201
|
Dziarski R, Gupta D. Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun 2010; 16:168-74. [PMID: 20418257 DOI: 10.1177/1753425910366059] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peptidoglycan recognition proteins (PGRPs or PGLYRPs) are innate immunity proteins that are conserved from insects to mammals, recognize bacterial peptidoglycan, and function in antibacterial immunity and inflammation. Mammals have four PGRPs - PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4. They are secreted proteins expressed in polymorphonuclear leukocytes (PGLYRP1), liver (PGLYRP2), or on body surfaces, mucous membranes, and in secretions (saliva, sweat) (PGLYRP3 and PGLYRP4). All PGRPs recognize bacterial peptidoglycan. Three PGRPs, PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria and have no enzymatic activity, whereas PGLYRP2 is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial cell wall peptidoglycan. Peptidoglycan recognition proteins influence host- pathogen interactions not only through their antibacterial or peptidoglycan-hydrolytic properties, but also through their pro-inflammatory and anti-inflammatory properties that are independent of their hydrolytic and antibacterial activities. The PGRPs likely play a role both in antibacterial defenses and several inflammatory diseases. They modulate local inflammatory responses in tissues (such as arthritic joints) and there is evidence for association of PGRPs with inflammatory diseases, such as psoriasis.
Collapse
Affiliation(s)
- Roman Dziarski
- Indiana University School of Medicine Northwest, Gary, USA.
| | | |
Collapse
|
202
|
Itoh N, Kamitaka R, Takahashi KG, Osada M. Identification and characterization of multiple beta-glucan binding proteins in the Pacific oyster, Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:445-454. [PMID: 19995575 DOI: 10.1016/j.dci.2009.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
The present study reports on the characterization of two cDNAs coding beta-glucan binding proteins (betaGBPs), designated as Cg-betaGBP-1 and Cg-betaGBP-2, from the Pacific oyster, Crassostrea gigas. Cg-betaGBP-1 consists of 555 amino acid residues and possesses two possible integrin recognition sites. The other protein, Cg-betaGBP-2, is composed of 447 amino acid residues without integrin recognition sites. Domain structures of both Cg-betaGBPs are similar to other invertebrate betaGBPs, but phylogenetic positions and major expression tissues for these proteins are different. Cg-betaGBP-1 is expressed in circulatory hemocytes and Cg-betaGBP-2 in digestive glands. Functional assays using recombinant proteins revealed that Cg-betaGBP-2 enhanced the phenoloxidase (PO) activity of hemocyte suspensions under the presence of laminarin, but Cg-betaGBP-1 did not show this enhancement. It is suggested that Cg-betaGBPs in the Pacific oyster have evolved to obtain different immunological functions. Cg-betaGBP-1 possibly evolved for hemocyte-related functions through integrin, and Cg-betaGBP-2 for the PO activation system.
Collapse
Affiliation(s)
- Naoki Itoh
- Aquacultural Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi 981-8555, Japan.
| | | | | | | |
Collapse
|
203
|
Kim MY, Jang JH, Lee JW, Cho JH. Molecular cloning and characterization of peptidoglycan recognition proteins from the rockfish, Sebastes schlegeli. FISH & SHELLFISH IMMUNOLOGY 2010; 28:632-639. [PMID: 20045065 DOI: 10.1016/j.fsi.2009.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that are structurally conserved through evolution in both invertebrate and vertebrate animals. Here we report the identification and characterization of two long forms of PGRP (SsPGRP-L1 and SsPGRP-L2) from the rockfish, Sebastes schlegeli. The deduced amino acid sequences of SsPGRP-L1 and SsPGRP-L2, 466 and 482 residues respectively, contain the conserved PGRP domain and the four Zn(2+)-binding amino acid residues required for amidase activity. In addition to peptidoglycan-lytic amidase activity, recombinant SsPGRPs have broad-spectrum antimicrobial activity like zebrafish PGRPs. RT-PCR analysis of total RNA shows that the expression patterns of SsPGRP-L1 and SsPGRP-L2 genes are different, though they are widely expressed in the tissues that come in contact with bacteria. Overall, these data suggest that rockfish PGRPs are involved in the innate host defense of S. schlegeli against bacterial infections.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Biology, Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, Republic of Korea
| | | | | | | |
Collapse
|
204
|
Mao Y, Wang J, Zhang Z, Ding S, Su Y. Cloning, mRNA expression, and recombinant expression of peptidoglycan recognition protein II gene from large yellow croaker (Pseudosciaena crocea). Mol Biol Rep 2010; 37:3897-908. [DOI: 10.1007/s11033-010-0046-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 04/14/2009] [Indexed: 11/28/2022]
|
205
|
Kurata S. Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. Int Immunol 2010; 22:143-8. [PMID: 20089584 PMCID: PMC2829096 DOI: 10.1093/intimm/dxp128] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/24/2009] [Indexed: 12/16/2022] Open
Abstract
Despite lacking the adaptive immunity that is found in higher vertebrates, insects are able to defend themselves from a large battery of pathogens by multiple innate immune responses using molecular mechanisms that are strikingly similar to the innate immune responses of other multicellular organisms, including humans. The fruit fly Drosophila melanogaster is therefore an excellent model organism for studying the basic principles of innate immunity using genetic and molecular biology techniques. In Drosophila, invading pathogens that pass through the epithelial barriers (a first line of self-defense) can encounter humoral and cellular responses that utilize pattern-recognition receptors to identify pathogen-associated molecular patterns in the hemolymph or on the immune cell surface. Some pathogens escape recognition and elimination in the hemolymph by invading the host cytoplasm. Some intracellular pathogens such as Listeria monocytogenes are, nevertheless, eliminated by immune reactions such as autophagy through intracellular identification by pattern-recognition receptors.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
206
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
207
|
Hetru C, Hoffmann JA. NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 2009; 1:a000232. [PMID: 20457557 DOI: 10.1101/cshperspect.a000232] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nuclear factor kappaB (NF-kappaB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades.
Collapse
Affiliation(s)
- Charles Hetru
- Centre National de la Recherche Scientifique, Institute of Molecular and Cellular Biology, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
208
|
Ma P, Wang Z, Pflugfelder SC, Li DQ. Toll-like receptors mediate induction of peptidoglycan recognition proteins in human corneal epithelial cells. Exp Eye Res 2009; 90:130-6. [PMID: 19799901 DOI: 10.1016/j.exer.2009.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/01/2009] [Accepted: 09/23/2009] [Indexed: 01/01/2023]
Abstract
Human peptidoglycan recognition proteins (PGLYRPs) are a novel family of pattern recognition receptors, and also act as anti-bacterial proteins. This study was to explore the toll-like receptor (TLR)-mediated regulation of PGLYRPs in human corneal epithelial cells (HCECs). Fresh human donor corneoscleral tissues were used to prepare cryosections. Primary HCECs, established from limbal explants, were treated with microbial ligands to TLRs 1-9 for 4-48 h, with or without pretreatment of TLR antibodies, NFkB inhibitor, or siRNA transfection. The mRNA of PGLYRPs was evaluated by RT and real-time PCR, and their proteins and NFkB activation were determined by immunostaining and Western blot. The nuclear IRF3 activity was quantified using an ELISA-based TransAM kit. PGLYRP-2, -3 and -4 were found to be expressed by human corneal epithelium while PGLYRP-1 was not detected. In primary HCEC cultures, PGLYRP-3 and -4 were constitutively expressed while PGLYRP-2 was largely inducible. PGLYRP-2 was induced by bacterial components, Pam3CSK4, PGN, flagellin and FSL-1, ligands for TLR2/1, 2, 5 and 2/6, respectively. Interestingly, PGLYRP-2 was strongest stimulated by polyI:C representing viral dsRNA. TLR3 antibody or NFkB inhibitor blocked IRF3 and NFkB p65 activation as well as polyI:C-stimulated PGLYRP-2. RNA interference indicates that the polyI:C-induced PGLYRP-2 was dramatically blocked in the cells transfected with siRNA-TRIF but neither siRNA-MyD88 nor the negative control siRNA-F. These findings suggest that human corneal epithelium may response to viral or bacterial infection by producing PGLYRPs through TLRs, and the induction of PGLYRP-2 by dsRNA was through TLR3-TRIF-IRF3-NFkB signaling pathways.
Collapse
Affiliation(s)
- Ping Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Yat Sen University, Guangzhou, China
| | | | | | | |
Collapse
|
209
|
Opposite roles of metastasin (S100A4) in two potentially tumoricidal mechanisms involving human lymphocyte protein Tag7 and Hsp70. Proc Natl Acad Sci U S A 2009; 106:13963-7. [PMID: 19666596 DOI: 10.1073/pnas.0900116106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compare the physical and functional interactions between three widespread multifunctional proteins [metastasin (Mts1/S100A4), innate immunity-related Tag7/PGRP-S, and Hsp70] in two experimental models relevant to host-tumor relationships on humoral and cellular levels. (i) Tag7 and Hsp70 in solution or in a lymphocyte make a stable binary complex that is highly cytotoxic for some tumor cells. Here, we show that Mts1 prevents Tag7.Hsp70 assembly in solution, and an excess of Mts1 disrupts the existing Tag7.Hsp70 complex; accordingly, Tag7.Hsp70 cytotoxicity (exemplified with L929 cells) is diminished in the presence of excess Mts1. (ii) Tag7 exposed on a specialized subset of lymphokine-activated killer cells makes specific contact with Hsp70 exposed on some HLA-negative tumor cells, thus enabling FasL/Fas-mediated induction of apoptosis. Here, we show that some CD4(+)CD25(+) cells coexpose Mts1 with Tag7 and FasL, that Mts1 and Tag7 closely contact the same Hsp70 molecule on the target K562 cell (as evidenced by cross-linking), and that killing of such targets is abolished by Mts1-specific antibodies (or selective removal of Mts1-exposing lymphocytes). Thus, this phenotype active against immunoevasive cancerous cells is defined as CD4(+)CD25(+), FasL(+), Tag7(+)Mts1(+) (approximately 0.5% of total lymphocytes in culture). Remarkably, similar effectors with at least the same activity are often found in fresh donor blood samples (approximately 10(4) effectors/mL). Thus, our models suggest that interactions between the three proteins in different situations may have opposite functional outcomes as regards antitumor defense, immune escape, and metastasis.
Collapse
|
210
|
Oyston PCF, Fox MA, Richards SJ, Clark GC. Novel peptide therapeutics for treatment of infections. J Med Microbiol 2009; 58:977-987. [DOI: 10.1099/jmm.0.011122-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As antibiotic resistance increases worldwide, there is an increasing pressure to develop novel classes of antimicrobial compounds to fight infectious disease. Peptide therapeutics represent a novel class of therapeutic agents. Some, such as cationic antimicrobial peptides and peptidoglycan recognition proteins, have been identified from studies of innate immune effector mechanisms, while others are completely novel compounds generated in biological systems. Currently, only selected cationic antimicrobial peptides have been licensed, and only for topical applications. However, research using new approaches to identify novel antimicrobial peptide therapeutics, and new approaches to delivery and improving stability, will result in an increased range of peptide therapeutics available in the clinic for broader applications.
Collapse
Affiliation(s)
- P. C. F. Oyston
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - M. A. Fox
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - S. J. Richards
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - G. C. Clark
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
211
|
Imajo N, Kurihara D, Fukuishi N, Inukai A, Matsushita S, Noda S, Toyoda M, Yoshioka M, Teruya H, Nishii Y, Matsui N, Akagi M. Lipoteichoic acid improves the capability of mast cells in the host defense system against bacteria. Inflamm Res 2009; 58:797-807. [PMID: 19468828 DOI: 10.1007/s00011-009-0050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/02/2009] [Accepted: 04/27/2009] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES AND DESIGN We investigated the effects of microbial components on the uptake of microbes by mast cells (MCs), and studied the change in cytokine production in MCs after bacterial uptake. MATERIAL OR SUBJECTS LAD2 human mast cells, cord-blood and peripheral-blood derived MCs were employed to analyze their surface molecule expression and cytokine generation by flow cytometry. Bacterial internalization in these MCs was observed by confocal microscopy and flow cytometry. RESULTS Complement receptor 3 expression was augmented by LTA but not by PGN or 3CpG-oligodeoxynucleotide. LTA also enhanced the uptake of opsonized bacteria (over twofold augmentation). After bacterial uptake, MCs augmented the production of chemoattractant cytokines for neutrophils, while Th1 and Th2 cytokine production showed little or no change. CONCLUSIONS LTA increases the capability of the MC as a sentinel in the host immune response, and some bacterial components direct human MC function towards innate immunity after pathogen infection.
Collapse
Affiliation(s)
- Naoki Imajo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Itoh N, Takahashi KG. A novel peptidoglycan recognition protein containing a goose-type lysozyme domain from the Pacific oyster, Crassostrea gigas. Mol Immunol 2009; 46:1768-74. [PMID: 19246096 DOI: 10.1016/j.molimm.2009.01.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/25/2009] [Indexed: 11/29/2022]
Abstract
Peptidoglycan recognition protein (PGRP) is considered an essential molecule for effective immunity in invertebrates by its detection and clarification of invading bacteria. Bivalve mollusks also possess PGRP systems for self-defense, however, their functions in bivalves remain to be understood. In the present study, cDNA of a novel PGRP was identified from the Pacific oyster, Crassostrea gigas, using EST-based RACE PCR. This novel PGRP is homologous to short PGRPs and the presence of a signal peptide was predicted. The PGRP is classified into the short PGRP group, although its molecular weight was estimated as 54 kDa, close to that of long PGRP groups. A conserved domain search detected amidase_2/PGRP and goose-type (g-type) lysozyme domains in this PGRP structure, and thus this novel PGRP was designated as CgPGRP-L. Catalytic residues for PGRP and g-type lysozyme are well conserved, suggesting that CgPGRP-L may have both binding and lytic functions against bacteria. Reverser transcription PCR (RT-PCR) detected CgPGRP-L mRNA expression in circulatory hemocytes, and quantitative real-time RT-PCR revealed that its expression increased after Marinococcus halophilus and Vibrio tubiashii exposure. These results indicate that CgPGRP-L is expressed in hemocytes by bacterial invasion, and then may play roles of a short PGRP and bacterio-lytic lysozyme.
Collapse
Affiliation(s)
- Naoki Itoh
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiya-machi, Aoba-ku, Sendai 981 8555, Japan.
| | | |
Collapse
|
213
|
Saha S, Qi J, Wang S, Wang M, Li X, Kim YG, Núñez G, Gupta D, Dziarski R. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe 2009; 5:137-50. [PMID: 19218085 PMCID: PMC2671207 DOI: 10.1016/j.chom.2008.12.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/06/2008] [Accepted: 12/22/2008] [Indexed: 11/30/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are structurally conserved from insects to mammals. Insect PGRPs have diverse host-defense functions. Mammalian PGRPs PGLYRP-1, PGLYRP-3, and PGLYRP-4 have bactericidal activity, while PGLYRP-2 has amidase activity. To extend the known functions of mammalian PGRPs, we examined whether they have immunomodulating activities in peptidoglycan-induced arthritis in mice. We demonstrate that PGLYRP-2 and Nod2 are both required for arthritis in this model. The sequence of events in peptidoglycan-induced arthritis is activation of Nod2, local expression of PGLYRP-2, chemokine production, and recruitment of neutrophils into the limbs, which induces acute arthritis. Only PGLYRP-2 among the four mammalian PGRPs displays this proinflammatory function, and PGLYRP-1 is anti-inflammatory. Toll-like receptor 4 (TLR4) and MyD88 are required for maturation of neutrophils before peptidoglycan challenge. Our results demonstrate that PGRPs, Nod2, and TLR4, representing three different types of pattern-recognition molecules, play interdependent in vivo roles in local inflammation.
Collapse
Affiliation(s)
- Sukumar Saha
- Indiana University School of Medicine Northwest, Gary, IN 46408
| | - Jin Qi
- Indiana University School of Medicine Northwest, Gary, IN 46408
| | - Shiyong Wang
- Indiana University School of Medicine Northwest, Gary, IN 46408
| | - Minhui Wang
- Indiana University School of Medicine Northwest, Gary, IN 46408
| | - Xinna Li
- Indiana University School of Medicine Northwest, Gary, IN 46408
| | - Yun-Gi Kim
- University of Michigan Medical School, Ann Arbor, MI 48109
| | - Gabriel Núñez
- University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dipika Gupta
- Indiana University School of Medicine Northwest, Gary, IN 46408
| | - Roman Dziarski
- Indiana University School of Medicine Northwest, Gary, IN 46408
| |
Collapse
|
214
|
Chang MX, Wang YP, Nie P. Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2009; 26:264-274. [PMID: 19084604 DOI: 10.1016/j.fsi.2008.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/01/2008] [Accepted: 11/12/2008] [Indexed: 05/27/2023]
Abstract
Insect PGRPs can function as bacterial recognition molecules triggering proteolytic and/or signal transduction pathways, with the resultant production of antimicrobial peptides. To explore if zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) has such effects, RNA interference (siRNA) and high-density oligonucleotide microarray analysis were used to identify differentially expressed genes regulated by zfPGRP-SC. The mRNA levels for a set of genes involved in Toll-like receptor signaling pathway, such as TLRs, SARM, MyD88, TRAF6 and nuclear factor (NF)-kappa B2 (p100/p52), were examined by quantitative RT-PCR (QT-PCR). The results from the arrays and QT-PCR showed that the expression of 133 genes was involved in signal transduction pathways, which included Toll-like receptor signaling, Wnt signaling, BMP signaling, insulin receptor signaling, TGF-beta signaling, GPCR signaling, small GTPase signaling, second-messenger-mediated signaling, MAPK signaling, JAK/STAT signaling, apoptosis and anti-apoptosis signaling and other signaling cascades. These signaling pathways may connect with each other to form a complex network to regulate not just immune responses but also other processes such as development and apoptosis. When transiently over-expressed in HEK293T cells, zfPGRP-SC inhibited NF-kappaB activity with and without lipopolysacharide (LPS) stimulation.
Collapse
Affiliation(s)
- M X Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Laboratory of Fish Diseases, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | | | | |
Collapse
|
215
|
Lessons from the fly: pattern recognition in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:162-74. [PMID: 19799118 DOI: 10.1007/978-1-4419-0901-5_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal beta-1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for directly facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.
Collapse
|
216
|
Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol 2009; 102:135-226. [PMID: 19477321 DOI: 10.1016/s0065-2776(09)01203-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atopic dermatitis (AD) is a pruritic inflammatory skin disease associated with a personal or family history of allergy. The prevalence of AD is on the rise and estimated at approximately 17% in the USA. The fundamental lesion in AD is a defective skin barrier that results in dry itchy skin, and is aggravated by mechanical injury inflicted by scratching. This allows entry of antigens via the skin and creates a milieu that shapes the immune response to these antigens. This review discusses recent advances in our understanding of the abnormal skin barrier in AD, namely abnormalities in epidermal structural proteins, such as filaggrin, mutated in approximately 15% of patients with AD, epidermal lipids, and epidermal proteases and protease inhibitors. The review also dissects, based on information from mouse models of AD, the contributions of the innate and adaptive immune system to the pathogenesis of AD, including the effect of mechanical skin injury on the polarization of skin dendritic cells, mediated by keratinocyte-derived cytokines such as thymic stromal lymphopoietin (TSLP), IL-6, and IL-1, that results in a Th2-dominated immune response with a Th17 component in acute AD skin lesions and the progressive conversion to a Th1-dominated response in chronic AD skin lesions. Finally, we discuss the mechanisms of susceptibility of AD skin lesions to microbial infections and the role of microbial products in exacerbating skin inflammation in AD. Based on this information, we discuss current and future therapy of this common disease.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
217
|
Yuki M, Moriya S, Inoue T, Kudo T. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zoolog Sci 2008; 25:401-6. [PMID: 18459822 DOI: 10.2108/zsj.25.401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
Microorganisms dwell symbiotically in the termite hindgut. In this study, we identified genes that contribute to the role of the host in maintaining this symbiotic relationship with microorganisms. Body tissue and digestive organs (salivary gland, foregut, midgut, and hindgut) dissected from the lower termite Hodotermopsis sjostedti were used for the analyses. The transcriptomes in these organs were investigated using expressed sequence tag (EST) analysis. The cDNA libraries from the salivary gland and foregut included not only cellulase genes, but also several genes involved in glucose production, heme-cellulose degradation, chitin degradation, the innate immune system, and anti-microbial activity. We compared the expression level of these genes in the organs and body by real-time quantitative RT-PCR. Real time RT-PCR analyses confirmed that the genes associated with cellulose degradation, innate immunity, and anti-microbial proteins are much more strongly expressed in the salivary gland than in other tissues. Our results identify functional genes used by the host in the termite symbiotic system.
Collapse
Affiliation(s)
- Masahiro Yuki
- Laboratory of Environmental Molecular Biology, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
218
|
Blanco GA, Malchiodi EL, De Marzi MC. Cellular clot formation in a sipunculan worm: Entrapment of foreign particles, cell death and identification of a PGRP-related protein. J Invertebr Pathol 2008; 99:156-65. [DOI: 10.1016/j.jip.2008.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/28/2008] [Accepted: 05/02/2008] [Indexed: 11/15/2022]
|
219
|
RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare. Vet Immunol Immunopathol 2008; 124:295-301. [DOI: 10.1016/j.vetimm.2008.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 03/16/2008] [Accepted: 04/09/2008] [Indexed: 11/30/2022]
|
220
|
The association between peptidoglycan recognition protein-1 and coronary and peripheral atherosclerosis: Observations from the Dallas Heart Study. Atherosclerosis 2008; 203:569-75. [PMID: 18774573 DOI: 10.1016/j.atherosclerosis.2008.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Peptidoglycan recognition protein-1 (PGLYRP-1) is part of the innate immune system and binds to peptidoglycan, a component of bacterial cell walls that has been found in human atherosclerotic lesions. Chronic exposure to bacterial antigens may cause or exacerbate the inflammatory response to lipid deposition within arterial walls. We hypothesized that PGLYRP-1 is associated with subclinical atherosclerosis as measured by computed tomography and magnetic resonance imaging. METHODS AND RESULTS PGLYRP-1 was measured in 3222 subjects in the Dallas Heart Study, a probability-based population sample age 30-65 including 50% African-Americans and 56% women. Coronary artery calcium (CAC) was measured by electron beam computed tomography (n=2467), abdominal aortic wall thickness (AWT) by magnetic resonance imaging (MRI) (n=2270), and abdominal aortic plaque burden (APB) by MRI (n=2256). In univariable analyses, increasing levels of PGLYRP-1 were associated with all major cardiovascular risk factors, with inflammatory markers such as C-reactive protein, and with CAC, AWT, and APB (p<0.0001 for each). In multivariable models adjusted for traditional risk factors, logPGLYRP-1 remained significantly associated with CAC (OR 1.1, 95% CI 1.01-1.3 per S.D.; p=0.04) and AWT (p=0.009) but not APB (p=0.09). Further adjustment for novel biomarkers associated with PGLYRP-1 and atherosclerosis attenuated the association with CAC (p=0.18) but not with AWT (p=0.01) or APB (p=0.037). CONCLUSION In this first reported clinical study of PGLYRP-1 in humans, PGLYRP-1 levels were independently associated with atherosclerosis phenotypes that represent different vascular beds and stages of atherosclerosis.
Collapse
|
221
|
Maillet F, Bischoff V, Vignal C, Hoffmann J, Royet J. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host Microbe 2008; 3:293-303. [PMID: 18474356 DOI: 10.1016/j.chom.2008.04.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/29/2008] [Accepted: 04/07/2008] [Indexed: 12/29/2022]
Abstract
Eukaryotic peptidoglycan recognition proteins (PGRPs) are related to bacterial amidases. In Drosophila, PGRPs bind peptidoglycan and function as central sensors and regulators of the innate immune response. PGRP-LC/PGRP-LE constitute the receptor complex in the immune deficiency (IMD) pathway, which is an innate immune cascade triggered upon Gram-negative bacterial infection. Here, we present the functional analysis of the nonamidase, membrane-associated PGRP-LF. We show that PGRP-LF acts as a specific negative regulator of the IMD pathway. Reduction of PGRP-LF levels, in the absence of infection, is sufficient to trigger IMD pathway activation. Furthermore, normal development is impaired in the absence of functional PGRP-LF, a phenotype mediated by the JNK pathway. Thus, PGRP-LF prevents constitutive activation of both the JNK and the IMD pathways. We propose a model in which PGRP-LF keeps the Drosophila IMD pathway silent by sequestering circulating peptidoglycan.
Collapse
Affiliation(s)
- Frédéric Maillet
- Institut de Biologie du Développement de Marseille-Luminy, UMR 6216 CNRS, Université de la Méditerannée Aix-Marseille II, Parc Scientifique de Luminy-Case 907, F-13288 Marseille Cedex 9, France
| | | | | | | | | |
Collapse
|
222
|
Kim CH, Park JW, Ha NC, Kang HJ, Lee BL. Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal. BMB Rep 2008; 41:93-101. [PMID: 18315943 DOI: 10.5483/bmbrep.2008.41.2.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major cell wall components of bacteria are lipopolysaccharide, peptidoglycan, and teichoic acid. These molecules are known to trigger strong innate immune responses in the host. The molecular mechanisms by which the host recognizes the peptidoglycan of Gram-positive bacteria and amplifies this peptidoglycan recognition signals to mount an immune response remain largely unclear. Recent, elegant genetic and biochemical studies are revealing details of the molecular recognition mechanism and the signalling pathways triggered by bacterial peptidoglycan. Here we review recent progress in elucidating the molecular details of peptidoglycan recognition and its signalling pathways in insects. We also attempt to evaluate the importance of this issue for understanding innate immunity.
Collapse
Affiliation(s)
- Chan-Hee Kim
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan, Korea
| | | | | | | | | |
Collapse
|
223
|
Detection of genes encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hübner) exposed to Bacillus thuringiensis. J Invertebr Pathol 2008; 98:218-27. [PMID: 18359041 DOI: 10.1016/j.jip.2008.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 11/23/2022]
Abstract
The systemic immune response of Trichoplusia ni after Bacillus thuringiensis (Bt) exposure was evaluated by comparing the expression of genes encoding antimicrobial peptides (AMPs) in Bt-susceptible and -resistant T. ni strains that were either exposed or not to XenTari (Bt-XT). AMP genes were detected by RT-PCR using primers for attacin, gloverin, lebocin, lysozyme, and peptidoglycan recognition peptide (PGRP). In general, AMP genes were detected more frequently in Mexican field strains previously exposed to Bt (SALX and GTOX) than in a Mexican laboratory strain (NL), but expression was similar to the AMP expression in USA laboratory strains (US and USX). Among the AMPs, transcripts for lebocin were the least detected (11.7%) and those for lysozyme were the most detected (84.8%) in all samples. Lebocin was detected only in 2nd instar and pupa. All untreated controls expressed attacin. Attacin and gloverin were not detected in any midgut sample, and their highest detection was in pupa. Lysozyme was rarely detected in 2nd instar larvae from any strain or treatment but was detected in almost all midgut and hemolymph samples. Overall, AMPs were found more in T. ni strains previously exposed to Bt-XT, especially lebocin and globerin (1.8-fold increase) and PGRP (3.8-fold increase). The data suggest that the expression of AMPs in T. ni correlates to previous Bt exposure.
Collapse
|
224
|
Abstract
The innate arm of our immune system is the first line of defence against infections. In addition, it is believed to drive adaptive immune responses, which help fight pathogens and provide long-term memory. As such, the innate immune system is instrumental for protection against pathogens that would otherwise destroy their host. Although our understanding of the innate immune components involved in pathogen sensing and fighting is improving, it is still limited. This is particularly exemplified by increased documentation of innate immune deficiencies in humans that often result in high and recurrent susceptibility to infections or even death, without the genetic cause being evident. To provide further insight into the mechanisms by which pathogen sensing and eradication occur, several strategies can be used. The current review focuses on the forward genetic approaches that have been used to dissect innate immunity in the fruit fly and the mouse. For both animal models, forward genetics has been instrumental in the deciphering of innate immunity and has greatly improved our understanding of how we respond to invading pathogens.
Collapse
|
225
|
Jochim RC, Teixeira CR, Laughinghouse A, Mu J, Oliveira F, Gomes RB, Elnaiem DE, Valenzuela JG. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics 2008; 9:15. [PMID: 18194529 PMCID: PMC2249575 DOI: 10.1186/1471-2164-9-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/14/2008] [Indexed: 11/24/2022] Open
Abstract
Background In the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of the sand fly are poorly understood. In the present work we sequenced five cDNA libraries constructed from midgut tissue from the sand fly Lutzomyia longipalpis and analyzed the transcripts present following sugar feeding, blood feeding and after the blood meal has been processed and excreted, both in the presence and absence of Leishmania infantum chagasi. Results Comparative analysis of the transcripts from sugar-fed and blood-fed cDNA libraries resulted in the identification of transcripts differentially expressed during blood feeding. This included upregulated transcripts such as four distinct microvillar-like proteins (LuloMVP1, 2, 4 and 5), two peritrophin like proteins, a trypsin like protein (Lltryp1), two chymotrypsin like proteins (LuloChym1A and 2) and an unknown protein. Downregulated transcripts by blood feeding were a microvillar-like protein (LuloMVP3), a trypsin like protein (Lltryp2) and an astacin-like metalloprotease (LuloAstacin). Furthermore, a comparative analysis between blood-fed and Leishmania infected midgut cDNA libraries resulted in the identification of the transcripts that were differentially expressed due to the presence of Leishmania in the gut of the sand fly. This included down regulated transcripts such as four microvillar-like proteins (LuloMVP1,2, 4 and 5), a Chymotrypsin (LuloChym1A) and a carboxypeptidase (LuloCpepA1), among others. Upregulated midgut transcripts in the presence of Leishmania were a peritrophin like protein (LuloPer1), a trypsin-like protein (Lltryp2) and an unknown protein. Conclusion This transcriptome analysis represents the largest set of sequence data reported from a specific sand fly tissue and provides further information of the transcripts present in the sand fly Lutzomyia longipalpis. This analysis provides the detailed information of molecules present in the midgut of this sand fly and the transcripts potentially modulated by blood feeding and by the presence of the Leishmania parasite. More importantly, this analysis suggests that Leishmania infantum chagasi alters the expression profile of certain midgut transcripts in the sand fly during blood meal digestion and that this modulation may be relevant for the survival and establishment of the parasite in the gut of the fly. Moreover, this analysis suggests that these changes may be occurring during the digestion of the blood meal and not afterwards.
Collapse
Affiliation(s)
- Ryan C Jochim
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Gandhe AS, John SH, Nagaraju J. Noduler, A Novel Immune Up-Regulated Protein Mediates Nodulation Response in Insects. THE JOURNAL OF IMMUNOLOGY 2007; 179:6943-51. [DOI: 10.4049/jimmunol.179.10.6943] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
227
|
Hashimoto K, Mega K, Matsumoto Y, Bao Y, Yamano Y, Morishima I. Three peptidoglycan recognition protein (PGRP) genes encoding potential amidase from eri-silkworm, Samia cynthia ricini. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:322-8. [PMID: 17689997 DOI: 10.1016/j.cbpb.2007.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 01/29/2023]
Abstract
Three cDNA clones encoding peptidoglycan recognition proteins (PGRP-B, -C and -D) were isolated from larval fat body of immunized Samia cynthia ricini. The deduced amino acid sequences show high homology to each other and also to Drosophila PGRP-LB, but rather lower homology to all of the known lepidopteran PGRPs including Samia PGRP-A, a receptor-type PGRP. The three PGRPs conserve the five amino acid residues which form the catalytic site of N-acetylmuramoyl L-alanine amidase as in Drosophila LB. The PGRP-C and -D genes were silent in naive larvae, but strongly induced in fat body by an injection of peptidoglycan. PGRP-B gene, in contrast, constitutively expressed at high levels in naive midgut, and the gene was weakly induced in fat body after injection of peptidoglycan.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Japan
| | | | | | | | | | | |
Collapse
|
228
|
Fernández N, González A, Valera I, Alonso S, Crespo MS. Mannan and peptidoglycan induce COX-2 protein in human PMN via the mammalian target of rapamycin. Eur J Immunol 2007; 37:2572-82. [PMID: 17683115 DOI: 10.1002/eji.200737262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The induction of cyclooxygenase-2 (COX-2) protein expression was assessed in human polymorphonuclear leukocytes (PMN) stimulated via receptors of the innate immune system. Peptidoglycan (PGN) and mannan, and at a lower extent the bacterial lipoprotein mimic palmitoyl-3-cysteine-serine-lysine-4, induced COX-2 protein expression. In contrast, lipoteichoic acid and muramyldipeptide were irrelevant stimuli. The mRNA encoding COX-2 was present in resting PMN at an extent quite similar to that detected in stimulated PMN, whereas the expression of COX-2 protein was undetectable. Treatment with the phosphatidylinositol 3-kinase inhibitor (PI3K) wortmaninn, the mammalian target of rapamycin (mTOR) inhibitor rapamycin, and the translation inhibitor cycloheximide blocked the induction of COX-2 protein in response to mannan and PGN, whereas the transcriptional inhibitor actinomycin D did not show a significant effect. These results disclose a capability of pathogen-associated molecular patterns to induce the oxidative metabolism of arachidonic acid more robust than that of PMN archetypal chemoattractants, since mannan and PGN make it coincidental the release of arachidonic acid with a rapid induction of COX-2 protein regulated by a signaling cascade involving PI3K, mTOR, and the translation machinery. This mechanism of COX-2 protein induction expression in PMN is substantially different from that operative in mononuclear phagocytes, which is highly dependent on transcriptional regulation.
Collapse
Affiliation(s)
- Nieves Fernández
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | | | | | | | |
Collapse
|
229
|
Vasta GR, Ahmed H, Tasumi S, Odom EW, Saito K. Biological roles of lectins in innate immunity: molecular and structural basis for diversity in self/non-self recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:389-406. [PMID: 17892226 DOI: 10.1007/978-0-387-71767-8_27] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo R Vasta
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA.
| | | | | | | | | |
Collapse
|
230
|
Su J, Ni D, Song L, Zhao J, Qiu L. Molecular cloning and characterization of a short type peptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2007; 23:646-56. [PMID: 17428682 DOI: 10.1016/j.fsi.2007.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 05/14/2023]
Abstract
Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and plays a crucial role in the innate immune responses as a pattern recognition receptor (PRR). The cDNA of a short type PGRP was cloned from scallop Chlamys farreri (named CfPGRP-S1) by homology cloning with degenerate primers, and confirmed by virtual Northern blots. The full length of CfPGRP-S1 cDNA was 1073 bp in length, including a 5' untranslated region (UTR) of 59 bp, a 3' UTR of 255 bp, and an open reading frame (ORF) of 759 bp encoding a polypeptide of 252 amino acids with an estimated molecular mass of 27.88 kDa and a predicted isoelectric point of 8.69. BLAST analysis revealed that CfPGRP-S1 shared high identities with other known PGRPs. A conserved PGRP domain and three zinc-binding sites were present at its C-terminus. The temporal expression of CfPGRP-S1 gene in healthy, Vibrio anguillarum-challenged and Micrococcus lysodeikticus-challenged scallops was measured by RT-PCR analysis. The expression of CfPGRP-S1 was upregulated initially in the first 12 h or 24 h either by M. lysodeikticus or V. anguillarum challenge and reached the maximum level at 24 h or 36 h, then dropped progressively, and recovered to the original level as the stimulation decreased at 72 h. There was no significant difference between V. anguillarum and M. lysodeikticus challenge. The results indicated that the CfPGRP-S1 was a constitutive and inducible acute-phase protein which was involved in the immune response against bacterial infection.
Collapse
Affiliation(s)
- Jianguo Su
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | | | |
Collapse
|
231
|
Li X, Wang S, Qi J, Echtenkamp SF, Chatterjee R, Wang M, Boons GJ, Dziarski R, Gupta D. Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity 2007; 27:518-29. [PMID: 17892854 PMCID: PMC2074879 DOI: 10.1016/j.immuni.2007.07.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/04/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are structurally conserved through evolution, but their functions in innate immunity are different in invertebrates and vertebrates. We asked what the functions of PGRPs in fish are and whether they are indispensable for defense against infection because fish are the first vertebrates that developed adaptive immunity, but they still rely solely on innate immunity during early development of embryos. We identified and cloned three zebrafish PGRPs and showed that they are highly expressed in eggs, developing embryos, and adult tissues that contact external environment. Zebrafish PGRPs have both peptidoglycan-lytic amidase activity and broad-spectrum bactericidal activity, which is a unique feature. Furthermore, we demonstrated that in the developing zebrafish embryo, one of these PGRPs is essential for defense and survival during bacterial infections. These data demonstrate an absolute requirement for innate immunity in defense against infections in fish embryos and for a PGRP protein for survival in vertebrates.
Collapse
Affiliation(s)
- Xinna Li
- Indiana University School of Medicine Northwest, Gary, IN 46408, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Dukhanina EA, Yashin DV, Lukjanova TI, Romanova EA, Kabanova OD, Shatalov YV, Sashchenko LP, Gnuchev NV. Administration of the cytotoxic complex Tag7-Hsp70 to mice with transplanted tumors inhibits tumor growth. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2007; 414:246-8. [PMID: 17668634 DOI: 10.1134/s0012496607030222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- E A Dukhanina
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow 119334, Russia
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Onoe H, Matsumoto A, Hashimoto K, Yamano Y, Morishima I. Peptidoglycan recognition protein (PGRP) from eri-silkworm, Samia cynthia ricini; protein purification and induction of the gene expression. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:512-9. [PMID: 17434328 DOI: 10.1016/j.cbpb.2007.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 02/02/2023]
Abstract
Peptidoglycan recognition protein (PGRP) was isolated from immunized hemolymph of the wild silkworm, Samia cynthia ricini, detecting the biding activity with (125)I-labeled peptidoglycan (PGN). The binding specificity of PGRP was tested by competitive inhibition of the binding to (125)I-labeled-PGN by a large excess amount of non-labeled-PGN or other glucans. The binding to labeled uncross-linked Lys-type PGN from Micrococcus luteus was strongly inhibited by non-labeled-PGN of the same structure and meso-diaminopimelic acid (DAP)-type cross-linked PGN from Bacillus cell wall, but only a little by cross-linked PGN from M. luteus cell wall. The PGRP cDNA encodes a 193 amino acid open reading frame. The deduced amino acid sequence had 62 to 91% identities to known lepidopteran PGRPs, but less than 40% to Drosophila PGRPs. The PGRP gene constitutively expressed at a low level in naive fat body, and strongly induced by an injection of DAP-type cross-linked and Lys-type uncross-linked PGNs, but only weakly by Lys-type cross-linked PGN from M. luteus. The silkworm possibly distinguish between PGNs based on the structure of cross-linking peptide, but has less if any preference for the diamino acid residue of the stem peptide.
Collapse
Affiliation(s)
- Hiroko Onoe
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | |
Collapse
|
234
|
Gandhe AS, Janardhan G, Nagaraju J. Immune upregulation of novel antibacterial proteins from silkmoths (Lepidoptera) that resemble lysozymes but lack muramidase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:655-66. [PMID: 17550822 DOI: 10.1016/j.ibmb.2007.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/19/2007] [Accepted: 03/21/2007] [Indexed: 05/15/2023]
Abstract
Study on immune proteins in domesticated and wild silkmoths Bombyx mori and Antheraea mylitta, respectively, led to identification of a new class of antimicrobial proteins. We designated them as lysozyme-like proteins (LLPs) owing to their partial similarity with lysozymes. However, lack of characteristic catalytic amino acid residues essential for muramidase activity in LLPs puts them functionally apart from classical lysozymes. Two LLPs, one from B. mori (BLLP1) and the other from A. mylitta (ALLP1) expressed in a recombinant system, exhibited a broad-spectrum antibacterial action. Further investigation of the antibacterial mechanism revealed that BLLP1 is bacteriostatic rather than bactericidal against Escherichia coli and Micrococcus luteus. Substantial increase in hemolymph bacterial load was observed in B. mori upon RNA interference mediated in vivo knockdown of BLLP1. We demonstrate that the antibacterial mechanism of this protein depends on peptidoglycan binding unlike peptidoglycan hydrolysis or membrane permeabilization as observed with lysozymes and most other antimicrobial peptides. To our knowledge, this is the first report on functional analysis of novel, non-catalytic lysozyme-like family of antibacterial proteins that are quite apart functionally from classical lysozymes. The present analysis holds promise for functional annotation of similar proteins from other organisms.
Collapse
Affiliation(s)
- Archana S Gandhe
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500076, India
| | | | | |
Collapse
|
235
|
Abstract
To combat infection, the fruit fly Drosophila melanogaster relies on multiple innate defense reactions, many of which are shared with higher organisms. These reactions include the use of physical barriers together with local and systemic immune responses. First, epithelia, such as those beneath the cuticle, in the alimentary tract, and in tracheae, act both as a physical barrier and local defense against pathogens by producing antimicrobial peptides and reactive oxygen species. Second, specialized hemocytes participate in phagocytosis and encapsulation of foreign intruders in the hemolymph. Finally, the fat body, a functional equivalent of the mammalian liver, produces humoral response molecules including antimicrobial peptides. Here we review our current knowledge of the molecular mechanisms underlying Drosophila defense reactions together with strategies evolved by pathogens to evade them.
Collapse
Affiliation(s)
- Bruno Lemaitre
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
236
|
Wang M, Liu LH, Wang S, Li X, Lu X, Gupta D, Dziarski R. Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. THE JOURNAL OF IMMUNOLOGY 2007; 178:3116-25. [PMID: 17312159 DOI: 10.4049/jimmunol.178.5.3116] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammals have four peptidoglycan recognition proteins (PGRPs or PGLYRPs), which are secreted innate immunity pattern recognition molecules with effector functions. In this study, we demonstrate that human PGLYRP-1, PGLYRP-3, PGLYRP-4, and PGLYRP-3:4 have Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria at physiologic Zn(2+) concentrations found in serum, sweat, saliva, and other body fluids. The requirement for Zn(2+) can only be partially replaced by Ca(2+) for killing of Gram-positive bacteria but not for killing of Gram-negative bacteria. The bactericidal activity of PGLYRPs is salt insensitive and requires N-glycosylation of PGLYRPs. The LD(99) of PGLYRPs for Gram-positive and Gram-negative bacteria is 0.3-1.7 muM, and killing of bacteria by PGLYRPs, in contrast to killing by antibacterial peptides, does not involve permeabilization of cytoplasmic membrane. PGLYRPs and antibacterial peptides (phospholipase A(2), alpha- and beta-defensins, and bactericidal permeability-increasing protein), at subbactericidal concentrations, synergistically kill Gram-positive and Gram-negative bacteria. These results demonstrate that PGLYRPs are a novel class of recognition and effector molecules with broad Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria that are synergistic with antibacterial peptides.
Collapse
Affiliation(s)
- Minhui Wang
- Indiana University School of Medicine, Northwest Campus, 3400 Broadway, Gary, IN 46408, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
Williams JA, Sathyanarayanan S, Hendricks JC, Sehgal A. Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish. Sleep 2007; 30:389-400. [PMID: 17520783 PMCID: PMC2884379 DOI: 10.1093/sleep/30.4.389] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. DESIGN We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. RESULTS A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. CONCLUSION These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.
Collapse
Affiliation(s)
- Julie A Williams
- Center for Advanced Biotechnology and Medicine and Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5603, USA.
| | | | | | | |
Collapse
|
238
|
Royet J, Dziarski R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 2007; 5:264-77. [PMID: 17363965 DOI: 10.1038/nrmicro1620] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules that are present in most invertebrate and vertebrate animals. All PGRPs function in antimicrobial defence and are homologous to the prokaryotic peptidoglycan-lytic type 2 amidases. However, only some PGRPs have the catalytic activity that protects the host from excessive inflammation, and most PGRPs have diversified to carry out other host-defence functions. Insect and mammalian PGRPs defend host cells against infection through very different mechanisms. Insect PGRPs activate signal transduction pathways in host cells or trigger proteolytic cascades in the haemolymph, both of which generate antimicrobial effectors. By contrast, mammalian PGRPs are directly bactericidal. Here, we review these contrasting modes of action.
Collapse
Affiliation(s)
- Julien Royet
- Institut de Biologie du Développement de Marseille-Luminy, UMR 6216 CNRS, Université de la Méditérannée Aix-Marseille II, Marseille, France.
| | | |
Collapse
|
239
|
Guan R, Mariuzza RA. Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol 2007; 15:127-34. [PMID: 17275309 DOI: 10.1016/j.tim.2007.01.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/11/2007] [Accepted: 01/25/2007] [Indexed: 01/13/2023]
Abstract
Peptidoglycan (PGN) is the major component of bacterial cell walls and one of the main microbial products recognized by the innate immune system. PGN recognition is mediated by several families of pattern recognition molecules, including Toll-like receptors, nucleotide-binding oligomerization domain-containing proteins, and peptidoglycan recognition proteins (PGRPs). However, only the interaction of PGN with PGRPs, which are highly conserved from insects to mammals, has so far been characterized at the molecular level. Here, we describe recent structural studies of PGRPs that reveal the basis for PGN recognition and provide insights into the signal transduction and antibacterial activities of these innate immune proteins.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | |
Collapse
|
240
|
Valera I, Vigo AG, Alonso S, Barbolla L, Crespo MS, Fernández N. Peptidoglycan and mannose-based molecular patterns trigger the arachidonic acid cascade in human polymorphonuclear leukocytes. J Leukoc Biol 2007; 81:925-33. [PMID: 17264305 DOI: 10.1189/jlb.0706451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The release of arachidonic acid (AA) in response to microorganism-derived products acting on pattern recognition receptors (PRR) was assayed in human polymorphonuclear leukocytes (PMN). Peptidoglycan (PGN) and mannan were found to be strong inducers of AA metabolism, as they produced the release of AA at a similar extent to that produced by agonists of pathophysiological relevance such as complement-coated zymosan particles and IgG immune complexes. In sharp contrast, lipoteichoic acid, LPS, muramyldipeptide, and the bacterial lipoprotein mimic palmitoyl-3-cysteine-serine-lysine-4 failed to do so. Leukotriene B4 and PGE2 were synthesized in response to mannan and PGN, thus suggesting that the lipoxygenase and the cyclooxygenase routes are operative in human PMN in response to pathogen-associated molecular patterns (PAMP). Analysis of the lipid extracts of supernatants and cell pellets as well as pharmacological studies with the calpain inhibitor calpeptin and the cytosolic phospholipase A2 (PLA2) inhibitor pyrrolidine-1 showed the dependence of AA release on cytosolic PLA2-catalyzed reactions. The effect of PGN was not inhibited by previous treatment with anti-TLR2 mAb, thus suggesting a nonarchetypal involvement of the TLR2 signaling route and/or participation of other receptors. Because of the abundance of mannose-based and PGN-containing PAMP in fungi and bacteria and the wide array of PRR in human PMN, these finding disclose a role of prime importance for PAMP and PRR in AA metabolism in the inflammatory response mediated by PMN.
Collapse
Affiliation(s)
- Isela Valera
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Cientificas, C/ Sanz y Forés s/n, 47003, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
241
|
Abstract
Peptidoglycan recognition proteins (PGRPs) are found in insects, mollusks, echinoderms, and vertebrates, and they protect animals against infections. The four mammalian family members are either bactericidal proteins or amidases that hydrolyze bacterial peptidoglycan. Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules present in insects, mollusks, echinoderms, and vertebrates, but not in nematodes or plants. PGRPs have at least one carboxy-terminal PGRP domain (approximately 165 amino acids long), which is homologous to bacteriophage and bacterial type 2 amidases. Insects have up to 19 PGRPs, classified into short (S) and long (L) forms. The short forms are present in the hemolymph, cuticle, and fat-body cells, and sometimes in epidermal cells in the gut and hemocytes, whereas the long forms are mainly expressed in hemocytes. The expression of insect PGRPs is often upregulated by exposure to bacteria. Insect PGRPs activate the Toll or immune deficiency (Imd) signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyze peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which are secreted; it is not clear whether any are directly orthologous to the insect PGRPs. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial peptidoglycan and reduces its proinflammatory activity; PGLYRP-2 is secreted from the liver into the blood and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal proteins that are secreted as disulfide-linked homo- and hetero-dimers. PGLYRP-1 is expressed primarily in polymorphonuclear leukocyte granules and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. These three proteins kill bacteria by interacting with cell wall peptidoglycan, rather than permeabilizing bacterial membranes as other antibacterial peptides do. Direct bactericidal activity of these PGRPs either evolved in the vertebrate (or mammalian) lineage or is yet to be discovered in insects.
Collapse
Affiliation(s)
- Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | | |
Collapse
|
242
|
Ni D, Song L, Wu L, Chang Y, Yu Y, Qiu L, Wang L. Molecular cloning and mRNA expression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:548-58. [PMID: 17064771 DOI: 10.1016/j.dci.2006.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 08/29/2006] [Accepted: 09/08/2006] [Indexed: 05/12/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a type of pattern recognition molecules (PRM) that recognize the unique cell wall component peptidoglycan (PGN) of bacteria and are involved in innate immunity. The first bivalve PGRP cDNA sequence was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and PCR technique. The full-length cDNA of bay scallop PGRP (designated AiPGRP) gene contained 1018bp with a 615-bp open reading frame that encoded a polypeptide of 205 amino acids. The predicted amino acid sequence of AiPGRP shared high identity with PGRP in other organisms, such as PGRP precursor in Trichoplusia ni and PGRP SC2 in Drosophila melanogaster. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of AiPGRP in different tissues and the temporal expression of AiPGRP in the mixed primary cultured hemocytes challenged by microbial components lipopolyssacharide (LPS) from Escherichia coli and PGN from Micrococcus luteus. Higher-level mRNA expression of AiPGRP was detected in the tissues of hemocytes, gonad and kidney. The expression of AiPGRP in the mixed primary cultured hemocytes was up regulated after stimulated by PGN, while LPS from E. coli did not induce AiPGRP expression. The results indicated that AiPGRP was a constitutive and inducible expressed protein that was mainly induced by PGN and could be involved in scallop immune response against Gram-positive bacteria infection.
Collapse
Affiliation(s)
- Duojiao Ni
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
243
|
Anselme C, Vallier A, Balmand S, Fauvarque MO, Heddi A. Host PGRP gene expression and bacterial release in endosymbiosis of the weevil Sitophilus zeamais. Appl Environ Microbiol 2006; 72:6766-72. [PMID: 17021229 PMCID: PMC1610295 DOI: 10.1128/aem.00942-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular symbiosis (endosymbiosis) with gram-negative bacteria is common in insects, yet little is known about how the host immune system perceives the endosymbionts and controls their growth and invasion without complete bacterial clearance. In this study, we have explored the expression of a peptidoglycan recognition protein gene of the weevil Sitophilus zeamais (wPGRP); an ortholog in Drosophila (i.e., PGRP-LB) was recently shown to downregulate the Imd pathway (A. Zaidman-Remy, M. Herve, M. Poidevin, S. Pili-Floury, M. S. Kim, D. Blanot, B. H. Oh, R. Ueda, D. Mengin-Lecreulx, and B. Lemaitre, Immunity 24:463-473, 2006). Insect challenges with bacteria have demonstrated that wPGRP is induced by gram-negative bacteria and that the level of induction depends on bacterial growth. Real-time reverse transcription-PCR quantification of the wPGRP gene transcript performed at different points in insect development has shown a high steady-state level in the bacteria-bearing organ (the bacteriome) of larvae and a high level of wPGRP up-regulation in the symbiotic nymphal phase. Concomitantly, during this stage fluorescence in situ hybridization has revealed an endosymbiont release from the host bacteriocytes. Together with the previously described high induction level of endosymbiont virulence genes at the nymphal phase (C. Dale, G. R. Plague, B. Wang, H. Ochman, and N. A. Moran, Proc. Natl. Acad. Sci. USA 99:12397-12402, 2002), these findings indicate that insect mutualistic relationships evolve through an interplay between bacterial virulence and host immune defense and that the host immunity engages the PGRP gene family in that interplay.
Collapse
Affiliation(s)
- Caroline Anselme
- Laboratoire de Biologie Fonctionnelle Insectes et Interactions (BF2I), UMR INRA/INSA de Lyon, Bât. Louis Pasteur, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
244
|
Abstract
The elimination of infectious non-self by the host defense systems of multicellular organisms requires a variety of recognition and effector molecules. The diversity is generated in somatic cells or encoded in the germ-line. In adaptive immunity in jawed vertebrates, the diversity of immunoglobulins and antigen receptors is generated by gene rearrangements in somatic cells. In innate immunity, various effector molecules and pattern recognition receptors, such as antimicrobial peptides and peptidoglycan recognition proteins, are encoded in the germ-line of multicellular organisms, including insects and jawed vertebrates. In the present review, we discuss how insect host defense systems recognize and eliminate a multitude of microbes via germ-line-encoded molecules, including recent findings that a Drosophila member of the immunoglobulin superfamily is extensively diversified by alternative splicing in somatic immune cells and participates in the elimination of bacteria.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
245
|
Ju JS, Cho MH, Brade L, Kim JH, Park JW, Ha NC, Söderhäll I, Söderhäll K, Brade H, Lee BL. A Novel 40-kDa Protein Containing Six Repeats of an Epidermal Growth Factor-Like Domain Functions as a Pattern Recognition Protein for Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2006; 177:1838-45. [PMID: 16849495 DOI: 10.4049/jimmunol.177.3.1838] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Determination of structures and functions of pattern recognition proteins are important for understanding pathogen recognition mechanisms in host defense and for elucidating the activation mechanism of innate immune reactions. In this study, a novel 40-kDa protein, named LPS recognition protein (LRP), was purified to homogeneity from the cell-free plasma of larvae of the large beetle, Holotrichia diomphalia. LRP exhibited agglutinating activities on Escherichia coli, but not on Staphylococcus aureus and Candida albicans. This E. coli-agglutinating activity was preferentially inhibited by the rough-type LPS with a complete core oligosaccharide. LRP consists of 317 aa residues and six repeats of an epidermal growth factor-like domain. Recombinant LRP expressed in a baculovirus system also showed E. coli agglutination activity in vitro and was able to neutralize LPS by inhibition of LPS-induced IL-6 production in mouse bone marrow mast cells. Furthermore, E. coli coated with the purified LRP were more rapidly cleared in the Holotrichia larvae than only E. coli, indicating that this protein participates in the clearance of E. coli in vivo. The three amino-terminal epidermal growth factor-like domains of LRP, but not the three carboxyl epidermal growth factor-like domains, are involved in the LPS-binding activity. Taken together, this LRP functions as a pattern recognition protein for LPS and plays a role as an innate immune protein.
Collapse
Affiliation(s)
- Jin Sung Ju
- National Research Laboratory of Defense Proteins, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules conserved from insects to mammals. Insects have up to 19 PGRPs, which activate Toll or Imd signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyse peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which were hypothesized to function as signal-transducing pattern recognition receptors. However, all mammalian PGRPs are secreted, usually as disulphide-linked homo- and heterodimers. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyses bacterial peptidoglycan and reduces its proinflammatory activity. PGLYRP-2 is secreted from liver into blood, and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal or bacteriostatic proteins. PGLYRP-1 is expressed primarily in the granules of polymorphonuclear leucocytes (PMNs) , and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine, and protect the host against infections. They kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. These PGRPs therefore are a new class of bactericidal and bacteriostatic proteins that have different structure, mechanism of action, and expression pattern from currently known vertebrate antimicrobial peptides. Direct bactericidal activity of these PGRPs either evolved in vertebrates or mammals, or it is yet to be discovered in insects.
Collapse
Affiliation(s)
- Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | | |
Collapse
|
247
|
Kurata S, Ariki S, Kawabata SI. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology 2006; 211:237-49. [PMID: 16697917 DOI: 10.1016/j.imbio.2005.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 10/29/2005] [Indexed: 10/24/2022]
Abstract
In innate immunity, pattern recognition receptors discriminate between self- and infectious non-self-matter. Mammalian homologs of the Drosophila Toll protein, which are collectively referred to as Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS) and lipoproteins, whereas the Drosophila Toll protein does not act as a PAMP receptor, but rather binds to Spätzle, an endogenous peptide. In Drosophila, innate immune surveillance is mediated by members of the peptidoglycan recognition protein (PGRP) family, which recognize diverse bacteria-derived peptidoglycans and initiate appropriate immune reactions including the release of antimicrobial peptides and the activation of the prophenoloxidase cascade, the latter effecting localized wound healing, melanization, and microbial phagocytosis. In the horseshoe crab, LPS induces hemocyte exocytotic degranulation, resulting in the secretion of various defense molecules, such as coagulation factors, antimicrobial peptides, and lectins. Recent studies have demonstrated that the zymogen form of the serine protease factor C, a major granular component of hemocyte, also exists on the hemocyte surface and functions as a biosensor for LPS. The proteolytic activity of activated factor C initiates hemocyte exocytosis via a G protein mediated signal transduction pathway. Furthermore, it has become clear that an endogenous mechanism for the feedback amplification of the innate immune response exists and is dependent upon a granular component of the horseshoe crab hemocyte.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
248
|
Li X, Wang S, Wang H, Gupta D. Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors. J Biol Chem 2006; 281:20738-20748. [PMID: 16714290 DOI: 10.1074/jbc.m601017200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human peptidoglycan recognition protein 2 (PGLYRP2) is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial peptidoglycan and is differentially expressed in the two major organs in the human body, liver and skin. PGLYRP2 has a high constitutive expression in the liver but is not expressed in healthy human skin. PGLYRP2 mRNA is also not expressed in cultured human keratinocytes but is highly induced upon exposure to bacteria. In this study we identified the transcription start site for pglyrp2 and demonstrated that the differential expression of PGLYRP2 in hepatocytes and keratinocytes is regulated by different transcription factors whose binding sequences are located in different regions of the pglyrp2 promoter. Induction of pglyrp2 in keratinocytes is regulated by sequences in the distal region of the promoter and requires transcription factors NF-kappaB and Sp1, whereas constitutive expression of pglyrp2 in a hepatocyte cell line is regulated by sequences in the proximal region of the promoter and requires transcription factors c-Jun and ATF2. Regulation of constitutive and inducible expression of pglyrp2 is important for systemic and local innate immune responses to bacterial infections.
Collapse
Affiliation(s)
- Xinna Li
- Indiana University School of Medicine-Northwest, Gary, Indiana 46408
| | - Shiyong Wang
- Indiana University School of Medicine-Northwest, Gary, Indiana 46408
| | - Haitao Wang
- Indiana University School of Medicine-Northwest, Gary, Indiana 46408
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, Indiana 46408.
| |
Collapse
|
249
|
Lu X, Wang M, Qi J, Wang H, Li X, Gupta D, Dziarski R. Peptidoglycan Recognition Proteins Are a New Class of Human Bactericidal Proteins. J Biol Chem 2006; 281:5895-907. [PMID: 16354652 DOI: 10.1074/jbc.m511631200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Skin and mucous membranes come in contact with external environment and protect tissues from infections by producing antimicrobial peptides. We report that human peptidoglycan recognition proteins 3 and 4 (PGLYRP3 and PGLYRP4) are secreted as 89-115-kDa disulfide-linked homo- and heterodimers and are bactericidal against several pathogenic and nonpathogenic transient, but not normal flora, Gram-positive bacteria. PGLYRP3 and PGLYRP4 are also bacteriostatic toward all other tested bacteria, which include Gram-negative bacteria and normal flora Gram-positive bacteria. PGLYRP3 and PGLYRP4 are also active in vivo and protect mice against experimental lung infection. In contrast to antimicrobial peptides, PGLYRPs kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. PGLYRP3 and PGLYRP4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. Thus, we have identified the function of mammalian PGLYRP3 and PGLYRP4, and show that they are a new class of bactericidal and bacteriostatic proteins that have different structures, mechanism of actions, and expression patterns than antimicrobial peptides.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2006; 2:e14. [PMID: 16518472 PMCID: PMC1383489 DOI: 10.1371/journal.ppat.0020014] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 01/20/2006] [Indexed: 11/26/2022] Open
Abstract
Peptidoglycan-recognition proteins (PGRPs) are evolutionarily conserved molecules that are structurally related to bacterial amidases. Several Drosophila PGRPs have lost this enzymatic activity and serve as microbe sensors through peptidoglycan recognition. Other PGRP family members, such as Drosophila PGRP-SC1 or mammalian PGRP-L, have conserved the amidase function and are able to cleave peptidoglycan in vitro. However, the contribution of these amidase PGRPs to host defense in vivo has remained elusive so far. Using an RNA-interference approach, we addressed the function of two PGRPs with amidase activity in the Drosophila immune response. We observed that PGRP-SC1/2–depleted flies present a specific over-activation of the IMD (immune deficiency) signaling pathway after bacterial challenge. Our data suggest that these proteins act in the larval gut to prevent activation of this pathway following bacterial ingestion. We further show that a strict control of IMD-pathway activation is essential to prevent bacteria-induced developmental defects and larval death. It has long been known that the mammalian immune response needs to be kept under tight control. Responses that are delayed or of insufficient vigor can lead to a failure to control infection. However, excessive or inappropriate inflammation can be harmful or event fatal. Using the fruit fly as a model, evidence is presented that such an immuno-modulation is also essential in invertebrates and is mediated by peptidoglycan-recognition proteins (PGRPs). PGRPs are evolutionarily conserved molecules derived from enzymes that cleave bacterial peptidoglycan. It has been shown previously that some PGRPs have lost this enzymatic activity and function as sensors of bacteria upstream of the Drosophila immune pathways. The contribution of PGRPs which have maintained enzymatic activity to host defense has remained elusive so far. Here, the authors investigate in vivo data on the role of Drosophila PGRPs with enzymatic activity. Their results suggest that these proteins are required in the larval gut to negatively regulate the immune response, thus preventing bacterially induced developmental defects and death.
Collapse
Affiliation(s)
- Vincent Bischoff
- Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, Strasbourg, France
| | - Cécile Vignal
- Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, Strasbourg, France
| | - Bernard Duvic
- Unité EMIP UMR INRA-UMII 1133, Université Montpellier II, Place Eugène Bataillon, Montpellier, France
| | - Ivo G Boneca
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, Paris, France
| | - Jules A Hoffmann
- Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, Strasbourg, France
| | - Julien Royet
- IBDM/LGPD, Campus de Luminy, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|