201
|
Affiliation(s)
- Diane S Krause
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, CT 06520-8035, USA.
| |
Collapse
|
202
|
Abstract
The past two decades have witnessed significant advances in our understanding of the cellular physiology and molecular regulation of hematopoiesis. At the heart of stem cell self-renewal and lineage commitment decisions lies the relative expression levels of lineage-specific transcription factors. The expression of these transcription factors in early stem cells may be promiscuous and fluctuate, but ultimately comes under the influence of extracellular regulatory signals in the form of hematopoietic cytokines. In this review, we first summarize our current understanding of the phenotypic characterization of hematopoietic stem cells. Next, we describe key known transcription factors which govern stem cell self-renewal and lineage commitment decisions. Finally, we review data concerning the role of specific cytokines in influencing these decisions. From this review, a picture emerges in which stem cell fate decisions are governed by the integrated effects of intrinsic transcription factors and external signaling pathways initiated by regulatory cytokines.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| | | |
Collapse
|
203
|
Bloor AJC, Sánchez MJ, Green AR, Göttgens B. The role of the stem cell leukemia (SCL) gene in hematopoietic and endothelial lineage specification. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:195-206. [PMID: 11983093 DOI: 10.1089/152581602753658402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anatomical observations made at the beginning of the twentieth century revealed an intimate association between the ontogeny of blood and endothelium and led to the hypothesis of a common cell of origin termed the hemangioblast. However, the precise nature of the cellular intermediates involved in the development of both lineages from uncommitted precursors to mature cell types is still the subject of ongoing studies, as are the molecular mechanisms driving this process. There is clear evidence that lineage-restricted transcription factors play a central role in the genesis of mature lineage committed cells from multipotent progenitors. Amongst these, the basic helix-loop-helix (bHLH) family is of key importance for cell fate determination in the development of the hematopoietic system and beyond. This article will review the current evidence for the common origin of blood and endothelium, focusing on the function of the bHLH protein encoded by the stem cell leukemia (SCL) gene, and its role as a pivotal regulator of hematopoiesis and vasculogenesis.
Collapse
Affiliation(s)
- Adrian J C Bloor
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | |
Collapse
|
204
|
Sum EYM, Peng B, Yu X, Chen J, Byrne J, Lindeman GJ, Visvader JE. The LIM domain protein LMO4 interacts with the cofactor CtIP and the tumor suppressor BRCA1 and inhibits BRCA1 activity. J Biol Chem 2002; 277:7849-56. [PMID: 11751867 DOI: 10.1074/jbc.m110603200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
LMO4 belongs to the LIM-only (LMO) group of transcriptional regulators that appear to function as molecular adaptors for protein-protein interactions. Expression of the LMO4 gene is developmentally regulated in the mammary gland and is up-regulated in primary breast cancers. Using LMO4 in a yeast two-hybrid screen, we have identified the cofactor CtIP as an LMO4-binding protein. Interaction with CtIP appeared to be specific for the LMO subclass of LIM domain proteins and could be mediated by a single LIM motif of LMO4. We further identified the breast tumor suppressor BRCA1 as an LMO4-associated protein. The C-terminal BRCT domains of BRCA1, previously shown to bind CtIP, also mediated interaction with LMO4. Tumor-associated mutations within the BRCT repeats that abolish interaction between BRCA1 and CtIP had no effect on the association of BRCA1 with LMO4. A stable complex comprising LMO4, BRCA1, and CtIP was demonstrated in vivo. The LIM domain binding-protein Ldb1 also participated in this multiprotein complex. In functional assays, LMO4 was shown to repress BRCA1-mediated transcriptional activation in both yeast and mammalian cells. These findings reveal a novel complex between BRCA1, LMO4, and CtIP and indicate a role for LMO4 as a repressor of BRCA1 activity in breast tissue.
Collapse
Affiliation(s)
- Eleanor Y M Sum
- Walter and Eliza Hall Institute of Medical Research and Bone Marrow Research Laboratories, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
205
|
Yamada Y, Pannell R, Forster A, Rabbitts TH. The LIM-domain protein Lmo2 is a key regulator of tumour angiogenesis: a new anti-angiogenesis drug target. Oncogene 2002; 21:1309-15. [PMID: 11857074 DOI: 10.1038/sj.onc.1205285] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Accepted: 01/03/2002] [Indexed: 11/09/2022]
Abstract
The growth of solid tumours requires a blood supply provided by re-modeling of existing blood vessel endothelium (angiogenesis). Little is known about transcription regulators which are specific for the control of tumour angiogenesis. The proto-oncogene LMO2 encodes a LIM domain transcription regulator which controls angiogenesis during mouse embryogenesis where it regulates remodelling of the capillary network into mature vessels. We now show that Lmo2 expression is augmented in tumour endothelium such as mouse thymomas and human lung tumours. The functional significance of this Lmo2 expression was assessed in teratocarcinomas induced in nude mice by subcutaneous implantation of Lmo2-lacZ targeted ES cells. CD31-positive, sprouting endothelium of ES-cell origin occurred in teratocarcinomas from heterozygous Lmo2-lacZ ES cells but none occurred from null Lmo2-lacZ ES cells. Therefore, in this model Lmo2 is an obligatory regulator of neo-vascularization of tumours. These data suggest that LMO2 function may be a drug target in cancer and other conditions characterized by neo-vascularization.
Collapse
Affiliation(s)
- Yoshihiro Yamada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
206
|
Mikkola HKA, Orkin SH. The search for the hemangioblast. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:9-17. [PMID: 11847000 DOI: 10.1089/152581602753448504] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hanna K A Mikkola
- Dana Farber Cancer Institute and Children's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
207
|
Moroni E, Dell'Era P, Rusnati M, Presta M. Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:19-32. [PMID: 11847001 DOI: 10.1089/152581602753448513] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factors (FGFs) belong to a family of pleiotropic heparin-binding growth factors. They exert multiple functions on various cell types of mesodermal and neuroectodermal origin, affecting cell proliferation, motility, survival, and differentiation. FGF's exert their activity by interacting with tyrosine kinase receptors (FGFRs) and cell-surface heparan sulfate proteoglycans. This article reviews recent studies on the role of the FGF/FGFR system in embryonic hematopoietic development, hematopoiesis, and hematological tumors. FGFs exert both autocrine and paracrine functions in these biological processes by acting on blood cells and their precursors and accessory cells in the bone marrow, including stromal and endothelial cells.
Collapse
Affiliation(s)
- Emanuela Moroni
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Via Valsabbina 19, 25123 Brescia, Italy
| | | | | | | |
Collapse
|
208
|
Saleque S, Cameron S, Orkin SH. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev 2002; 16:301-6. [PMID: 11825872 PMCID: PMC155332 DOI: 10.1101/gad.959102] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gfi-1 and Gfi-1b are novel proto-oncogenes identified by retroviral insertional mutagenesis. By gene targeting, we establish that Gfi-1b is required for the development of two related blood lineages, erythroid and megakaryocytic, in mice. Gfi-1b(-/-) embryonic stem cells fail to contribute to red cells of adult chimeras. Gfi-1b(-/-) embryos exhibit delayed maturation of primitive erythrocytes and subsequently die with failure to produce definitive enucleated erythrocytes. The fetal liver of mutant mice contains erythroid and megakaryocytic precursors arrested in their development. Myelopoiesis is normal. Therefore, Gfi-1b is an essential transcriptional regulator of erythroid and megakaryocyte development.
Collapse
Affiliation(s)
- Shireen Saleque
- Department of Pediatric Oncology, Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
209
|
Kirchner J, Forbush KA, Bevan MJ. Identification and characterization of thymus LIM protein: targeted disruption reduces thymus cellularity. Mol Cell Biol 2001; 21:8592-604. [PMID: 11713292 PMCID: PMC100020 DOI: 10.1128/mcb.21.24.8592-8604.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have identified a novel LIM gene encoding the thymus LIM protein (TLP), expressed specifically in the thymus in a subset of cortical epithelial cells. TLP was identified as a gene product which is upregulated in a thymus in which selection of T cells is occurring (Rag(-/-) OT-1) compared to its expression in a thymus in which selection is blocked at the CD4+ CD8+ stage of T-cell development (Rag(-/-) Tap(-/-) OT-1). TLP has an apparent molecular mass of 23 kDa and exists as two isomers (TLP-A and TLP-B), which are generated by alternative splicing of the message. The sequences of TLP-A and TLP-B are identical except for the C-terminal 19 or 20 amino acids. Based on protein sequence alignment, TLP is most closely related to the cysteine-rich proteins, a subclass of the family of LIM-only proteins. In both medullary and cortical thymic epithelial cell lines transduced with TLP, the protein localizes to the cytoplasm but does not appear to be strongly associated with actin. In immunohistochemical studies, TLP seems to be localized in a subset of epithelial cells in the cortex and is most abundant near the corticomedullary junction. We generated mice with a targeted disruption of the Tlp locus. In the absence of TLP, thymocyte development and thymus architecture appear to be normal but thymocyte cellularity is reduced by approximately 30%, with a proportional reduction in each subpopulation.
Collapse
Affiliation(s)
- J Kirchner
- Howard Hughes Medical Institute and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
210
|
A novel post-transcriptional splicing form of the acute T cell leukemia proto-oncogeneLmo2. ACTA ACUST UNITED AC 2001; 44:561-9. [DOI: 10.1007/bf02879349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2000] [Indexed: 11/26/2022]
|
211
|
Nishikawa SI. A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol 2001; 13:673-8. [PMID: 11698182 DOI: 10.1016/s0955-0674(00)00270-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During normal vertebrate development, hematopoietic and endothelial cells form closely situated and interacting populations. Although the close proximity of cells to each other does not necessarily mean that they are relatives, accumulating evidence indicates that hematopoietic and endothelial cells are indeed close kin; they share common progenitors and each is able to become the other under certain circumstances. This article summarizes recent advances in the developmental relationship between hematopoietic and endothelial cells.
Collapse
Affiliation(s)
- S I Nishikawa
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University and Riken Center for Developmental Biology, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
212
|
Abdullah JM, Li X, Nachtman RG, Jurecic R. FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors. Blood Cells Mol Dis 2001; 27:320-33. [PMID: 11358394 DOI: 10.1006/bcmd.2001.0390] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Through differential screening of mouse hematopoietic stem cell (HSC) and progenitor subtracted cDNA libraries we have identified a HSC-specific transcript that represents a novel RING finger gene, named FLRF (fetal liver ring finger). FLRF represent a novel evolutionarily highly conserved RING finger gene, present in Drosophila, zebrafish, Xenopus, mouse, and humans. Full-length cDNA clones for mouse and human gene encode an identical protein of 317 amino acids with a C3HC4 RING finger domain at the amino terminus. During embryonic hematopoiesis FLRF is abundantly transcribed in mouse fetal liver HSC (Sca-1+c-kit+AA4.1+Lin- cells), but is not expressed in progenitors (AA4.1-). In adult mice FLRF is not transcribed in a highly enriched population of bone marrow HSC (Rh-123lowSca-1+c-kit+Lin- cells). Its expression is upregulated in a more heterogeneous population of bone marrow HSC (Lin-Sca-1+ cells), downregulated as they differentiate into progenitors (Lin-Sca-1- cells), and upregulated as progenitors differentiate into mature lymphoid and myeloid cell types. The human FLRF gene that spans a region of at least 12 kb and consists of eight exons was localized to chromosome 12q13, a region with frequent chromosome aberrations associated with multiple cases of acute myeloid leukemia and non-Hodgkin's lymphoma. The analysis of the genomic sequence upstream of the first exon in the mouse and human FLRF gene has revealed that both putative promoters contain multiple putative binding sites for several hematopoietic (GATA-1, GATA-2, GATA-3, Ikaros, SCL/Tal-1, AML1, MZF-1, and Lmo2) and other transcription factors, suggesting that mouse and human FLRF expression could be regulated in a developmental and cell-specific manner during hematopoiesis. Evolutionary conservation and differential expression in fetal and adult HSC and progenitors suggest that the FLRF gene could play an important role in HSC/progenitor cell lineage commitment and differentiation and could be involved in the etiology of hematological malignancies.
Collapse
Affiliation(s)
- J M Abdullah
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
213
|
Abstract
Molecular biologists have elucidated general principles about chromosomal translocations by cloning oncogenes or fusion genes at chromosomal translocation junctions. These genes invariably encode intracellular proteins and in acute cancers, often involve transcription and developmental regulators, which are master regulators of cell fate (e.g. LMO2 which is involved in acute leukaemia). Chromosomal translocations are usually associated with specific cell types. The reason for this close association is under investigation using mouse models. We are trying to emulate the cell-specific consequences of chromosomal translocations in mice using homologous recombination in embryonic stem cells to generate de novo chromosomal translocations or to mimic the consequence of these translocations. In addition, chromosomal translocation genes and their products are important targets for therapy. We have designed new therapeutic strategies which include antigen-specific recruitment of endogenous cellular pathways to affect cellular viability and a novel structured form of antisense to ablate the function of fusion mRNAs. We will evaluate these procedures in the mouse models of chromosomal translocations and the long term aim is to perfect rapid procedures for characterizing patient-specific chromosomal translocations to tailor therapy to individual patients.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/metabolism
- Disease Models, Animal
- Humans
- Mice
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Neoplasms/genetics
- Neoplasms/therapy
- Oligonucleotides, Antisense/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Recombination, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- T H Rabbitts
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
214
|
Deane JE, Sum E, Mackay JP, Lindeman GJ, Visvader JE, Matthews JM. Design, production and characterization of FLIN2 and FLIN4: the engineering of intramolecular ldb1:LMO complexes. PROTEIN ENGINEERING 2001; 14:493-9. [PMID: 11522923 DOI: 10.1093/protein/14.7.493] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nuclear LIM-only (LMO) transcription factors LMO2 and LMO4 play important roles in both normal and leukemic T-cell development. LIM domains are cysteine/histidine-rich domains that contain two structural zinc ions and that function as protein-protein adaptors; members of the LMO family each contain two closely spaced LIM domains. These LMO proteins all bind with high affinity to the nuclear protein LIM domain binding protein 1 (ldb1). The LMO-ldb1 interaction is mediated through the N-terminal LIM domain (LIM1) of LMO proteins and a 38-residue region towards the C-terminus of ldb1 [ldb1(LID)]. Unfortunately, recombinant forms of LMO2 and LMO4 have limited solubility and stability, effectively preventing structural analysis. Therefore, we have designed and constructed a fusion protein in which ldb1(LID) and LIM1 of LMO2 can form an intramolecular complex. The engineered protein, FLIN2 (fusion of the LIM interacting domain of ldb1 and the N-terminal LIM domain of LMO2) has been expressed and purified in milligram quantities. FLIN2 is monomeric, contains significant levels of secondary structure and yields a sharp and well-dispersed one-dimensional (1)H NMR spectrum. The analogous LMO4 protein, FLIN4, has almost identical properties. These data suggest that we will be able to obtain high-resolution structural information about the LMO-ldb1 interactions.
Collapse
Affiliation(s)
- J E Deane
- Department of Biochemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
215
|
Mead PE, Deconinck AE, Huber TL, Orkin SH, Zon LI. Primitive erythropoiesis in theXenopusembryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 2001; 128:2301-8. [PMID: 11493549 DOI: 10.1242/dev.128.12.2301] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cells are derived from ventral mesoderm during vertebrate development. Gene targeting experiments in the mouse have demonstrated key roles for the basic helix-loop-helix transcription factor SCL and the GATA-binding protein GATA-1 in hematopoiesis. When overexpressed in Xenopus animal cap explants, SCL and GATA-1 are each capable of specifying mesoderm to become blood. Forced expression of either factor in whole embryos, however, does not lead to ectopic blood formation. This apparent paradox between animal cap assays and whole embryo phenotype has led to the hypothesis that additional factors are involved in specifying hematopoietic mesoderm. SCL and GATA-1 interact in a transcriptional complex with the LIM domain protein LMO-2. We have cloned the Xenopus homolog of LMO-2 and show that it is expressed in a similar pattern to SCL during development. LMO-2 can specify hematopoietic mesoderm in animal cap assays. SCL and LMO-2 act synergistically to expand the blood island when overexpressed in whole embryos. Furthermore, co-expression of GATA-1 with SCL and LMO-2 leads to embryos that are ventralized and have blood throughout the dorsal-ventral axis. The synergistic effect of SCL, LMO-2 and GATA-1, taken together with the findings that these factors can form a complex in vitro, suggests that this complex specifies mesoderm to become blood during embryogenesis.
Collapse
Affiliation(s)
- P E Mead
- Division of Hematology/Oncology, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
216
|
Abstract
Significant progress has been made towards a better understanding of the establishment of hematopoiesis in the embryo. Hematopoietic precursors have been shown to arise independently in the yolk sac and in the intra-embryonic mesoderm. From the combined analysis of differentiation potentials, expression patterns and mutant phenotypes, a picture has emerged: definitive hematopoietic precursors are transiently generated in a specific environment close to the endothelium of the main arteries.
Collapse
Affiliation(s)
- A Cumano
- Unité du Développement des Lymphocytes, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris, France.
| | | |
Collapse
|
217
|
Tsuzuki S, Towatari M, Saito H, Enver T. Potentiation of GATA-2 activity through interactions with the promyelocytic leukemia protein (PML) and the t(15;17)-generated PML-retinoic acid receptor alpha oncoprotein. Mol Cell Biol 2000; 20:6276-86. [PMID: 10938104 PMCID: PMC86102 DOI: 10.1128/mcb.20.17.6276-6286.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 05/22/2000] [Indexed: 11/20/2022] Open
Abstract
The hematopoietically expressed GATA family of transcription factors function as key regulators of blood cell fate. Among these, GATA-2 is implicated in the survival and growth of multipotential progenitors. Here we report that the promyelocytic leukemia protein (PML) can complex with GATA-2 and potentiate its transactivation capacity. The binding is mediated through interaction of the zinc finger region of GATA-2 and the B-box domain of PML. The B-box region of PML is retained in the PML-RARalpha (retinoic acid receptor alpha) fusion protein generated by the t(15;17) translocation characteristic of acute promyelocytic leukemia (APL). Consistent with this, we provide evidence that GATA-2 can physically associate with PML-RARalpha. Functional experiments further demonstrated that this interaction has the capacity to render GATA-dependent transcription inducible by retinoic acid, raising the possibility that GATA target genes may be involved in the molecular pathogenesis of APL.
Collapse
MESH Headings
- Animals
- COS Cells
- Cell Line
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- GATA2 Transcription Factor
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oncogene Proteins, Fusion
- Plasmids/metabolism
- Precipitin Tests
- Promyelocytic Leukemia Protein
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcriptional Activation
- Translocation, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- S Tsuzuki
- Section of Gene Function and Regulation, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | | | |
Collapse
|
218
|
Clarke D, Vegiopoulos A, Crawford A, Mucenski M, Bonifer C, Frampton J. In vitro differentiation of c-myb(-/-) ES cells reveals that the colony forming capacity of unilineage macrophage precursors and myeloid progenitor commitment are c-Myb independent. Oncogene 2000; 19:3343-51. [PMID: 10918591 DOI: 10.1038/sj.onc.1203661] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mice homozygous for an inactivated c-myb allele exhibit embryonic (primitive) blood formation but die at about day 15 of gestation because of a failure to generate adult (definitive) haemopoiesis. Recently, it has been shown that commitment to definitive haemopoiesis does occur in vivo, but that some point in the subsequent development towards the differentiated lineages is compromised. Here we have asked whether it is possible to demonstrate this same distinction between the development of primitive and definitive haemopoiesis during the in vitro differentiation of c-myb null ES cells, and whether this can be used to define more precisely at which developmental stage the absence of c-Myb blocks the adult haemopoietic lineages. We investigated the kinetics of progenitor formation and commitment to differentiation using a combination of colony forming assays and analysis of RNA and surface antigen expression. Primitive unilineage macrophage and erythroid precursor commitment could develop in the absence of c-Myb. No precursors characteristic of definitive haemopoiesis were detected; nevertheless, we could show the expression of a programme of transcription and surface antigens which is consistent with the appearance of definitive progenitors blocked at an early multipotential stage.
Collapse
Affiliation(s)
- D Clarke
- University of Leeds, St. James's University Hospital, Molecular Medicine Unit, UK
| | | | | | | | | | | |
Collapse
|
219
|
Abstract
The study of the beta globin gene has provided great insights into the mechanisms of gene regulation and expression. In this review, we consider the normal regulation and expression of the beta globin gene and illustrate how the various steps may be affected, providing a basis for understanding the molecular pathophysiology of beta thalassemia. Mutations causing beta thalassemia can be classified as beta0 or B+ according to whether they abolish or reduce the production of beta globin chains. The vast majority of beta thalassemia is caused by point mutations, mostly single base substitutions, within the gene or its immediate flanking sequences. Rarely, beta thalassemia is caused by major deletions of the beta globin cluster. All these mutations behave as alleles of the beta locus but in several families the beta thalassemia phenotype segregates independently of the beta globin complex, and are likely to be caused by mutations in trans-acting regulatory factors.
Collapse
Affiliation(s)
- P J Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | | |
Collapse
|
220
|
Abstract
The LIM domain is a zinc finger structure that is present in several types of proteins, including homeodomain transcription factors, kinases and proteins that consist of several LIM domains. Proteins containing LIM domains have been discovered to play important roles in a variety of fundamental biological processes including cytoskeleton organization, cell lineage specification and organ development, but also for pathological functions such as oncogenesis, leading to human disease. The LIM domain has been demonstrated to be a protein-protein interaction motif that is critically involved in these processes. The recent isolation and analysis of more LIM domain-containing proteins from several species have confirmed and broadened our knowledge about LIM protein function. Furthermore, the identification and characterization of factors that interact with LIM domains illuminates mechanisms of combinatorial developmental regulation.
Collapse
Affiliation(s)
- I Bach
- Center for Molecular Neurobiology, University of Hamburg, Martinistrasse 85, 20246, Hamburg, Germany.
| |
Collapse
|
221
|
Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 2000; 19:843-51. [PMID: 10698926 PMCID: PMC305624 DOI: 10.1093/emboj/19.5.843] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many different chromosomal translocations occur in man at chromosome 11q23 in acute leukaemias. Molecular analyses revealed that the MLL gene (also called ALL-1, HRX or HTRX) is broken by the translocations, causing fusion with genes from other chromosomes. The diversity of MLL fusion partners poses a dilemma about the function of the fusion proteins in tumour development. The consequence of MLL truncation and fusion has been analysed by joining exon 8 of Mll with the bacterial lacZ gene using homologous recombination in mouse embryonic stem cells. We show that this fusion is sufficient to cause embryonic stem cell-derived acute leukaemias in chimeric mice, and these tumours occur with long latency compared with those found in MLL-Af9 chimeric mice. These findings indicate that an MLL fusion protein can contribute to tumorigenesis, even if the fusion partner has no known pathogenic role. Thus, truncation and fusion of MLL can be sufficient for tumorigenesis, regardless of the fusion partner.
Collapse
Affiliation(s)
- C L Dobson
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
222
|
Manaia A, Lemarchandel V, Klaine M, Max-Audit I, Romeo P, Dieterlen-Lièvre F, Godin I. Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 2000; 127:643-53. [PMID: 10631184 DOI: 10.1242/dev.127.3.643] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is now widely accepted that hemopoietic cells born intraembryonically are the best candidates for the seeding of definitive hemopoietic organs. To further understand the mechanisms involved in the generation of definitive hemopoietic stem cells, we analysed the expression of the hemopoietic-related transcription factors Lmo2 and GATA-3 during the early steps of mouse development (7-12 dpc), with a particular emphasis on intraembryonic hemogenic sites. We show here that both Lmo2 and GATA-3 are present in the intraembryonic regions known to give rise to hemopoietic precursors in vitro and in vivo, suggesting that they act together at key points of hemopoietic development. (1) Lmo2 and GATA-3 are expressed in the caudal mesoderm during the phase of intraembryonic precursors determination. (2) A highly transient concomitant expression is observed in the caudal intraembryonic definitive endoderm, suggesting that these factors are involved in the specification of intraembryonic hemopoietic precursors. (3) Lmo2 and GATA-3 are expressed within the hemopoietic clusters located in the aortic floor during fetal liver colonisation. Furthermore, a strong GATA-3 signal allowed us to uncover previously unreported mesodermal aggregates beneath the aorta. A combined in situ and immunocytological analysis strongly suggests that ventral mesodermal GATA-3 patches are involved in the process of intraembryonic stem cell generation.
Collapse
Affiliation(s)
- A Manaia
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France; 49bis, av. de la Belle Gabrielle, France
| | | | | | | | | | | | | |
Collapse
|
223
|
Yamada Y, Pannell R, Forster A, Rabbitts TH. The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis in mice. Proc Natl Acad Sci U S A 2000; 97:320-4. [PMID: 10618416 PMCID: PMC26661 DOI: 10.1073/pnas.97.1.320] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The LMO2 gene is activated by chromosomal translocations in human T cell acute leukemias, but in mouse embryogenesis, Lmo2 is essential for initiation of yolk sac and definitive hematopoiesis. The LMO2 protein comprises two LIM-zinc-finger-like protein interaction modules and functions by interaction with specific partners in DNA-binding transcription complexes. We have now investigated the role of Lmo2-associated transcription complexes in the formation of the vascular system by following the fate of Lmo2-null embryonic stem (ES) cells in mouse chimeras. Lmo2 is expressed in vascular endothelium, and Lmo2-null ES cells contributed to the capillary network normally until around embryonic day 9. However, after this time, marked disorganization of the vascular system was observed in those chimeric mice that have a high contribution of Lmo2-null ES cells. Moreover, Lmo2-null ES cells do not contribute to endothelial cells of large vessel walls of surviving chimeric mice after embryonic day 10. These results show that Lmo2 is not needed for de novo capillary formation from mesoderm but is necessary for angiogenic remodeling of the existing capillary network into mature vasculature. Thus, Lmo2-mediated transcription complexes not only regulate distinct phases of hematopoiesis but also angiogenesis, presumably by Lmo2 interacting with distinct partners in the different settings.
Collapse
Affiliation(s)
- Y Yamada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
224
|
Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000; 20:429-40. [PMID: 10611221 PMCID: PMC85097 DOI: 10.1128/mcb.20.2.429-440.2000] [Citation(s) in RCA: 1363] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M E Massari
- Department of Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
225
|
SCL Expression in the Mouse Embryo Detected With a Targeted lacZ Reporter Gene Demonstrates Its Localization to Hematopoietic, Vascular, and Neural Tissues. Blood 1999. [DOI: 10.1182/blood.v94.11.3754] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The helix-loop-helix transcription factor SCL (TAL1) is indispensable for blood cell formation in the mouse embryo. We have explored the localization and developmental potential of cells fated to express SCL during murine development using SCL-lacZmutant mice in which the Escherichia coli lacZreporter gene was ‘knocked in’ to the SCL locus. In addition to the hematopoietic defect associated with SCL deficiency, the yolk sac blood vessels in SCLlacZ/lacZ embryos formed an abnormal primary vascular plexus, which failed to undergo subsequent remodeling and formation of large branching vessels. Intraembryonic vasculogenesis in precirculationSCLlacZ/lacZ embryos appeared normal but, in embryos older than embryonic day (E) 8.5 to E9, absolute anemia leading to severe hypoxia precluded an accurate assessment of further vascular development. In heterozygous SCLlacZ/w embryos, lacZ was expressed in the central nervous system, vascular endothelia, and primitive and definitive hematopoietic cells in the blood, aortic wall, and fetal liver. Culture of fetal liver cells sorted for high and low levels of β galactosidase activity fromSCLlacZ/w heterozygous embryos indicated that there was a correlation between the level of SCL expression and the frequency of hematopoietic progenitor cells.
Collapse
|
226
|
SCL Expression in the Mouse Embryo Detected With a Targeted lacZ Reporter Gene Demonstrates Its Localization to Hematopoietic, Vascular, and Neural Tissues. Blood 1999. [DOI: 10.1182/blood.v94.11.3754.423k05_3754_3763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The helix-loop-helix transcription factor SCL (TAL1) is indispensable for blood cell formation in the mouse embryo. We have explored the localization and developmental potential of cells fated to express SCL during murine development using SCL-lacZmutant mice in which the Escherichia coli lacZreporter gene was ‘knocked in’ to the SCL locus. In addition to the hematopoietic defect associated with SCL deficiency, the yolk sac blood vessels in SCLlacZ/lacZ embryos formed an abnormal primary vascular plexus, which failed to undergo subsequent remodeling and formation of large branching vessels. Intraembryonic vasculogenesis in precirculationSCLlacZ/lacZ embryos appeared normal but, in embryos older than embryonic day (E) 8.5 to E9, absolute anemia leading to severe hypoxia precluded an accurate assessment of further vascular development. In heterozygous SCLlacZ/w embryos, lacZ was expressed in the central nervous system, vascular endothelia, and primitive and definitive hematopoietic cells in the blood, aortic wall, and fetal liver. Culture of fetal liver cells sorted for high and low levels of β galactosidase activity fromSCLlacZ/w heterozygous embryos indicated that there was a correlation between the level of SCL expression and the frequency of hematopoietic progenitor cells.
Collapse
|
227
|
Affiliation(s)
- P J Ho
- Institute of Hematology, Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
228
|
Barton LM, Göttgens B, Green AR. The stem cell leukaemia (SCL) gene: a critical regulator of haemopoietic and vascular development. Int J Biochem Cell Biol 1999; 31:1193-207. [PMID: 10582347 DOI: 10.1016/s1357-2725(99)00082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- L M Barton
- Department of Haematology, University of Cambridge, MRC Centre, UK
| | | | | |
Collapse
|
229
|
Abstract
The advent of gene targeting in the mouse has led to rapid advances in the identification of factors controlling gene expression that are essential for normal hematopoietic development. Recent work has also uncovered roles for some of these factors in leukemogenesis and in the global regulation of chromatin structure.
Collapse
Affiliation(s)
- I Engel
- Department of Biology University of California at San Diego La Jolla, California, 92093-0366, USA.
| | | |
Collapse
|
230
|
|
231
|
|
232
|
Okada S, Fukuda T, Inada K, Tokuhisa T. Prolonged expression of c-fos suppresses cell cycle entry of dormant hematopoietic stem cells. Blood 1999; 93:816-825. [PMID: 9920830 DOI: 10.1182/blood.v93.3.816] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene c-fos was transiently upregulated in primitive hematopoietic stem (Lin-Sca-1(+)) cells stimulated with stem cell factor, interleukin-3 (IL-3), and IL-6. To investigate a role of the c-fos in hematopoietic stem cells, we used bone marrow (BM) cells from transgenic mice carrying the c-fos gene under the control of the interferon-alpha/beta-inducible Mx-promoter (Mx-c-fos), and fetal liver cells from c-fos-deficient mice. Prolonged expression of the c-fos in Lin-Sca-1(+) BM cells inhibited factor-dependent colony formation and hematopoiesis on a stromal cell layer by keeping them at G0/G1 phase of the cell cycle. These Lin-Sca-1(+) BM cells on a stromal layer entered into the cell cycle whenever exogenous c-fos was downregulated. However, ectopic c-fos did not perturb colony formation by Lin-Sca-1(+) BM cells after they entered the cell cycle. Furthermore, endogenous c-fos is not essential to cell cycle progression of hematopoietic stem cells because the factor-dependent and the stroma-dependent hematopoiesis by Lin-Sca-1(+) fetal liver cells from c-fos-deficient mice was not impaired. These results suggest that the c-fos induced in primitive hematopoietic stem cells negatively controls cell cycle progression and maintains them in a dormant state.
Collapse
Affiliation(s)
- S Okada
- Department of Developmental Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | |
Collapse
|
233
|
Abstract
The proto-oncogene c-fos was transiently upregulated in primitive hematopoietic stem (Lin−Sca-1+) cells stimulated with stem cell factor, interleukin-3 (IL-3), and IL-6. To investigate a role of the c-fos in hematopoietic stem cells, we used bone marrow (BM) cells from transgenic mice carrying the c-fos gene under the control of the interferon-/β–inducible Mx-promoter (Mx–c-fos), and fetal liver cells from c-fos–deficient mice. Prolonged expression of the c-fos in Lin−Sca-1+ BM cells inhibited factor-dependent colony formation and hematopoiesis on a stromal cell layer by keeping them at G0/G1 phase of the cell cycle. These Lin−Sca-1+ BM cells on a stromal layer entered into the cell cycle whenever exogenous c-fos was downregulated. However, ectopic c-fos did not perturb colony formation by Lin−Sca-1+ BM cells after they entered the cell cycle. Furthermore, endogenous c-fos is not essential to cell cycle progression of hematopoietic stem cells because the factor-dependent and the stroma-dependent hematopoiesis by Lin−Sca-1+ fetal liver cells from c-fos–deficient mice was not impaired. These results suggest that the c-fos induced in primitive hematopoietic stem cells negatively controls cell cycle progression and maintains them in a dormant state.
Collapse
|
234
|
Rabbitts TH. Perspective: chromosomal translocations can affect genes controlling gene expression and differentiation--why are these functions targeted? J Pathol 1999; 187:39-42. [PMID: 10341705 DOI: 10.1002/(sici)1096-9896(199901)187:1<39::aid-path235>3.0.co;2-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chromosomal translocations are important aetiological factors in many human cancers. These aberrant chromosomes cause enforced expression of oncogenes located near the breakpoints or results in tumour-specific fusion proteins. Among the characteristics which influence the tumourigenic effect, it is observed that the genes at translocation junctions are often transcription factors and often normally involved in developmental processes. Furthermore, protein-protein interactions are key elements in the mechanism by which the translocation gene products exert their pathogenic effects. In this review some of these salient features are discussed and generalizations are suggested which may be applicable to the influence of chromosomal translocations on acute forms of cancer.
Collapse
Affiliation(s)
- T H Rabbitts
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, U.K
| |
Collapse
|
235
|
Sugihara TM, Bach I, Kioussi C, Rosenfeld MG, Andersen B. Mouse deformed epidermal autoregulatory factor 1 recruits a LIM domain factor, LMO-4, and CLIM coregulators. Proc Natl Acad Sci U S A 1998; 95:15418-23. [PMID: 9860983 PMCID: PMC28057 DOI: 10.1073/pnas.95.26.15418] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/1998] [Indexed: 11/18/2022] Open
Abstract
Nuclear LIM domains interact with a family of coregulators referred to as Clim/Ldb/Nli. Although one family member, Clim-2/Ldb-1/Nli, is highly expressed in epidermal keratinocytes, no nuclear LIM domain factor is known to be expressed in epidermis. Therefore, we used the conserved LIM-interaction domain of Clim coregulators to screen for LIM domain factors in adult and embryonic mouse skin expression libraries and isolated a factor that is highly homologous to the previously described LIM-only proteins LMO-1, -2, and -3. This factor, referred to as LMO-4, is expressed in overlapping manner with Clim-2 in epidermis and in several other regions, including epithelial cells of the gastrointestinal, respiratory and genitourinary tracts, developing cartilage, pituitary gland, and discrete regions of the central and peripheral nervous system. Like LMO-2, LMO-4 interacts strongly with Clim factors via its LIM domain. Because LMO/Clim complexes are thought to regulate gene expression by associating with DNA-binding proteins, we used LMO-4 as a bait to screen for such DNA-binding proteins in epidermis and isolated the mouse homologue of Drosophila Deformed epidermal autoregulatory factor 1 (DEAF-1), a DNA-binding protein that interacts with regulatory sequences first described in the Deformed epidermal autoregulatory element. The interaction between LMO-4 and mouse DEAF-1 maps to a proline-rich C-terminal domain of mouse DEAF-1, distinct from the helix-loop-helix and GATA domains previously shown to interact with LMOs, thus defining an additional LIM-interacting domain.
Collapse
Affiliation(s)
- T M Sugihara
- Division of Endocrinology and Metabolism, Department and School of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
236
|
Abstract
Recent studies have shown that hematopoietic transcription factors can engage in multiple protein-protein interactions. Accumulating evidence indicates that specific complexes define differentiation lineages and differentiation stages. It is proposed that these complexes acquire new functions during blood cell differentiation through successive changes in composition - much as discussion topics of groups at a cocktail party take new directions as new people join and others leave.
Collapse
Affiliation(s)
- M H Sieweke
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| | | |
Collapse
|
237
|
Kenny DA, Jurata LW, Saga Y, Gill GN. Identification and characterization of LMO4, an LMO gene with a novel pattern of expression during embryogenesis. Proc Natl Acad Sci U S A 1998; 95:11257-62. [PMID: 9736723 PMCID: PMC21629 DOI: 10.1073/pnas.95.19.11257] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 07/16/1998] [Indexed: 11/18/2022] Open
Abstract
LMO4 is a novel member of the LIM-only (LMO) subfamily of LIM domain-containing transcription factors. LMO1, LMO2, and LMO4 have distinct expression patterns in adult tissue, and we demonstrate that nuclear retention of LMO proteins is enhanced by the nuclear LIM interactor (NLI). In situ hybridization to early mouse embryos of 8-14.5 days revealed a complex pattern of LMO4 expression spatially overlapping with NLI and LHX genes. LMO4 expression in somite is repressed in mice mutant for the segment polarity gene Mesp2 and expanded in Splotch mutants. During jaw and limb outgrowth, LMO4 and LMO2 expression define mesenchyme that is uncommitted to regional fates. Although both LMO2 and LMO4 are activated in thymic blast cells, only LMO4 is expressed in mature T cells. Mesenchymal and thymic blast cell expression patterns of LMO4 and LMO2 are consistent with the suggestion that LMO genes inhibit differentiation.
Collapse
Affiliation(s)
- D A Kenny
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | | | | | | |
Collapse
|
238
|
Rabbitts TH. LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev 1998; 12:2651-7. [PMID: 9732263 DOI: 10.1101/gad.12.17.2651] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T H Rabbitts
- Medical Research Council (MRC) Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge CB2 2QH, UK
| |
Collapse
|
239
|
Grütz GG, Bucher K, Lavenir I, Larson T, Larson R, Rabbitts TH. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J 1998; 17:4594-605. [PMID: 9707419 PMCID: PMC1170789 DOI: 10.1093/emboj/17.16.4594] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The LIM-only protein LMO2 is expressed aberrantly in acute T-cell leukaemias as a result of the chromosomal translocations t(11;14) (p13;q11) or t(7;11) (q35;p13). In a transgenic model of tumorigenesis by Lmo2, T-cell acute leukaemias arise after an asymptomatic phase in which an accumulation of immature CD4(-) CD8(-) double negative thymocytes occurs. Possible molecular mechanisms underlying these effects have been investigated in T cells from Lmo2 transgenic mice. Isolation of DNA-binding sites by CASTing and band shift assays demonstrates the presence of an oligomeric complex involving Lmo2 which can bind to a bipartite DNA motif comprising two E-box sequences approximately 10 bp apart, which is distinct from that found in erythroid cells. This complex occurs in T-cell tumours and it is restricted to the immature CD4(- )CD8(-) thymocyte subset in asymptomatic transgenic mice. Thus, ectopic expression of Lmo2 by transgenesis, or by chromosomal translocations in humans, may result in the aberrant protein interactions causing abnormal regulation of gene expression, resulting in a blockage of T-cell differentiation and providing precursor cells for overt tumour formation.
Collapse
Affiliation(s)
- G G Grütz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|