201
|
Nässel DR. Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? INVERTEBRATE NEUROSCIENCE 2009; 9:57-75. [PMID: 19756790 DOI: 10.1007/s10158-009-0090-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 12/15/2022]
Abstract
Neuropeptide signaling is functionally very diverse and one and the same neuropeptide may act as a circulating neurohormone, as a locally released neuromodulator or even as a cotransmitter of classical fast-acting neurotransmitters. Thus, neuropeptides are produced by a huge variety of neuron types in different parts of the nervous system. Within the central nervous system (CNS) there are numerous types of peptidergic interneurons, some with strictly localized and patterned branching morphologies, others with widespread and diffuse arborizations. From morphology alone it is often difficult to predict the sphere of influence of a peptidergic interneuron, especially since it has been shown that neuropeptides can diffuse over tens of micrometers within neuropils, and that peptides probably are released exclusively in perisynaptic (or non-synaptic) regions. This review addresses some questions related to peptidergic signaling in the insect CNS. How diverse are the spatial relations between peptidergic neurons and their target neurons and what determines the sphere of functional influence? At one extreme there is volume transmission and at the other targeted cotransmission at synapses. Also temporal aspects of peptidergic signaling are of interest: how transient are peptidergic messages? Factors important for these spatial and temporal aspects of peptidergic signaling are proximity between release sites and cognate receptors, distribution of peptidase activity that can terminate peptide action and colocalization of other neuroactive compounds in the presynaptic peptidergic neuron (and corresponding receptors in target neurons). Other factors such as expression of different channel types, receptor inactivation mechanisms and second messenger systems probably also contribute to the diversity in temporal properties of peptide signaling.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
202
|
Johard HA, Yoishii T, Dircksen H, Cusumano P, Rouyer F, Helfrich-Förster C, Nässel DR. Peptidergic clock neurons inDrosophila: Ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol 2009; 516:59-73. [DOI: 10.1002/cne.22099] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
203
|
Abstract
How do circadian pacemaker neurons provide timekeeping signals by which daily rhythms are organized? Recent technological innovations in the fruitfly model system have allowed observations which suggest some important synchronizing signals may themselves not be gated.
Collapse
Affiliation(s)
- Paul H Taghert
- Department of Anatomy and Neurobiology, Washington University Medical School, Saint Louis, MO 63110, USA.
| |
Collapse
|
204
|
Choi C, Fortin JP, McCarthy EV, Oksman L, Kopin AS, Nitabach MN. Cellular dissection of circadian peptide signals with genetically encoded membrane-tethered ligands. Curr Biol 2009; 19:1167-75. [PMID: 19592252 PMCID: PMC2719018 DOI: 10.1016/j.cub.2009.06.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/01/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuropeptides regulate many biological processes. Elucidation of neuropeptide function requires identifying the cells that respond to neuropeptide signals and determining the molecular, cellular, physiological, and behavioral consequences of activation of their cognate G protein-coupled receptors (GPCRs) in those cells. As a novel tool for addressing such issues, we have developed genetically encoded neuropeptides covalently tethered to a glycosylphosphatidylinositol (GPI) glycolipid anchor on the plasma membrane ("t-peptides"). RESULTS t-peptides cell-autonomously induce activation of their cognate GPCRs in cells that express both the t-peptide and its receptor. In the neural circuit controlling circadian rest-activity rhythms in Drosophila melanogaster, rhythmic secretion of the neuropeptide pigment-dispersing factor (PDF) and activation of its GPCR (PDFR) are important for intercellular communication of phase information and coordination of clock neuron oscillation. Broad expression of t-PDF in the circadian control circuit overcomes arrhythmicity induced by pdf(01) null mutation, most likely as a result of activation of PDFR in PDFR-expressing clock neurons that do not themselves secrete PDF. More restricted expression of t-PDF suggests that activation of PDFR accelerates cellular timekeeping in some clock neurons while decelerating others. CONCLUSIONS The activation of PDFR in pdf(01) null mutant flies--which lack PDF-mediated intercellular transfer of phase information--induces strong rhythmicity in constant darkness, thus establishing a distinct role for PDF signaling in the circadian control circuit independent of the intercellular communication of temporal phase information. The t-peptide technology should provide a useful tool for cellular dissection of bioactive peptide signaling in a variety of organisms and physiological contexts.
Collapse
Affiliation(s)
- Charles Choi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jean-Philippe Fortin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Ellena v. McCarthy
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lea Oksman
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Alan S. Kopin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
205
|
MEALEY-FERRARA MARIONL, MONTALVO ALEXANDRAG, HALL JEFFREYC. EFFECTS OF COMBINING A CRYPTOCHROME MUTATION WITH OTHER VISUAL-SYSTEM VARIANTS ON ENTRAINMENT OF LOCOMOTOR AND ADULT-EMERGENCE RHYTHMS INDROSOPHILA. J Neurogenet 2009. [DOI: 10.1080/neg.17.2-3.171.221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
206
|
|
207
|
Abstract
Eclosion is the stage in development when the adult insect emerges from the shell of its old cuticle. The sequence of behaviors necessary for eclosion is coordinated by an integrated system of hormones and is activated by hormones that relay developmental readiness. The circadian clock, which controls the timing of behaviors such as the rest: activity rhythm of adult insects, also controls eclosion timing. A number of groups are actively investigating the mechanisms by which the circadian clock restricts or gates eclosion to a particular time of day. Data from these studies are beginning to reveal details of the molecular and physiological basis of the eclosion rhythm.
Collapse
Affiliation(s)
- Edith M Myers
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
208
|
Kempinger L, Dittmann R, Rieger D, Helfrich‐Förster C. The Nocturnal Activity of Fruit Flies Exposed to Artificial Moonlight Is Partly Caused by Direct Light Effects on the Activity Level That Bypass the Endogenous Clock. Chronobiol Int 2009; 26:151-66. [DOI: 10.1080/07420520902747124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
209
|
HELFRICH-FÖRSTER C. Neuropeptide PDF plays multiple roles in the circadian clock ofDrosophila melanogaster. Sleep Biol Rhythms 2009. [DOI: 10.1111/j.1479-8425.2009.00408.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
210
|
Kilman VL, Zhang L, Meissner RA, Burg E, Allada R. Perturbing dynamin reveals potent effects on the Drosophila circadian clock. PLoS One 2009; 4:e5235. [PMID: 19384421 PMCID: PMC2668759 DOI: 10.1371/journal.pone.0005235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/19/2009] [Indexed: 01/09/2023] Open
Abstract
Background Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibirets1 (shits1), an active component in membrane vesicle scission. Principal Findings Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shits1's behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shits1 may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shits1-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29°C). Less restrictive conditions (25°C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shits1 expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shits1 flies, and Clk overexpression suppresses the period-altering effects of shits1. Conclusions We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period.
Collapse
Affiliation(s)
- Valerie L. Kilman
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Luoying Zhang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Rose-Anne Meissner
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Elyssa Burg
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
211
|
Šimo L, Slovák M, Park Y, Žitňan D. Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus. Cell Tissue Res 2009; 335:639-55. [PMID: 19082627 PMCID: PMC3573535 DOI: 10.1007/s00441-008-0731-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/29/2008] [Indexed: 12/01/2022]
Abstract
Neuropeptides are crucial regulators of development and various physiological functions but little is known about their identity, expression and function in vectors of pathogens causing serious diseases, such as ticks. Therefore, we have used antibodies against multiple insect and crustacean neuropeptides to reveal the presence of these bioactive molecules in peptidergic neurons and cells of the ixodid tick Rhipicephalus appendiculatus. These antibodies have detected 15 different immunoreactive compounds expressed in specific central and peripheral neurons associated with the synganglion. Most central neurons arborize in distinct areas of the neuropile or the putative neurohaemal periganglionic sheath of the synganglion. Several large identified neurons in the synganglion project multiple processes through peripheral nerves to form elaborate axonal arborizations on the surface of salivary glands or to terminate in the lateral segmental organs (LSO). Additional neuropeptide immunoreactivity has been observed in intrinsic secretory cells of the LSO. We have also identified two novel clusters of peripheral neurons embedded in the cheliceral and paraspiracular nerves. These neurons project branching axons into the synganglion and into the periphery. Our study has thus revealed a complex network of central and peripheral peptidergic neurons, putative neurohaemal and neuromodulatory structures and endocrine cells in the tick comparable with those found in insect and crustacean neuroendocrine systems. Strong specific staining with a large variety of antibodies also indicates that the tick nervous system and adjacent secretory organs are rich sources of diverse neuropeptides related to those identified in insects, crustaceans or even vertebrates.
Collapse
Affiliation(s)
- Ladislav Šimo
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84506 Bratislava, Slovakia
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84506 Bratislava, Slovakia
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
212
|
Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 2009; 19:386-90. [PMID: 19230663 DOI: 10.1016/j.cub.2009.01.040] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 12/12/2022]
Abstract
Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.
Collapse
Affiliation(s)
- Brian Y Chung
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
213
|
Gatto CL, Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol Neurobiol 2009; 39:107-29. [PMID: 19214804 DOI: 10.1007/s12035-009-8057-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/22/2009] [Indexed: 02/06/2023]
Abstract
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
214
|
Lee CM, Su MT, Lee HJ. Pigment Dispersing Factor: An Output Regulator of the Circadian Clock in the German Cockroach. J Biol Rhythms 2009; 24:35-43. [DOI: 10.1177/0748730408327909] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pigment-dispersing factor (PDF) is a neuropeptide that is synthesized specifically and constantly in the circadian clock cells of many insects. The functions of PDF have not been fully determined, but it might serve as the output and coupling signal of circadian locomotor rhythms. In this experiment, we explore the functions of PDF in the German cockroach with RNA interference technique. Since the 2nd day after pdf double-strand RNA (dsRNA) injection, the amount of pdf mRNA decreased significantly, and this knockdown effect could persist at least 56 days. With immunostaining technique, the clock cells of pdf dsRNA-injected cockroaches could not be stained by anti-PDF antibody. In the behavioral study, pdf dsRNA injection caused rhythmic males to become arrhythmic in light-dark cycles or in constant darkness. In addition, due to the nocturnal nature of the German cockroaches, the locomotor activity increased after lights-off or entering subjective night. However, this activity peak gradually disappeared after pdf dsRNA injection. Based on these 2 lines of evidences, PDF serves as an output regulator of locomotor circadian rhythm in the German cockroach.
Collapse
Affiliation(s)
- Chi-Mei Lee
- Department of Entomology, National Taiwan University, Taipei, Taiwan, Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - How-Jing Lee
- Department of Entomology, National Taiwan University, Taipei, Taiwan,
| |
Collapse
|
215
|
Comparative analysis of Pdf-mediated circadian behaviors between Drosophila melanogaster and D. virilis. Genetics 2009; 181:965-75. [PMID: 19153257 DOI: 10.1534/genetics.108.099069] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A group of small ventrolateral neurons (s-LN(v)'s) are the principal pacemaker for circadian locomotor rhythmicity of Drosophila melanogaster, and the pigment-dispersing factor (Pdf) neuropeptide plays an essential role as a clock messenger within these neurons. In our comparative studies on Pdf-associated circadian rhythms, we found that daily locomotor activity patterns of D. virilis were significantly different from those of D. melanogaster. Activities of D. virilis adults were mainly restricted to the photophase under light:dark cycles and subsequently became arrhythmic or weakly rhythmic in constant conditions. Such activity patterns resemble those of Pdf(01) mutant of D. melanogaster. Intriguingly, endogenous D. virilis Pdf (DvPdf) expression was not detected in the s-LN(v)-like neurons in the adult brains, implying that the Pdf(01)-like behavioral phenotypes of D. virilis are attributed in part to the lack of DvPdf in the s-LN(v)-like neurons. Heterologous transgenic analysis showed that cis-regulatory elements of the DvPdf transgene are capable of directing their expression in all endogenous Pdf neurons including s-LN(v)'s, as well as in non-Pdf clock neurons (LN(d)'s and fifth s-LN(v)) in a D. melanogaster host. Together these findings suggest a significant difference in the regulatory mechanisms of Pdf transcription between the two species and such a difference is causally associated with species-specific establishment of daily locomotor activity patterns.
Collapse
|
216
|
Treweek J, Moreno A, Janda K. Schlaflose Fruchtfliegen durch SLEEPLESS-Verlust. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
217
|
Treweek J, Moreno A, Janda K. SLEEPLESS-ness and Insomnia in Fruit Flies. Angew Chem Int Ed Engl 2009; 48:438-40. [DOI: 10.1002/anie.200804552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
218
|
|
219
|
Houl JH, Ng F, Taylor P, Hardin PE. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos. BMC Neurosci 2008; 9:119. [PMID: 19094242 PMCID: PMC2628352 DOI: 10.1186/1471-2202-9-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. RESULTS A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. CONCLUSION These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.
Collapse
Affiliation(s)
- Jerry H Houl
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
| | - Fanny Ng
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Pete Taylor
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
- Department of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA
| | - Paul E Hardin
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| |
Collapse
|
220
|
Krishnan P, Dryer SE, Hardin PE. Measuring circadian rhythms in olfaction using electroantennograms. Methods Enzymol 2008; 393:495-508. [PMID: 15817308 DOI: 10.1016/s0076-6879(05)93025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Circadian clocks control daily rhythms in many behavioral, physiological, and metabolic processes. Despite remarkable advances in our understanding of the circadian timekeeping mechanism and how it responds to environmental cycles, relatively little is known about how the timekeeping mechanism regulates behavior, physiology, and metabolism. One of the most extensively characterized timekeeping mechanisms is that of Drosophila melanogaster. In this species, autonomous circadian clocks are found in many neuronal and nonneuronal tissues, including essentially all sensory structures. We have shown that sensory neurons in the antenna mediate a robust rhythm in electrophysiological responses to the food odorant ethyl acetate. This article describes how rhythms in olfactory responses are measured and provides a perspective on the generality of these rhythms and their regulation by the clock.
Collapse
Affiliation(s)
- Parthasarathy Krishnan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | |
Collapse
|
221
|
Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernández MP, Beckwith EJ, Aranovich EJ, Sabio y García CA, Ceriani MF. A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One 2008; 3:e3332. [PMID: 18841196 PMCID: PMC2553195 DOI: 10.1371/journal.pone.0003332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/31/2008] [Indexed: 01/23/2023] Open
Abstract
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism.
Collapse
Affiliation(s)
- Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Wülbeck C, Grieshaber E, Helfrich-Förster C. Pigment-Dispersing Factor (PDF) Has Different Effects onDrosophila's Circadian Clocks in the Accessory Medulla and in the Dorsal Brain. J Biol Rhythms 2008; 23:409-24. [DOI: 10.1177/0748730408322699] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neuropeptide pigment-dispersing factor (PDF) is a key transmitter in the circadian clock of Drosophila melanogaster. Here we studied the rhythmic behavior of neural mutants with modified arborizations of the large PDF neurons. In sine oculis1( so1) mutants we found a higher density of PDF fibers in the fly's pacemaker center, the accessory medulla. These flies exhibited a significantly longer period (24.6 h) than control flies. When PDF levels were elevated to very high levels in the dorsal brain as true for somdamutants and small optic lobes;so1double mutants ( sol1;so1), a short-period component split off the long period in behavioral rhythmicity. The short period became shorter the higher the amount of PDF in this brain region and reached a value of ~21 h. The period alterations were clearly dependent on PDF, because so1;Pdf 01 and somda;Pdf 01 double mutants showed a single free-running component with a period similar to Pdf 01 mutants (~22.5 h) and significantly longer than the short period of somdamutants. These observations indicate that PDF feeds back on the clock neurons and changes their period. Obviously, PDF lengthens the period of some clock neurons and shortens that of others.
Collapse
Affiliation(s)
- Corinna Wülbeck
- Institute of Zoology, University of Regensburg , Regensburg, Germany
| | - Eva Grieshaber
- Institute of Zoology, University of Regensburg , Regensburg, Germany
| | | |
Collapse
|
223
|
Dubruille R, Emery P. A Plastic Clock: How Circadian Rhythms Respond to Environmental Cues in Drosophila. Mol Neurobiol 2008; 38:129-45. [DOI: 10.1007/s12035-008-8035-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/27/2008] [Indexed: 11/24/2022]
|
224
|
Drosophila ATF-2 regulates sleep and locomotor activity in pacemaker neurons. Mol Cell Biol 2008; 28:6278-89. [PMID: 18694958 DOI: 10.1128/mcb.02242-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress-activated protein kinases such as p38 regulate the activity of transcription factor ATF-2. However, the physiological role of ATF-2, especially in the brain, is unknown. Here, we found that Drosophila melanogaster ATF-2 (dATF-2) is expressed in large ventral lateral neurons (l-LN(v)s) and also, to a much lesser extent, in small ventral lateral neurons, the pacemaker neurons. Only l-LN(v)s were stained with the antibody that specifically recognizes phosphorylated dATF-2, suggesting that dATF-2 is activated specifically in l-LN(v)s. The knockdown of dATF-2 in pacemaker neurons using RNA interference decreased sleep time, whereas the ectopic expression of dATF-2 increased sleep time. dATF-2 knockdown decreased the length of sleep bouts but not the number of bouts. The ATF-2 level also affected the sleep rebound after sleep deprivation and the arousal threshold. dATF-2 negatively regulated locomotor activity, although it did not affect the circadian locomotor rhythm. The degree of dATF-2 phosphorylation was greater in the morning than at night and was enhanced by forced locomotion via the dp38 pathway. Thus, dATF-2 is activated by the locomotor while it increases sleep, suggesting a role for dATF-2 as a regulator to connect sleep with locomotion.
Collapse
|
225
|
A peripheral pacemaker drives the circadian rhythm of synaptic boutons in Drosophila independently of synaptic activity. Cell Tissue Res 2008; 334:103-9. [DOI: 10.1007/s00441-008-0670-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/01/2008] [Indexed: 02/04/2023]
|
226
|
Wen CJ, Lee HJ. Mapping the cellular network of the circadian clock in two cockroach species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:215-231. [PMID: 18618766 DOI: 10.1002/arch.20236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The German cockroach, Blattella germanica, and the double-striped cockroach, B. bisignata, are sibling species with a similar period sequence but a distinctive circadian rhythm in locomotion. The cell distribution of immunoreactivity (ir) against three clock-related proteins, Period (PER), Pigment Dispersing Factor (PDF), and Corazonin (CRZ), was compared between the species. The PER-ir cells tend to form clusters and are sprayed out in the central nervous system. Three major PER-ir cells are located in the optic lobes, which are the sites of the major circadian clock. They are interconnected with PER-ir axon bundles. Interestingly, the potential output signal of the circadian clock, PDF, is co-localized with PER in all three groups of cells. However, only two CRZ-ir cells and their axons are found in the optic lobes and they are not co-localized with PER-ir or PDF-ir cells and axons. Since only one circadian rhythm is expressed in locomotion, the time signals from both major clocks in optic lobes are coupled by connection with PDF-ir axons. A group of 3-4 PER-ir cells in the protocerebrum display typical characteristics of neurosecretary cells. In addition, there are numerous, small PER-ir and PDF-ir co-localized cells in the pars intercerebralis (PI), which have direct connections with the neurohemoorgan, corpora cardiaca, through PER-ir and PDF-ir axons. Based on these findings, the cellular connection shows a circadian control through the endocrine route. For the rest of central nervous system, only a few PER-ir and PDF-ir cells or axons are detected. This finding implies the circadian clock for locomotion is not located in subesophageal ganglion, thoracic or abdominal ganglia, but may use other neural messengers to pass on circadian signals. Since the overall distribution pattern of the clock cells are the same for B. germanica and B. bisignata, the possible explanation for the different expressions of locomotion between the species depends on genes downstream of per, pdf, and crz.
Collapse
Affiliation(s)
- Chih-Jen Wen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
227
|
Abstract
In Drosophila, cryptochrome (cry) encodes a blue-light photoreceptor that mediates light input to circadian oscillators and sustains oscillator function in peripheral tissues. The levels of cry mRNA cycle with a peak at approximately ZT5, which is similar to the phase of Clock (Clk) mRNA cycling in Drosophila. To understand how cry spatial and circadian expression is regulated, a series of cry-Gal4 trans-genes containing different portions of cry upstream and intron 1 sequences were tested for spatial and circadian expression. In fly heads, cry upstream sequences drive constitutive expression in brain oscillator neurons, a novel group of nonoscillator cells in the optic lobe, and peripheral oscillator cells in eyes and antennae. In contrast, cry intron 1 drives rhythmic expression in eyes and antennae, but not brain oscillator neurons. These results demonstrate that intron 1 is sufficient for high-amplitude cry mRNA cycling, show that cry upstream sequences are sufficient for expression in brain oscillator neurons, and suggest that cry spatial and circadian expression are regulated by different elements.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204-5001
| | - Fanny Ng
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204-5001
| | - Yixiao Liu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - Paul E. Hardin
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| |
Collapse
|
228
|
Benito J, Houl JH, Roman GW, Hardin PE. The blue-light photoreceptor CRYPTOCHROME is expressed in a subset of circadian oscillator neurons in the Drosophila CNS. J Biol Rhythms 2008; 23:296-307. [PMID: 18663237 PMCID: PMC2536721 DOI: 10.1177/0748730408318588] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the fruit fly Drosophila melanogaster, CRYPTOCHROME (CRY) functions as a photoreceptor to entrain circadian oscillators to light-dark cycles and as a transcription factor to maintain circadian oscillator function in certain peripheral tissues. Given the importance of CRY to circadian clock function, we expected this protein to be expressed in all oscillator cells, yet CRY cellular distribution and subcellular localization has not been firmly established. Here we investigate CRY spatial expression in the brain using a newly developed CRY antibody and a novel set of cry deletion mutants. We find that CRY is expressed in s-LNvs, l-LNvs, and a subset of LNds and DN1s, but not DN2s and DN3s. CRY is present in both the nucleus and the cytoplasm of these neurons, and its subcellular localization does not change over the circadian cycle. Although CRY is absent in DN2s and DN3s, cry promoter activity and/or cry mRNA accumulation can be detected in these neurons, suggesting that CRY levels are regulated posttranscriptionally. Oscillators in DN2s and DN3s entrain to environmental light-dark cycles, which implies that they are entrained indirectly by retinal photoreceptors, extraretinal photoreceptors, or other CRY-expressing cells.
Collapse
Affiliation(s)
- Juliana Benito
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204−5001
| | - Jerry H. Houl
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, 3258 TAMU, College Station, TX 77843−3258
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204−5001
| | - Gregg W. Roman
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204−5001
| | - Paul E. Hardin
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, 3258 TAMU, College Station, TX 77843−3258
| |
Collapse
|
229
|
Abstract
Sleep is an essential process conserved from flies to humans. The importance of sleep is underscored by its tight homeostatic control. Through a forward genetic screen, we identified a gene, sleepless, required for sleep in Drosophila. The sleepless gene encodes a brain-enriched, glycosylphosphatidylinositol-anchored protein. Loss of SLEEPLESS protein caused an extreme (>80%) reduction in sleep; a moderate reduction in SLEEPLESS had minimal effects on baseline sleep but markedly reduced the amount of recovery sleep after sleep deprivation. Genetic and molecular analyses revealed that quiver, a mutation that impairs Shaker-dependent potassium current, is an allele of sleepless. Consistent with this finding, Shaker protein levels were reduced in sleepless mutants. We propose that SLEEPLESS is a signaling molecule that connects sleep drive to lowered membrane excitability.
Collapse
Affiliation(s)
- Kyunghee Koh
- Howard Hughes Medical Institute Department of Neuroscience University of Pennsylvania
| | - William J. Joiner
- Howard Hughes Medical Institute Department of Neuroscience University of Pennsylvania
| | - Mark N. Wu
- Division of Sleep Medicine Department of Neurology University of Pennsylvania
| | - Zhifeng Yue
- Howard Hughes Medical Institute Department of Neuroscience University of Pennsylvania
| | - Corinne J. Smith
- Howard Hughes Medical Institute Department of Neuroscience University of Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute Department of Neuroscience University of Pennsylvania
| |
Collapse
|
230
|
Tomchik SM, Davis RL. Cyclic AMP imaging sheds light on PDF signaling in circadian clock neurons. Neuron 2008; 58:161-3. [PMID: 18439399 DOI: 10.1016/j.neuron.2008.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Drosophila, the neuropeptide PDF is required for circadian rhythmicity, but it is unclear where PDF acts. In this issue of Neuron, Shafer et al. use a novel bioimaging methodology to demonstrate that PDF elevates cAMP in nearly all clock neurons. Thus, PDF apparently exerts more widespread effects on the circadian clock network than suggested by previous studies of PDF receptor expression.
Collapse
Affiliation(s)
- Seth M Tomchik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
231
|
Hodge JJ, Stanewsky R. Function of the Shaw potassium channel within the Drosophila circadian clock. PLoS One 2008; 3:e2274. [PMID: 18509535 PMCID: PMC2386553 DOI: 10.1371/journal.pone.0002274] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/17/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In addition to the molecular feedback loops, electrical activity has been shown to be important for the function of networks of clock neurons in generating rhythmic behavior. Most studies have used over-expression of foreign channels or pharmacological manipulations that alter membrane excitability. In order to determine the cellular mechanisms that regulate resting membrane potential (RMP) in the native clock of Drosophila we modulated the function of Shaw, a widely expressed neuronal potassium (K(+)) channel known to regulate RMP in Drosophila central neurons. METHODOLOGY/PRINCIPAL FINDINGS We show that Shaw is endogenously expressed in clock neurons. Differential use of clock gene promoters was employed to express a range of transgenes that either increase or decrease Shaw function in different clusters of clock neurons. Under LD conditions, increasing Shaw levels in all clock neurons (LNv, LNd, DN(1), DN(2) and DN(3)), or in subsets of clock neurons (LNd and DNs or DNs alone) increases locomotor activity at night. In free-running conditions these manipulations result in arrhythmic locomotor activity without disruption of the molecular clock. Reducing Shaw in the DN alone caused a dramatic lengthening of the behavioral period. Changing Shaw levels in all clock neurons also disrupts the rhythmic accumulation and levels of Pigment Dispersing Factor (PDF) in the dorsal projections of LNv neurons. However, changing Shaw levels solely in LNv neurons had little effect on locomotor activity or rhythmic accumulation of PDF. CONCLUSIONS/SIGNIFICANCE Based on our results it is likely that Shaw modulates pacemaker and output neuronal electrical activity that controls circadian locomotor behavior by affecting rhythmic release of PDF. The results support an important role of the DN clock neurons in Shaw-mediated control of circadian behavior. In conclusion, we have demonstrated a central role of Shaw for coordinated and rhythmic output from clock neurons.
Collapse
Affiliation(s)
- James J Hodge
- Department of Physiology and Pharmacology, School of Medical Sciences, Bristol University, Bristol, United Kingdom.
| | | |
Collapse
|
232
|
Wu Y, Cao G, Nitabach MN. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila. J Biol Rhythms 2008; 23:117-28. [PMID: 18375861 DOI: 10.1177/0748730407312984] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drosophila clock neurons exhibit self-sustaining cellular oscillations that rely in part on rhythmic transcriptional feedback loops. We have previously determined that electrical silencing of the pigment dispersing factor (PDF)-expressing lateral-ventral (LN(V)) pacemaker subset of fly clock neurons via expression of an inward-rectifier K(+) channel (Kir2.1) severely disrupts free-running rhythms of locomotor activity-most flies are arrhythmic and those that are not exhibit weak short-period rhythms-and abolishes LN(V) molecular oscillation in constant darkness. PDF is known to be an important LN(V) output signal. Here we examine the effects of electrical silencing of the LN(V) pacemakers on molecular rhythms in other, nonsilenced, subsets of clock neurons. In contrast to previously described cell-autonomous abolition of free-running molecular rhythms, we find that electrical silencing of the LN(V) pacemakers via Kir2.1 expression does not impair molecular rhythms in LN(D), DN1, and DN2 subsets of clock neurons. However, free-running molecular rhythms in these non-LN(V) clock neurons occur with advanced phase. Electrical silencing of LN(V)s phenocopies PDF null mutation (pdf (01) ) at both behavioral and molecular levels except for the complete abolition of free-running cellular oscillation in the LN(V)s themselves. LN(V) electrically silenced or pdf 01 flies exhibit weak free-running behavioral rhythms with short period, and the molecular oscillation in non-LN(V) neurons phase advances in constant darkness. That LN( V) electrical silencing leads to the same behavioral and non-LN( V) molecular phenotypes as pdf 01 suggests that persistence of LN(V) molecular oscillation in pdf 01 flies has no functional effect, either on behavioral rhythms or on non-LN(V) molecular rhythms. We thus conclude that functionally relevant signals from LN(V)s to non-LN(V) clock neurons and other downstream targets rely both on PDF signaling and LN(V) electrical activity, and that LN( V)s do not ordinarily send functionally relevant signals via PDF-independent mechanisms.
Collapse
Affiliation(s)
- Ying Wu
- Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
233
|
Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 2008; 58:223-37. [PMID: 18439407 PMCID: PMC2586874 DOI: 10.1016/j.neuron.2008.02.018] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/22/2008] [Accepted: 02/14/2008] [Indexed: 11/27/2022]
Abstract
The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of approximately 150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network.
Collapse
Affiliation(s)
- Orie T. Shafer
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, USA, 63110
| | - Dong Jo Kim
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, USA, 63110
| | - Richard Dunbar-Yaffe
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Viacheslav O. Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, Verbacherstrasse 9, D-97078, Würzburg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Verbacherstrasse 9, D-97078, Würzburg, Germany
| | - Paul H. Taghert
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, USA, 63110
| |
Collapse
|
234
|
Choi SH, Lee G, Monahan P, Park JH. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol 2008; 507:1184-95. [PMID: 18181151 DOI: 10.1002/cne.21594] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although most invertebrate neuropeptide-encoding genes display distinct expression patterns in the central nervous system (CNS), the molecular mechanisms underlying spatial regulation of the neuropeptide genes are largely unknown. Expression of the neuropeptide Corazonin (Crz) is limited to only 24 neurons in the larval CNS of Drosophila melanogaster, and these neurons have been categorized into three groups, namely, DL, DM, and vCrz. To identify cis-regulatory elements that control transcription of Crz in each neuronal group, reporter gene expression patterns driven by various 5' flanking sequences of Crz were analyzed to assess their promoter activities in the CNS. We show that the 504-bp 5' upstream sequence is the shortest promoter directing reporter activities in all Crz neurons. Further dissection of this sequence revealed two important regions responsible for group specificity: -504::-419 for DM expression and -380::-241 for DL and vCrz expression. The latter region is further subdivided into three sites (proximal, center, and distal), in which any combinations of the two are sufficient for DL expression, whereas both proximal and distal sites are required for vCrz expression. Interestingly, the TATA box does not play a role in Crz transcription in most neurons. We also show that a 434-bp 5' upstream sequence of the D. virilis Crz gene, when introduced into the D. melanogaster genome, drives reporter expression in the DL and vCrz neurons, suggesting that regulatory mechanisms for Crz expression in at least two such neuronal groups are conserved between the two species.
Collapse
Affiliation(s)
- Seung-Hoon Choi
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
235
|
Abstract
Molecular genetics has revealed the identities of several components of the fundamental circadian molecular oscillator - an evolutionarily conserved molecular mechanism of transcription and translation that can operate in a cell-autonomous manner. Therefore, it was surprising when studies of circadian rhythmic behavior in the fruit fly Drosophila suggested that the normal operations of circadian clock cells, which house the molecular oscillator, in fact depend on non-cell-autonomous effects - interactions between the clock cells themselves. Here we review several genetic analyses that broadly extend that viewpoint. They support a model whereby the approximately 150 circadian clock cells in the brain of the fly are sub-divided into functionally discrete rhythmic centers. These centers alternatively cooperate or compete to control the different episodes of rhythmic behavior that define the fly's daily activity profile.
Collapse
Affiliation(s)
- Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
236
|
Hamasaka Y, Rieger D, Parmentier ML, Grau Y, Helfrich-Förster C, Nässel DR. Glutamate and its metabotropic receptor in Drosophila clock neuron circuits. J Comp Neurol 2008; 505:32-45. [PMID: 17729267 DOI: 10.1002/cne.21471] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the neurotransmitters in clock neurons is critical for understanding the circuitry of the neuronal network that controls the daily behavioral rhythms in Drosophila. Except for the neuropeptide pigment-dispersing factor, no neurotransmitters have been clearly identified in the Drosophila clock neurons. Here we show that glutamate and its metabotropic receptor, DmGluRA, are components of the clock circuitry and modulate the rhythmic behavior pattern of Drosophila. The dorsal clock neurons, DN1s in the larval brain and some DN1s and DN3s in the adult brain, were immunolabeled with antibodies against Drosophila vesicular glutamate transporter (DvGluT), suggesting that they are glutamatergic. Because the DN1s may communicate with the primary pacemaker neurons, s-LN(v)s, we tested glutamate responses of dissociated larval s-LN(v)s by means of calcium imaging. Application of glutamate dose dependently decreased intracellular calcium in the s-LN(v)s. Pharmacology of the response suggests the presence of DmGluRA on the s-LN(v)s. Antibodies against DmGluRA labeled dissociated s-LN(v)s and the LN(v) dendrites in the intact larval and adult brain. The role of metabotropic glutamate signaling was tested in behavior assays in transgenic larvae and flies with altered DmGluRA expression in the LN(v)s and other clock neurons. Larval photophobic behavior was enhanced in DmGluRA mutants. For adults, we could induce altered activity patterns in the dark phase under LD conditions and increase the period during constant darkness by knockdown of DmGluRA expression in LN(v)s. Our results suggest that a glutamate signal from some of the DNs modulates the rhythmic behavior pattern via DmGluRA on the LN(v)s in Drosophila.
Collapse
Affiliation(s)
- Yasutaka Hamasaka
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
237
|
Berni J, Beckwith EJ, Fernández MP, Ceriani MF. The axon-guidance roundabout gene alters the pace of the Drosophila circadian clock. Eur J Neurosci 2008; 27:396-407. [PMID: 18215236 DOI: 10.1111/j.1460-9568.2007.06010.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Great efforts have been directed to the dissection of the cell-autonomous circadian oscillator in Drosophila. However, less information is available regarding how this oscillator controls rhythmic rest-activity cycles. We have identified a viable allele of roundabout, robo(hy), where the period of locomotor activity is shortened. From its role in axon-pathfinding, we anticipated developmental defects in clock-relevant structures. However, robo(hy) produced minor defects in the architecture of the circuits essential for rhythmic behaviour. ROBO's presence within the circadian circuit strengthened the possibility of a novel role for ROBO at this postdevelopmental stage. Genetic interactions between pdf (01) and robo(hy) suggest that ROBO could alter the communication within different clusters of the circadian network, thus impinging on two basic properties, periodicity and/or rhythmicity. Early translocation of PERIOD to the nucleus in robo(hy) pacemaker cells indicated that shortened activity rhythms were derived from alterations in the molecular oscillator. Herein we present a mutation affecting clock function associated with a molecule involved in circuit assembly and maintenance.
Collapse
Affiliation(s)
- Jimena Berni
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires (IIBBA, CONICET), Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | | | |
Collapse
|
238
|
Yoshii T, Todo T, Wülbeck C, Stanewsky R, Helfrich-Förster C. Cryptochrome is present in the compound eyes and a subset ofDrosophila's clock neurons. J Comp Neurol 2008; 508:952-66. [DOI: 10.1002/cne.21702] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
239
|
Miśkiewicz K, Schürmann FW, Pyza E. Circadian release of pigment-dispersing factor in the visual system of the housefly,Musca domestica. J Comp Neurol 2008; 509:422-35. [DOI: 10.1002/cne.21765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
240
|
Isaac RE, Johnson EC, Audsley N, Shirras AD. Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. J Exp Biol 2007; 210:4465-70. [DOI: 10.1242/jeb.012088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7–Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7–Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC50, 0.15 μmol l–1) and thiorphan (IC50, 1.2 μmol l–1). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.
Collapse
Affiliation(s)
- R. Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT,UK
| | | | - Neil Audsley
- Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
| | - Alan D. Shirras
- Department of Biological Sciences, University of Lancaster, LA1 4YQ,UK
| |
Collapse
|
241
|
Dominant-negative CK2alpha induces potent effects on circadian rhythmicity. PLoS Genet 2007; 4:e12. [PMID: 18208335 PMCID: PMC2211540 DOI: 10.1371/journal.pgen.0040012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 12/04/2007] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks organize the precise timing of cellular and behavioral events. In Drosophila, circadian clocks consist of negative feedback loops in which the clock component PERIOD (PER) represses its own transcription. PER phosphorylation is a critical step in timing the onset and termination of this feedback. The protein kinase CK2 has been linked to circadian timing, but the importance of this contribution is unclear; it is not certain where and when CK2 acts to regulate circadian rhythms. To determine its temporal and spatial functions, a dominant negative mutant of the catalytic alpha subunit, CK2αTik, was targeted to circadian neurons. Behaviorally, CK2αTik induces severe period lengthening (∼33 h), greater than nearly all known circadian mutant alleles, and abolishes detectable free-running behavioral rhythmicity at high levels of expression. CK2αTik, when targeted to a subset of pacemaker neurons, generates period splitting, resulting in flies exhibiting both long and near 24-h periods. These behavioral effects are evident even when CK2αTik expression is induced only during adulthood, implicating an acute role for CK2α function in circadian rhythms. CK2αTik expression results in reduced PER phosphorylation, delayed nuclear entry, and dampened cycling with elevated trough levels of PER. Heightened trough levels of per transcript accompany increased protein levels, suggesting that CK2αTik disturbs negative feedback of PER on its own transcription. Taken together, these in vivo data implicate a central role of CK2α function in timing PER negative feedback in adult circadian neurons. The molecular mechanism that governs organization of physiology and behavior into 24-h rhythms is a conserved transcriptional feedback process that is strikingly similar across distinct phyla. Notably, cyclic phosphorylation of negative feedback regulators is critical to time molecular rhythms. Indeed, mutation of a putative phosphoacceptor site in the human PERIOD2 gene, a key negative regulator, is associated with Advanced Sleep Phase Syndrome. This study reveals a critical role for the protein kinase CK2 for setting the period of behavioral and molecular oscillations in Drosophila. Circadian phenotypes due to CK2 disruption are due to a direct requirement in adult circadian pacemakers. These findings further demonstrate that CK2 modification of the negative feedback regulator PERIOD alters its cyclical phosphorylation, protein abundance, nuclear translocation, and transcriptional repression activity. These studies place CK2 as a central kinase in circadian timing.
Collapse
|
242
|
Hall JC. Issues revolving round the regulation of reproductively related genes in Drosophila. J Neurogenet 2007; 21:75-103. [PMID: 17849283 DOI: 10.1080/01677060701382982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
243
|
Dolezelova E, Dolezel D, Hall JC. Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene. Genetics 2007; 177:329-45. [PMID: 17720919 PMCID: PMC2013679 DOI: 10.1534/genetics.107.076513] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of the knowledge about cryptochrome function in Drosophila stems from analyzing the cryb mutant. Several features of this variant's light responsiveness imply either that CRYb retains circadian-photoreceptive capacities or that additional CRY-independent light-input routes subserve these processes. Potentially to resolve these issues, we generated cry knock-out mutants (cry0's) by gene replacement. They behaved in an anomalously rhythmic manner in constant light (LL). However, cry0 flies frequently exhibited two separate circadian components in LL, not observed in most previous cryb analyses. Temperature-dependent circadian phenotypes exhibited by cry(0) flies suggest that CRY is involved in core pacemaking. Further locomotor experiments combined cry0 with an externally blinding mutation (norpAP24), which caused the most severe decrements of circadian photoreception observed so far. cryb cultures were shown previously to exhibit either aperiodic or rhythmic eclosion in separate studies. We found cry0 to eclose in a solidly periodic manner in light:dark cycles or constant darkness. Furthermore, both cry0 and cryb eclosed rhythmically in LL. These findings indicate that the novel cry0 type causes more profound defects than does the cryb mutation, implying that CRYb retains residual activity. Because some norpAP24 cry0 individuals can resynchronize to novel photic regimes, an as-yet undetermined light-input route exists in Drosophila.
Collapse
Affiliation(s)
- Eva Dolezelova
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
244
|
Santos JG, Vömel M, Struck R, Homberg U, Nässel DR, Wegener C. Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2007; 2:e695. [PMID: 17668072 PMCID: PMC1933254 DOI: 10.1371/journal.pone.0000695] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/15/2007] [Indexed: 11/24/2022] Open
Abstract
Recent studies on Drosophila melanogaster and other insects have revealed important insights into the functions and evolution of neuropeptide signaling. In contrast, in- and output connections of insect peptidergic circuits are largely unexplored. Existing morphological descriptions typically do not determine the exact spatial location of peptidergic axonal pathways and arborizations within the neuropil, and do not identify peptidergic in- and output compartments. Such information is however fundamental to screen for possible peptidergic network connections, a prerequisite to understand how the CNS controls the activity of peptidergic neurons at the synaptic level. We provide a precise 3D morphological description of peptidergic neurons in the thoracic and abdominal neuromeres of the Drosophila larva based on fasciclin-2 (Fas2) immunopositive tracts as landmarks. Comparing the Fas2 "coordinates" of projections of sensory or other neurons with those of peptidergic neurons, it is possible to identify candidate in- and output connections of specific peptidergic systems. These connections can subsequently be more rigorously tested. By immunolabeling and GAL4-directed expression of marker proteins, we analyzed the projections and compartmentalization of neurons expressing 12 different peptide genes, encoding approximately 75% of the neuropeptides chemically identified within the Drosophila CNS. Results are assembled into standardized plates which provide a guide to identify candidate afferent or target neurons with overlapping projections. In general, we found that putative dendritic compartments of peptidergic neurons are concentrated around the median Fas2 tracts and the terminal plexus. Putative peptide release sites in the ventral nerve cord were also more laterally situated. Our results suggest that i) peptidergic neurons in the Drosophila ventral nerve cord have separated in- and output compartments in specific areas, and ii) volume transmission is a prevailing way of peptidergic communication within the CNS. The data can further be useful to identify colocalized transmitters and receptors, and develop peptidergic neurons as new landmarks.
Collapse
Affiliation(s)
- Jonathan G. Santos
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Matthias Vömel
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Rafael Struck
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian Wegener
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| |
Collapse
|
245
|
Lim C, Chung BY, Pitman JL, McGill JJ, Pradhan S, Lee J, Keegan KP, Choe J, Allada R. Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol 2007; 17:1082-9. [PMID: 17555964 PMCID: PMC1963421 DOI: 10.1016/j.cub.2007.05.039] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/08/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022]
Abstract
Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription-factor heterodimer, CLOCK/CYCLE (CLK/CYC), transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri), which feed back and regulate distinct features of CLK/CYC function. Microarray studies have identified numerous rhythmically expressed transcripts, some of which are potential direct CLK targets. Here we demonstrate a circadian function for one such target, a bHLH-Orange repressor, CG17100/CLOCKWORK ORANGE (CWO). cwo is rhythmically expressed, and levels are reduced in Clk mutants, suggesting that cwo is CLK activated in vivo. cwo mutants display reduced-amplitude molecular and behavioral rhythms with lengthened periods. Molecular analysis suggests that CWO acts, in part, by repressing CLK target genes. We propose that CWO acts as a transcriptional and behavioral rhythm amplifier.
Collapse
Affiliation(s)
- Chunghun Lim
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
The GAL4/UAS system has been extensively employed in Drosophila to control gene expression in defined spatial patterns. More recently this system has been successfully applied to express genes involved in neurodegeneration to model various diseases in the fruit fly. We used transgenic lines expressing different levels of GAL4 in a particular subset of neurons involved in the control of rhythmic behaviour, so that its impact on neuronal physiology would result in altered locomotor activity, which could be readily assessed. We observed a striking correlation between gal4 dosage and behavioural defects associated with apoptotic neuronal loss in the specific GAL4-expressing neurons. Increased gal4 dosage correlated with accumulation of insoluble GAL4, suggesting that the cascade of events leading to apoptosis might be triggered by protein deposits of either GAL4 or protein intermediates. Behavioural defects were rescued by expression of hsp70, a classic chaperone that also interferes with cell death pathways. In agreement with the latter, the viral caspase inhibitor p35 also rescued GAL4-induced behavioural defects. Our observations demonstrate the intrinsic effects of GAL4 deregulation on neuronal viability and suggest that an excess of GAL4 might enhance neuronal deficits observed in models of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | |
Collapse
|
247
|
Lim C, Lee J, Choi C, Kim J, Doh E, Choe J. Functional role of CREB-binding protein in the circadian clock system of Drosophila melanogaster. Mol Cell Biol 2007; 27:4876-90. [PMID: 17452464 PMCID: PMC1951493 DOI: 10.1128/mcb.02155-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhythmic histone acetylation underlies the oscillating expression of clock genes in the mammalian circadian clock system. Cellular factors that contain histone acetyltransferase and histone deacetylase activity have been implicated in these processes by direct interactions with clock genes, but their functional relevance remains to be assessed by use of appropriate animal models. Here, using transgenic fly models, we show that CREB-binding protein (CBP) participates in the transcriptional regulation of the Drosophila CLOCK/CYCLE (dCLK/CYC) heterodimer. CBP knockdown in pigment dispersing factor-expressing cells lengthens the period of adult locomotor rhythm with the prolonged expression of period and timeless genes, while CBP overexpression in timeless-expressing cells causes arrhythmic circadian behaviors with the impaired expression of these dCLK/CYC-induced clock genes. In contrast to the mammalian circadian clock system, CBP overexpression attenuates the transcriptional activity of the dCLK/CYC heterodimer in cultured cells, possibly by targeting the PER-ARNT-SIM domain of dCLK. Our data suggest that the Drosophila circadian clock system has evolved a distinct mechanism to tightly regulate the robust transcriptional potency of the dCLK/CYC heterodimer.
Collapse
Affiliation(s)
- Chunghun Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | | | |
Collapse
|
248
|
Murad A, Emery-Le M, Emery P. A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 2007; 53:689-701. [PMID: 17329209 PMCID: PMC1852515 DOI: 10.1016/j.neuron.2007.01.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/07/2007] [Accepted: 01/29/2007] [Indexed: 11/20/2022]
Abstract
A fundamental property of circadian rhythms is their ability to persist under constant conditions. In Drosophila, the ventral Lateral Neurons (LNvs) are the pacemaker neurons driving circadian behavior under constant darkness. Wild-type flies are arrhythmic under constant illumination, but flies defective for the circadian photoreceptor CRY remain rhythmic. We found that flies overexpressing the pacemaker gene per or the morgue gene are also behaviorally rhythmic under constant light. Unexpectedly, the LNvs do not drive these rhythms: they are molecularly arrhythmic, and PDF--the neuropeptide they secrete to synchronize behavioral rhythms under constant darkness--is dispensable for rhythmicity in constant light. Molecular circadian rhythms are only found in a group of Dorsal Neurons: the DN1s. Thus, a subset of Dorsal Neurons shares with the LNvs the ability to function as pacemakers for circadian behavior, and its importance is promoted by light.
Collapse
Affiliation(s)
- A. Murad
- Department of Neurobiology, University of Massachusetts Medical School 364 Plantation Street Worcester, MA 01605
- Program in Neuroscience, University of Massachusetts Medical School 364 Plantation Street Worcester, MA 01605
| | - M. Emery-Le
- Department of Neurobiology, University of Massachusetts Medical School 364 Plantation Street Worcester, MA 01605
| | - P. Emery
- Department of Neurobiology, University of Massachusetts Medical School 364 Plantation Street Worcester, MA 01605
- Program in Neuroscience, University of Massachusetts Medical School 364 Plantation Street Worcester, MA 01605
- Corresponding Author Tel.:508-856-6599, Fax: 508-856-6266,
| |
Collapse
|
249
|
la Paz Fernández MD, Chu J, Villella A, Atkinson N, Kay SA, Ceriani MF. Impaired clock output by altered connectivity in the circadian network. Proc Natl Acad Sci U S A 2007; 104:5650-5. [PMID: 17369364 PMCID: PMC1838506 DOI: 10.1073/pnas.0608260104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.
Collapse
Affiliation(s)
- María de la Paz Fernández
- *Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Jessie Chu
- Department of Biochemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Adriana Villella
- Department of Biology, Brandeis University, Waltham, MA 02454; and
| | - Nigel Atkinson
- Department of Neurobiology, University of Texas, Austin, TX 78712-1064
| | - Steve A. Kay
- Department of Biochemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - María Fernanda Ceriani
- *Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
250
|
Helfrich-Förster C, Shafer OT, Wülbeck C, Grieshaber E, Rieger D, Taghert P. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 2007; 500:47-70. [PMID: 17099895 DOI: 10.1002/cne.21146] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The clock-gene-expressing lateral neurons are essential for the locomotor activity rhythm of Drosophila melanogaster. Traditionally, these neurons are divided into three groups: the dorsal lateral neurons (LN(d)), the large ventral lateral neurons (l-LN(v)), and the small ventral lateral neurons (s-LN(v)), whereby the latter group consists of four neurons that express the neuropeptide pigment-dispersing factor (PDF) and a fifth PDF-negative neuron. So far, only the l-LN(v) and the PDF-positive s-LN(v) have been shown to project into the accessory medulla, a small neuropil that contains the circadian pacemaker center in several insects. We show here that the other lateral neurons also arborize in the accessory medulla, predominantly forming postsynaptic sites. Both the l-LN(v) and LN(d) are anatomically well suited to connect the accessory medullae. Whereas the l-LN(v) may receive ipsilateral photic input from the Hofbauer-Buchner eyelet, the LN(d) invade mainly the contralateral accessory medulla and thus may receive photic input from the contralateral side. Both the LN(d) and the l-LN(v) differentiate during midmetamorphosis. They do so in close proximity to one another and the fifth PDF-negative s-LN(v), suggesting that these cell groups may derive from common precursors.
Collapse
|