201
|
Abstract
Cancer arises through the accumulation of both genetic and epigenetic alterations. Although the causal role of genetic mutations on cancer development has been established in vivo, similar evidence for epigenetic alterations is limited. Moreover, mutual interactions between genetic mutations and epigenetic alterations remain unclear. Cellular reprogramming technology can be used to actively modify the epigenome without affecting the underlying genomic sequences. Here we introduce recent studies that have utilized this property for cancer research. We propose that just as it has potential for regenerative medicine and disease modeling, cell reprogramming could also be a powerful tool for dissecting the role of the cancer epigenome in the development and maintenance of cancer cells.
Collapse
Affiliation(s)
- Katsunori Semi
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiro Yamada
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
202
|
Ozaki Y, Fujiwara K, Ikeda M, Ozaki T, Terui T, Soma M, Inazawa J, Nagase H. The oncogenic role of GASC1 in chemically induced mouse skin cancer. Mamm Genome 2015; 26:591-7. [DOI: 10.1007/s00335-015-9592-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
203
|
Chesnel F, Hascoet P, Gagné JP, Couturier A, Jouan F, Poirier GG, Le Goff C, Vigneau C, Danger Y, Verite F, Le Goff X, Arlot-Bonnemains Y. The von Hippel-Lindau tumour suppressor gene: uncovering the expression of the pVHL172 isoform. Br J Cancer 2015; 113:336-44. [PMID: 26035699 PMCID: PMC4506380 DOI: 10.1038/bjc.2015.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The von Hippel-Lindau (VHL) gene encodes two mRNA variants. Variant 1 encodes two protein isoforms, pVHL213 and pVHL160, that have been extensively documented in the literature. Variant 2 is produced by alternative splicing of exon 2 and encodes a pVHL isoform of 172 amino acids with a theoretical molecular weight of 19 kDa (pVHL172), the expression of which has never been demonstrated so far due to the absence of suitable antibodies. METHODS We have generated an anti-pVHL monoclonal antibody (JD-1956) using pVHL172 recombinant protein. We tested the antibody against exogenous or endogenous expressed proteins in different cell lines. We identified the pVHL172 using a silencing RNA strategy. The epitope of the antibody was mapped using a peptide array. RESULTS We efficiently detected the three different isoforms of pVHL in cell lines and tumorigenic tissues by western blotting and immunohistochemistry and confirmed for the first time the endogenous expression of pVHL172. CONCLUSIONS The endogenous expression of the three isoforms and particularly the pVHL172 has never been shown before due to a lack of a highly specific antibody since none of the available commercial antibodies distinguish the three isoforms of pVHL in cells or in both normal and cancerous human tissues. Evidence of pVHL172 expression emphasises the need to further study its implication in renal tumorigenesis and VHL disease.
Collapse
Affiliation(s)
- F Chesnel
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - P Hascoet
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - J P Gagné
- Centre de Recherche du CHU de Québec–Pavillon CHUL–Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Québec, G1V 4G2 QC, Canada
| | - A Couturier
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - F Jouan
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - G G Poirier
- Centre de Recherche du CHU de Québec–Pavillon CHUL–Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Québec, G1V 4G2 QC, Canada
| | - C Le Goff
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - C Vigneau
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - Y Danger
- EFS–LNPRM-Etablissement français du sang Rennes, Rue Pierre Jean Gineste, BP 91614, 35016 Rennes, France
| | - F Verite
- EFS–LNPRM-Etablissement français du sang Rennes, Rue Pierre Jean Gineste, BP 91614, 35016 Rennes, France
| | - X Le Goff
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| | - Y Arlot-Bonnemains
- CNRS–UMR 6290 (IGDR)–Université Rennes 1-BIOSIT, 2 Avenue du Professeur L Bernard, 35042 Rennes, France
| |
Collapse
|
204
|
Dagher J, Kammerer-Jacquet SF, Brunot A, Pladys A, Patard JJ, Bensalah K, Perrin C, Verhoest G, Mosser J, Lespagnol A, Vigneau C, Dugay F, Belaud-Rotureau MA, Rioux-Leclercq N. Wild-type VHL Clear Cell Renal Cell Carcinomas Are a Distinct Clinical and Histologic Entity: A 10-Year Follow-up. Eur Urol Focus 2015; 1:284-290. [PMID: 28723401 DOI: 10.1016/j.euf.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/09/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is an aggressive tumor with 50% risk of metastases at initial diagnosis or at follow-up. An inactivation of the tumor-suppressor gene von Hippel-Lindau (VHL) is present in >70% of sporadic cases by two of three different mechanisms: locus deletion, gene mutation, or promoter hypermethylation. OBJECTIVE To correlate the complete status of the VHL gene with clinical and pathologic criteria. DESIGN, SETTING, AND PARTICIPANTS We retrospectively included 98 patients with ccRCC who underwent surgery between 2002 and 2005. VHL gene deletions (71 of 98; 72.4%), mutations (68 of 98; 69.4%), and promoter hypermethylations (13 of 98; 13.3%) were screened by gene copy analysis, gene sequencing, and methylation-specific multiplex ligation-dependent probe amplification, respectively. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Relationships between VHL subgroups and the studied criteria were analyzed using chi-square and Student t tests. Survival was analyzed with the log-rank test and Kaplan-Meier curves. RESULTS AND LIMITATIONS Compared with ccRCCs with two events (66.3%), tumors with no or one genetic event (33.6%) were associated with a higher nuclear grade IV (p=0.02), metastases (p=0.04), sarcomatoid component (p=0.01), dense lymphocyte infiltrate (p=0.013), and vascular endothelial growth factor overexpression (>30%) (p=0.003), which was also an independent factor after multivariate analysis. Furthermore, wild-type VHL tumors (no inactivating event, 11.2%) were associated with nodal involvement (p=0.019), and patients with this type of tumor had a specific survival of 33 mo compared with patients with ccRCCs having one or two VHL inactivating events (107 mo; p=0.016). The retrospective design with small number of wild-type tumors was a limitation of this work. CONCLUSIONS This long-term study (10-yr clinical follow-up) confirms that ccRCCs with wild-type VHL are highly aggressive tumors that need to be formally identified. PATIENT SUMMARY Among activated VHL tumors, the wild-type subgroup defines an aggressive phenotype with worse survival rates, suggesting that these tumors must be more thoroughly screened.
Collapse
Affiliation(s)
- Julien Dagher
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France; Service d'Anatomie et Cytologie Pathologiques, CHU Rennes, 35033 Rennes, France.
| | - Solène-Florence Kammerer-Jacquet
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France; Service d'Anatomie et Cytologie Pathologiques, CHU Rennes, 35033 Rennes, France
| | - Angélique Brunot
- Service d'Oncologie Médicale, Centre Eugène Marquis, 35042 Rennes, France
| | - Adélaide Pladys
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France
| | - Jean-Jacques Patard
- Service d'Urologie, CHU Kremlin Bicêtre, Université de Paris 9, Paris, France
| | | | - Christophe Perrin
- Service d'Oncologie Médicale, Centre Eugène Marquis, 35042 Rennes, France
| | | | - Jean Mosser
- Service de Génétique Moléculaire et Génomique, CHU Rennes, 35033 Rennes, France
| | - Alexandra Lespagnol
- Service de Génétique Moléculaire et Génomique, CHU Rennes, 35033 Rennes, France
| | - Cécile Vigneau
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France; Service de Néphrologie, CHU Rennes, 35033 Rennes, France
| | - Frédéric Dugay
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France; Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, 35033, France
| | - Marc-Antoine Belaud-Rotureau
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France; Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, 35033, France
| | - Nathalie Rioux-Leclercq
- CNRS/UMR 6290 Biosit, Faculté de Médecine de Rennes 1, 35043 Rennes, France; Service d'Anatomie et Cytologie Pathologiques, CHU Rennes, 35033 Rennes, France
| |
Collapse
|
205
|
The epigenetic landscape of clear-cell renal cell carcinoma. J Kidney Cancer VHL 2015; 2:90-104. [PMID: 28326264 PMCID: PMC5345536 DOI: 10.15586/jkcvhl.2015.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 01/29/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of all kidney tumors. During the last few years, epigenetics has emerged as an important mechanism in ccRCC pathogenesis. Recent reports, involving large-scale methylation and sequencing analyses, have identified genes frequently inactivated by promoter methylation and recurrent mutations in genes encoding chromatin regulatory proteins. Interestingly, three of detected genes (PBRM1, SETD2 and BAP1) are located on chromosome 3p, near the VHL gene, inactivated in over 80% ccRCC cases. This suggests that 3p alterations are an essential part of ccRCC pathogenesis. Moreover, most of the proteins encoded by these genes cooperate in histone H3 modifications. The aim of this review is to summarize the latest discoveries shedding light on deregulation of chromatin machinery in ccRCC. Newly described ccRCC-specific epigenetic alterations could potentially serve as novel diagnostic and prognostic biomarkers and become an object of novel therapeutic strategies.
Collapse
|
206
|
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J 2015; 6:9. [PMID: 25908947 PMCID: PMC4407842 DOI: 10.1186/s13167-015-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Gyeonggi, 410-769 Republic of Korea
| | - Rostyslav Bubnov
- Clinical Hospital 'Pheophania' of State Management of Affairs Department, Kyiv, Ukraine ; Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Suzanne Hagan
- Dept of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Dominic M Desiderio
- Department of Neurology, University of Tennessee Center for Health Science, Memphis, USA
| |
Collapse
|
207
|
Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. PHARMACEUTICAL BIOLOGY 2015; 53:1302-1310. [PMID: 25858139 DOI: 10.3109/13880209.2014.976714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (Sacc.) Nirenberg (Nectriaceae) mold that contaminates maize and other agricultural products. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. OBJECTIVE Alteration on DNA methylation, as an early event in non-genotoxic carcinogenesis, may play an important role in the mechanism of FB1 toxiciy. MATERIALS AND METHODS Dose-related effects of FB1 (1-50 µM for 24 h) on global DNA methylation by using high-performance liquid chromatography with UV-diode array detection (HPLC-UV/DAD) and CpG promoter methylation by methylation-specific PCR (MSP) were performed in rat liver (Clone 9) and rat kidney (NRK-52E) epithelial cells. RESULTS Cell viability reduction is 39% and 34% by the XTT test and LDH release in the growth medium is 32% and 26% at 200 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. No significant dose-related effects of FB1 on global DNA methylation which ranged from 4 to 5% were observed in both cells compared with controls. Promoter regions of c-myc gene were methylated (>33%) at 10 and 50 µM of FB1 treatment in Clone 9 cells while it was unmethylated in NRK-52E cells. Promoter regions of p15 gene were unmethylated while VHL gene were found to be methylated (>33%) at 10, 25, and 50 µM and 10 and 50 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. DISCUSSION AND CONCLUSION Alteration in DNA methylation might play an important role in the toxicity of FB1 in risk assessment process.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , Beyazit, Istanbul , Turkey
| | | | | |
Collapse
|
208
|
PI3Kβ inhibitor TGX221 selectively inhibits renal cell carcinoma cells with both VHL and SETD2 mutations and links multiple pathways. Sci Rep 2015; 5:9465. [PMID: 25853938 PMCID: PMC5396071 DOI: 10.1038/srep09465] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023] Open
Abstract
We aimed to exploit novel compounds with high selectivity to clear cell renal cell carcinoma (ccRCC) with common mutations. Using the GDSC databases, we searched for compounds with high selectivity for ccRCC with VHL and/or SETD2 mutations. Clinical impact and gene interactions were analysed using TCGA database. In vitro and in vivo studies were performed to validate the inhibitory effects of the compound. We identified the selective PI3Kβ inhibitor TGX221 as a selective inhibitor for ccRCC with both VHL and SETD2 mutations. TGX221 also targeted cancer cells with CDKN2A and PTEN mutations. Changes in PTEN and CDKN2A gene sets were associated with worsened prognosis of ccRCC. TGX221 substantially and selectively inhibited the down stream products of VHL, SETD2, and PTEN in ccRCC cells with VHL and SETD2 mutations. TGX221 also exhibited significant selectivity in inhibiting cell motility and tumourigenesis of ccRCC cells with VHL and SETD2 mutations. TGX221 is a novel inhibitor with high selectivity for ccRCC with VHL and SETD2 mutations. It also targeted PTEN and CDKN2A mutations. How those genes were associated with PI3Kβ warranted further investigations.
Collapse
|
209
|
Roos L, Spector TD, Bell CG. Using epigenomic studies in monozygotic twins to improve our understanding of cancer. Epigenomics 2015; 6:299-309. [PMID: 25111484 DOI: 10.2217/epi.14.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cancer is a set of diseases that exhibit not only genetic mutations but also a profoundly distorted epigenetic landscape. Over the last two decades, great advances have been made in identifying these alterations and their importance in the initiation and progression of cancer. Epigenetic changes can be seen from the very early stages in tumorigenesis and dysregulation of the epigenome has an increasingly acknowledged pathogenic role. Epigenomic twin studies have great potential to contribute to our understanding of complex diseases, such as cancer. This is because the use of monozygotic twins discordant for cancer enables epigenetic variation analysis without the confounding influence of the constitutive genetic background, age or cohort effects. It therefore allows the identification of susceptibility loci that may be sensitive to modification by the environment. These studies into cancer etiology will potentially lead to robust epigenetic markers for the detection and risk assessment of cancer.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research & Genetic Epidemiology, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | | | | |
Collapse
|
210
|
Nakamura R, Oyama T, Tajiri R, Mizokami A, Namiki M, Nakamoto M, Ooi A. Expression and regulatory effects on cancer cell behavior of NELL1 and NELL2 in human renal cell carcinoma. Cancer Sci 2015; 106:656-64. [PMID: 25726761 PMCID: PMC4452169 DOI: 10.1111/cas.12649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 12/27/2022] Open
Abstract
Neural epidermal growth factor-like like (NELL) 1 and 2 constitute a family of multimeric and multimodular extracellular glycoproteins. Although the osteogenic effects of NELL1 and functions of NELL2 in neural development have been reported, their expression and functions in cancer are largely unknown. In this study, we examined expression of NELL1 and NELL2 in renal cell carcinoma (RCC) using clinical specimens and cell lines. We show that, whereas NELL1 and NELL2 proteins are strongly expressed in renal tubules in non-cancerous areas of RCC specimens, their expression is significantly downregulated in cancerous areas. Silencing of NELL1 and NELL2 mRNA expression was also detected in RCC cell lines. Analysis of NELL1/2 promoter methylation status indicated that the CpG islands in the NELL1 and NELL2 genes are hypermethylated in RCC cell lines. NELL1 and NELL2 bind to RCC cells, suggesting that these cells express a receptor for NELL1 and NELL2 that can transduce signals. Furthermore, we found that both NELL1 and NELL2 inhibit RCC cell migration, and NELL1 further inhibits RCC cell adhesion. These results suggest that silencing of NELL gene expression by promoter hypermethylation plays roles in RCC progression by affecting cancer cell behavior.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryosuke Tajiri
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Mizokami
- Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Mikio Namiki
- Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
211
|
Salama MF, Carroll B, Adada M, Pulkoski-Gross M, Hannun YA, Obeid LM. A novel role of sphingosine kinase-1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. FASEB J 2015; 29:2803-13. [PMID: 25805832 DOI: 10.1096/fj.15-270413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
Sphingosine kinase 1 (SK1), the enzyme responsible for sphingosine 1-phosphate (S1P) production, is overexpressed in many human solid tumors. However, its role in clear cell renal cell carcinoma (ccRCC) has not been described previously. ccRCC cases are usually associated with mutations in von Hippel-Lindau (VHL) and subsequent normoxic stabilization of hypoxia-inducible factor (HIF). We previously showed that HIF-2α up-regulates SK1 expression during hypoxia in glioma cells. Therefore, we hypothesized that the stabilized HIF in ccRCC cells will be associated with increased SK1 expression. Here, we demonstrate that SK1 is overexpressed in 786-0 renal carcinoma cells lacking functional VHL, with concomitant high S1P levels that appear to be HIF-2α mediated. Moreover, examining the TCGA RNA seq database shows that SK1 expression was ∼2.7-fold higher in solid tumor tissue from ccRCC patients, and this was associated with less survival. Knockdown of SK1 in 786-0 ccRCC cells had no effect on cell proliferation. On the other hand, this knockdown resulted in an ∼3.5-fold decrease in invasion, less phosphorylation of focal adhesion kinase (FAK), and an ∼2-fold decrease in angiogenesis. Moreover, S1P treatment of SK1 knockdown cells resulted in phosphorylation of FAK and invasion, and this was mediated by S1P receptor 2. These results suggest that higher SK1 and S1P levels in VHL-defective ccRCC could induce invasion in an autocrine manner and angiogenesis in a paracrine manner. Accordingly, targeting SK1 could reduce both the invasion and angiogenesis of ccRCC and therefore improve the survival rate of patients.
Collapse
Affiliation(s)
- Mohamed F Salama
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Brittany Carroll
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Mohamad Adada
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Michael Pulkoski-Gross
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Lina M Obeid
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
212
|
Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol 2015; 5:11. [PMID: 25692096 PMCID: PMC4315039 DOI: 10.3389/fonc.2015.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses activation of three separate pathways, which are collectively categorized the unfolded protein response (UPR). The UPR has been extensively studied in various cancers and appears to confer a selective advantage to tumor cells to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been shown that ER stress induces chromatin changes, which can also facilitate cell survival. Chromatin remodeling has been linked with many cancers through repression of tumor suppressor and apoptosis genes. Interplay between the classic UPR and genome damage repair mechanisms may have important implications in the transformation process of normal cells into cancer cells.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta , Edmonton, AB , Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University , Montréal, QC , Canada
| |
Collapse
|
213
|
Lv J, Zhu P, Yang Z, Li M, Zhang X, Cheng J, Chen X, Lu F. PCDH20 functions as a tumour-suppressor gene through antagonizing the Wnt/β-catenin signalling pathway in hepatocellular carcinoma. J Viral Hepat 2015; 22:201-11. [PMID: 24910204 PMCID: PMC4344823 DOI: 10.1111/jvh.12265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022]
Abstract
Several members of protocadherins have been found involved in human carcinogenesis, but little is known about PCDH20 in HCC. Here in this study, using quantitative real-time RT-PCR assay, we demonstrated the downregulation of PCDH20 expression in 6 of 7 HCC cell lines tested. Similarly, PCDH20 expression in primary HCC tissues was also significantly downregulated in comparison with that in either disease-free normal liver tissues or the adjacent nontumour liver tissues (P < 0.001, respectively). Among HCC tumour tissues studied, about 48% (51/107) of them showed reduced PCDH20 mRNA level. Further statistic analysis revealed that the reduced PCDH20 mRNA level in tumour tissues was much more common in younger patients group (aged <50 years) than that in older group (≥50 years) (60% vs 33%, P = 0.0303). Loss of heterozygosity (LOH) and promoter hypermethylation analysis revealed that deletion and/or aberrant epigenetic modulation of PCDH20 gene account for its downregulation, at least in a fraction of tumour specimens. Moreover, ectopic expression of PCDH20 in HCC cells significantly suppressed cell proliferation, clonogenicity, migration and tumour formation. Notably, we proved for the first time that, via activating GSK-3β, PCDH20 could inhibit Wnt/β-catenin signalling pathway. Furthermore, our data suggest that PCDH20 may conduct its Wnt/β-catenin signalling antagonizing function through suppressing Akt and Erk activities and promoting GSK-3β signalling activities. However, the detailed mechanism remained undiscovered. In conclusion, our data here strongly suggested that PCDH20 may act as a candidate tumour suppressor in HCC.
Collapse
Affiliation(s)
- J Lv
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China,Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - P Zhu
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China
| | - Z Yang
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China
| | - M Li
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China
| | - X Zhang
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China
| | - J Cheng
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China
| | - X Chen
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China
| | - F Lu
- Department of Microbiology & infectious Disease Center, Peking University Health Science CenterBeijing, China,Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
214
|
Kim SJ, Tae CH, Hong SN, Min BH, Chang DK, Rhee PL, Kim JJ, Kim HC, Kim DH, Kim YH. EYA4 Acts as a New Tumor Suppressor Gene in Colorectal Cancer. Mol Carcinog 2015; 54:1748-57. [PMID: 25620232 DOI: 10.1002/mc.22247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/05/2014] [Accepted: 10/10/2014] [Indexed: 12/19/2022]
Abstract
A previous genome-wide methylation array for colorectal cancer (CRC) identified aberrant promoter methylation of eyes absent 4 (EYA4). However, the correlations between EYA4 methylation and gene expression, the role played by EYA4 protein in colorectal carcinogenesis, and results of the gene-enrichment and functional annotation analysis have not yet been established. We analyzed the EYA4 methylation status and found EYA4 promoter methylation in CRC cell lines (100%), CRC tissues (93.5%) and advanced adenoma tissues (50.7%), compared with normal mucosa (32.6%). There was a significant inverse correlation between EYA4 methylation and expression. EYA4 transfection led to inhibition of cell proliferation in colony assays and xenograft studies. On performing the gene-enrichment and functional annotation analysis, we observed that the differentially expressed genes have been associated with the Wnt and MAPK signaling pathways. Our results demonstrate that EYA4 is under epigenetic regulation in CRC. It is a candidate tumor suppressor gene that acts by inducing up-regulation of DKK1 and inhibiting the Wnt signaling pathway. In addition, EYA4 methylation may be identified in stool samples and it serves as a potential stool biomarker for detection of advanced adenoma and CRC.
Collapse
Affiliation(s)
- Sung-Jin Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Chung Hyun Tae
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Poong-Lyul Rhee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae J Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Hwan Kim
- Center for Genome Research, Samsung Biomedical Research Institute, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
215
|
Pon JR, Marra MA. Driver and Passenger Mutations in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:25-50. [DOI: 10.1146/annurev-pathol-012414-040312] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julia R. Pon
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada V5Z 1L3;
| | - Marco A. Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada V5Z 1L3;
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6T 1Z4;
| |
Collapse
|
216
|
Weinstock M, McDermott DF. Emerging role for novel immunotherapy agents in metastatic renal cell carcinoma: from bench to bedside. Am Soc Clin Oncol Educ Book 2015:e291-e297. [PMID: 25993188 DOI: 10.14694/edbook_am.2015.35.e291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Therapies that augment the antitumor immune response have been an established treatment modality for metastatic renal cell carcinoma (mRCC) since the 1980s. An improved understanding of the factors that limit the immune response to cancer have led to the development of novel therapeutic agents. Most notably, monoclonal antibodies that block the programmed death (PD)-1 immune checkpoint pathway have demonstrated encouraging antitumor activity against mRCC in phase I and II clinical trials. However, as monotherapy these agents are unlikely to offer substantial clinical benefit for the majority of patients with mRCC. Combination approaches and improvements in patient selection will be essential to enhance their efficacy and ensure the rational application of immunotherapy. This review summarizes the clinical and preclinical data that support the use of novel immunotherapies for mRCC and looks forward to future directions for this promising therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Weinstock
- From the Beth Israel Deaconess Medical Center, Boston, MA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA
| | - David F McDermott
- From the Beth Israel Deaconess Medical Center, Boston, MA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA
| |
Collapse
|
217
|
Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 2015; 11:333-48. [DOI: 10.2217/fon.14.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Based on the pivotal importance of epigenetics for transcription regulation, it is not surprising that cancer is characterized by several epigenetic abnormalities. Conversely to genetic alterations, epigenetic changes are not permanent, thus represent opportunities for therapeutic strategies designed to reverse transcriptional abnormalities, and cancer is the first disease in which epigenetic therapies with chromatin remodeling agents were introduced. The role of miRNAs in gene regulation supports their potential as innovative therapeutic strategy. Recent evidences have proven that the environment can profoundly influence the epigenome: diet, smoking and alcohol consumption can negatively impact the expression profile. Given the plasticity of epigenetic marks, it is challenging the idea that the epigenetic alterations are ‘druggable’ sites using specific food components.
Collapse
Affiliation(s)
- Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Integrative Biology Unit, Milano, Italy
| | | |
Collapse
|
218
|
Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Transl Res 2015; 165:126-42. [PMID: 24768944 DOI: 10.1016/j.trsl.2014.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial process during normal development that allows dynamic and reversible shifts between epithelial and mesenchymal cell states. Cancer cells take advantage of the complex, interrelated cellular networks that regulate EMT to promote their migratory and invasive capabilities. During the past few years, evidence has accumulated that indicates that genetic mutations and changes to epigenetic mechanisms are key drivers of EMT in cancer cells. Recent studies have begun to shed light on the epigenetic reprogramming in cancer cells that enables them to switch from a noninvasive form to an invasive, metastatic form. The authors review the current knowledge of alterations of epigenetic machinery, including DNA methylation, histone modifications, nucleosome remodeling and expression of microRNAs, associated with EMT and tumor progression of breast cancer cells. Last, existing and upcoming drug therapies targeting epigenetic regulators and their potential benefit for developing novel treatment strategies are discussed.
Collapse
|
219
|
Abstract
Cancer is a genetic and epigenetic disease. Multiple genetic and epigenetic changes have been studied in cervical cancer; however, such changes are selected for during tumorigenesis and tumor aggression is not yet clear. Cervical cancer is a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes. In cervical cancer, epigenetic alterations can affect the expression of papillomaviral as well as host genes in relation to stages representing the multistep process of carcinogenesis.
Collapse
|
220
|
Mokarram P, Estiar MA, Ashktorab H. Methylation in Colorectal Cancer. EPIGENETICS TERRITORY AND CANCER 2015:373-455. [DOI: 10.1007/978-94-017-9639-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
221
|
Abstract
Epigenetic changes frequently occur in human gastric cancer. Gene promoter region hypermethylation, genomic global hypomethylation, histone modifications, and alterations of noncoding RNAs are major epigenetic changes in gastric cancer. As a key risk factor of gastric cancer, H. pylori infection is an independent predictive indicator of gene methylation. A growing number of epigenetic studies in gastric cancer have provided lots of potential diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China,
| | | |
Collapse
|
222
|
Low VHL mRNA expression is associated with more aggressive tumor features of papillary thyroid carcinoma. PLoS One 2014; 9:e114511. [PMID: 25490036 PMCID: PMC4260854 DOI: 10.1371/journal.pone.0114511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/10/2014] [Indexed: 12/05/2022] Open
Abstract
Alterations of the von Hippel–Lindau (VHL) tumor suppressor gene can cause different hereditary tumors associated with VHL syndrome, but the potential role of the VHL gene in papillary thyroid carcinoma (PTC) has not been characterized. This study set out to investigate the relationship of VHL expression level with clinicopathological features of PTC in an ethnically and geographically homogenous group of 264 patients from Serbia, for the first time. Multivariate logistic regression analysis showed a strong correlation between low level of VHL expression and advanced clinical stage (OR = 5.78, 95% CI 3.17–10.53, P<0.0001), classical papillary morphology of the tumor (OR = 2.92, 95% CI 1.33–6.44, P = 0.008) and multifocality (OR = 1.96, 95% CI 1.06–3.62, P = 0.031). In disease-free survival analysis, low VHL expression had marginal significance (P = 0.0502 by the log-rank test) but did not appear to be an independent predictor of the risk for chance of faster recurrence in a proportion hazards model. No somatic mutations or evidence of VHL downregulation via promoter hypermethylation in PTC were found. The results indicate that the decrease of VHL expression associates with tumor progression but the mechanism of downregulation remains to be elucidated.
Collapse
|
223
|
|
224
|
Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol 2014; 124:28-48. [PMID: 25450949 DOI: 10.1016/j.pneurobio.2014.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/14/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022]
Abstract
Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
225
|
von Hippel-Lindau Exonic Methylation Analysis Using MALDI-TOF Mass Spectrometry. J Urol 2014; 192:1528-33. [DOI: 10.1016/j.juro.2014.03.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 01/12/2023]
|
226
|
Devanand P, Kim SI, Choi YW, Sheen SS, Yim H, Ryu MS, Kim SJ, Kim WJ, Lim IK. Inhibition of bladder cancer invasion by Sp1-mediated BTG2 expression via inhibition of DNA methyltransferase 1. FEBS J 2014; 281:5581-601. [PMID: 25284287 DOI: 10.1111/febs.13099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 11/26/2022]
Abstract
Significantly lower endogenous expression of B-cell translocation gene 2 (BTG2) was observed in human muscle-invasive bladder cancers (MIBC) than matched normal tissues and non-muscle invasive bladder cancers (NMIBC). BTG2 expression was inversely correlated with increased expression of the DNA methyltransferases DNMT1 and DNMT3a in MIBC, but not NMIBC, suggesting a potential role for BTG2 expression in muscle invasion of bladder cancer. Over 90% of tumor tissues revealed strong methylation at CpG islands of the BTG2 gene, compared with no methylation in the normal tissues, implying epigenetic regulation of BTG2 expression in bladder carcinogenesis. By using EJ bladder cancer cells and the demethylating agent decitabine, transcription of BTG2 was shown to be up-regulated by inhibiting DNMT1 expression via modification at CpG islands. DNMT1 binding to the BTG2 gene further regulated BTG2 expression by chromatin remodeling, such as H3K9 dimethylation and H3K4 trimethylation, and Sp1 activation. Induced BTG2 expression significantly reduced EJ cell tumorigenesis and invasiveness together with induction of G2 /M arrest. These results demonstrate an important role for the BTG2(/TIS21/PC3) gene in the progression of bladder cancers, and suggest that BTG2(/TIS21/PC3) is a promising epigenetic target for prevention of muscle invasion in human bladder cancers.
Collapse
Affiliation(s)
- Preethi Devanand
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci U S A 2014; 111:16538-43. [PMID: 25359211 DOI: 10.1073/pnas.1414789111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Why different species are predisposed to different tumor spectra is not well understood. In particular, whether the physical location of tumor suppressor genes relative to one another influences tumor predisposition is unknown. Renal cancer presents a unique opportunity to explore this question. Renal cell carcinoma (RCC) of clear-cell type (ccRCC), the most common type, begins with an intragenic mutation in the von Hippel-Lindau (VHL) gene and loss of 3p (where VHL is located). Chromosome 3p harbors several additional tumor suppressor genes, including BRCA1-associated protein-1 (BAP1). In the mouse, Vhl is on a different chromosome than Bap1. Thus, whereas loss of 3p in humans simultaneously deletes one copy of BAP1, loss of heterozygosity in the corresponding Vhl region in the mouse would not affect Bap1. To test the role of BAP1 in ccRCC development, we generated mice deficient for either Vhl or Vhl together with one allele of Bap1 in nephron progenitor cells. Six2-Cre;Vhl(F/F);Bap1(F/+) mice developed ccRCC, but Six2-Cre;Vhl(F/F) mice did not. Kidneys from Six2-Cre;Vhl(F/F);Bap1(F/+) mice resembled kidneys from humans with VHL syndrome, containing multiple lesions spanning from benign cysts to cystic and solid RCC. Although the tumors were small, they showed nuclear atypia and exhibited features of human ccRCC. These results provide an explanation for why VHL heterozygous humans, but not mice, develop ccRCC. They also explain why a mouse model of ccRCC has been lacking. More broadly, our data suggest that differences in tumor predisposition across species may be explained, at least in part, by differences in the location of two-hit tumor suppressor genes across the genome.
Collapse
|
228
|
Frew IJ, Moch H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:263-89. [PMID: 25387056 DOI: 10.1146/annurev-pathol-012414-040306] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is mutated as an early event in almost all cases of clear cell renal cell carcinoma (ccRCC), the most frequent form of kidney cancer. In this review we discuss recent advances in understanding how dysregulation of the many hypoxia-inducible factor α-dependent and -independent functions of the VHL tumor suppressor protein (pVHL) can contribute to tumor initiation and progression. Recent evidence showing extensive inter- and intratumoral genetic diversity has given rise to the idea that ccRCC should actually be considered as a series of molecularly related, yet distinct, diseases defined by the pattern of combinatorial genetic alterations present within the cells of the tumor. We highlight the range of genetic and epigenetic alterations that recur in ccRCC and discuss the mechanisms through which these events appear to function cooperatively with a loss of pVHL function in tumorigenesis.
Collapse
Affiliation(s)
- Ian J Frew
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland;
| | | |
Collapse
|
229
|
Maroni L, Pierantonelli I, Banales JM, Benedetti A, Marzioni M. The significance of genetics for cholangiocarcinoma development. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:28. [PMID: 25332972 DOI: 10.3978/j.issn.2305-5839.2012.10.04] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the liver, arising from bile ducts. The incidence is increasing worldwide, but the prognosis has remained dismal and virtually unchanged in the past 30 years. Although several risk factors have been associated with the development of this cancer, none of them are normally identified in most patients. Diagnosis in advanced stages of the disease and limited therapeutic options contribute to poor survival rates. The recent analysis of genetic and epigenetic alterations occurring in CCA has shed new light in the understanding of the molecular mechanisms leading to the malignant transformation of biliary cells. Further studies in this direction may foster new diagnostic, prognostic and therapeutic approaches. This review provides a global overview of recent advances in CCA and describes the most important genetic mutations and epigenetic alterations so far reported in CCA.
Collapse
Affiliation(s)
- Luca Maroni
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Irene Pierantonelli
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Jesus M Banales
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Antonio Benedetti
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Marco Marzioni
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| |
Collapse
|
230
|
Ma Q, Xiong F, Zhang L. Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discov Today 2014; 19:1883-96. [PMID: 25256780 DOI: 10.1016/j.drudis.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/23/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Abstract
Adverse environmental conditions faced by an individual early during its life, such as gestational hypoxia, can have a profound influence on the risk of diseases, such as neurological disorders, in later life. Clinical and preclinical studies suggest that epigenetic programming of gene expression patterns in response to maternal stress have a crucial role in the fetal origins of neurological diseases. Herein, we summarize recent studies regarding the role of epigenetic mechanisms in the developmental programming of neurological diseases in offspring, primarily focusing on DNA methylation/demethylation and miRNAs. Such information could increase our understanding of the fetal origins of adult diseases and help develop effective prevention and intervention against neurological diseases.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
231
|
Wang WC, Tsou MH, Chen HJ, Hsu WF, Lai YC. Two single nucleotide polymorphisms in the von Hippel-Lindau tumor suppressor gene in Taiwanese with renal cell carcinoma. BMC Res Notes 2014; 7:638. [PMID: 25217002 PMCID: PMC4168206 DOI: 10.1186/1756-0500-7-638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background Renal cell carcinoma, a common malignant tumor arising from the kidney, occurs in 3.62 and 1.95 cases per one hundred thousand people among men and women, respectively, in Taiwan each year. Approximately 80% of cases are classified as clear-cell renal cell carcinoma. Inactivation of the von Hippel-Lindau tumor suppressor gene has been implicated in the tumorigenic pathway of renal cell carcinoma. Two single nucleotide polymorphisms, rs779805 and rs1642742, located in the promoter and 3′ untranslated regions of the von Hippel-Lindau gene are informative and implicated in the occurrence of renal cell carcinoma worldwide. The aim of this study is to clarify whether these polymorphisms are associated with renal cell carcinoma in Taiwanese. Genomic DNA was isolated from normal and tumor tissues of 19 renal cell carcinoma patients. The samples were screened for allelic polymorphisms by restriction fragment length polymorphism with BsaJ I and Acc I digestion. Reconfirmation was carried out by direct sequencing. Results Consistent with Knudson’s two-hit theory, AA to AG somatic mutations were observed in rs779805. In addition, loss of heterozygosity in both rs779805 and rs1642742 was demonstrated in 10 out of 15 RCC patients aged 50 or over. The G allele or AG heterozygote frequencies at these two loci were much higher in patient germline DNA when compared with the control group. After adjusting for age, the frequency of the G allele in both loci was much higher for late onset renal cell carcinoma in the Taiwanese population. Conclusions Our current results confirmed that the existence of G allele in both rs779805 and rs1642742 in the von Hippel-Lindau tumor suppressor gene is of importance in renal cell carcinoma tumorigenesis. However, more comprehensive and detailed research is needed to address the clinical relevance. Larger sample size is required to determine the exact power of correlation between these two genetic polymorphisms and renal cell carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-638) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Yen-Chein Lai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, No,110, Sec, 1, Chien Kuo N, Road, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
232
|
Abstract
Colorectal cancer (CRC) is one of the major cancers in the world and second death-causing cancer in the US. CRC development involves genetic and epigenetic alterations. Changes in DNA methylation status are believed to be involved at different stages of CRC. Promoter silencing via DNA methylation and hypomethylation of oncogenes alter genes' expression, and can be used as a tool for the early detection of colonic lesions. DNA methylation use as diagnostic and prognostic marker has been described for many cancers including CRC. CpG Islands Methylator Phenotype (CIMP) is one of the underlying CRC mechanisms. This review aims to define methylation signatures in CRC. The analysis of DNA methylation profile in combination with the pathological diagnosis would be useful in predicting CRC tumors' evolution and their prognostic behavior.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine; Washington DC
| | - Hassan Brim
- Department of Pathology, Howard University, College of Medicine; Washington DC
| |
Collapse
|
233
|
Epigenetic factors affect tumor initiation, progression and recurrence. J Urol 2014; 192:1318-9. [PMID: 25130530 DOI: 10.1016/j.juro.2014.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 11/20/2022]
|
234
|
Zhang Q, Zhang L, Li L, Wang Z, Ying J, Fan Y, Xu B, Wang L, Liu Q, Chen G, Tao Q, Jin J. Interferon regulatory factor 8 functions as a tumor suppressor in renal cell carcinoma and its promoter methylation is associated with patient poor prognosis. Cancer Lett 2014; 354:227-34. [PMID: 25109451 DOI: 10.1016/j.canlet.2014.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
Abstract
Interferon regulatory factor 8 (IRF8), as a central element of IFN-γ-signaling, plays a critical role in tumor suppression. However, its expression and underlying molecular mechanism remain elusive in renal cell carcinoma (RCC). Here, we examined IRF8 expression and methylation in RCC cell lines and primary tumors, and further assessed its tumor suppressive functions. We found that IRF8 was widely expressed in human normal tissues including kidney, but frequently downregulated by promoter methylation in RCC cell lines. IRF8 methylation was detected in 25% of primary tumors, but not in adjacent non-malignant renal tissues, and associated with higher tumor nuclear grade of RCC. Ectopic expression of IRF8 inhibited colony formation and migration abilities of RCC cells, through inducing cell cycle G2/M arrest and apoptosis. IFN-γ could induce IRF8 expression in RCC cells, together with increased cleaved-PARP. We further found that IRF8 inhibited expression of oncogenes YAP1 and Survivin, as well as upregulated expression of tumor suppressor genes CASP1, p21 and PTEN. Collectively, our data demonstrate that IRF8 as a functional tumor suppressor is frequently methylated in RCC, and IRF8-mediated interferon signaling is involved in RCC pathogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - LiLi Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | - Zhaohui Wang
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lu Wang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Qianling Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Guangfu Chen
- Department of Urology, PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Qian Tao
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong.
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| |
Collapse
|
235
|
Melanoma epigenetics: novel mechanisms, markers, and medicines. J Transl Med 2014; 94:822-38. [PMID: 24978641 PMCID: PMC4479581 DOI: 10.1038/labinvest.2014.87] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023] Open
Abstract
The incidence and mortality rates of cutaneous melanoma continue to increase worldwide, despite the deployment of targeted therapies. Recently, there has been rapid growth and development in our understanding of epigenetic mechanisms and their role in cancer pathobiology. Epigenetics--defined as the processes resulting in heritable changes in gene expression beyond those caused by alterations in the DNA sequence--likely contain the information that encodes for such phenotypic variation between individuals with identical genotypes. By altering the structure of chromatin through covalent modification of DNA bases or histone proteins, or by regulating mRNA translation through non-coding RNAs, the epigenome ultimately determines which genes are expressed and which are kept silent. While our understanding of epigenetic mechanisms is growing at a rapid pace, the field of melanoma epigenomics still remains in its infancy. In this Pathology in Focus, we will briefly review the basics of epigenetics to contextualize and critically examine the existing literature using melanoma as a cancer paradigm. Our understanding of how dysregulated DNA methylation and DNA demethylation/hydroxymethylation, histone modification, and non-coding RNAs affect cancer pathogenesis and melanoma virulence, in particular, provides us with an ever-expanding repertoire of potential diagnostic biomarkers, therapeutic targets, and novel pathogenic mechanisms. The evidence reviewed herein indicates the critical role of epigenetic mechanisms in melanoma pathobiology and provides evidence for future targets in the development of next-generation biomarkers and therapeutics.
Collapse
|
236
|
Gowrishankar B, Cahill L, Arndt AE, Al-Ahmadie H, Lin O, Chadalavada K, Chaganti S, Nanjangud GJ, Murty VV, Chaganti RSK, Reuter VE, Houldsworth J. Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization. BJU Int 2014; 114:881-90. [PMID: 24467611 PMCID: PMC4257075 DOI: 10.1111/bju.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To improve the overall accuracy of diagnosis in needle biopsies of renal masses, especially small renal masses (SRMs), using fluorescence in situ hybridization (FISH), and to develop a renal cortical neoplasm classification decision tree based on genomic alterations detected by FISH. PATIENTS AND METHODS Ex vivo fine needle aspiration biopsies of 122 resected renal cortical neoplasms were subjected to FISH using a series of seven-probe sets to assess gain or loss of 10 chromosomes and rearrangement of the 11q13 locus. Using specimen (nephrectomy)-histology as the 'gold standard', a genomic aberration-based decision tree was generated to classify specimens. The diagnostic potential of the decision tree was assessed by comparing the FISH-based classification and biopsy histology with specimen histology. RESULTS Of the 114 biopsies diagnostic by either method, a higher diagnostic yield was achieved by FISH (92 and 96%) than histology alone (82 and 84%) in the 65 biopsies from SRMs (<4 cm) and 49 from larger masses, respectively. An optimized decision tree was constructed based on aberrations detected in eight chromosomes, by which the maximum concordance of classification achieved by FISH was 79%, irrespective of mass size. In SRMs, the overall sensitivity of diagnosis by FISH compared with histopathology was higher for benign oncocytoma, was similar for the chromophobe renal cell carcinoma subtype, and was lower for clear-cell and papillary subtypes. The diagnostic accuracy of classification of needle biopsy specimens (from SRMs) increased from 80% obtained by histology alone to 94% when combining histology and FISH. CONCLUSION The present study suggests that a novel FISH assay developed by us has a role to play in assisting in the yield and accuracy of diagnosis of renal cortical neoplasms in needle biopsies in particular, and can help guide the clinical management of patients with SRMs that were non-diagnostic by histology.
Collapse
|
237
|
Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene 2014; 34:2631-9. [DOI: 10.1038/onc.2014.197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
|
238
|
Interaction between Nm23 and the tumor suppressor VHL. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:143-52. [PMID: 24915993 DOI: 10.1007/s00210-014-1002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023]
Abstract
Among the anti-tumor genes (tumor suppressors and metastasis suppressors), the von-Hippel Lindau gene and the Nm23 family of genes are among the more intriguing ones. Both are small (long and short forms of VHL are 30 and 19 kD, respectively, and Nm23 is ~17 kD), and both possess diverse molecular and cellular functions. Despite extensive studies, the entire spectra of functions and the molecular function-phenotype correlation of these two proteins have not been completely elucidated. In this report, we present data showing these two proteins interact physically. We also summarize and confirm the previous studies that demonstrated the endocytic function of these two genes and further show that the endocytic function of VHL is mediated through the activity of Nm23. These functional and molecular interactions are evolutionarily conserved from Drosophila to human.
Collapse
|
239
|
Tsang VHM, Dwight T, Benn DE, Meyer-Rochow GY, Gill AJ, Sywak M, Sidhu S, Veivers D, Sue CM, Robinson BG, Clifton-Bligh RJ, Parker NR. Overexpression of miR-210 is associated with SDH-related pheochromocytomas, paragangliomas, and gastrointestinal stromal tumours. Endocr Relat Cancer 2014; 21:415-26. [PMID: 24623741 DOI: 10.1530/erc-13-0519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
miR-210 is a key regulator of response to hypoxia. Pheochromocytomas (PCs) and paragangliomas (PGLs) with germline SDHx or VHL mutations have pseudohypoxic gene expression signatures. We hypothesised that PC/PGLs containing SDHx or VHL mutations, and succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumours (GISTs), would overexpress miR-210 relative to non-SDH or -VHL-mutated counterparts. miR-210 was analysed by quantitative PCR in i) 39 PC/PGLs, according to genotype (one SDHA, five SDHB, seven VHL, three NF1, seven RET, 15 sporadic, one unknown) and pathology (18 benign, eight atypical, 11 malignant, two unknown); ii) 18 GISTs, according to SDHB immunoreactivity (nine SDH-deficient and nine SDH-proficient) and iii) two novel SDHB-mutant neurosphere cell lines. miR-210 was higher in SDHx- or VHL-mutated PC/PGLs (7.6-fold) compared with tumours without SDHx or VHL mutations (P=0.0016). miR-210 was higher in malignant than in unequivocally benign PC/PGLs (P=0.05), but significance was lost when benign and atypical tumours were combined (P=0.08). In multivariate analysis, elevated miR-210 was significantly associated with SDHx or VHL mutation, but not with malignancy. In GISTs, miR-210 was higher in SDH-deficient (median 2.58) compared with SDH-proficient tumours (median 0.60; P=0.0078). miR-210 was higher in patient-derived neurosphere cell lines containing SDHB mutations (6.5-fold increase) compared with normal controls, in normoxic conditions (P<0.01). Furthermore, siRNA-knockdown of SDHB in HEK293 cells increased miR-210 by 2.7-fold (P=0.001) under normoxia. Overall, our results suggest that SDH deficiency in PC, PGL and GISTs induces miR-210 expression and substantiates the role of aberrant hypoxic-type cellular responses in the development of these tumours.
Collapse
Affiliation(s)
- V H M Tsang
- Cancer Genetics Laboratory, Kolling Institute of Medical Research Department of Endocrinology, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia Department of Surgery, Faculty of Medical and Health Sciences, Waikato Clinical School, University of Auckland, Auckland 1142, New Zealand Department of Anatomical Pathology, Cancer Diagnosis and Oncology Group, Kolling Institute of Medical Research Department of Endocrine and Oncology Surgery, Neurogenetics Research Laboratory, Kolling Institute of Medical Research Department of ENT Surgery, Department of Neurology Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Renal cell carcinoma of clear-cell type (ccRCC) is an enigmatic tumor type, characterized by frequent inactivation of the VHL gene (infrequently mutated in other tumor types), responsiveness to angiogenesis inhibitors, and resistance to both chemotherapy and conventional radiation therapy. ccRCC tumors exhibit substantial mutation heterogeneity. Recent studies using massively parallel sequencing technologies have implicated several novel driver genes. In VHL wild-type tumors, mutations were discovered in TCEB1, which encodes Elongin C, a protein that binds to VHL and is required for its function. Several additional tumor suppressor genes have been identified near the VHL gene, within a region that is frequently deleted in ccRCC on chromosome 3p: SETD2, BAP1, and PBRM1. Mutations in BAP1 and PBRM1 are largely mutually exclusive and are associated with different tumor biology and patient outcomes. In addition, the mTORC1 pathway is deregulated by mutations in MTOR, TSC1, PIK3CA, and PTEN in approximately 20% of ccRCCs. Mutations in TSC1, and possibly other genes, may predict for sensitivity to mTORC1 inhibitors. These discoveries provide insight into ccRCC development and set the foundation for the first molecular genetic classification of the disease, paving the way for subtype-specific therapies.
Collapse
Affiliation(s)
- James Brugarolas
- From the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
241
|
Sunitinib resistance in renal cell carcinoma. J Kidney Cancer VHL 2014; 1:1-11. [PMID: 28326244 PMCID: PMC5345511 DOI: 10.15586/jkcvhl.2014.7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/10/2014] [Indexed: 12/26/2022] Open
Abstract
Of the many targeted therapies introduced since 2006, sunitinib has carved its way to become the most commonly used first-line therapy for the treatment of metastatic renal cell carcinoma (RCC). Despite significant improvements in progression-free survival, 30% of the patients are intrinsically resistant to sunitinib and the remaining 70% who respond initially will eventually become resistant in 6-15 months. While the molecular mechanisms of acquired resistance to sunitinib have been unravelling at a rapid rate, the mechanisms of intrinsic resistance remain elusive. Combination therapy, sunitinib rechallenge and sequential therapy have been investigated as means to overcome resistance to sunitinib. Of these, sequential therapy appears to be the most promising strategy. This mini review summarises our emerging understanding of the molecular mechanisms, and the strategies employed to overcome sunitinib resistance.
Collapse
|
242
|
Meeker A, Heaphy C. Gastroenteropancreatic endocrine tumors. Mol Cell Endocrinol 2014; 386:101-20. [PMID: 23906538 DOI: 10.1016/j.mce.2013.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023]
Abstract
Gastroenteropancreatic endocrine tumors (GEP-NETs) are relatively uncommon; comprising approximately 0.5% of all human cancers. Although they often exhibit relatively indolent clinical courses, GEP-NETs have the potential for lethal progression. Due to their scarcity and various technical challenges, GEP-NETs have been understudied. As a consequence, we have few diagnostic, prognostic and predictive biomarkers for these tumors. Early detection and surgical removal is currently the only reliable curative treatment for GEP-NET patients; many of whom, unfortunately, present with advanced disease. Here, we review the genetics and epigenetics of GEP-NETs. The last few years have witnessed unprecedented technological advances in these fields, and their application to GEP-NETS has already led to important new information on the molecular abnormalities underlying them. As outlined here, we expect that "omics" studies will provide us with new diagnostic and prognostic biomarkers, inform the development of improved pre-clinical models, and identify novel therapeutic targets for GEP-NET patients.
Collapse
Affiliation(s)
- Alan Meeker
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States.
| | - Christopher Heaphy
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States
| |
Collapse
|
243
|
Joseph RW, Kapur P, Serie DJ, Eckel-Passow JE, Parasramka M, Ho T, Cheville JC, Frenkel E, Rakheja D, Brugarolas J, Parker A. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 2014; 120:1059-67. [PMID: 24382589 PMCID: PMC4075029 DOI: 10.1002/cncr.28521] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have low-risk disease with a < 10% chance of ccRCC-specific death. DNA sequencing revealed that mutations in BAP1 (BRCA1 associated protein-1) occur in 5% to 15% of ccRCC cases and are associated with poor outcomes. The vast majority of BAP1 mutations abolish protein expression. In this study, we used a highly sensitive and specific immunohistochemistry (IHC) assay to test whether BAP1 expression is an independent marker of ccRCC-specific survival, particularly in patients with low-risk disease. METHODS BAP1 expression was assessed, using IHC, in 1479 patients who underwent nephrectomy to treat clinically localized ccRCC. A centralized pathologist dichotomized patients as either BAP1-positive or BAP1-negative. The authors employed Kaplan-Meier and Cox regression models to associate BAP1 expression with cancer-specific survival. RESULTS A total of 10.5% of tumors were BAP1-negative, 84.8% of tumors were BAP1-positive, and 4.6% of tumors had ambiguous staining for BAP1. Patients with BAP1-negative tumors have an increased risk of ccRCC-related death (hazard ratio [HR] = 3.06; 95% confidence interval [CI] = 2.28-4.10; P = 6.77 × 10(-14) ). BAP1 expression remained an independent marker of prognosis after adjusting for the UCLA integrated staging system (UISS) (HR = 1.67; 95% CI = 1.24-2.25; P < .001). Finally, BAP1 was an independent prognostic marker in low-risk patients with a Mayo Clinic stage, size, grade, and necrosis (SSIGN) score of ≤ 3 (HR = 3.24; 95% CI = 1.26-8.33; P = .015). CONCLUSIONS This study used a large patient cohort to demonstrate that BAP1 expression is an independent marker of prognosis in patients with low-risk (SSIGN≤ 3) ccRCC.
Collapse
Affiliation(s)
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center
| | - Daniel J. Serie
- Departments of Health Sciences Research and Medicine, Mayo Clinic Florida
| | | | | | - Thai Ho
- Division of Medical Oncology, Mayo Clinic Arizona
| | | | - Eugene Frenkel
- Division of Hematology-Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center
| | - James Brugarolas
- Division of Hematology-Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
- Department of Developmental Biology, University of Texas Southwestern Medical Center
| | - Alexander Parker
- Departments of Health Sciences Research and Medicine, Mayo Clinic Florida
| |
Collapse
|
244
|
Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN GASTROENTEROLOGY 2014; 2014:464015. [PMID: 24729878 PMCID: PMC3963109 DOI: 10.1155/2014/464015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal cancers mainly gastric cancer and colorectal cancer.
Collapse
|
245
|
Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, Martinez P, Phillimore B, Begum S, Rabinowitz A, Spencer-Dene B, Gulati S, Bates PA, Stamp G, Pickering L, Gore M, Nicol DL, Hazell S, Futreal PA, Stewart A, Swanton C. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014; 46:225-233. [PMID: 24487277 PMCID: PMC4636053 DOI: 10.1038/ng.2891] [Citation(s) in RCA: 963] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/13/2014] [Indexed: 02/08/2023]
Abstract
Clear cell renal carcinomas (ccRCCs) can display intratumor heterogeneity (ITH). We applied multiregion exome sequencing (M-seq) to resolve the genetic architecture and evolutionary histories of ten ccRCCs. Ultra-deep sequencing identified ITH in all cases. We found that 73-75% of identified ccRCC driver aberrations were subclonal, confounding estimates of driver mutation prevalence. ITH increased with the number of biopsies analyzed, without evidence of saturation in most tumors. Chromosome 3p loss and VHL aberrations were the only ubiquitous events. The proportion of C>T transitions at CpG sites increased during tumor progression. M-seq permits the temporal resolution of ccRCC evolution and refines mutational signatures occurring during tumor development.
Collapse
Affiliation(s)
- Marco Gerlinger
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, UK
| | - James Larkin
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Andrew J Rowan
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Max P Salm
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, UK
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Rosalie Fisher
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Nicholas McGranahan
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Nicholas Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Claudio R Santos
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Pierre Martinez
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Benjamin Phillimore
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Sharmin Begum
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Adam Rabinowitz
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology, Cancer Research UK London Research Institute, London, UK
| | - Sakshi Gulati
- Biomolecular Modelling, Cancer Research UK London Research Institute, London, UK
| | - Paul A Bates
- Biomolecular Modelling, Cancer Research UK London Research Institute, London, UK
| | - Gordon Stamp
- Experimental Histopathology, Cancer Research UK London Research Institute, London, UK
| | - Lisa Pickering
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Martin Gore
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - David L Nicol
- Department of Urology, Royal Marsden Hospital, London, UK
| | - Steven Hazell
- Department of Pathology, Royal Marsden Hospital, London, UK
| | - P Andrew Futreal
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Aengus Stewart
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
- University College London Cancer Institute, University College London, London, UK
| |
Collapse
|
246
|
Novel approaches targeting the vascular endothelial growth factor axis in renal cell carcinoma. Cancer J 2014; 19:299-306. [PMID: 23867510 DOI: 10.1097/ppo.0b013e31829d5cff] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, functional characterization of the von Hippel-Lindau tumor suppressor, hypoxia-induced factors, and one of their key downstream effectors, the vascular endothelial growth factor (VEGF), has revolutionized treatment of advanced renal cell carcinoma. Therapeutic strategies targeting the ligand itself (VEGF-A) or its receptor (VEGFR2) have proven successful. However, complete remissions are rare, and with time patients invariably suffer disease progression. It is understood that this is due to incomplete suppression of VEGF signaling and/or adaptive up-regulation of non-VEGF-dependent tumor-promoting stimuli. In this article, we review novel VEGF-directed agents that are being developed to address the shortcomings of current targeted drugs for the treatment of advanced renal cell carcinoma. Building on our current understanding of molecular mechanisms behind resistance, examples include next-generation multitarget tyrosine kinase inhibitors, biologics, and other compounds.
Collapse
|
247
|
David JM, Owens TA, Inge LJ, Bremner RM, Rajasekaran AK. Gramicidin A Blocks Tumor Growth and Angiogenesis through Inhibition of Hypoxia-Inducible Factor in Renal Cell Carcinoma. Mol Cancer Ther 2014; 13:788-99. [DOI: 10.1158/1535-7163.mct-13-0891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
248
|
Kruizinga RC, Sluiter WJ, de Vries EGE, Zonnenberg BA, Lips CJ, van der Horst-Schrivers ANA, Walenkamp AME, Links TP. Calculating optimal surveillance for detection of von Hippel-Lindau-related manifestations. Endocr Relat Cancer 2014; 21:63-71. [PMID: 24132471 DOI: 10.1530/erc-13-0308] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
von Hippel-Lindau (VHL) mutation carriers develop benign and malignant tumors, requiring regular surveillance. The aim of this study was to calculate the optimal organ-specific age to initiate surveillance and optimal intervals to detect initial and subsequent VHL-related manifestations. In this study, we compare these results with the current VHL surveillance guidelines. We collected data from 82 VHL mutation carriers in the Dutch VHL surveillance program. The cumulative proportion of carriers diagnosed with a first VHL-related manifestation was estimated by the Kaplan-Meier method. The Poisson distribution model was used to calculate average time to detection of the first VHL-related manifestation and subsequent manifestations. We used this to calculate the optimal organ-specific age to initiate surveillance and the surveillance interval that results in a detection probability of 5%. The calculated organ-specific ages to initiate surveillance were 0 years (birth) for adrenal glands, 7 years for the retina, 14 years for the cerebellum, 15 years for the spinal cord, 16 years for pancreas, and 18 years for the kidneys. The calculated surveillance intervals were 4 years for the adrenal glands, biennially for the retina and pancreas, and annually for the cerebellum, spinal cord, and kidneys. Compared with current VHL guidelines, the calculated starting age of surveillance was 6 years later for the retina and 5 years earlier for adrenal glands. The surveillance intervals were two times longer for the retina and four times longer for the adrenal glands. To attain a 5% detection probability rate per organ, our mathematical model indicates that several modifications of current VHL surveillance guidelines should be considered.
Collapse
Affiliation(s)
- Roeliene C Kruizinga
- Departments of Medical Oncology Endocrinology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Shuch B, Linehan WM, Srinivasan R. Aerobic glycolysis: a novel target in kidney cancer. Expert Rev Anticancer Ther 2014; 13:711-9. [PMID: 23773105 DOI: 10.1586/era.13.57] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Renal cell carcinoma (RCC) is a heterogenous group of cancers that arise from the nephron. While there are distinct histologic subtypes associated with common genetic alterations, most forms of RCC are linked by a common pathway of dysregulated metabolism. Reliance on aerobic glycolysis, a feature of cancer first hypothesized by Warburg, is a common feature in sporadic and hereditary forms of kidney cancer. Two hereditary forms of RCC, succinate dehydrogenase (SDH) and hereditary leiomyomatosis and RCC (HLRCC), are characterized by mutations in Krebs cycle enzymes, rendering them dependent on glycolysis for energy requirements. The reliance on these pathways may make them vulnerable to novel metabolic strategies, including inhibition of glycolysis, glucose uptake and macromolecule biosynthesis.
Collapse
Affiliation(s)
- Brian Shuch
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
250
|
Akhter N, Akhtar MS, Ahmad MM, Haque S, Siddiqui S, Hasan SI, Shukla NK, Husain SA. Association of mutation and hypermethylation of p21 gene with susceptibility to breast cancer: a study from north India. Mol Biol Rep 2014; 41:2999-3007. [DOI: 10.1007/s11033-014-3159-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 01/13/2014] [Indexed: 12/30/2022]
|