoblotting. Indirect immunofluorescence experiments showed that core proteins C173 and C191, when produced from HCV full-length protein or various polyprotein precursors, displayed a cytoplasmic localization. The C173 species, however, was translocated to the nucleus when expressed in the absence of C191. These findings indicate that preferential cleavage may occur during core protein maturation and that the association of the C191 with the C173 species may contribute to the distinct subcellular distribution of core protein. This may provide a possible mechanism for the control of the diverse biological functions of core protein during HCV replication and assembly.
Collapse
Affiliation(s)
- Q Liu
- Laboratory of Virology and Parasitology, The Lindsley F. Kimball Research Institute of the New York Blood Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
247
|
Deleersnyder V, Pillez A, Wychowski C, Blight K, Xu J, Hahn YS, Rice CM, Dubuisson J. Formation of native hepatitis C virus glycoprotein complexes. J Virol 1997; 71:697-704. [PMID: 8985401 PMCID: PMC191102 DOI: 10.1128/jvi.71.1.697-704.1997] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hepatitis C virus (HCV) glycoproteins (E1 and E2) interact to form a heterodimeric complex, which has been proposed as a functional subunit of the HCV virion envelope. As examined in cell culture transient-expression assays, the formation of properly folded, noncovalently associated E1E2 complexes is a slow and inefficient process. Due to lack of appropriate immunological reagents, it has been difficult to distinguish between glycoprotein molecules that undergo productive folding and assembly from those which follow a nonproductive pathway leading to misfolding and aggregation. Here we report the isolation and characterization of a conformation-sensitive E2-reactive monoclonal antibody (H2). The H2 monoclonal antibody selectively recognizes slowly maturing E1E2 heterodimers which are noncovalently linked, protease resistant, and no longer associated with the endoplasmic reticulum chaperone calnexin. This complex probably represents the native prebudding form of the HCV glycoprotein heterodimer. Besides providing a novel reagent for basic studies on HCV virion assembly and entry, this monoclonal antibody should be useful for optimizing production and isolation of native HCV glycoprotein complexes for serodiagnostic and vaccine applications.
Collapse
Affiliation(s)
- V Deleersnyder
- Unité d'oncologie moléculaire, CNRS-URA1160, Institut Pasteur de Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Tautz N, Meyers G, Stark R, Dubovi EJ, Thiel HJ. Cytopathogenicity of a pestivirus correlates with a 27-nucleotide insertion. J Virol 1996; 70:7851-8. [PMID: 8892907 PMCID: PMC190856 DOI: 10.1128/jvi.70.11.7851-7858.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strains are generated in cattle persistently infected with noncytopathogenic (noncp) BVDV.cp BVDV strains are considered crucial for the development of fatal mucosal disease. Comparative analysis of cp and noncp BVDV strains isolated from one animal suffering from mucosal disease revealed that the genomes of the cp BVDV strain (CP7) and the corresponding noncp BVDV strain (NCP7) are highly homologous. However, only the genome of CP7 contains an insertion of 27 nucleotides in the NS2 coding region. The inserted sequence represents a duplication of bases 4064 to 4090 of the viral genome, located between the formerly neighboring nucleotides 4353 and 4354. Parts of the viral polyproteins of CP7 and NCP7 were expressed in the T7 vaccinia virus system. These studies revealed that the insertion identified in the CP7 genome is necessary and sufficient for the induction of NS2-3 cleavage. Since the expression of NS3 is strictly correlated to cp BVDV, the insertion identified in the genome of BVDV CP7 represents most likely the relevant mutation leading to the evolvement of CP7 from NCP7.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cattle
- Cell Line
- Cloning, Molecular
- Cricetinae
- Cytopathogenic Effect, Viral
- DNA, Complementary
- DNA, Viral
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/metabolism
- Diarrhea Viruses, Bovine Viral/pathogenicity
- Molecular Sequence Data
- Mutagenesis, Insertional
- Protein Processing, Post-Translational
- Sequence Analysis, DNA
- Serine Endopeptidases/metabolism
- Structure-Activity Relationship
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- N Tautz
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | |
Collapse
|
249
|
Kim JL, Morgenstern KA, Lin C, Fox T, Dwyer MD, Landro JA, Chambers SP, Markland W, Lepre CA, O'Malley ET, Harbeson SL, Rice CM, Murcko MA, Caron PR, Thomson JA. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 1996; 87:343-55. [PMID: 8861917 DOI: 10.1016/s0092-8674(00)81351-3] [Citation(s) in RCA: 507] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An estimated 1% of the global human population is infected by hepatitis C viruses (HCVs), and there are no broadly effective treatments for the debilitating progression of chronic hepatitis C. A serine protease located within the HCV NS3 protein processes the viral polyprotein at four specific sites and is considered essential for replication. Thus, it emerges as an attractive target for drug design. We report here the 2.5 angstrom resolution X-ray crystal structure of the NS3 protease domain complexed with a synthetic NS4A activator peptide. The protease has a chymotrypsin-like fold and features a tetrahedrally coordinated metal ion distal to the active site. The NS4A peptide intercalates within a beta sheet of the enzyme core.
Collapse
Affiliation(s)
- J L Kim
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139-4242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Steinkühler C, Urbani A, Tomei L, Biasiol G, Sardana M, Bianchi E, Pessi A, De Francesco R. Activity of purified hepatitis C virus protease NS3 on peptide substrates. J Virol 1996; 70:6694-700. [PMID: 8794305 PMCID: PMC190711 DOI: 10.1128/jvi.70.10.6694-6700.1996] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation.
Collapse
Affiliation(s)
- C Steinkühler
- Istituto di Ricerche di Biologia Molecolare "P. Angeletti" Pomezia, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|