201
|
Abstract
Like many complex disease processes, atherogenesis represents the interaction of an array of genetic and environmental factors. From nonhuman animal models to the investigation of epidemiologic factors in man, no single, overriding cause for the development of this indolent vascular disease has been identified. However, the cholesterol-enriched lipoprotein particles are closely tied to the development of the disease. The genetic and environmental influences on the concentrations of specific lipoprotein subspecies provide a context for identifying patients at risk as well as for developing effective therapeutic strategies to influence and prevent the sequelae of atherogenesis.
Collapse
Affiliation(s)
- J M Hoeg
- Section of Cell Biology, Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
202
|
Greeve J, Lellek H, Rautenberg P, Greten H. Inhibition of the apolipoprotein B mRNA editing enzyme-complex by hnRNP C1 protein and 40S hnRNP complexes. Biol Chem 1998; 379:1063-73. [PMID: 9792439 DOI: 10.1515/bchm.1998.379.8-9.1063] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The apolipoprotein (apo) B mRNA can be modified by a posttranscriptional base change from cytidine to uridine at nucleotide position 6666. This editing of apo B mRNA is mediated by a specific enzyme-complex of which only the catalytic subunit APOBEC-1 (apo B mRNA editing enzyme component 1) has been cloned and extensively characterized. In this study, two-hybrid selection in yeast identified hnRNP C1 protein to interact with APOBEC-1. Recombinant hnRNP C1 protein inhibited partially purified apo B mRNA editing activity from rat small intestine and bound specifically to apo B sense RNA around the editing site. The inhibition of apo B mRNA editing by hnRNP C1 protein was not due to masking of the RNA substrate as the mutant protein M104 spanning the RNA-binding domain of hnRNP C1 protein bound strongly to the apo B RNA, but did not inhibit the editing reaction. The apo B mRNA editing enzyme-complex of rat liver nuclear extracts sedimented in sucrose density gradients around 22-27S, but did not contain hnRNP C1 protein that was found exclusively within 40S hnRNP complexes. The removal of 40S hnRNP complexes increased the activity of the 22-27S editing enzyme-complex. Adding back 40S hnRNP complexes with hnRNP C1 protein resulted in an inhibition of the 22-27S apo B mRNA editing enzyme-complex, while addition of 18S fractions had no effect. In conclusion, hnRNP C1 protein identified by two-hybrid selection in yeast is a potent inhibitor of the apo B mRNA editing enzyme-complex. The abundant hnRNP C1 protein, which is contiguously deposited on nascent pre-mRNA during transcription and is involved in spliceosome assembly and mRNA splicing, is a likely regulator of the editing of apo B mRNA which restricts the activity of APOBEC-1 to limited and specific editing events.
Collapse
Affiliation(s)
- J Greeve
- Medizinische Klinik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
203
|
Greeve J, Axelos D, Welker S, Schipper M, Greten H. Distinct promoters induce APOBEC-1 expression in rat liver and intestine. Arterioscler Thromb Vasc Biol 1998; 18:1079-92. [PMID: 9672068 DOI: 10.1161/01.atv.18.7.1079] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of apolipoprotein (apo) B can be modulated by mRNA editing, a unique posttranscriptional base change in the apo B mRNA. Apo B-48, the translation product of edited apo B mRNA, is not a precursor of the atherogenic low density lipoproteins and lipoprotein(a). In humans and various other mammals, the apo B mRNA is edited in the intestine but not in the liver, which exclusively secretes apo B-100-containing lipoproteins as precursors for low density lipoprotein formation. In species such as the rat, mouse, dog, and horse, apo B mRNA is also edited in the liver, resulting in low plasma levels of low density lipoprotein. Editing of the apo B mRNA is mediated by the apo B mRNA-editing enzyme complex, of which the catalytic subunit APOBEC-1 is not expressed in the liver of species without hepatic editing. To understand the molecular basis for liver-specific expression of APOBEC-1 and the editing of hepatic apo B mRNA, the expression pattern and genomic organization of the rat APOBEC-1 gene have been characterized. The rat APOBEC-1 gene contains 6 exons and 2 promoters with distinct activities. The expression of APOBEC-1 in the rat liver is the result of a promoter located upstream, with tissue-specific exon use and alternate splicing within the 5'-untranslated region of APOBEC-1 mRNA encoded by exon 2. In addition to the liver, this promoter also induces APOBEC-1 expression in the spleen, lung, kidney, heart, and skeletal muscle. The promoter located downstream belongs to a new class of TATA-less promoters and is responsible for the abundant expression of APOBEC-1 in the intestine. Mapping of the transcriptional start sites and deletion analysis of the promoter regions by using luciferase as the reporter gene have defined the regulatory elements of both promoters. The downstream, intestine-specific promoter contains a negative regulatory element between -1100 and -500, which appears to restrict its activity to the intestine. The upstream, liver-specific promoter of the rat APOBEC-1 gene induces APOBEC-1 expression and editing of apo B mRNA in human hepatoma HuH-7 and Hep G2 cells. Understanding the molecular basis for the liver-specific expression of APOBEC-1 in the rat promises new strategies to induce APOBEC-1 expression in the human liver for the reduction of atherogenic lipoprotein levels by hepatic apo B mRNA editing.
Collapse
Affiliation(s)
- J Greeve
- Medizinische Kernklinik und Poliklinik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
204
|
Qian X, Balestra ME, Yamanaka S, Borén J, Lee I, Innerarity TL. Low expression of the apolipoprotein B mRNA-editing transgene in mice reduces LDL levels but does not cause liver dysplasia or tumors. Arterioscler Thromb Vasc Biol 1998; 18:1013-20. [PMID: 9633945 DOI: 10.1161/01.atv.18.6.1013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatic expression of apolipoprotein (apo) B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1) has been proposed as a gene therapy approach for lowering plasma low density lipoprotein (LDL) levels. However, high-level expression of APOBEC-1 in transgenic mouse and rabbit livers causes liver dysplasia and hepatocellular carcinoma. To determine the physiological and pathological effects of low-level hepatic expression of APOBEC-1, we used a 52-kb rat APOBEC-1 genomic clone (RE4) to generate transgenic mice expressing low levels of APOBEC-1 (2 to 5 times those in nontransgenic mice). Liver function, liver histology, editing of apoB mRNA at the normal editing site (C6666), and abnormal editing at multiple sites (hyperediting) in these mice were compared with those in transgenic mice expressing intermediate (I-20) or high (I-28) levels of APOBEC-1 in the liver. Hyperediting of mRNA coding for the novel APOBEC-1 target 1 (NAT1) was also examined. In the high-expressing I-28 line, 50% of the mice had palpable tumors at 15 weeks of age, whereas in the intermediate-expressing I-20 line, 50% of the mice had evidence of liver tumors after 1 year. In contrast, low-expressing RE4 mice had normal liver function and histology and did not develop liver tumors when examined at 3 to 17 months of age. Moreover, hyperediting of apoB and NAT1 mRNA in the liver was robust in the I-20 mice but barely detectable in the RE4 mice. The low-level expression resulted in sufficient APOBEC-1 to edit essentially all apoB mRNA at the normal editing site, virtually eliminating apoB-100 and LDL in the plasma of RE4 mice. When RE4 mice were crossed with human apoB transgenic mice, which possess high plasma LDL concentrations, plasma LDL levels in the offspring were reduced to very low levels. These results indicates that long-term hepatic expression of APOBEC-1 at low levels sufficient to eliminate LDL does not cause apparent liver damage or liver tumors in transgenic mice. RE4 APOBEC-1 transgenic mice should prove valuable for studying the roles of apoB-containing lipoproteins in lipid metabolism and atherosclerosis.
Collapse
Affiliation(s)
- X Qian
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94103, USA.
| | | | | | | | | | | |
Collapse
|
205
|
Fan J, Ji ZS, Huang Y, de Silva H, Sanan D, Mahley RW, Innerarity TL, Taylor JM. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J Clin Invest 1998; 101:2151-64. [PMID: 9593771 PMCID: PMC508803 DOI: 10.1172/jci1599] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transgenic rabbits expressing human apo E3 were generated to investigate mechanisms by which apo E modulates plasma lipoprotein metabolism. Compared with nontransgenic littermates expressing approximately 3 mg/dl of endogenous rabbit apo E, male transgenic rabbits expressing approximately 13 mg/dl of human apo E had a 35% decrease in total plasma triglycerides that was due to a reduction in VLDL levels and an absence of large VLDL. With its greater content of apo E, transgenic VLDL had an increased binding affinity for the LDL receptor in vitro, and injected chylomicrons were cleared more rapidly by the liver in transgenic rabbits. In contrast to triglyceride changes, transgenic rabbits had a 70% increase in plasma cholesterol levels due to an accumulation of LDL and apo E-rich HDL. Transgenic and control LDL had the same binding affinity for the LDL receptor. Both transgenic and control rabbits had similar LDL receptor levels, but intravenously injected human LDL were cleared more slowly in transgenic rabbits than in controls. Changes in lipoprotein lipolysis did not contribute to the accumulation of LDL or the reduction in VLDL levels. These observations suggest that the increased content of apo E3 on triglyceride-rich remnant lipoproteins in transgenic rabbits confers a greater affinity for cell surface receptors, thereby increasing remnant clearance from plasma. The apo E-rich large remnants appear to compete more effectively than LDL for receptor-mediated binding and clearance, resulting in delayed clearance and the accumulation of LDL in plasma.
Collapse
Affiliation(s)
- J Fan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Hersberger M, Innerarity TL. Two efficiency elements flanking the editing site of cytidine 6666 in the apolipoprotein B mRNA support mooring-dependent editing. J Biol Chem 1998; 273:9435-42. [PMID: 9545269 DOI: 10.1074/jbc.273.16.9435] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Normally, apolipoprotein B (apoB) mRNA editing deaminates a single cytidine (C6666) in apoB mRNA. However, when the catalytic subunit of the editing enzyme complex, APOBEC-1, was overexpressed in transgenic mice and rabbits, numerous cytidines in the apoB mRNA and in a novel mRNA, NAT1, were aberrantly hyperedited, and the animals developed liver dysplasia and hepatocellular carcinomas. To identify the RNA motifs in the apoB mRNA that support physiological editing and those that support aberrant hyperediting, we constructed rabbit apoB RNA substrates and tested them in vitro for physiological editing and hyperediting. Three previously unrecognized RNA elements that are critical for efficient physiological editing at C6666 were identified. In concert with the mooring sequence (6671-6681), the 5' efficiency element (6609-6628), an A-rich region (6629-6640), and the 3' efficiency element (6717-6747) increased editing at C6666. The 5' efficiency element was the most potent, elevating physiological editing to wild-type levels in combination with the mooring sequence. The 3' efficiency element was somewhat less important but increased physiological editing to levels approaching wild type. These elements encompass 139 nucleotides on the apoB RNA transcript and are sufficient for editing with the efficiency of full-length apoB mRNA. Furthermore, a distal downstream apoB region (6747-6824) may function as a recognition element in the apoB mRNA. Hyperediting at C6802 in the rabbit apoB mRNA is mediated by RNA elements similar to those required for normal physiological editing at C6666. Similarly sized upstream and downstream flanking regions of C6802 are necessary for hyperediting in combination with a degenerate mooring sequence.
Collapse
Affiliation(s)
- M Hersberger
- Gladstone Institute of Cardiovascular Disease, Cardiovascular Research Institute, University of California, San Francisco, California 94141-9100, USA.
| | | |
Collapse
|
207
|
Sowden MP, Eagleton MJ, Smith HC. Apolipoprotein B RNA sequence 3' of the mooring sequence and cellular sources of auxiliary factors determine the location and extent of promiscuous editing. Nucleic Acids Res 1998; 26:1644-52. [PMID: 9512534 PMCID: PMC147457 DOI: 10.1093/nar/26.7.1644] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B (apoB) RNA editing involves a cytidine to uridine transition at nucleotide 6666 (C6666) 5' of an essential cis -acting 11 nucleotide motif known as the mooring sequence. APOBEC-1 (apoB editing catalytic sub-unit 1) serves as the site-specific cytidine deaminase in the context of a multiprotein assembly, the editosome. Experimental over-expression of APOBEC-1 resulted in an increased proportion of apoB mRNAs edited at C6666, as well as editing of sites that would otherwise not be recognized (promiscuous editing). In the rat hepatoma McArdle cell line, these sites occurred predominantly 5' of the mooring sequence on either rat or human apoB mRNA expressed from transfected cDNA. In comparison, over-expression of APOBEC-1 in HepG2 (HepG2-APOBEC) human hepatoma cells, induced promiscuous editing primarily 5' of the mooring sequence, but sites 3' of the C6666 were also used more efficiently. The capacity for promiscuous editing was common to rat, rabbit and human sources of APOBEC-1. The data suggested that differences in the distribution of promiscuous editing sites and in the efficiency of their utilization may reflect cell-type-specific differences in auxiliary proteins. Deletion of the mooring sequence abolished editing at the wild type site and markedly reduced, but did not eliminate, promiscuous editing. In contrast, deletion of a pair of tandem UGAU motifs 3' of the mooring sequence in human apoB mRNA selectively reduced promiscuous editing, leaving the efficiency of editing at the wild type site essentially unaffected. ApoB RNA constructs and naturally occurring mRNAs such as NAT-1 (novel APOBEC-1 target-1) that lack this downstream element were not promiscuously edited in McArdle or HepG2 cells. These findings underscore the importance of RNA sequences and the cellular context of auxiliary factors in regulating editing site utilization.
Collapse
Affiliation(s)
- M P Sowden
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Box 712, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
208
|
Ihara Y, Yoshimura M, Miyoshi E, Nishikawa A, Sultan AS, Toyosawa S, Ohnishi A, Suzuki M, Yamamura K, Ijuhin N, Taniguchi N. Ectopic expression of N-acetylglucosaminyltransferase III in transgenic hepatocytes disrupts apolipoprotein B secretion and induces aberrant cellular morphology with lipid storage. Proc Natl Acad Sci U S A 1998; 95:2526-2530. [PMID: 9482919 PMCID: PMC19400 DOI: 10.1073/pnas.95.5.2526] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1996] [Accepted: 12/22/1997] [Indexed: 02/06/2023] Open
Abstract
N-Acetylglucosaminyltransferase III (GnT-III) produces "bisecting-GlcNAc" and regulates the branching of N-glycans. GnT-III activity is elevated during hepatocarcinogenesis, which is in contrast to the undetectable level found in normal hepatocytes. To determine the biological significance of GnT-III in hepatocytes, transgenic mice that specifically express GnT-III in the liver were established and characterized. The transgenic hepatocytes had a swollen oval-like morphology, with many lipid droplets. Apolipoprotein B, which contained increased level of bisecting-GlcNAc accumulated in the transgenic hepatocytes. In the transgenic serum, triglycerides, the beta- and pre-beta-lipoprotein fractions, and apolipoprotein B100 were significantly decreased, compared with levels in nontransgenic serum. These abnormal phenotypes were more prominent in the mice with more copies of the transgene and a resulting high GnT-III activity. We demonstrate that aberrant glycosylation, as the direct result of the formation of bisecting-GlcNAc, disrupts the function of apolipoprotein B, leading to the generation of fatty liver. This observation suggests a novel mechanism for the pathogenesis of fatty liver.
Collapse
Affiliation(s)
- Y Ihara
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, 1-8 Yamadaoka, Suita, Osaka 565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Arai H, Tsou CL, Charo IF. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci U S A 1997; 94:14495-9. [PMID: 9405641 PMCID: PMC25033 DOI: 10.1073/pnas.94.26.14495] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Galphaq (the m3 muscarinic receptor), Galphai (the kappa-opioid receptor), and Galphas (the beta-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Galphai, but not to Galphaq or Galphas, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Galpha transducin, which binds to and inactivates free Gbetagamma dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gbetagamma dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Galphai and the release of Gbetagamma dimers, and that Galphai-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Collapse
Affiliation(s)
- H Arai
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94141-9100, USA
| | | | | |
Collapse
|
210
|
Kozarsky KF, Couture LA. Message therapy: gene therapy that targets mRNA sequence and stability. Am J Hum Genet 1997; 61:790-4. [PMID: 9382086 PMCID: PMC1715991 DOI: 10.1086/514897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- K F Kozarsky
- Institute for Human Gene Therapy and Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
211
|
Qian X, Balestra ME, Innerarity TL. Two distinct TATA-less promoters direct tissue-specific expression of the rat apo-B editing catalytic polypeptide 1 gene. J Biol Chem 1997; 272:18060-70. [PMID: 9218436 DOI: 10.1074/jbc.272.29.18060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The species and tissue specificity of apolipoprotein (apo) B mRNA editing is determined by the expression of apoB editing catalytic polypeptide 1 (APOBEC-1), the cytidine deaminase that catalyzes apoB mRNA editing. To understand the molecular mechanisms that regulate the transcription of APOBEC-1, we characterized rat APOBEC-1 cDNA and genomic DNA. cDNA cloning and RNase protection analysis showed two alternative promoters for the tissue-specific expression of APOBEC-1 in the liver and intestine, Pliv and Pint. Both promoters lack a TATA box, and Pint belongs to the MED-1 class of promoters, which initiate transcription at multiple sites. We also identified two allelic forms of the APOBEC-1 gene from the characterization of two rat APOBEC-1 P1 genomic clones, RE4 and RE5. The RE4 allele is 18 kilobases long and contains six exons and five introns, whereas the RE5 allele contains an additional approximately 8 kilobases of intron sequences and an extra exon encoding a 5'-untranslated region; however, the APOBEC-1 transcripts from the two alleles appear to have similar, if not identical, functions. Transgenic mouse studies showed that Pliv was preferentially used in the liver, kidney, brain, and adipose tissues, whereas Pint was preferentially used in the small intestine, stomach, and lung. Our results suggest that the tissue-specific expression of APOBEC-1 is governed by multiple regulatory elements exerting control over a single coding sequence. The presence or absence of these regulatory elements may determine the tissue-specific expression of APOBEC-1 in other mammalian species.
Collapse
Affiliation(s)
- X Qian
- Gladstone Institute of Cardiovascular Disease, the Cardiovascular Research Institute, and the Department of Pathology, University of California, San Francisco, California 94141-9100, USA
| | | | | |
Collapse
|
212
|
Abstract
The past year has witnessed major progress in the field of mammalian nuclear RNA editing. Two new sequence-related RNA-dependent adenosine deaminases, distantly related to the previously characterized double-stranded RNA adenosine deaminase DRADA/dsRAD, have been molecularly characterized. One of these deaminases edits in vitro with precision for the molecular determinant that controls the Ca2+ permeability of fast synaptic glutamate-gated cation channels. This deaminase, like DRADA, is expressed in many tissues and the search is now on for more substrates of these RNA-editing enzymes. Moreover, the physiological role of the apolipoprotein B RNA editing enzyme APOBEC-1 has been investigated in genetically manipulated mice.
Collapse
Affiliation(s)
- S Maas
- Department of Molecular Neurobiology, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
213
|
Hirano K, Min J, Funahashi T, Baunoch DA, Davidson NO. Characterization of the human apobec-1 gene: expression in gastrointestinal tissues determined by alternative splicing with production of a novel truncated peptide. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37210-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
214
|
Teng B, Ishida B, Forte TM, Blumenthal S, Song LZ, Gotto AM, Chan L. Effective lowering of plasma, LDL, and esterified cholesterol in LDL receptor-knockout mice by adenovirus-mediated gene delivery of ApoB mRNA editing enzyme (Apobec1). Arterioscler Thromb Vasc Biol 1997; 17:889-97. [PMID: 9157952 DOI: 10.1161/01.atv.17.5.889] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adenovirus-mediated gene delivery of apolipoprotein (apo)B mRNA editing enzyme (AvApobec1) was used to study the effect of apoB mRNA editing on apoB production in homozygous LDL receptor-deficient (LDLR-/-) mice. Intravenous injection of AvApobec1 into these mice resulted in a >80% decrease in plasma apoB-100 with a concomitant increase in plasma apoB-48 level. The plasma apoE level also increased. In all cases, total plasma apoB (apoB-100 + apoB-48) decreased by 60% at day 5 and remained approximately 40% lower in AvApobec1-treated compared with control vector Av1LacZ4-treated animals at day 12. On day 12, total plasma cholesterol decreased by 29% in male mice and 18% in female mice that were transduced with AvApobec1. This was reflected in a reduction in apoB-containing lipoprotein cholesterol, which decreased by 34% and 27% in male and female mice, respectively. Apobec1 gene transfer also decreased the cholesteryl ester contents in the LDL fraction, which were 16%, 22%, and 22% in female and 20%, 20%, and 15% in male animals on days 5, 7, and 12, respectively, compared with Av1LacZ controls with 29%, 32%, and 33%, respectively, in female and 29%, 38%, and 36%, respectively, in male animals. Nondenaturing gradient gel electrophoresis indicated almost complete elimination of LDL particles of 29, 27, and 25 nm at days 7 and 12. We conclude that in the absence of a functioning LDL receptor, hepatic overexpression of Apobec1 is highly efficient in lowering plasma apoB-100 levels, leading to the almost complete elimination of LDL particles and a reduction in LDL cholesterol and cholesteryl ester content.
Collapse
Affiliation(s)
- B Teng
- Department of Medicine, Baylor College of Medicine, Houston, Tex 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
215
|
Affiliation(s)
- J M Taylor
- J. David Gladstone Institute of Cardiovascular Disease, Department of Physiology, University of California, San Francisco 94110, USA
| |
Collapse
|
216
|
Chan L, Chang BH, Nakamuta M, Li WH, Smith LC. Apobec-1 and apolipoprotein B mRNA editing. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1345:11-26. [PMID: 9084497 DOI: 10.1016/s0005-2760(96)00156-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apolipoprotein (apo)B mRNA editing is a novel mechanism for the post-transcriptional regulation of gene expression in mammals. It consists of a C-->U conversion of the first base of the codon CAA, encoding glutamine-2153, to UAA, an in-frame stop codon, in apoB mRNA. Since its initial description in 1987, substantial progress has been made in the last few years on the mechanism of editing. Apobec-1, the catalytic component of the apoB mRNA editing enzyme complex, has been cloned. This article begins with an overview of the general biology of apoB mRNA editing. It then provides an in-depth analysis of the structure, evolution and possible mechanism of action of apobec-1. ApoB mRNA editing is the prototype of RNA editing in mammals. What we learn from apoB mRNA editing will be useful in our understanding of other examples of RNA editing in vertebrates which are being described with increasing frequency.
Collapse
Affiliation(s)
- L Chan
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
217
|
Villard L, Tassone F, Haymowicz M, Welborn R, Gardiner K. Map location, genomic organization and expression patterns of the human RED1 RNA editase. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:135-45. [PMID: 9330641 DOI: 10.1007/bf02679972] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cDNA fragment containing sequences homologous to the rat RED1 RNA editase gene was recently identified on human chromosome 21. Here we report the location of this cDNA in distal 21q22.3 near the CD18 gene. We also report isolation of cDNA clones containing the complete coding region of the human RED1 gene, and use of this sequence to determine the genomic structure from overlapping cosmids. Human RED1 spans approximately 25 kb and is composed of 10 exons containing coding sequences. The two RNA binding domains are located within a single large, 935 nucleotide, exon 2. An alternatively processed exon 6 potentially interrupts the catalytic domain. Exon 10 is largely composed of the 3' untranslated region, which is unusually high in GC content and contains a segment that is > 90% identical with the 3' UT of the homologous rat gene. A survey of expression patterns reveals differential processing of the 5 and 8.5 kb transcripts in all sources examined. The difference in transcript size likely results from alternative processing in the 3' UT. Potential relevance of overexpression of RED1 to the development of the Down Syndrome phenotype is discussed.
Collapse
Affiliation(s)
- L Villard
- Eleanor Roosevelt Institute for Cancer Research, Inc., Denver, Colorado 80206-1210, USA
| | | | | | | | | |
Collapse
|
218
|
Yamanaka S, Poksay KS, Arnold KS, Innerarity TL. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 1997; 11:321-33. [PMID: 9030685 DOI: 10.1101/gad.11.3.321] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transgene expression of the apolipoprotein B mRNA-editing enzyme (APOBEC-1) causes dysplasia and carcinoma in mouse and rabbit livers. Using a modified differential display technique, we identified a novel mRNA (NAT1 for novel APOBEC-1 target no. 1) that is extensively edited at multiple sites in these livers. The aberrant editing alters encoded amino acids, creates stop codons, and results in markedly reduced levels of the NAT1 protein in transgenic mouse livers. NAT1 is expressed ubiquitously and is extraordinarily conserved among species. It has homology to the carboxy-terminal portion of the eukaryotic translation initiation factor (eIF) 4G that binds eIF4A and eIF4E to form eIF4F. NAT1 binds eIF4A but not eIF4E and inhibits both cap-dependent and cap-independent translation. NAT1 is likely to be a fundamental translational repressor, and its aberrant editing could contribute to the potent oncogenesis induced by overexpression of APOBEC-1.
Collapse
Affiliation(s)
- S Yamanaka
- University of California, San Francisco 94141-9100, USA
| | | | | | | |
Collapse
|
219
|
Ashkenas J. Gene regulation by mRNA editing. Am J Hum Genet 1997; 60:278-83. [PMID: 9012400 PMCID: PMC1712409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
220
|
Nakamuta M, Chang BH, Zsigmond E, Kobayashi K, Lei H, Ishida BY, Oka K, Li E, Chan L. Complete phenotypic characterization of apobec-1 knockout mice with a wild-type genetic background and a human apolipoprotein B transgenic background, and restoration of apolipoprotein B mRNA editing by somatic gene transfer of Apobec-1. J Biol Chem 1996; 271:25981-8. [PMID: 8824235 DOI: 10.1074/jbc.271.42.25981] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have produced gene knockout mice by targeted disruption of the apobec-1 gene. As recently reported by Hirano et al. (Hirano, K.-I., Young, S. G., Farese, R. V., Jr., Ng, J., Sande, E., Warburton, C., Powell-Braxton, L. M., and Davidson, N. O. (1996) J. Biol. Chem. 271, 9887-9890), these animals do not edit apolipoprotein (apo) B mRNA or produce apoB-48. In this study we have performed a detailed analysis of the lipoprotein phenotypic effects of apobec-1 gene disruption that were not examined in the previous study. We first analyzed the plasma lipoproteins in knockout animals with a wild-type genetic background. Although there was no difference in plasma cholesterol between apobec-1(-/-), +/-, or +/+ mice, there was a marked (176%) increase in plasma apoB-100, from 1.8 +/- 1.2 mg/dl in apobec-1(+/+) mice to 2.7 +/- 0.6 mg/dl in apobec-1(+/-) and 5.0 +/- 1.4 mg/dl in apobec-1(-/-) mice. Plasma apoE was similar in these animals. By fast protein liquid chromatography (FPLC) analysis, there was a significant decrease in plasma high density lipoprotein (HDL) cholesterol in apobec-1(-/-) mice. We further fractionated the plasma lipoproteins into d < 1.006, 1.006-1.02, 1.02-1.05, 1.05-1.08, 1.08-1.10, and 1.10-1.21 g/ml classes, and found a marked (30-40%) reduction in the cholesterol and protein content in the (d 1.08-1.10 and 1.10-1.21) HDL fractions, corroborating the FPLC data. SDS-gel analysis revealed an absence of apoB-48, an increase in apoB-100 in the very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions, and a small decrease in apoA-I in the HDL fractions in the apobec-1(-/-) samples. We next raised the basal plasma apoB levels in the apobec-1(-/-) animals by cross-breeding them with human apoB transgenic (TgB) mice. The plasma apoB-100 was 3-fold higher in apobec-1(-/-)/TgB+/- mice (26.6 +/- 18.3 mg/dl) than in apobec-1(+/+)/TgB+/- mice (9.8 +/- 3.9 mg/dl, p < 0.05). The apobec-1(-/-)/TgB+/- mice had a plasma cholesterol levels of 170 +/- 28 mg/dl and triglyceride levels of 106 +/- 31 mg/dl, which are 80% and 58% higher, respectively, than the corresponding values of 94 +/- 21 mg/dl and 67 +/- 11 mg/dl in apobec+/+/TgB+/- mice. By FPLC, the apobec-1(-/-)/TgB+/- animals developed markedly elevated plasma LDL cholesterol (518.5 +/- 329.5 microg/ml) that is 373% that of apobec1(+/+)/TgB+/- mice (139.0 +/- 87.0 microg/ml) (p < 0.05). The elevated plasma triglyceride was accounted for mainly by a 97% increase in VLDL triglyceride in the apobec1(-/-)/TgB+/- mice. We conclude that apobec-1(-/-) animals have a distinctive lipoprotein phenotype characterized by significant hyperapoB-100 and HDL deficiency in mice with a wild-type genetic background. Furthermore, the abolition of apoB mRNA editing elevates plasma total cholesterol and LDL cholesterol in apobec-1(-/-) animals with a TgB background. Finally, to exclude the possibility that absence of apoB mRNA editing was a secondary effect of chronic Apobec-1 deficiency, we treated apobec-1(-/-) mice with a replication-defective mouse Apobec-1 adenoviral vector and found that we could acutely restore apoB mRNA editing in the liver. These experiments indicate that Apobec-1 is an essential component of the apoB mRNA editing machinery and absence of editing in the knockout animals is a direct consequence of the absence of functional Apobec-1.
Collapse
Affiliation(s)
- M Nakamuta
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Greeve J, Jona VK, Chowdhury NR, Horwitz MS, Chowdhury JR. Hepatic gene transfer of the catalytic subunit of the apolipoprotein B mRNA editing enzyme results in a reduction of plasma LDL levels in normal and watanabe heritable hyperlipidemic rabbits. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37565-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
222
|
Morrison JR, Pászty C, Stevens ME, Hughes SD, Forte T, Scott J, Rubin EM. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism. Proc Natl Acad Sci U S A 1996; 93:7154-9. [PMID: 8692961 PMCID: PMC38952 DOI: 10.1073/pnas.93.14.7154] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport.
Collapse
Affiliation(s)
- J R Morrison
- Department of Molecular Medicine, Medical Research Council, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
223
|
Yamanaka S, Poksay KS, Driscoll DM, Innerarity TL. Hyperediting of multiple cytidines of apolipoprotein B mRNA by APOBEC-1 requires auxiliary protein(s) but not a mooring sequence motif. J Biol Chem 1996; 271:11506-10. [PMID: 8626710 DOI: 10.1074/jbc.271.19.11506] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An RNA-binding cytidine deaminase (APOBEC-1) and unidentified auxiliary protein(s) are required for apolipoprotein (apo) B mRNA editing. A sequence motif on apoB mRNA ("mooring sequence," nucleotides 6671-6681) is obligatory for the editing of cytidine 6666 (C6666), the only cytidine on apoB mRNA converted to uridine in normal animals. Transgenic animals with hepatic overexpression of APOBEC-1 develop liver tumors, and other non-apoB mRNAs are edited, suggesting a loss of the normally precise specificity. In this study, we examined apoB mRNA from these transgenic animals to determine if cytidines aside from C6666 are edited. Multiple cytidines downstream from C6666 in apoB mRNA were edited extensively by the overexpressed APOBEC-1. This pathophysiological "hyperediting" could be mimicked in vitro by incubating a synthetic apoB RNA substrate with the transgenic mouse liver extracts. Multiple cytidines in the synthetic apoB RNA were edited by recombinant APOBEC-1 but only with supplementation of the auxiliary protein(s). Mutations in the mooring sequence markedly decreased the normal editing of C6666 but, surprisingly, increased the hyperediting of downstream cytidines. Furthermore, cytidines in an apoB RNA substrate lacking the mooring sequence were also edited in vitro. These results indicate that the hyperediting of apoB mRNA by overexpressed APOBEC-1 depends upon auxiliary protein(s) but is independent of the mooring sequence motif. These results suggest that hyperediting may represent the first step in a two-step recognition model for normal apoB mRNA editing.
Collapse
Affiliation(s)
- S Yamanaka
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100, USA
| | | | | | | |
Collapse
|
224
|
Hirano K, Young SG, Farese RV, Ng J, Sande E, Warburton C, Powell-Braxton LM, Davidson NO. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 1996; 271:9887-90. [PMID: 8626621 DOI: 10.1074/jbc.271.17.9887] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A site-specific C to U editing reaction modifies nuclear apolipoprotein B100 (apoB100) mRNA, producing apolipoprotein B48 in the mammalian small intestine. This reaction is mediated by a multicomponent enzyme complex, which contains a catalytic subunit, Apobec-1. We have used gene targeting to disrupt mouse apobec-1 in order to establish its requisite importance in apoB mRNA editing and also, in view of its widespread tissue distribution in rodents, as a preliminary indication of other potential roles. Both heterozygous (apobec-1+/-) and homozygous (apobec-1-/-) gene-targeted mice appear healthy and fertile with no alterations in serum cholesterol or triglyceride concentrations. The apobec-1+/- mice demonstrated reduced levels of hepatic apoB mRNA editing. By contrast, levels of small intestinal apoB mRNA editing were indistinguishable in wild-type and apobec-1+/- animals, suggesting that Apobec-1 is expressed in limited quantities in the liver but not in the small intestine. The apobec-1-/- mice lacked detectable levels of Apobec-1 mRNA, expressed only unedited apoB mRNA in all tissues, and contained no apoB48 in their serum, demonstrating that there is no functional duplication of this gene.
Collapse
Affiliation(s)
- K Hirano
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
Considerable progress has been made in unraveling the mechanistic features of RNA editing processes in a number of genetic systems. Recent highlights include the identification of the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme as a zinc-dependent cytidine deaminase that binds to RNA, the demonstration that adenosines in brain glutamate receptor pre-mRNAs are converted into inosines and that double-stranded RNA A deaminase (dsRAD), the candidate enzyme, is another zinc-dependent RNA nucleotide deaminase, and a mounting body of evidence for a cleavage-ligation mechanism for U insertion/deletion editing in kinetoplastid protozoa.
Collapse
Affiliation(s)
- R Benne
- Department of Biochemistry, Faculty of Medicine, University of Amsterdam, Academic Medical Centre, The Netherlands.
| |
Collapse
|
226
|
Affiliation(s)
- L J Mullins
- Centre for Genome Research, The University of Edinburgh, United Kingdom
| | | |
Collapse
|
227
|
Sowden M, Hamm JK, Smith HC. Overexpression of APOBEC-1 results in mooring sequence-dependent promiscuous RNA editing. J Biol Chem 1996; 271:3011-7. [PMID: 8621694 DOI: 10.1074/jbc.271.6.3011] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Apolipoprotein B (apoB) RNA editing involves site-specific deamination of a cytidine to a uridine. A mooring sequence, a spacer region, and a regulator region are components of the apoB RNA editing motif of which only the mooring sequence is both necessary and sufficient for editosome assembly and editing. The catalytic component of the editosome is APOBEC-1. In rat hepatoma, stable cell lines, overexpression of APOBEC-1 resulted in 3 6-fold stimulation of the editing efficiency on either rat endogenous apoB RNA or transiently expressed human apoB RNA. In these cell lines, cytidines in addition to the one at the wild type site were edited. The occurrence and efficiency of this "promiscuous" editing increased with increasing expression of APOBEC-1. Promiscuous editing was restricted to cytidines 5' of the mooring sequence and only occurred on RNAs that had been edited at the wild type site. Moreover, RNAs with mutant editing motifs supported high efficiency but low fidelity editing in the presence of high levels of APOBEC-1. This study demonstrates that overexpression of APOBEC-1 can increase the efficiency of site-specific editing but can also result in promiscuous editing.
Collapse
Affiliation(s)
- M Sowden
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
228
|
Innerarity TL, Borén J, Yamanaka S, Olofsson SO. Biosynthesis of apolipoprotein B48-containing lipoproteins. Regulation by novel post-transcriptional mechanisms. J Biol Chem 1996; 271:2353-6. [PMID: 8576187 DOI: 10.1074/jbc.271.5.2353] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- T L Innerarity
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA
| | | | | | | |
Collapse
|
229
|
Expression of a novel human apolipoprotein (apoC-IV) causes hypertriglyceridemia in transgenic mice. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39135-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|