201
|
Hoang AT, Lutterbach B, Lewis BC, Yano T, Chou TY, Barrett JF, Raffeld M, Hann SR, Dang CV. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol Cell Biol 1995; 15:4031-42. [PMID: 7623799 PMCID: PMC230642 DOI: 10.1128/mcb.15.8.4031] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-Myc protein is a transcription factor with an N-terminal transcriptional regulatory domain and C-terminal oligomerization and DNA-binding motifs. Previous studies have demonstrated that p107, a protein related to the retinoblastoma protein, binds to the c-Myc transcriptional activation domain and suppresses its activity. We sought to characterize the transforming activity and transcriptional properties of lymphoma-derived mutant MYC alleles. Alleles encoding c-Myc proteins with missense mutations in the transcriptional regulatory domain were more potent than wild-type c-Myc in transforming rodent fibroblasts. Although the mutant c-Myc proteins retained their binding to p107 in in vitro and in vivo assays, p107 failed to suppress their transcriptional activation activities. Many of the lymphoma-derived MYC alleles contain missense mutations that result in substitution for the threonine at codon 58 or affect sequences flanking this amino acid. We observed that in vivo phosphorylation of Thr-58 was absent in a lymphoma cell line with a mutant MYC allele containing a missense mutation flanking codon 58. Our in vitro studies suggest that phosphorylation of Thr-58 in wild-type c-Myc was dependent on cyclin A and required prior phosphorylation of Ser-62 by a p107-cyclin A-CDK complex. In contrast, Thr-58 remained unphosphorylated in two representative mutant c-Myc transactivation domains in vitro. Our studies suggest that missense mutations in MYC may be selected for during lymphomagenesis, because the mutant MYC proteins have altered functional interactions with p107 protein complexes and fail to be phosphorylated at Thr-58.
Collapse
Affiliation(s)
- A T Hoang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Roussel MF, Theodoras AM, Pagano M, Sherr CJ. Rescue of defective mitogenic signaling by D-type cyclins. Proc Natl Acad Sci U S A 1995; 92:6837-41. [PMID: 7624328 PMCID: PMC41424 DOI: 10.1073/pnas.92.15.6837] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Three gene products, including Myc and the D- and E-type G1 cyclins, are rate limiting for G1 progression in mammalian fibroblasts. Quiescent mouse NIH 3T3 fibroblasts engineered to express a mutant colony-stimulating factor (CSF-1) receptor (CSF-1R 809F) fail to synthesize c-myc and cyclin D1 mRNAs upon CSF-1 stimulation and remain arrested in early G1 phase. Ectopic expression of c-myc or either of three D-type cyclin genes, but not cyclin E, resensitized these cells to the mitogenic effects of CSF-1, enabling them to proliferate continuously in liquid culture and to form colonies in agar in response to the growth factor. Rescue by cyclin D1 was enhanced by c-myc but not by cyclin E and was reversed by infecting cyclin D1-reconstituted cells with a retroviral vector encoding catalytically inactive cyclin-dependent kinase 4. Induction of cyclin D1 mRNA by CSF-1 was restored in cells forced to express c-myc, and vice versa, suggesting that expression of the two genes is interdependent. Cells reconstituted with c-myc were prevented from entering S phase when microinjected with a monoclonal antibody to cyclin D1, and conversely, those rescued by cyclin D1 were inhibited from forming CSF-1-dependent colonies when challenged with a dominant-negative c-myc mutant. Cyclin D mutants defective in binding to the retinoblastoma protein were impaired in rescuing mitogenic signaling. Therefore, Myc and D-type cyclins collaborate during the mitogenic response to CSF-1, whereas cyclin E functions in a separate pathway.
Collapse
Affiliation(s)
- M F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
203
|
Barrett JF, Lewis BC, Hoang AT, Alvarez RJ, Dang CV. Cyclin A links c-Myc to adhesion-independent cell proliferation. J Biol Chem 1995; 270:15923-5. [PMID: 7608142 DOI: 10.1074/jbc.270.27.15923] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adhesion-independent growth is a neoplastic phenotype that is inducible in Rat 1a fibroblasts by enforced MYC expression. The c-Myc protein has been well characterized as a transcription factor, yet the molecular basis of c-Myc-induced neoplastic transformation has remained elusive. In this report, we demonstrate a link between ectopic MYC expression, deregulated cyclin A levels, and adhesion-independent growth.
Collapse
Affiliation(s)
- J F Barrett
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
204
|
Abstract
In this review, we consider apoptosis as a process intimately linked to the cell cycle. There are several reasons for thinking of apoptosis as a cell cycle phenomenon. First, within the organism, apoptosis is almost exclusively found in proliferating tissues. Second, artificial manipulation of the cell cycle can either prevent or potentiate apoptosis, depending on the point of arrest. Data from such studies have suggested that molecules acting late in G1 are required for apoptosis. Since passage through late G1 into S phase in mammalian cells is known to be regulated by p53 and by activation of cyclin-dependent kinases, we also examine recent studies linking these molecules to the apoptotic pathway.
Collapse
Affiliation(s)
- W Meikrantz
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
205
|
Desdouets C, Matesic G, Molina CA, Foulkes NS, Sassone-Corsi P, Brechot C, Sobczak-Thepot J. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol Cell Biol 1995; 15:3301-9. [PMID: 7760825 PMCID: PMC230563 DOI: 10.1128/mcb.15.6.3301] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated. We have investigated the role of the cyclic AMP (cAMP)-dependent signalling pathway in this cell cycle-dependent control. In human diploid fibroblasts (Hs 27), induction of cyclin A gene expression at G1/S is stimulated by 8-bromo-cAMP and suppressed by the protein kinase A inhibitor H89, which was found to delay S phase entry. Transfection experiments showed that the cyclin A promoter is inducible by activation of the adenylyl cyclase signalling pathway. Stimulation is mediated predominantly via a cAMP response element (CRE) located at positions -80 to -73 with respect to the transcription initiation site and is able to bind CRE-binding proteins and CRE modulators. Moreover, activation by phosphorylation of the activators CRE-binding proteins and CRE modulator tau and levels of the inducible cAMP early repressor are cell cycle regulated, which is consistent with the pattern of cyclin A inducibility by cAMP during the cell cycle. These results suggest that the CRE is, at least partly, implicated in stimulation of cyclin A transcription at G1/S.
Collapse
Affiliation(s)
- C Desdouets
- Institut National de la Santé et de la Recherche Médicale U370, Faculté Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
206
|
Cogswell JP, Godlevski MM, Bonham M, Bisi J, Babiss L. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter. Mol Cell Biol 1995; 15:2782-90. [PMID: 7739559 PMCID: PMC230509 DOI: 10.1128/mcb.15.5.2782] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Progression through the somatic cell cycle requires the temporal regulation of cyclin gene expression and cyclin protein turnover. One of the best-characterized examples of this regulation is seen for the B-type cyclins. These cyclins and their catalytic component, cdc2, have been shown to mediate both the entry into and maintenance of mitosis. The cyclin B1 gene has been shown to be expressed between the late S and G2 phases of the cell cycle, while the protein is degraded specifically at interphase via ubiquitination. To understand the molecular basis for transcriptional regulation of the cyclin B1 gene, we cloned the human cyclin B1 gene promoter region. Using a chloramphenicol acetyltransferase reporter system and both stable and transient assays, we have shown that the cyclin B1 gene promoter (extending to -3800 bp relative to the cap site) can confer G2-enhanced promoter activity. Further analysis revealed that an upstream stimulatory factor (USF)-binding site and its cognate transcription factor(s) are critical for expression from the cyclin B1 promoter in cycling HeLa cells. Interestingly, USF DNA-binding activity appears to be regulated in a G2-specific fashion, supporting the idea that USF may play some role in cyclin B1 gene activation. These studies suggest an important link between USF and the cyclin B1 gene, which in part explains how maturation promoting factor complex formation is regulated.
Collapse
Affiliation(s)
- J P Cogswell
- Department of Molecular Genetics, Glaxo Research Institute, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
207
|
Alexandrow MG, Kawabata M, Aakre M, Moses HL. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc Natl Acad Sci U S A 1995; 92:3239-43. [PMID: 7724545 PMCID: PMC42141 DOI: 10.1073/pnas.92.8.3239] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
One of the more intriguing aspects of transforming growth factor beta 1 (TGF beta 1) is its ability to function as both a mitogenic factor for certain mesenchymal cells and a potent growth inhibitor of lymphoid, endothelial, and epithelial cells. Data are presented indicating that c-myc may play a pivotal role in both the mitogenic and antiproliferative actions of TGF beta 1. In agreement with previous studies using C3H/10T1/2 fibroblasts constitutively expressing an exogenous c-myc cDNA, we show that AKR-2B fibroblasts expressing a chimeric estrogen-inducible form of c-myc (mycER) are able to form colonies in soft agar in the presence of TGF beta 1 only when c-myc is activated by hormone. Whereas these findings support a synergistic role for c-myc in mitogenic responses to TGF beta 1, we also find that c-myc can antagonize the growth-inhibitory response to TGF beta 1. Mouse keratinocytes (BALB/MK), which are normally growth-arrested by TGF beta 1, are rendered insensitive to the growth-inhibitory effects of TGF beta 1 upon mycER activation. This ability of mycER activation to block TGF beta 1-induced growth arrest was found to occur only when the fusion protein was induced with hormone in the early part of G1. Addition of estradiol late in G1 had no suppressive effect on TGF beta 1-induced growth inhibition.
Collapse
Affiliation(s)
- M G Alexandrow
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
208
|
Lee LA, Resar LM, Dang CV. Cell density and paradoxical transcriptional properties of c-Myc and Max in cultured mouse fibroblasts. J Clin Invest 1995; 95:900-4. [PMID: 7860774 PMCID: PMC295582 DOI: 10.1172/jci117741] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Deregulated expression of the c-Myc oncoprotein occurs in several human malignancies. The c-Myc protein behaves as a transcription factor, and undoubtedly its role in carcinogenesis involves its ability to affect the expression of genes involved in cell growth. c-Myc has been reported to both activate and repress transcription in transient transfection experiments using reporter constructs bearing multiple copies of the c-Myc binding site, CAC (G/A) TG. We investigated these apparently paradoxical effects of c-Myc by determining if they arose from differences in the cell proliferation states of transfected cells. We found that endogenous c-Myc protein levels vary inversely with the degree of cell confluency, such that at low cell confluency, where endogenous levels of c-Myc are high and presumably endogenous levels of Max are limiting, exogenous c-Myc fails to affect basal transcription. In cells at high cell confluency, in which endogenous c-Myc levels are low, exogenous c-Myc augments transactivation by titrating the relative excess endogenous Max. These observations suggest that the apparently paradoxical behavior of c-Myc in transfection experiments is partially dependent on ambient cellular levels of c-Myc.
Collapse
Affiliation(s)
- L A Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
209
|
Abstract
The lambda 5 promoter initiates transcription at multiple sites and confers expression in all cell types. Two lambda 5 promoter-derived oligonucleotides (Inr lambda 5:1 and Inr lambda 5:2), each with a transcription start site, could promote transcription in transient transfection assays. In contrast, a third oligonucleotide (+90 lambda 5), without a transcription initiation site, was inactive. The Inr lambda 5:1 and Inr lambda 5:2 oligonucleotides formed a major DNA-protein complex B' in gel retardation analyses; no protein-DNA complexes were observed with the inactive +90 lambda 5 oligonucleotide. The B' complexes of Inr lambda 5:1 and Inr lambda 5:2 each contained c-myc and myn (murine homologue of Max) proteins. The c-myc and myn proteins were also found to bind the TdT initiator (InrTdT). Using mutated oligonucleotides, we found that the c-myc/myn proteins bound to the transcription initiation site of both Inr lambda 5:1 and InrTdT, however, these mutated oligonucleotides were inactive in transfection assays. This suggested that, in this system, transcription depended both on a transcription initiation site and appropriate flanking sequences. The significance of c-myc binding to the respective initiator was analysed by overexpressing c-myc in co-transfection assays. Under these conditions the transcriptional activity of both the lambda 5 and the TdT initiator was repressed.
Collapse
Affiliation(s)
- S Mai
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
210
|
Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 1994. [PMID: 7969121 DOI: 10.1128/mcb.14.12.7805] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Elevated levels of mutant forms of the p53 tumor suppressor are a hallmark of many transformed cells. Multiple mechanisms such as increased stability of the protein and increased transcription of the gene can account for elevated p53 expression. Recent findings indicate that c-Myc/Max heterodimers can bind to an essential CA(C/T)GTG-containing site in the p53 promoter and elevate its expression. We have addressed the possibility that elevated mutant p53 expression is due to deregulated c-Myc expression. Here we demonstrate that the human p53 promoter is transactivated by high c-Myc expression and repressed by high Max expression. In examining the relative levels of c-Myc and p53 in human Burkitt's lymphomas and other B-lymphoid lines, we found that there is a correlation between the levels of c-Myc protein and p53 mRNA expression. In particular, cells that express very low levels of c-Myc protein also express low levels of p53 mRNA, while cells that express high levels of c-Myc tend to express high levels of p53 mRNA. To determine whether the p53 gene can be a target for c-Myc in vivo, we assayed the effects of antisense c-myc RNA on the levels of endogenous p53 mRNA. The results indicate that the presence of antisense c-myc RNA leads to a reduction in the levels of c-Myc protein, p53 mRNA, and expression from the p53 promoter. Taken together, our findings support a direct role for c-Myc in elevating expression of the mutant p53 gene in some tumors.
Collapse
|
211
|
Roy B, Beamon J, Balint E, Reisman D. Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 1994; 14:7805-15. [PMID: 7969121 PMCID: PMC359320 DOI: 10.1128/mcb.14.12.7805-7815.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Elevated levels of mutant forms of the p53 tumor suppressor are a hallmark of many transformed cells. Multiple mechanisms such as increased stability of the protein and increased transcription of the gene can account for elevated p53 expression. Recent findings indicate that c-Myc/Max heterodimers can bind to an essential CA(C/T)GTG-containing site in the p53 promoter and elevate its expression. We have addressed the possibility that elevated mutant p53 expression is due to deregulated c-Myc expression. Here we demonstrate that the human p53 promoter is transactivated by high c-Myc expression and repressed by high Max expression. In examining the relative levels of c-Myc and p53 in human Burkitt's lymphomas and other B-lymphoid lines, we found that there is a correlation between the levels of c-Myc protein and p53 mRNA expression. In particular, cells that express very low levels of c-Myc protein also express low levels of p53 mRNA, while cells that express high levels of c-Myc tend to express high levels of p53 mRNA. To determine whether the p53 gene can be a target for c-Myc in vivo, we assayed the effects of antisense c-myc RNA on the levels of endogenous p53 mRNA. The results indicate that the presence of antisense c-myc RNA leads to a reduction in the levels of c-Myc protein, p53 mRNA, and expression from the p53 promoter. Taken together, our findings support a direct role for c-Myc in elevating expression of the mutant p53 gene in some tumors.
Collapse
Affiliation(s)
- B Roy
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
212
|
Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 1994; 8:2817-30. [PMID: 7995520 DOI: 10.1101/gad.8.23.2817] [Citation(s) in RCA: 405] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Deregulated expression of the c-myc proto-oncogene can lead to apoptosis under certain physiological conditions. By introducing a conditionally active Myc allele into primary embryo fibroblasts null for p53, and into fibroblasts without endogenous p53 expression but ectopically expressing a temperature-sensitive p53 allele, we show that expression of wild-type p53 is required for susceptibility to Myc-mediated apoptosis. Although ectopic expression of wild-type p53 blocked cells in the G1 phase of the cell cycle, G1 arrest by isoleucine starvation, in a manner independent of p53, did not confer susceptibility to apoptosis. Thus, growth arrest per se is not sufficient to induce Myc-mediated apoptosis; instead, a property intrinsic to p53 is specifically required. Moreover, apoptosis did not require induction of p53 target proteins, including the cyclin-dependent kinase inhibitor p21waf1/cip1. Therefore, the role of p53 in apoptosis may be distinct from its role in cell cycle arrest.
Collapse
Affiliation(s)
- A J Wagner
- Ben May Institute, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
213
|
Yang LS, Marshall A, Koide SS. Differential effect of estrogen on the production of cyclin B1, cdc2 p34 and c-fos protein in rat uterus. Endocr Res 1994; 20:377-86. [PMID: 7882899 DOI: 10.1080/07435809409030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The uterine content of c-fos protein, cyclin B1 (cell cycle protein) and cdc2 p34(cyclin-dependent kinase) in immature and mature rats was determined using the enhanced chemiluminescence(ECL) western blot method. Cyclin B1 was found predominantly in immature rat uterus and cdc2 p34 only in mature rat uterus. Several isoforms of c-fos oncogene protein were present in both mature and immature rat uteri. An additional immunoreactive c-fos protein with an estimated molecular weight of 28 kDa was found in mature rat uterus and was missing in immature uterus. Uteri from ovariectomized rats treated with estrogen and/or ICI 182,780, an antiestrogen, were analyzed by ECL western blot. cdc2 p34 and the c-fos 28 kDa protein were found in estradiol-treated rat uteri and were not detected in uteri of control and ICI 182,780-treated animals; whereas Cyclin B1 was absent in uteri from control and estradiol-treated ovariectomized animals. ICI 182,780 administered to estradiol-treated ovariectomized rats blocked the induction of cdc2 p34 and the c-fos 28 kDa protein in the uterus. The present results show that the production of the cell cycle factors, cyclin B1, cdc2 p34 and c-fos, during rat uterine growth are under different regulatory controls. cdc2 p34 and c-fos 28 kDa protein are under the control of estradiol; whereas cyclin B1 and the majority of the immunoreactive isoforms of c-fos are not influenced by this hormone.
Collapse
Affiliation(s)
- L S Yang
- Center for Biomedical Research, Population Council, New York, NY 10021
| | | | | |
Collapse
|
214
|
Abstract
We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle.
Collapse
|
215
|
Abstract
Expression of c-myc with constitutively active mutants of the ras gene results in the cooperative transformation of primary fibroblasts, although the precise mechanism by which these genes cooperate is unknown. Since c-Myc has been shown to function as a transcriptional activator, we have examined the ability of c-Myc and activated Ras (H-RasV-12) to cooperatively induce the promoter activity of cdc2, a gene which is critical for cell cycle progression. Microinjection of expression constructs encoding H-RasV-12 and c-Myc along with a cdc2 promoter-luciferase reporter plasmid into quiescent cells led to an increase in cdc2 promoter activity approximately 30 h after injection, a period which coincides with the S-to-G2/M transition in these cells. Expression of H-RasV-12 alone weakly activated the cdc2 promoter, while expression of c-Myc alone had no effect. Mutants of c-Myc lacking either the leucine zipper dimerization domain or the phosphoacceptor site Ser-62 could not cooperate with H-RasV-12 to induce the cdc2 promoter. These mutants also lacked the ability to cooperate with H-RasV-12 to stimulate DNA synthesis. Deletion analysis identified a distinct region of the cdc2 promoter which was required for c-Myc responsiveness. Taken together, these observations suggest a mechanistic link between the molecular activities of c-Myc and Ras and induction of the cell cycle regulator Cdc2.
Collapse
|
216
|
Hanson KD, Shichiri M, Follansbee MR, Sedivy JM. Effects of c-myc expression on cell cycle progression. Mol Cell Biol 1994; 14:5748-55. [PMID: 8065309 PMCID: PMC359100 DOI: 10.1128/mcb.14.9.5748-5755.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle.
Collapse
Affiliation(s)
- K D Hanson
- Department of Molecular Biophysics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
217
|
Born TL, Frost JA, Schönthal A, Prendergast GC, Feramisco JR. c-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol Cell Biol 1994; 14:5710-8. [PMID: 8065306 PMCID: PMC359096 DOI: 10.1128/mcb.14.9.5710-5718.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of c-myc with constitutively active mutants of the ras gene results in the cooperative transformation of primary fibroblasts, although the precise mechanism by which these genes cooperate is unknown. Since c-Myc has been shown to function as a transcriptional activator, we have examined the ability of c-Myc and activated Ras (H-RasV-12) to cooperatively induce the promoter activity of cdc2, a gene which is critical for cell cycle progression. Microinjection of expression constructs encoding H-RasV-12 and c-Myc along with a cdc2 promoter-luciferase reporter plasmid into quiescent cells led to an increase in cdc2 promoter activity approximately 30 h after injection, a period which coincides with the S-to-G2/M transition in these cells. Expression of H-RasV-12 alone weakly activated the cdc2 promoter, while expression of c-Myc alone had no effect. Mutants of c-Myc lacking either the leucine zipper dimerization domain or the phosphoacceptor site Ser-62 could not cooperate with H-RasV-12 to induce the cdc2 promoter. These mutants also lacked the ability to cooperate with H-RasV-12 to stimulate DNA synthesis. Deletion analysis identified a distinct region of the cdc2 promoter which was required for c-Myc responsiveness. Taken together, these observations suggest a mechanistic link between the molecular activities of c-Myc and Ras and induction of the cell cycle regulator Cdc2.
Collapse
Affiliation(s)
- T L Born
- Department of Medicine, University of California, San Diego, La Jolla 92093-0636
| | | | | | | | | |
Collapse
|
218
|
Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV. Participation of cyclin A in Myc-induced apoptosis. Proc Natl Acad Sci U S A 1994; 91:6875-9. [PMID: 8041712 PMCID: PMC44300 DOI: 10.1073/pnas.91.15.6875] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The involvement of c-Myc in cellular proliferation or apoptosis has been linked to differential cyclin gene expression. We observed that in both proliferating cells and cells undergoing apoptosis, cyclin A (but not B, C, D1, and E) mRNA level was elevated in unsynchronized Myc-overexpressing cells when compared with parental Rat1a fibroblasts. We further demonstrated that Zn(2+)-inducible cyclin A expression was sufficient to cause apoptosis. When Myc-induced apoptosis was blocked by coexpression of Bcl-2, the levels of cyclin C, D1, and E mRNAs were also elevated. Thus, while apoptosis induced by c-Myc is associated with an elevated cyclin A mRNA level, protection from apoptosis by coexpressed Bcl-2 is associated with a complementary increase in cyclin C, D1, and E mRNAs.
Collapse
Affiliation(s)
- A T Hoang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
219
|
Bürger C, Wick M, Müller R. Lineage-specific regulation of cell cycle gene expression in differentiating myeloid cells. J Cell Sci 1994; 107 ( Pt 7):2047-54. [PMID: 7983166 DOI: 10.1242/jcs.107.7.2047] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analysed the expression of 7 cyclin and cyclin-associated kinase (cdk) genes in the human myeloid cell line HL-60 at different stages of the cell cycle in non-synchronised cells and during terminal differentiation. A clear cell cycle-dependent expression was found with cyclins A (S+G2), B (G2) and E (late G1 and S), while other cell cycle genes showed only very weak (cdk2) or no periodic expression (cyclin D1, cyclin D2 and cdk4). Induction of macrophage-like differentiation by TPA or granulocytic differentiation by retinoic acid or DMSO was accompanied by a block in G1 and resulted in distinct patterns of gene expression that were lineage- and inducer-specific. These included: (i) a dramatic decrease in the expression of cyclin A, cyclin B and cdk2, and surprisingly an up-regulation of cyclin D1 in TPA-induced macrophage-like cells; (ii) a down-regulation of cyclin E in retinoic acid-induced granulocytic cells; and (iii) a decreased abundance of cyclin D1 and D2, but high levels of cyclin A, B and E RNA in DMSO-induced granulocytic cells. These observations suggest that the mechanisms leading to a differentiation-associated cell cycle arrest are lineage-specific, and that the sustained expression of cyclin and cdk genes does not interfere with the induction of terminal differentiation.
Collapse
Affiliation(s)
- C Bürger
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität Marburg, Germany
| | | | | |
Collapse
|
220
|
Abstract
Constitutive expression of human MYC represses mRNA levels of cyclin D1 in proliferating BALB/c-3T3 fibroblasts. We expressed a series of mutant alleles of MYC and found that downregulation of cyclin D1 is distinct from previously described properties of MYC. In particular, we found that association with Max is not required for repression of cyclin D1 by MYC in vivo. Conversely, the integrity of a small amino-terminal region (amino acids 92 to 106) of MYC is critical for repression of cyclin D1 but dispensable for transformation of established RAT1A cells. Runoff transcription assays showed that repression occurs at the level of transcription initiation. We cloned the promoter of the gene for human cyclin D1 and found that it lacks a canonical TATA element. Transcription starts at an initiator element similar to that of the adenovirus major late promoter; this element can be directly bound by USF in vitro. Expression of MYC represses the cyclin D1 promoter via core promoter elements and antagonizes USF-mediated transactivation. Taken together, our data define a new pathway for gene regulation by MYC and show that the cyclin D1 gene is a target gene for repression by MYC.
Collapse
|
221
|
An E-box element localized in the first intron mediates regulation of the prothymosin alpha gene by c-myc. Mol Cell Biol 1994. [PMID: 8196628 DOI: 10.1128/mcb.14.6.3853] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In RAT1A fibroblasts, expression of the prothymosin alpha gene is under the transcriptional control of the c-myc proto-oncogene. We have now cloned the rat gene encoding prothymosin alpha and show that the cloned gene is regulated by c-myc in vivo. We find that regulation by c-myc is mediated by sequences downstream of the transcriptional start site, whereas the promoter is constitutive and not regulated by c-myc. We have identified an enhancer element within the first intron that is sufficient to mediate a response to Myc and Max in transient transfection assays and to activation of estrogen receptor-Myc chimeras in vivo. We find that this element contains a consensus Myc-binding site (CACGTG). Disruption of this site abolishes the response to Myc and Max in both transient and stable assays. Mutants of either Myc or Max that are deficient for heterodimerization fail to regulate the prothymosin alpha gene, suggesting that a heterodimer between Myc and Max activates the prothymosin alpha gene. Our data define the prothymosin alpha gene as a bona fide target gene for c-myc.
Collapse
|
222
|
Lahoz EG, Xu L, Schreiber-Agus N, DePinho RA. Suppression of Myc, but not E1a, transformation activity by Max-associated proteins, Mad and Mxi1. Proc Natl Acad Sci U S A 1994; 91:5503-7. [PMID: 8202517 PMCID: PMC44024 DOI: 10.1073/pnas.91.12.5503] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mad and Mxi1, two members of the Myc-related basic-region helix-loop-helix/leucine-zipper family of proteins, associate directly with Max to form sequence-specific DNA binding heterodimers that are transactivation-incompetent. Mad-Max complexes have been shown to exert a strong repressive effect on Myc-induced transactivation, perhaps through the competitive occupation of common promoter binding sites also recognized by active Myc-Max heterodimers. To place these recent biochemical observations in a biological context, mad and mxi1 expression vectors were tested for their ability to influence Myc transformation activity in the rat embryo fibroblast cooperation assay. Addition of an equimolar amount of mad or mxi1 expression vector to mouse c-myc/ras cotransfections resulted in a dramatic reduction in both the number of foci generated and the severity of the malignant phenotype. Myc-specific suppression by Mad and Mxi1 was demonstrated by their ability to affect c- and N-myc-, but not ela-, induced transformation. In contrast, mad and mxi1 expression constructs bearing deletions in the basic region exerted only mild repressive effects on Myc transformation activity, suggesting that occupation of common DNA binding sites by transactivation-incompetent Mad-Max or Mxi1-Max complexes appears to play a more dominant role in this suppression than titration of limited intracellular pools of Max away from active Myc-Max complexes. Thus, these biological data support a current model for regulation of Myc function in which relative intracellular levels of Mad and Mxi1 in comparison to those of Myc may determine the degree of activation of Myc-responsive growth pathways.
Collapse
Affiliation(s)
- E G Lahoz
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
223
|
Gaubatz S, Meichle A, Eilers M. An E-box element localized in the first intron mediates regulation of the prothymosin alpha gene by c-myc. Mol Cell Biol 1994; 14:3853-62. [PMID: 8196628 PMCID: PMC358752 DOI: 10.1128/mcb.14.6.3853-3862.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In RAT1A fibroblasts, expression of the prothymosin alpha gene is under the transcriptional control of the c-myc proto-oncogene. We have now cloned the rat gene encoding prothymosin alpha and show that the cloned gene is regulated by c-myc in vivo. We find that regulation by c-myc is mediated by sequences downstream of the transcriptional start site, whereas the promoter is constitutive and not regulated by c-myc. We have identified an enhancer element within the first intron that is sufficient to mediate a response to Myc and Max in transient transfection assays and to activation of estrogen receptor-Myc chimeras in vivo. We find that this element contains a consensus Myc-binding site (CACGTG). Disruption of this site abolishes the response to Myc and Max in both transient and stable assays. Mutants of either Myc or Max that are deficient for heterodimerization fail to regulate the prothymosin alpha gene, suggesting that a heterodimer between Myc and Max activates the prothymosin alpha gene. Our data define the prothymosin alpha gene as a bona fide target gene for c-myc.
Collapse
Affiliation(s)
- S Gaubatz
- Zentrum für Molekulare Biologie Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
224
|
Philipp A, Schneider A, Väsrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M. Repression of cyclin D1: a novel function of MYC. Mol Cell Biol 1994; 14:4032-43. [PMID: 8196642 PMCID: PMC358769 DOI: 10.1128/mcb.14.6.4032-4043.1994] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Constitutive expression of human MYC represses mRNA levels of cyclin D1 in proliferating BALB/c-3T3 fibroblasts. We expressed a series of mutant alleles of MYC and found that downregulation of cyclin D1 is distinct from previously described properties of MYC. In particular, we found that association with Max is not required for repression of cyclin D1 by MYC in vivo. Conversely, the integrity of a small amino-terminal region (amino acids 92 to 106) of MYC is critical for repression of cyclin D1 but dispensable for transformation of established RAT1A cells. Runoff transcription assays showed that repression occurs at the level of transcription initiation. We cloned the promoter of the gene for human cyclin D1 and found that it lacks a canonical TATA element. Transcription starts at an initiator element similar to that of the adenovirus major late promoter; this element can be directly bound by USF in vitro. Expression of MYC represses the cyclin D1 promoter via core promoter elements and antagonizes USF-mediated transactivation. Taken together, our data define a new pathway for gene regulation by MYC and show that the cyclin D1 gene is a target gene for repression by MYC.
Collapse
Affiliation(s)
- A Philipp
- Zentrum für Molekularbiologie Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R. Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci U S A 1994; 91:3754-8. [PMID: 8170983 PMCID: PMC43660 DOI: 10.1073/pnas.91.9.3754] [Citation(s) in RCA: 271] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apoptosis was induced in S-phase-arrested HeLa cells by staurosporine, caffeine, 6-dimethylaminopurine, and okadaic acid, agents that activate M-phase-promoting factor and induce premature mitosis in similarly treated hamster cell lines. Addition of these agents to asynchronously growing HeLa cells or to cells arrested in early G1 phase with lovastatin had little or no effect. S-phase arrest also promoted tumor necrosis factor alpha-induced apoptosis, eliminating the normal requirement for simultaneous cycloheximide treatment. For all of the apoptosis-inducing agents tested, the appearance of condensed chromatin was accompanied by 2- to 7-fold increases in cyclin A-associated histone H1 kinase activity, levels approximating the mitotic value. Where examined, both Cdc2 and Cdk2, the catalytic subunits known to associate with cyclin A, were activated. Stable overexpression of bcl-2 suppressed the apoptosis-inducing activity of all agents tested and reduced the amount of Cdc2 and Cdk2 in the nucleus, suggesting a possible mechanism by which bcl-2 inhibits the chromatin condensation characteristic of apoptosis. These findings suggest that at least one of the biochemical steps required for mitosis, activation of cyclin A-dependent protein kinases, is also an important event during apoptosis.
Collapse
Affiliation(s)
- W Meikrantz
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115
| | | | | | | |
Collapse
|
226
|
Tavtigian SV, Zabludoff SD, Wold BJ. Cloning of mid-G1 serum response genes and identification of a subset regulated by conditional myc expression. Mol Biol Cell 1994; 5:375-88. [PMID: 8049528 PMCID: PMC301044 DOI: 10.1091/mbc.5.3.375] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The emergence of cells from a quiescent G0 arrested state into the cell cycle is a multistep process that begins with the immediate early response to mitogens and extends into a specialized G1 phase. Many immediate early serum response genes including c-fos, c-myc, and c-jun are transcriptional regulators. To understand their roles in regulating cell cycle entry and progression, the identities of their regulatory targets must be determined. In this work we have cloned cDNA copies of messenger RNAs that are either up- or down-regulated at a mid-G1 point in the serum response (midserum-response [mid-SR]). The mid-SR panel is expected to include both direct and indirect targets of immediate early regulators. This expectation was confirmed by the identification of several transcriptional targets of conditional c-myc activity. In terms of cellular function, the mid-SR class is also expected to include execution genes needed for progression through G1 and into S-phase. DNA sequence data showed that the mid-SR panel included several genes already known to be involved in cell cycle progression or growth transformation, suggesting that previously unknown cDNAs in the same group are good candidates for other G1 execution functions. In functional assays of G0-->S-phase progression, c-myc expression can bypass the requirement for serum mitogens and drive a large fraction of G0 arrested cells through G1 into S-phase. However, beyond this general similarity, little is known about the relation of a serum-driven progression to a myc-driven progression. Using the mid-SR collection as molecular reporters, we found that the myc driven G1 differs qualitatively from the serum driven case. Instead of simply activating a subset of serum response genes, as might be expected, myc regulated some genes inversely relative to serum stimulation. This suggests that a myc driven progression from G0 may have novel properties with implications for its action in oncogenesis.
Collapse
|
227
|
Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1994. [PMID: 8246956 DOI: 10.1128/mcb.13.12.7358] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin D1 is a G1-specific cyclin that has been linked to lymphoid, parathyroid, and breast tumors. Recent studies suggested that high protein levels of cyclin D1 are not always produced when cyclin D1 mRNA is overexpressed in transfected cells, suggesting that posttranscriptional events may be important in cyclin D1 regulation. The mRNA cap-binding protein (eukaryotic initiation factor 4E [eIF-4E]) is a potential regulatory of several posttranscriptional events, and it can itself induce neoplastic transformation. Consequently, we examined eIF-4E as a potential regulator of cyclin D1. Overexpression of cyclin D1 mRNA in NIH 3T3 cells did not increase cyclin D1 protein. In contrast, overexpression of eIF-4E markedly increased the amount of cyclin D1 protein in NIH 3T3 cells. This increase was specific to cyclin D1 in comparison with the retinoblastoma gene product, c-Myc, actin, and eukaryotic initiation factor 2 alpha. We also examined cyclin D1 protein in cells expressing an estrogen receptor-Myc fusion protein because we previously found that eIF-4E increases after induction of c-myc function. In these cells, increased levels of eIF-4E protein were closely followed by increases in levels of cyclin D1 protein, but the level of cyclin D1 mRNA was not increased. We conclude that increases in cyclin D1 levels may result from increased expression of eIF-4E, and this regulation may be one determinant of cyclin D1 levels in the cell.
Collapse
|
228
|
Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993; 13:7358-63. [PMID: 8246956 PMCID: PMC364806 DOI: 10.1128/mcb.13.12.7358-7363.1993] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cyclin D1 is a G1-specific cyclin that has been linked to lymphoid, parathyroid, and breast tumors. Recent studies suggested that high protein levels of cyclin D1 are not always produced when cyclin D1 mRNA is overexpressed in transfected cells, suggesting that posttranscriptional events may be important in cyclin D1 regulation. The mRNA cap-binding protein (eukaryotic initiation factor 4E [eIF-4E]) is a potential regulatory of several posttranscriptional events, and it can itself induce neoplastic transformation. Consequently, we examined eIF-4E as a potential regulator of cyclin D1. Overexpression of cyclin D1 mRNA in NIH 3T3 cells did not increase cyclin D1 protein. In contrast, overexpression of eIF-4E markedly increased the amount of cyclin D1 protein in NIH 3T3 cells. This increase was specific to cyclin D1 in comparison with the retinoblastoma gene product, c-Myc, actin, and eukaryotic initiation factor 2 alpha. We also examined cyclin D1 protein in cells expressing an estrogen receptor-Myc fusion protein because we previously found that eIF-4E increases after induction of c-myc function. In these cells, increased levels of eIF-4E protein were closely followed by increases in levels of cyclin D1 protein, but the level of cyclin D1 mRNA was not increased. We conclude that increases in cyclin D1 levels may result from increased expression of eIF-4E, and this regulation may be one determinant of cyclin D1 levels in the cell.
Collapse
Affiliation(s)
- I B Rosenwald
- Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | | | | | |
Collapse
|
229
|
Winston JT, Pledger WJ. Growth factor regulation of cyclin D1 mRNA expression through protein synthesis-dependent and -independent mechanisms. Mol Biol Cell 1993; 4:1133-44. [PMID: 8305735 PMCID: PMC275749 DOI: 10.1091/mbc.4.11.1133] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Overexpression of the cyclin D1/PRAD1 oncogene has been observed in a number of tumorigenic cell lines, suggesting that regulation of D1 expression may represent an important step in the control of cellular proliferation. We have examined the mRNA expression of cyclin D1, as well as two related D-type cyclins, D2 and D3, in response to defined growth factors that control the growth of Balb/c-3T3 fibroblasts. Transcripts for all three D-type cyclins were expressed during the G1 phase of the Balb cell cycle, however only D1 and D3 exhibited periodic induction. Although redundantly expressed, message levels of cyclin D1 and D3 were differentially regulated in regard to kinetics of induction; a modest increase in D3 mRNA was detected near the G1/S boundary, 12 h after serum stimulation of quiescent cells, while abundance of D1 transcript increased 20 to 30-fold, peaking 6 h after addition of serum. Factors such as platelet-derived growth factor (PDGF) that induce competence formation in Balb cells, increased D1 message and protein levels to the same extent as serum but did not affect expression of cyclin D3 and did not stimulate entry into S phase. Progression factors contained within platelet-poor plasma stimulated D1 expression only weakly but acted synergistically with low concentrations of PDGF to increase D1 mRNA to maximum levels. Depletion of protein kinase C severely reduced the ability of PDGF and serum to induce D1 mRNA. PDGF- and serum-mediated elevation of steady-state D1 message levels was in part because of a transcriptional activation of the D1 gene that was independent of protein synthesis. However, protein synthesis was required 3-4 h after serum stimulation for the shut down of D1 transcription leading to the normal decline in message levels after peak induction. Our results indicate that overexpression of cyclin D1 message may result from a disruption of negative regulatory events that repress D1 transcription.
Collapse
Affiliation(s)
- J T Winston
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
230
|
Ayer DE, Eisenman RN. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 1993; 7:2110-9. [PMID: 8224841 DOI: 10.1101/gad.7.11.2110] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mad is a basic-helix-loop-helix-zipper protein that heterodimerizes with Max in vitro. Mad:Max heterodimers recognize the same E-box-related DNA-binding sites as Myc:Max heterodimers. However, in transient transfection assays Myc and Mad influence transcription in opposite ways through interaction with Max; Myc activates while Mad represses transcription. Here, we demonstrate that Mad protein is induced rapidly upon differentiation of cells of the myeloid lineage. The Mad protein is synthesized in human cells as a 35-kD nuclear phosphoprotein with an extremely short half-life (t1/2 = 15-30 min) and can be detected in vivo in a complex with Max. In the undifferentiated U937 monocyte cell line Max was found complexed with Myc but not Mad. However, Mad:Max complexes began to accumulate as early as 2 hr after induction of macrophage differentiation with TPA. By 48 hr following TPA treatment only Mad:Max complexes were detectable. These data show that differentiation is accompanied by a change in the composition of Max heterocomplexes. We speculate that this switch in heterocomplexes results in a change in the transcriptional regulation of Myc:Max target genes required for cell proliferation.
Collapse
Affiliation(s)
- D E Ayer
- Division of Basic Sciences A2-025, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|