201
|
Urru SAM, Veglianese P, De Luigi A, Fumagalli E, Erba E, Gonella Diaza R, Carrà A, Davoli E, Borsello T, Forloni G, Pengo N, Monzani E, Cascio P, Cenci S, Sitia R, Salmona M. A new fluorogenic peptide determines proteasome activity in single cells. J Med Chem 2010; 53:7452-60. [PMID: 20883027 DOI: 10.1021/jm100362x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubiquitin-proteasome system plays a critical role in many diseases, making it an attractive biomarker and therapeutic target. However, the impact of results obtained in vitro using purified proteasome particles or whole cell extracts is limited by the lack of efficient methods to assess proteasome activity in living cells. We have engineered an internally quenched fluorogenic peptide with a proteasome-specific cleavage motif fused to TAT and linked to the fluorophores DABCYL and EDANS. This peptide penetrates cell membranes and is rapidly cleaved by the proteasomal chymotrypsin-like activity, generating a quantitative fluorescent reporter of in vivo proteasome activity as assessed by time-lapse or flow cytometry fluorescence analysis. This reporter is an innovative tool for monitoring proteasomal proteolytic activities in physiological and pathological conditions.
Collapse
Affiliation(s)
- Silvana A M Urru
- Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan 20156, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Chen X, Yin XM. Coordination of autophagy and the proteasome in resolving endoplasmic reticulum stress. Vet Pathol 2010; 48:245-53. [PMID: 21062910 DOI: 10.1177/0300985810385154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macroautophagy is a cellular degradation mechanism that involves the delivery of cytosolic components (macromolecules or organelles) by the autophagosome to the lysosome for degradation. In mammalian cells, macroautophagy and the ubiquitin proteasome system are 2 major mechanisms to eliminate abnormal proteins accumulated in pathological conditions. Here, the coordination of the 2 pathways to alleviate endoplasmic reticulum stress is reviewed. Also discussed is the regulatory role of macroautophagy and proteasome activity in cell survival and death, as well as the recent discoveries leading to novel strategies of simultaneous control of the proteasome and autophagy activity in anticancer treatment.
Collapse
Affiliation(s)
- X Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
203
|
Collins GA, Gomez TA, Deshaies RJ, Tansey WP. Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast 2010; 27:965-74. [PMID: 20625982 PMCID: PMC3566228 DOI: 10.1002/yea.1805] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated protein destruction by the proteasome is crucial for the maintenance of normal cellular homeostasis. Much of our understanding of proteasome function stems from the use of drugs that inhibit its activity. Curiously, despite the importance of proteasomal proteolysis, previous studies have found that proliferation of the yeast Saccharomyces cerevisiae is relatively resistant to the effects of proteasome inhibitors such as MG132, even in the presence of mutations that increase inhibitor levels in cells. We reasoned that part of the resistance of S. cerevisiae to proteasome inhibitors stems from the fact that most proteasome inhibitors preferentially target the chymotryptic activity of the proteasome, and that the caspase-like and tryptic sites within the 20S core could compensate for proteasome function under these conditions. To test this hypothesis, we generated a strain of yeast in which the gene encoding the drug efflux pump Pdr5 is deleted, and the tryptic and caspase-like proteasome activities are inactivated by mutation. We find that this strain has dramatically increased sensitivity to the proteasome inhibitor MG132. Under these conditions, treatment of yeast with MG132 blocks progression through the cell cycle, increases the accumulation of polyubiquitylated proteins and decreases the ability to induce transcription of certain genes. These results highlight the contribution of the caspase-like and tryptic activities of the proteasome to its function, and provide a strategy to potently block proteasomal proteolysis in yeast that has practical applications.
Collapse
Affiliation(s)
- Galen A. Collins
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Tara Adele Gomez
- California Institute of Technology, Division of Biology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Raymond J. Deshaies
- California Institute of Technology, Division of Biology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - William P. Tansey
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, 465 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
204
|
Zhao X, Yang J. Amyloid-β peptide is a substrate of the human 20S proteasome. ACS Chem Neurosci 2010; 1:655-660. [PMID: 21116456 PMCID: PMC2992454 DOI: 10.1021/cn100067e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/23/2010] [Indexed: 11/28/2022] Open
Abstract
Intraneuronal accumulation of ubiquitin conjugates is a pathological feature of neurodegenerative disorders such as Alzheimer's disease (AD). Previous reports propose that accumulation of ubiquitinated species in AD is a result of inhibition of proteasomal activity by amyloid-β (Aβ) peptides, which leads to blocking of ubiquitin-dependent protein degradation by the proteasome. Here, we provide additional insight into proteasomal dysfunction by Aβ peptides by revealing that aggregated forms of Aβ(1-42) peptides (especially small oligomers) are, in fact, competitive substrates for the chymotrypsin-like activity of the human 20S (h20S) proteasome. In addition to examining the kinetics of the h20S proteasome activity in the presence or absence of Aβ peptides, we use gel electrophoresis, LC-MS, and TOF-MS/MS analyses to examine the degradation of Aβ(1-42) by the h20S proteasome. The observed peptide fragments resulting from proteolytic cleavage of Aβ were consistent with predicted cleavage sites from proteasome degradation. These results support that the interaction of Aβ peptides with the proteasome may play a mechanistic role in proteasomal dysfunction in AD pathology. These results may also reveal a previously unknown natural pathway for clearance of Aβ in normal or diseased cells.
Collapse
Affiliation(s)
- Xiaobei Zhao
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
205
|
Screen M, Britton M, Downey SL, Verdoes M, Voges MJ, Blom AEM, Geurink PP, Risseeuw MDP, Florea BI, van der Linden WA, Pletnev AA, Overkleeft HS, Kisselev AF. Nature of pharmacophore influences active site specificity of proteasome inhibitors. J Biol Chem 2010; 285:40125-34. [PMID: 20937826 DOI: 10.1074/jbc.m110.160606] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes degrade most proteins in mammalian cells and are established targets of anti-cancer drugs. The majority of proteasome inhibitors are composed of short peptides with an electrophilic functionality (pharmacophore) at the C terminus. All eukaryotic proteasomes have three types of active sites as follows: chymotrypsin-like, trypsin-like, and caspase-like. It is widely believed that active site specificity of inhibitors is determined primarily by the peptide sequence and not the pharmacophore. Here, we report that active site specificity of inhibitors can also be tuned by the chemical nature of the pharmacophore. Specifically, replacement of the epoxyketone by vinyl sulfone moieties further improves the selectivity of β5-specific inhibitors NC-005, YU-101, and PR-171 (carfilzomib). This increase in specificity is likely the basis of the decreased cytotoxicity of vinyl sulfone-based inhibitors to HeLa cells as compared with that of epoxyketone-based inhibitors.
Collapse
Affiliation(s)
- Michael Screen
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Verdoes M, Willems LI, van der Linden WA, Duivenvoorden BA, van der Marel GA, Florea BI, Kisselev AF, Overkleeft HS. A panel of subunit-selective activity-based proteasome probes. Org Biomol Chem 2010; 8:2719-27. [PMID: 20449511 PMCID: PMC3042124 DOI: 10.1039/c001036g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mammals express seven different catalytically active proteasome subunits. In order to determine the roles of the different proteolytically active subunits in antigen presentation and other cellular processes, highly specific inhibitors and activity-based probes that selectively target specific active sites are needed. In this work we present the development of fluorescent activity-based probes that selectively target the beta1 and beta5 sites of the constitutive proteasome.
Collapse
Affiliation(s)
- Martijn Verdoes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Lianne I. Willems
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Wouter A. van der Linden
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Boudewijn A. Duivenvoorden
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Alexei F. Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, 1 Medical Center Drive, HB7936, Lebanon, NH 03756, USA,
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands,
| |
Collapse
|
207
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
208
|
Stauch B, Simon B, Basile T, Schneider G, Malek N, Kalesse M, Carlomagno T. Elucidation of the Structure and Intermolecular Interactions of a Reversible Cyclic-Peptide Inhibitor of the Proteasome by NMR Spectroscopy and Molecular Modeling. Angew Chem Int Ed Engl 2010; 49:3934-8. [DOI: 10.1002/anie.201000140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
209
|
Stauch B, Simon B, Basile T, Schneider G, Malek N, Kalesse M, Carlomagno T. Elucidation of the Structure and Intermolecular Interactions of a Reversible Cyclic-Peptide Inhibitor of the Proteasome by NMR Spectroscopy and Molecular Modeling. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
210
|
Gelman JS, Fricker LD. Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides? AAPS JOURNAL 2010; 12:279-89. [PMID: 20383670 DOI: 10.1208/s12248-010-9186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/22/2010] [Indexed: 12/31/2022]
Abstract
Peptides perform many roles in cell-cell signaling; examples include neuropeptides, hormones, and growth factors. Although the vast majority of known neuropeptides are produced in the secretory pathway, a number of bioactive peptides are derived from cytosolic proteins. For example, the hemopressins are a family of peptides derived from alpha and beta hemoglobin which bind to the CB1 cannabinoid receptor, functioning as agonists or antagonists/inverse agonists depending on the size of the peptide. However, the finding that peptides derived from cytosolic proteins can affect receptors does not prove that these peptides are true endogenous signaling molecules. In order for the hemopressins and other peptides derived from cytosolic proteins to be considered neuropeptide-like signaling molecules, they must be synthesized in brain, they must be secreted in levels sufficient to produce effects, and either their synthesis or secretion should be regulated. If these criteria are met, we propose the name "non-classical neuropeptide" for this category of cytosolic bioactive peptide. This would be analogous to the non-classical neurotransmitters, such as nitric oxide and anandamide, which are not stored in secretory vesicles and released upon stimulation but are synthesized upon stimulation and constitutively released. We review some examples of cytosolic peptides from various protein precursors, describe potential mechanisms of their biosynthesis and secretion, and discuss the possibility that these peptides are signaling molecules in the brain, focusing on the criteria that these peptides would have to fill in order to be considered non-classical neuropeptides.
Collapse
Affiliation(s)
- Julia S Gelman
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
211
|
Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RAL. Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:160-70. [PMID: 20042019 DOI: 10.1111/j.1365-313x.2009.04122.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The proteasome plays essential roles in nearly all biological processes in plant defense and development, yet simple methods for displaying proteasome activities in extracts and living tissues are not available to plant science. Here, we introduce an easy and robust method to simultaneously display the activities of all three catalytic proteasome subunits in plant extracts or living plant tissues. The method is based on a membrane-permeable, small-molecule fluorescent probe that irreversibly reacts with the catalytic site of the proteasome catalytic subunits in an activity-dependent manner. Activities can be quantified from fluorescent protein gels and used to study proteasome activities in vitro and in vivo. We demonstrate that proteasome catalytic subunits can be selectively inhibited by aldehyde-based inhibitors, including the notorious caspase-3 inhibitor DEVD. Furthermore, we show that the proteasome activity, but not its abundance, is significantly increased in Arabidopsis upon treatment with benzothiadiazole (BTH). This upregulation of proteasome activity depends on NPR1, and occurs mostly in the cytoplasm. The simplicity, robustness and versatility of this method will make this method widely applicable in plant science.
Collapse
Affiliation(s)
- Christian Gu
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
The 26S proteasome is a non-lysosomal protease in the cytosol and nucleus of eukaryotic cells. Its main function is to mediate ubiquitin-dependent proteolysis. The 26S proteasome is a multimeric complex composed by the 20S proteasome CP (core particle) and the 19S RPs (regulatory particles). Although the atomic structure of the 26S proteasome has not yet been determined, high-resolution structures are available for its CP. Studies on the complicated assembly pathway of the proteasome have revealed that it involves an unprecedented number of dedicated chaperones. Assembly of the CP alone involves three conserved proteasome-assembly chaperones [PAC1-PAC2, PAC3-PAC4 and UMP1 (ubiquitin-mediated proteolysis 1)]. Whereas the two heterodimeric PACs have been implicated in the formation of rings of the seven distinct alpha subunits, UMP1 is important for the formation and dimerization of proteasome precursor complexes containing beta subunits. Dimerization coincides with the incorporation of the last beta subunit (beta7). Additional modules important for the assembly of precursor complexes and their dimerization reside in the beta subunits themselves, either as transient or as permanent extensions. Particularly important domains are the propeptide of beta5 and the C-terminal extensions of beta2 and beta7. Upon maturation of the active sites by autocatalytic processing, UMP1 is degraded by the native proteasome.
Collapse
|
213
|
Britton M, Lucas MM, Downey SL, Screen M, Pletnev AA, Verdoes M, Tokhunts RA, Amir O, Goddard AL, Pelphrey PM, Wright DL, Overkleeft HS, Kisselev AF. Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. ACTA ACUST UNITED AC 2010; 16:1278-89. [PMID: 20064438 DOI: 10.1016/j.chembiol.2009.11.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 11/12/2009] [Accepted: 11/19/2009] [Indexed: 11/16/2022]
Abstract
Proteasomes degrade most proteins in mammalian cells and are established targets of anticancer drugs. All eukaryotic proteasomes have three types of active sites: chymotrypsin-like, trypsin-like, and caspase-like. Chymotrypsin-like sites are the most important in protein degradation and are the primary target of most proteasome inhibitors. The biological roles of trypsin-like and caspase-like sites and their potential as cotargets of antineoplastic agents are not well defined. Here we describe the development of site-specific inhibitors and active-site probes of chymotrypsin-like and caspase-like sites. Using these compounds, we show that cytotoxicity of proteasome inhibitors does not correlate with inhibition of chymotrypsin-like sites and that coinhibition of either trypsin-like and/or caspase-like sites is needed to achieve maximal cytotoxicity. Thus, caspase-like and trypsin-like sites must be considered as cotargets of anticancer drugs.
Collapse
Affiliation(s)
- Matthew Britton
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 1 Medical Center Drive, HB7936, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Inverse correlation of protein oxidation and proteasome activity in liver and lung. Mech Ageing Dev 2010; 130:748-53. [PMID: 19786044 DOI: 10.1016/j.mad.2009.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 01/06/2023]
Abstract
Several studies have demonstrated that proteasome activity decreases whereas protein oxidation increases with aging in various tissues. However, no studies are available correlating both parameters directly comparing different tissues of one organism. Therefore, we determined whether there is an age-related change in proteasome activity and protein oxidation in heart, lung, liver, kidney and skeletal muscle samples of 6-, 10-, 18- and 26-month-old rats. There was a significant age-related increase in protein carbonyls at 18 and 26 months compared to young rats. Thereby, protein carbonyl formation was rather due to a general than a specific protein carbonylation as shown by immunblot studies. The highest increase in protein carbonyl formation was found in liver, lung and kidney samples. Proteasome activity decreased significantly with age in lung and liver samples. Proteasome activity in liver and lung decreased by factor five compared to young rats. Strong correlations between proteasome activity and protein oxidation were found in liver and lung, whereas in other tissues only a trend was found. These results demonstrate that the increase in protein oxidation and the decline in proteasome activity are correlating. Further studies are needed to determine the mechanisms which cause organ-specific aging-rates and their consequences.
Collapse
|
215
|
Agyin JK, Santhamma B, Nair HB, Roy SS, Tekmal RR. BU-32: a novel proteasome inhibitor for breast cancer. Breast Cancer Res 2010; 11:R74. [PMID: 19821999 PMCID: PMC2790855 DOI: 10.1186/bcr2411] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/21/2009] [Accepted: 10/12/2009] [Indexed: 12/05/2022] Open
Abstract
Introduction Proteasome inhibition provides an attractive approach to cancer therapy and may have application in the treatment of breast cancer. However, results of recent clinical trials to evaluate the effect of the proteasome inhibitor Bortezomib (Velcade®, also called PS-341) in metastatic breast cancer patients have shown limited activity when used as a single agent. This underscores the need to find new and more efficacious proteasome inhibitors. In this study, we evaluate the efficacy of the novel proteasome inhibitor BU-32 (NSC D750499-S) using in vitro and in vivo breast cancer models. Methods We have recently synthesized a novel proteasome inhibitor (BU-32) and tested its growth inhibitory effects in different breast cancer cells including MCF-7, MDA-MB-231, and SKBR3 by in vitro cytotoxicity and proteasomal inhibition assays. The apoptotic potential of BU32 was tested using flow cytometry and analyzing cell cycle regulatory proteins. In vivo tumor xenograft studies for solid tumor as well as tumor metastasis were conducted using MDA-MB-231-GFP cells. Results We report for the first time that BU-32 exhibits strong cytotoxicity in a panel of cell lines: MDA-MB-231 (IC50 = 5.8 nM), SKBR3 (IC50 = 5.7 nM) and MCF-7 cells (IC50 = 5.8 nM). It downregulates a wide array of angiogenic marker genes and upregulates apoptotic markers, including Bid and Bax. Incubation of MDA-MB-231 cells with BU-32 results in the accumulation of cell cycle inhibitor proteins p21 and p27 and stabilization of the tumor suppressor protein p53. Studies in in vivo solid tumor and metastasis models show significant effect with a 0.06 mg/kg dose of BU-32 and marked reduction in tumor burden in the skeleton. Conclusions We have shown that BU-32 is effective in cultured breast cancer cells and in breast cancer xenografts. The results suggest its potential benefit in breast cancer treatment.
Collapse
Affiliation(s)
- Joseph K Agyin
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
216
|
Dalet A, Vigneron N, Stroobant V, Hanada KI, Van den Eynde BJ. Splicing of Distant Peptide Fragments Occurs in the Proteasome by Transpeptidation and Produces the Spliced Antigenic Peptide Derived from Fibroblast Growth Factor-5. THE JOURNAL OF IMMUNOLOGY 2010; 184:3016-24. [DOI: 10.4049/jimmunol.0901277] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
217
|
Triphenyltin inhibition of the proteasome activity and its influence on substrate protein levels in nerve cells. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-009-0678-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
218
|
Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2009; 584:1393-8. [PMID: 20040365 DOI: 10.1016/j.febslet.2009.12.047] [Citation(s) in RCA: 439] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/15/2022]
Abstract
The ubiquitin proteasome system (UPS) and macroautophagy (hereafter called autophagy) were, for a long time, regarded as independent degradative pathways with few or no points of interaction. This view started to change recently, in the light of findings that have suggested that ubiquitylation can target substrates for degradation via both pathways. Moreover, perturbations in the flux through either pathway have been reported to affect the activity of the other system, and a number of mechanisms have been proposed to rationalise the link between the UPS and autophagy. Here we critically review these findings and outline some outstanding issues that still await clarification.
Collapse
Affiliation(s)
- Viktor I Korolchuk
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
219
|
Pham TT, Giesert F, Röthig A, Floss T, Kallnik M, Weindl K, Hölter SM, Ahting U, Prokisch H, Becker L, Klopstock T, Hrabé de Angelis M, Beyer K, Görner K, Kahle PJ, Vogt Weisenhorn DM, Wurst W. DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. GENES BRAIN AND BEHAVIOR 2009; 9:305-17. [PMID: 20039949 DOI: 10.1111/j.1601-183x.2009.00559.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of function of DJ-1 (PARK7) is associated with autosomal recessive early-onset Parkinson's disease (PD), one of the major age-related neurological diseases. In this study, we extended former studies on DJ-1 knockout mice by identifying subtle morphological and behavioural phenotypes. The DJ-1 gene trap-induced null mutants exhibit less dopamine-producing neurons in the ventral tegmental area (VTA). They also exhibit slight changes in behaviour, i.e. diminished rearing behaviour and impairments in object recognition. Furthermore, we detected subtle phenotypes, which suggest that these animals compensate for the loss of DJ-1. First, we found a significant upregulation of mitochondrial respiratory enzyme activities, a mechanism known to protect against oxidative stress. Second, a close to significant increase in c-Jun N-terminal kinase 1 phosphorylation in old DJ-1-deficient mice hints at a differential activation of neuronal cell survival pathways. Third, as no change in the density of tyrosine hydroxylase (TH)-positive terminals in the striatum was observed, the remaining dopamine-producing neurons likely compensate by increasing axonal sprouting. In summary, the present data suggest that DJ-1 is implicated in major non-motor symptoms of PD appearing in the early phases of the disease-such as subtle impairments in motivated behaviour and cognition-and that under basal conditions the loss of DJ-1 is compensated.
Collapse
Affiliation(s)
- T T Pham
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5 Delta as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5 Delta mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome.
Collapse
|
221
|
Eang R, Girbal-Neuhauser E, Xu B, Gairin JE. Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines. Fundam Clin Pharmacol 2009; 23:215-24. [PMID: 19645816 DOI: 10.1111/j.1472-8206.2009.00665.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The search of new pharmacological targets with original mechanism of action within the ubiquitin-proteasome pathway is still a goal to be reached in oncopharmacology. Modification by phosphorylation/dephosphorylation has been found to be involved in cancer and to regulate functional activity of proteasome. Until now, phosphorylated forms of alpha subunits of the 20S human proteasome have been mostly reported. Here, we have rationally designed a polyclonal antibody specifically directed against a phosphorylated peptide sequence bearing the beta7 subunit Ser249 residue of the human 20S proteasome. This anti-beta7 phosphoSer249 antibody appeared to be a probe of choice to detect the presence of a phosphorylated isoform of the beta7 subunit of the human 20S proteasome using mono or two-dimensional gel electrophoresis. PhosphoSer249 was sensitive to acid phosphatase treatment of native 20S proteasome. Dephosphorylation affected the peptidylglutamyl-peptide hydrolyzing activity whereas the chymotrypsin-like and trypsin-like activities remained unchanged. A comparative analysis between human normal and tumor cells showed a differential expression of the phosphoSer249 beta7 isoform with a significantly lower detection in the proteasome isolated from tumor cells, suggesting its possible use as a biomarker.
Collapse
Affiliation(s)
- Rothmony Eang
- Centre de Recherche en Pharmacologie-Santé, UMR 2587 CNRS-Pierre Fabre, ISTMT, 3 rue des satellites, 31400 Toulouse, France
| | | | | | | |
Collapse
|
222
|
Proteasome inhibition represses ERalpha gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 2009; 29:1509-18. [PMID: 19946334 PMCID: PMC2837136 DOI: 10.1038/onc.2009.434] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptor-alpha (ERα) is a major therapeutic target of hormonal therapies in breast cancer and its expression in tumors is predictive of clinical response. Protein levels of ERα are tightly controlled by the 26S proteasome, yet how the clinical proteasome inhibitor, bortezomib, impacts ERα regulation has not been studied. Bortezomib selectively inhibits the chymotrypsin-like activity of the proteasome. Unlike other laboratory proteasome inhibitors, bortezomib failed to stabilize ERα protein at a dose exceeding 90% inhibition of the chymotrypsin-like activity. Unexpectedly, however, chronic bortezomib exposure caused a reduction of ERα levels in multiple ER+ breast cancer cell lines. This response can be explained by the fact that bortezomib induced a dramatic decrease in ERα mRNA due to direct transcriptional inhibition and loss of RNA polymerase II recruitment on the ERα gene promoter. Bortezomib treatment resulted in promoter-specific changes in estrogen-induced gene transcription that related to occupancy of ERα and RNA PolII on endogenous promoters. In addition, bortezomib inhibited estrogen-dependent growth in soft agar. These results reveal a novel link between proteasome activity and expression of ERα in breast cancer and uncover distinct roles of the chymotrypsin-like activity of the proteasome in the regulation of the ERα pathway.
Collapse
|
223
|
Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 2009; 115:834-45. [PMID: 19965674 DOI: 10.1182/blood-2009-03-213009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our recent study demonstrated that a novel proteasome inhibitor NPI-0052 is distinct from bortezomib (Velcade) and, importantly, triggers apoptosis in multiple myeloma (MM) cells resistant to bortezomib. Here we demonstrate that combining NPI-0052 and lenalidomide (Revlimid) induces synergistic anti-MM activity in vitro using MM-cell lines or patient MM cells. NPI-0052 plus lenalidomide-induced apoptosis is associated with (1) activation of caspase-8, caspase-9, caspase-12, caspase-3, and poly(ADP) ribose polymerase; (2) activation of BH-3 protein BIM; (3) translocation of BIM to endoplasmic reticulum; (4) inhibition of migration of MM cells and angiogenesis; and (5) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. Importantly, blockade of BIM using siRNA significantly abrogates NPI-0052 plus lenalidomide-induced apoptosis. Furthermore, studies using biochemical inhibitors of caspase-8 versus caspase-9 demonstrate that NPI-0052 plus lenalidomide-triggered apoptosis is primarily dependent on caspase-8 signaling. In animal tumor model studies, low-dose combination of NPI-0052 and lenalidomide is well tolerated, significantly inhibits tumor growth, and prolongs survival. Taken together, our study provides the preclinical rationale for clinical protocols evaluating lenalidomide together with NPI-0052 to improve patient outcome in MM.
Collapse
|
224
|
Chen W, Mou K, Xu B, Ling X, Cui J, Xu P. Capillary electrophoresis for screening of 20S proteasome inhibitors. Anal Biochem 2009; 394:62-7. [DOI: 10.1016/j.ab.2009.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
|
225
|
Malhotra D, Thimmulappa R, Vij N, Navas-Acien A, Sussan T, Merali S, Zhang L, Kelsen SG, Myers A, Wise R, Tuder R, Biswal S. Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 2009; 180:1196-207. [PMID: 19797762 DOI: 10.1164/rccm.200903-0324oc] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of lung antioxidant defenses, declines in chronic obstructive pulmonary disease (COPD). However, Nrf2 also regulates the proteasome system that degrades damaged and misfolded proteins. Because accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and ER stress-induced apoptosis, Nrf2 may potentially prevent ER stress-mediated apoptosis in COPD. OBJECTIVES To determine whether Nrf2-regulated proteasome function affects ER stress-mediated apoptosis in COPD. METHODS We assessed the expression of Nrf2, Nrf2-dependent proteasomal subunits, proteasomal activity, markers of ER stress, and apoptosis in emphysematous lungs of mice exposed to cigarette smoke (CS) as well as peripheral lung tissues from normal control subjects and patients with COPD. MEASUREMENTS AND MAIN RESULTS Compared with wild-type mice, emphysematous lungs of CS-exposed Nrf2-deficient mice exhibited markedly lower proteasomal activity and elevated markers of ER stress and apoptosis. Furthermore, compared with normal control subjects, lungs of patients with mild and advanced COPD showed a marked decrease in the expression of Nrf2-regulated proteasomal subunits and total proteasomal activity. However, they were associated with greater levels of ER stress and apoptosis markers. In vitro studies have demonstrated that enhancing proteasomal activity in Beas2B cells either by sulforaphane, an activator of Nrf2, or overexpression of Nrf2-regulated proteasomal subunit PSMB6, significantly inhibited cigarette smoke condensate (CSC)-induced ER stress and cell death. CONCLUSIONS Impaired Nrf2 signaling causes significant decline in proteasomal activity and heightens ER stress response in lungs of patients with COPD and CS-exposed mice. Accordingly, pharmacological approaches that augment Nrf2 activity may protect against COPD progression by both up-regulating antioxidant defenses and relieving ER stress.
Collapse
Affiliation(s)
- Deepti Malhotra
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Osmulski PA, Hochstrasser M, Gaczynska M. A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel. Structure 2009; 17:1137-47. [PMID: 19679091 PMCID: PMC2746003 DOI: 10.1016/j.str.2009.06.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 04/22/2009] [Accepted: 06/09/2009] [Indexed: 11/29/2022]
Abstract
Intrinsic conformational transitions contribute to the catalytic action of many enzymes. Here we use a single-molecule approach to demonstrate how such transitions are linked to the catalytic sites of the eukaryotic proteasome, an essential protease of the ubiquitin pathway. The active sites of the cylindrical proteasomal core particle are located in a central chamber accessible through gated entry channels. By using atomic force microscopy, we found continual alternation between open and closed gate conformations. We analyzed the relative abundance of these conformers in wild-type and mutated yeast core particles upon exposure to substrates or inhibitors. Our data indicate that the dynamic gate can be opened by allosteric coupling to a tetrahedral transition state at any of the working active centers. The results point to the N(alpha)-amine of the N-terminal active site threonyl residue as the major effector group responsible for triggering the essential conformational switch.
Collapse
Affiliation(s)
- Pawel A. Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Ave, New Haven, CT 06520-8114, USA
| | - Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA
| |
Collapse
|
227
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
228
|
The ubiquitin–proteasome system in Strongyloididae. Biochemical evidence for developmentally regulated proteolysis in Strongyloides venezuelensis. Parasitol Res 2009; 105:567-76. [DOI: 10.1007/s00436-009-1430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 03/23/2009] [Indexed: 01/15/2023]
|
229
|
Visekruna A, Joeris T, Schmidt N, Lawrenz M, Ritz JP, Buhr HJ, Steinhoff U. Comparative expression analysis and characterization of 20S proteasomes in human intestinal tissues: The proteasome pattern as diagnostic tool for IBD patients. Inflamm Bowel Dis 2009; 15:526-33. [PMID: 19067411 DOI: 10.1002/ibd.20805] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnostic differentiation between Crohn's disease (CD) and ulcerative colitis (UC) is sometimes difficult. To date, there are no serological markers that are specific and sensitive enough to differentiate between these 2 diseases. Early and safe prediction of the inflammatory bowel disease (IBD) type is of great importance for the specific treatment of IBD patients. We thus analyzed and compared the expression of catalytic proteasome subunits in the gut of mice and in the normal and inflamed intestines of CD and UC patients and assessed whether the subunit pattern is suitable for diagnostic differentiation. METHODS The 20S proteasomes were isolated from surgical tissue specimens derived from terminal ileum and colon of IBD patients and controls. Spots of 20S proteasomes separated by 2D electrophoresis were analyzed by mass spectrometry. Quick detection of catalytic beta2, beta2i, and beta5i subunits was performed by incubating proteasomes with a biotinylated inhibitor (AdaK(Bio)Ahx3L3VS) and subsequently by streptavidin-horseradish peroxide. RESULTS 20S proteasomes were isolated from the human liver, colon, and terminal ileum. Low expression of the immunosubunits beta1i and beta2i was found in the liver and colon but high amounts in the small intestine. In colon and liver beta5i was found to be associated with the constitutive beta1, beta2 subunits, indicating the existence of mixed proteasomes. Further, inflammation in CD but not UC patients induced massive upregulation of beta1i and beta2i in the colon and terminal ileum, indicating the importance of this protein complex as a disease marker. CONCLUSIONS We here show that CD and UC patients display a characteristic pattern of proteasome subunit composition which can be used as diagnostic tool to differentiate between CD and UC.
Collapse
Affiliation(s)
- Alexander Visekruna
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
230
|
Proteasome proteolytic profile is linked to Bcr-Abl expression. Exp Hematol 2009; 37:357-66. [PMID: 19157685 DOI: 10.1016/j.exphem.2008.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We have previously demonstrated that proteasome activity is higher in bone marrow from patients with chronic myeloid leukemia (CML) than normal controls. This study investigates whether there is any relationship between Bcr-Abl expression and proteasome activity. MATERIALS AND METHODS Fluorogenic substrate assays and an activity-based probe were used to profile proteasome activity in CML cell-line models and the effect of the proteasome inhibitor BzLLLCOCHO on these cell-line models and primary CML cells was investigated. RESULTS We have demonstrated that oncogenic transformation by BCR-ABL is associated with an increase in proteasome proteolytic activity. Furthermore, small interfering RNA targeted against BCR-ABL reduces proteasome activity. In addition, we have found that Bcr-Abl-positive cells are more sensitive than Bcr-Abl-negative cells to induction of apoptosis by the proteasome inhibitor BzLLLCOCHO, and that sequential addition of imatinib followed by BzLLLCOCHO has an additive effect on the induction of apoptosis in Bcr-Abl-positive cells. Finally, we demonstrate that cell lines that become resistant to imatinib remain sensitive to proteasome inhibition. CONCLUSION This is the first time that a direct relationship has been demonstrated between BCR-ABL transformation and the enzymatic activity of the proteasome. Our results suggest that the proteasome might provide a useful therapeutic target in CML, particularly in those patients who have developed resistance to conventional treatment.
Collapse
|
231
|
Yabe K, Koide T. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase. J Biochem 2008; 145:217-27. [PMID: 19054805 DOI: 10.1093/jb/mvn160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.
Collapse
Affiliation(s)
- Kimihiko Yabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | | |
Collapse
|
232
|
Abstract
The coordinated regulation of cellular protein synthesis and degradation is essential for normal cellular functioning. The ubiquitin proteasome system mediates the intracellular protein degradation that is required for normal cellular homeostasis. The 26S proteasome is a multi-enzyme protease that degrades redundant proteins; conversely, inhibition of proteasomal degradation results in intracellular aggregation of unwanted proteins and cell death. This observation led to the development of proteasome inhibitors as therapeutics for use in cancer. The clinical applicability of targeting proteasomes is exemplified by the recent FDA approval of the first proteasome inhibitor, bortezomib, for the treatment of relapsed/refractory multiple myeloma. Although bortezomib represents a major advance in the treatment of this disease, it can be associated with toxicity and the development of drug resistance. Importantly, extensive preclinical studies suggest that combination therapies can both circumvent drug resistance and reduce toxicity. In addition, promising novel proteasome inhibitors, which are distinct from bortezomib, and exhibit equipotent anti-multiple myeloma activities, are undergoing clinical evaluation in order to improve patient outcome in multiple myeloma. PUBLICATION HISTORY : Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
Collapse
Affiliation(s)
- Dharminder Chauhan
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giada Bianchi
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth C Anderson
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
233
|
Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 2008; 275:5512-26. [DOI: 10.1111/j.1742-4658.2008.06696.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
234
|
Abstract
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, JoZef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
235
|
Felderer K, Groves M, Diez J, Pohl E, Witt S. Crystallization and preliminary X-ray analysis of the Thermoplasma acidophilum 20S proteasome in complex with protein substrates. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:899-902. [PMID: 18931431 DOI: 10.1107/s1744309108026791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 08/20/2008] [Indexed: 11/10/2022]
Abstract
The 20S proteasome is a 700 kDa barrel-shaped proteolytic complex that is traversed by an internal channel which widens into three cavities: two antechambers and one central chamber. Entrance to the complex is restricted by the narrow opening of the channel, which only allows unfolded substrates to reach the active sites located within the central cavity. The X-ray structures of 20S proteasomes from different organisms with and without inhibitors bound have led to a detailed knowledge of their structure and proteolytic function. Nevertheless, the mechanisms that underlie substrate translocation into the 20S proteasome and the role of the antechambers remain elusive. To investigate putative changes within the proteasome that occur during substrate translocation, ;host-guest' complexes between the Thermoplasma acidophilum 20S proteasomes and either cytochrome c (cyt c) or green fluorescent protein (GFP) were produced and crystallized. Orthorhombic crystals belonging to space group P2(1)2(1)2(1), with unit-cell parameters a = 116, b = 207, c = 310 A (cyt c) and a = 116, b = 206, c = 310 A (GFP), were formed and X-ray diffraction data were collected to 3.4 A (cyt c) and 3.8 A (GFP) resolution.
Collapse
Affiliation(s)
- Karin Felderer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
236
|
Ekici OD, Paetzel M, Dalbey RE. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 2008; 17:2023-37. [PMID: 18824507 DOI: 10.1110/ps.035436.108] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
Collapse
Affiliation(s)
- Ozlem Doğan Ekici
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
237
|
Abstract
Assembly of the 34-subunit, 2.5 MDa 26S proteasome is a carefully choreographed intricate process. It starts with formation of a seven-membered α-ring that serves as a template for assembly of the complementary β-ring-forming ‘half-proteasomes’. Dimerization results in a latent 20S core particle that can serve further as a platform for 19S regulatory particle attachment and formation of the biologically active 26S proteasome for ubiquitin-dependent proteolysis. Both general and dedicated proteasome assembly chaperones regulate the efficiency and outcome of critical steps in proteasome biogenesis, and in complex association.
Collapse
|
238
|
Rotanova TV, Melnikov EE. The ATP-dependent proteases and proteolytic complexes involved into intracellular protein degradation. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2008. [DOI: 10.1134/s1990750808030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
239
|
Kusmierczyk AR, Hochstrasser M. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem 2008; 389:1143-51. [PMID: 18713001 PMCID: PMC2650809 DOI: 10.1515/bc.2008.130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 26S proteasome is the key eukaryotic protease responsible for the degradation of intracellular proteins. Protein degradation by the 26S proteasome plays important roles in numerous cellular processes, including the cell cycle, differentiation, apoptosis, and the removal of damaged or misfolded proteins. How this 2.5-MDa complex, composed of at least 32 different polypeptides, is assembled in the first place is not well understood. However, it has become evident that this complicated task is facilitated by a framework of protein factors that chaperone the nascent proteasome through its various stages of assembly. We review here the known proteasome-specific assembly factors, most only recently discovered, and describe their potential roles in proteasome assembly, with an emphasis on the many remaining unanswered questions about this intricate process of assisted self-assembly.
Collapse
Affiliation(s)
- Andrew R. Kusmierczyk
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101, Fax: (203) 432-5158
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101, Fax: (203) 432-5158
| |
Collapse
|
240
|
PACemakers of Proteasome Core Particle Assembly. Structure 2008; 16:1296-304. [DOI: 10.1016/j.str.2008.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 01/08/2023]
|
241
|
Kruevaisayawan H, Vanichviriyakit R, Weerachatyanukul W, Iamsaard S, Withyachumnarnkul B, Basak A, Tanphaichitr N, Sobhon P. Induction of the Acrosome Reaction in Black Tiger Shrimp (Penaeus monodon) Requires Sperm Trypsin-Like Enzyme Activity1. Biol Reprod 2008; 79:134-41. [DOI: 10.1095/biolreprod.107.066316] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
242
|
Wang L, Kumar S, Fridley BL, Kalari KR, Moon I, Pelleymounter LL, Hildebrandt MAT, Batzler A, Eckloff BW, Wieben ED, Greipp PR. Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clin Cancer Res 2008; 14:3503-13. [PMID: 18519783 PMCID: PMC2778274 DOI: 10.1158/1078-0432.ccr-07-5150] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The proteasome is a multisubunit cellular organelle that functions as a nonlysosomal threonine protease. Proteasomes play a critical role in the degradation of proteins, regulating a variety of cellular processes, and they are also the target for antineoplastic proteasome inhibitors. Genetic variation in proteasome subunits could influence both proteasome function and response to drug therapy. EXPERIMENTAL DESIGN We resequenced genes encoding the three active proteasome beta subunits using 240 DNA samples from four ethnic groups and the beta 5 subunit gene in 79 DNA samples from multiple myeloma patients who had been treated with the proteasome inhibitor bortezomib. Resequencing was followed by functional studies of polymorphisms identified in the coding region and 3'-flanking region (3'-FR) of PSMB5, the gene encoding the target for clinically useful proteasome inhibitors. RESULTS Resequencing of 240 DNA samples identified a series of novel ethnic-specific polymorphisms that are not represented in public databases. The PSMB5 3'-FR 1042 G allele significantly increased transcription during reporter gene studies, observations confirmed by genotype-phenotype correlations between single nucleotide polymorphisms (SNP) in PSMB5 and mRNA expression in the 240 lymphoblastoid cell lines from which the resequenced DNA was obtained. Studies with patient DNA samples identified additional novel PSMB5 polymorphisms, including a SNP and an insertion in the 3'-FR. Reporter-gene studies indicated that these two novel polymorphisms might decrease transcription. CONCLUSIONS These results show that nonsynonymous coding SNPs in the PSMB5 gene did not show significant effects on proteasome activity, but SNPs did influence transcription. Future studies might focus on regulatory region polymorphisms.
Collapse
Affiliation(s)
- Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Wojtczak A, Kwiatkowska M. Immunocytochemical and Ultrastructural Analyses of the Function of the Ubiquitin-Proteasome System During Spermiogenesis with the Use of the Inhibitors of Proteasome Proteolytic Activity in the Alga, Chara vulgaris1. Biol Reprod 2008; 78:577-85. [DOI: 10.1095/biolreprod.107.062901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
244
|
Clinical and molecular characterisation of a Parkinson family with a novel PINK1 mutation. J Neurol 2008; 255:643-8. [PMID: 18286320 DOI: 10.1007/s00415-008-0763-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
Homozygous mutations in the PINK1 gene have been shown to cause early-onset parkinsonism. Here, we describe a novel homozygous mutation (Q126P), identified in two affected German sisters with a clinical phenotype typical for PINK1-associated parkinsonism. We analysed lactate, pyruvate, carnitine and acylcarnitine blood levels, lactate levels under exercise and in the cerebrospinal fluid, activity of respiratory chain complexes I-IV in muscle biopsies and proteasomal activity in immortalized lymphoblasts, but found no evidence for mitochondrial or proteasomal dysfunction. MR spectroscopy revealed raised myoinositol levels in the basal ganglia of both patients, reflecting possible astroglial proliferation.
Collapse
|
245
|
A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 2008; 15:237-44. [PMID: 18278055 DOI: 10.1038/nsmb.1389] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/10/2008] [Indexed: 11/08/2022]
Abstract
The proteasome is the central regulatory protease of eukaryotic cells. Heteroheptameric alpha-subunit and beta-subunit rings stack to form the 20S proteasome, which associates with a 19S regulatory particle (RP). Here we show that two yeast proteins, Pba3 and Pba4, form a previously unidentified 20S proteasome-assembly chaperone. Pba3-Pba4 interacts genetically and physically with specific proteasomal alpha subunits, and loss of Pba3-Pba4 causes both a reduction and a remodeling of cellular proteasomes. Notably, mutant cells accumulate proteasomes in which a second copy of the alpha4 subunit replaces alpha3. 20S proteasome-assembly defects also are associated with altered RP assembly; this unexpected result suggests that the 20S proteasome can function as an RP-assembly factor in vivo. Our data demonstrate that Pba3-Pba4 orchestrates formation of a specific type of proteasome, the first example of a trans-acting factor that controls assembly of alternative proteasomal complexes.
Collapse
|
246
|
Abstract
Accumulation of proteins is a recurring event in many neurodegenerative diseases, including Alzheimer's disease (AD).Evidence has suggested that protein accumulation may result from a dysfunction in the ubiquitin proteasome system (UPS). Indeed, there is clear genetic and biochemical evidence of an involvement of the ubiquitin proteasome system in AD. This review summarizes the data supporting an involvement of the UPS in the pathogenesis of AD, focusing on the data showing the relationship between Aβ and tau, the two hallmark lesions of AD, and the UPS.
Collapse
Affiliation(s)
- Salvatore Oddo
- Department of Neurobiology and Behavior University of California, Irvine, CA 92697-4545, USA.
| |
Collapse
|
247
|
Mou K, Xu B, Ma C, Yang X, Zou X, Lü Y, Xu P. Novel CADD-based peptidyl vinyl ester derivatives as potential proteasome inhibitors. Bioorg Med Chem Lett 2008; 18:2198-202. [PMID: 18280155 DOI: 10.1016/j.bmcl.2007.12.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/30/2007] [Accepted: 12/14/2007] [Indexed: 11/17/2022]
Abstract
A series of peptidyl vinyl ester derivatives bearing three different P1 substitutions as potential proteasome inhibitors were studied. The target molecules were designed based on CADD (computer aided drug design) protocol and synthesized. Their activities toward proteasome and four human cancer cell lines (including hepatoma cell line (Bel-7402), myeloid leukemic cell line (HL-60), gastric cancer cell line (BGC-823) and nasopharyngeal cancer cell line (KB)) were tested using fluorescence assay. Two compounds showed proteasome inhibitory activities, and four compounds showed weak antiproliferative activities toward HL-60 and BGC-823.
Collapse
Affiliation(s)
- Ke Mou
- Department of Medicinal Chemistry, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
248
|
Rho SH, Park HH, Kang GB, Im YJ, Kang MS, Lim BK, Seong IS, Seol J, Chung CH, Wang J, Eom SH. Crystal structure ofBacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus. Proteins 2008; 71:1020-6. [DOI: 10.1002/prot.21758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
249
|
Abstract
The majority of cellular proteins are degraded by proteasomes within the ubiquitin-proteasome ATP-dependent degradation pathway. Products of proteasomal activity are short peptides that are further hydrolysed by proteases to single amino acids. However, some peptides can escape this degradation, being selected and taken up by major histocompatibility complex (MHC) class I molecules for presentation to the immune system on the cell surface. MHC class I molecules are highly selective and specific in terms of ligand binding. Variability of peptides produced in living cells arises in a variety of ways, ensuring fast and efficient immune responses. Substitution of constitutive proteasomal subunits with immunosubunits leads to conformational changes in the substrate binding channels, resulting in a modified protein cleavage pattern and consequently in the generation of new antigenic peptides. The recently discovered event of proteasomal peptide splicing opens new horizons in the understanding of additional functions that proteasomes apparently possess. Whether peptide splicing is an occasional side product of proteasomal activity still needs to be clarified. Both gamma-interferon-induced immunoproteasomes and peptide splicing represent two significant events providing increased diversity of antigenic peptides for flexible and fine-tuned immune response.
Collapse
Affiliation(s)
- Ljudmila Borissenko
- Charité (CCM), Institut für Biochemie, AG Strukturforschung, Monbijoustrasse 2, D-10117 Berlin, Germany
| | | |
Collapse
|
250
|
Abstract
Renal cell carcinoma (RCC) accounts for approximately 2.6% of all cancers in the United States. While early stage disease is curable by surgery, the median survival of metastatic disease is only 13 months. In the last decade, there has been considerable progress in understanding the genetics of RCC. The VHL tumor suppressor gene is inactivated in the majority of RCC cases. The VHL protein (pVHL) acts as an E3 ligase that targets HIF-1, the hypoxia inducible transcription factor, for degradation by the ubiquitin proteasome system (UPS). In RCC cases with mutant pVHL, HIF-1 is stabilized and aberrantly expressed in normoxia, leading to the activation of pro-survival genes such as vascular endothelial growth factor (VEGF). This review will focus on the defect in the UPS that underlies RCC and describe the development of novel therapies that target the UPS. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Paul G Corn
- MD Anderson Cancer Center, GU Medical Oncology, Box 1374, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|