201
|
Andreini M, Doknic D, Sutkeviciute I, Reina JJ, Duan J, Chabrol E, Thepaut M, Moroni E, Doro F, Belvisi L, Weiser J, Rojo J, Fieschi F, Bernardi A. Second generation of fucose-based DC-SIGN ligands : affinity improvement and specificity versus Langerin. Org Biomol Chem 2011; 9:5778-86. [DOI: 10.1039/c1ob05573a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
202
|
N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol 2010; 85:2990-3000. [PMID: 21191006 DOI: 10.1128/jvi.01705-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It is widely recognized that sialic acid (SA) can mediate attachment of influenza virus to the cell surface, and yet the specific receptors that mediate virus entry are not known. For many viruses, a definitive demonstration of receptor function has been achieved when nonpermissive cells are rendered susceptible to infection following transfection of the gene encoding a putative receptor. For influenza virus, such approaches have been confounded by the abundance of SA on mammalian cells so that it has been difficult to identify cell lines that are not susceptible to infection. We examined influenza virus infection of Lec2 Chinese hamster ovary (CHO) cells, a mutant cell line deficient in SA. Lec2 CHO cells were resistant to influenza virus infection, and stable cell lines expressing either DC-SIGN or L-SIGN were generated to assess the potential of each molecule to function as SA-independent receptors for influenza A viruses. Virus strain BJx109 (H3N2) bound to Lec2 CHO cells expressing DC-SIGN or L-SIGN in a Ca(2+)-dependent manner, and transfected cells were susceptible to virus infection. Treatment of Lec2-DC-SIGN and Lec2-L-SIGN cells with mannan, but not bacterial neuraminidase, blocked infection, a finding consistent with SA-independent virus attachment and entry. Moreover, virus strain PR8 (H1N1) bears low levels of mannose-rich glycans and was inefficient at infecting Lec2 CHO cells expressing either DC-SIGN or L-SIGN, whereas other glycosylated H1N1 subtype viruses could infect cells efficiently. Together, these data indicate that human C-type lectins (DC-SIGN and L-SIGN) can mediate attachment and entry of influenza viruses independently of cell surface SA.
Collapse
|
203
|
Dilly SJ, Clark AJ, Mitchell DA, Marsh A, Taylor PC. Using the Man(9)(GlcNAc)(2)-DC-SIGN pairing to probe specificity in photochemical immobilization. MOLECULAR BIOSYSTEMS 2010; 7:116-8. [PMID: 21060950 DOI: 10.1039/c0mb00118j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the expected preference of an immobilised oligosaccharide Man(9)(GlcNAc)(2) upon a 96-well photochemical array, for its known receptor, the cell-surface lectin Dendritic Cell-Specific ICAM3 Grabbing Nonintegrin (DC-SIGN) when compared to immobilised competing monosaccharides.
Collapse
Affiliation(s)
- Suzanne J Dilly
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
204
|
Becer CR, Gibson MI, Geng J, Ilyas R, Wallis R, Mitchell DA, Haddleton DM. High-affinity glycopolymer binding to human DC-SIGN and disruption of DC-SIGN interactions with HIV envelope glycoprotein. J Am Chem Soc 2010; 132:15130-2. [PMID: 20932025 PMCID: PMC3091610 DOI: 10.1021/ja1056714] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Indexed: 01/18/2023]
Abstract
Noncovalent interactions between complex carbohydrates and proteins drive many fundamental processes within biological systems, including human immunity. In this report we aimed to investigate the potential of mannose-containing glycopolymers to interact with human DC-SIGN and the ability of these glycopolymers to inhibit the interactions between DC-SIGN and the HIV envelope glycoprotein gp120. We used a library of glycopolymers that are prepared via combination of copper-mediated living radical polymerization and azide-alkyne [3+2] Huisgen cycloaddition reaction. We demonstrate that a relatively simple glycopolymer can effectively prevent the interactions between a human dendritic cell associated lectin (DC-SIGN) and the viral envelope glycoprotein gp120. This approach may give rise to novel insights into the mechanisms of HIV infection and provide potential new therapeutics.
Collapse
|
205
|
Chung WH, Dao RL, Chen LK, Hung SI. The role of genetic variants in human longevity. Ageing Res Rev 2010; 9 Suppl 1:S67-78. [PMID: 20708717 PMCID: PMC7105197 DOI: 10.1016/j.arr.2010.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 01/04/2023]
Abstract
Human longevity is a complex phenotype with a strong genetic predisposition. Increasing evidence has revealed the genetic antecedents of human longevity. This article aims to review the data of various case/control association studies that examine the difference in genetic polymorphisms between long-lived people and younger subjects across different human populations. There are more than 100 candidate genes potentially involved in human longevity; this article particularly focuses on genes of the insulin/IGF-1 pathway, FOXO3A, FOXO1A, lipoprotein metabolism (e.g., APOE and PON1), and cell-cycle regulators (e.g., TP53 and P21). Since the confirmed genetic components for human longevity are few to date, further precise assessment of the genetic contributions is required. Gaining a better understanding of the contribution of genetics to human longevity may assist in the design of improved treatment methods for age-related diseases, delay the aging process, and, ultimately, prolong the human lifespan.
Collapse
|
206
|
Machado E, Kandzia S, Carilho R, Altevogt P, Conradt HS, Costa J. N-Glycosylation of total cellular glycoproteins from the human ovarian carcinoma SKOV3 cell line and of recombinantly expressed human erythropoietin. Glycobiology 2010; 21:376-86. [DOI: 10.1093/glycob/cwq170] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
207
|
Plazolles N, Humbert JM, Vachot L, Verrier B, Hocke C, Halary F. Pivotal advance: The promotion of soluble DC-SIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells. J Leukoc Biol 2010; 89:329-42. [PMID: 20940323 PMCID: PMC7166666 DOI: 10.1189/jlb.0710386] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DC-SIGN is a member of the C-type lectin family. Mainly expressed by myeloid DCs, it is involved in the capture and internalization of pathogens, including human CMV. Several transcripts have been identified, some of which code for putative soluble proteins. However, little is known about the regulation and the functional properties of such putative sDC-SIGN variants. To better understand how sDC-SIGN could be involved in CMV infection, we set out to characterize biochemical and functional properties of rDC-SIGN as well as naturally occurring sDC-SIGN. We first developed a specific, quantitative ELISA and then used it to detect the presence sDC-SIGN in in vitro-generated DC culture supernatants as cell-free secreted tetramers. Next, in correlation with their inflammatory status, we demonstrated the presence of sDC-SIGN in several human body fluids, including serum, joint fluids, and BALs. CMV infection of human tissues was also shown to promote sDC-SIGN release. Based on the analysis of the cytokine/chemokine content of sDC-SIGN culture supernatants, we identified IFN-γ and CXCL8/IL-8 as inducers of sDC-SIGN production by MoDC. Finally, we demonstrated that sDC-SIGN was able to interact with CMV gB under native conditions, leading to a significant increase in MoDC CMV infection. Overall, our results confirm that sDC-SIGN, like its well-known, counterpart mDC-SIGN, may play a pivotal role in CMV-mediated pathogenesis.
Collapse
Affiliation(s)
- N Plazolles
- CNRS, UMR 5234, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
208
|
Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A 2010; 107:18587-92. [PMID: 20937880 DOI: 10.1073/pnas.1009388107] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Surface Ig (sIg) of follicular lymphoma (FL) is vital for tumor cell survival. We found previously that the Ig in FL is unusual, because the variable region genes carry sequence motifs for N-glycan addition. These are introduced by somatic mutation and are tumor specific. Unexpectedly, added glycans terminate at high mannose, suggesting a potentially important interaction of FL cells with mannose-binding lectins of the innate immune system. We have now identified mannosylated IgM at the surface of primary lymphoma cells. Recombinant lectin domains of the mannose receptor (MR) or DC-SIGN bind mannosylated Igs in vitro and bind to FL cells, signaling sIgM-associated increases in intracellular Ca(2+). Lectins also bind to normal B cells but fail to signal. In contrast, anti-Ig signaled similarly in both FL and normal B cells. Mannosylation patterns were mimicked by FL Ig-derived single-chain Fvs (scFv), providing probes for potential receptors. Mannosylated scFv bound specifically to the lectin domains of the MR and DC-SIGN and blocked signaling. Mannosylated scFv also bound to DC-SIGN on the surface of dendritic cells. This unique lymphoma-specific interaction of sIg with lectins of innate immunity reveals a potential route for microenvironmental support of tumor cells, mediated via the key B-cell receptor.
Collapse
|
209
|
Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Protein Cell 2010; 1:859-70. [PMID: 21203928 PMCID: PMC4875224 DOI: 10.1007/s13238-010-0101-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
Dendritic-cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN; CD209) has an important role in mediating adherence of Mycobacteria species, including M. tuberculosis and M. bovis BCG to human dendritic cells and macrophages, in which these bacteria can survive intracellularly. DC-SIGN is a C-type lectin, and interactions with mycobacterial cells are believed to occur via mannosylated structures on the mycobacterial surface. Recent studies suggest more varied modes of binding to multiple mycobacterial ligands. Here we identify, by affinity chromatography and mass-spectrometry, four novel ligands of M. bovis BCG that bind to DC-SIGN. The novel ligands are chaperone protein DnaK, 60 kDa chaperonin-1 (Cpn60.1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and lipoprotein lprG. Other published work strongly suggests that these are on the cell surface. Of these ligands, lprG appears to bind DC-SIGN via typical proteinglycan interactions, but DnaK and Cpn60.1 binding do not show evidence of carbohydrate-dependent interactions. LprG was also identified as a ligand for DC-SIGNR (L-SIGN; CD299) and the M. tuberculosis orthologue of lprG has been found previously to interact with human toll-like receptor 2. Collectively, these findings offer new targets for combating mycobacterial adhesion and within-host survival, and reinforce the role of DCSIGN as an important host ligand in mycobacterial infection.
Collapse
|
210
|
Changyong G, Sun M, Li H, Brockmeyer N, Wu N. Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN(+) dendritic cells. Eur J Med Res 2010; 15:377-82. [PMID: 20952346 PMCID: PMC3351904 DOI: 10.1186/2047-783x-15-9-377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells (DC) are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40) is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4) and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN)(+) DC were analyzed by flow cytometry (FCM) and mixed lymphocyte reaction (MLR). Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC.
Collapse
Affiliation(s)
- G Changyong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, PR China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - M Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - H Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - N Brockmeyer
- Department of Dermatology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - N Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
211
|
Yabe R, Tateno H, Hirabayashi J. Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J 2010; 277:4010-26. [PMID: 20840590 PMCID: PMC7163941 DOI: 10.1111/j.1742-4658.2010.07792.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cell‐specific intracellular adhesion molecule‐3‐grabbing nonintegrin (DC‐SIGN) is a member of the C‐type lectin family selectively expressed on immune‐related cells. In the present study, we performed a systematic interaction analysis of DC‐SIGN and its related receptors, DC‐SIGN‐related protein (DC‐SIGNR) and liver and lymph node sinusoidal endothelial cell C‐type lectin (LSECtin) using frontal affinity chromatography (FAC). Carbohydrate‐recognition domains of the lectins, expressed as Fc–fusion chimeras, were immobilized to Protein A–Sepharose and subjected to quantitative FAC analysis using 157 pyridylaminated glycans. Both DC‐SIGN–Fc and DC‐SIGNR–Fc showed similar specificities for glycans containing terminal mannose and fucose, but great difference in affinity under the given experimental conditions. By contrast, LSECtin–Fc showed no affinity to these glycans. As a common feature, the DC‐SIGN‐related lectin–Fc chimeras, including LSECtin, exhibited binding affinity to mono‐ and/or bi‐antennary agalactosylated N‐glycans. The detailed FAC analysis further implied that the presence of terminal GlcNAc at the N‐acetylglucosaminyltransferase I position is a key determinant for the binding of these lectins to agalactosylated N‐glycans. By contrast, none of the lectins showed significant affinity to highly branched agalactosylated N‐glycans. All of the lectins expressed on the cells were able to mediate cellular adhesion to agalactosylated cells and endocytosis of a model glycoprotein, agalactosylated α1‐acid glycoprotein. In this context, we also identified three agalactosylated serum glycoproteins recognized by DC‐SIGN‐Fc (i.e. α‐2‐macroglobulin, serotransferrin and IgG heavy chain), by lectin blotting and MS analysis. Hence, we propose that ‘agalactosylated N‐glycans’ are candidate ligands common to these lectins.
Collapse
Affiliation(s)
- Rikio Yabe
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
212
|
Garber KCA, Wangkanont K, Carlson EE, Kiessling LL. A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN. Chem Commun (Camb) 2010; 46:6747-9. [PMID: 20717628 DOI: 10.1039/c0cc00830c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Shikimic acid can be transformed into monovalent and multivalent glycomimetics that target different members of the C-type lectin class, including DC-SIGN, a dendritic cell lectin that facilitates HIV transmission.
Collapse
Affiliation(s)
- Kathleen C A Garber
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
213
|
Obermajer N, Svajger U, Jeras M, Sattin S, Bernardi A, Anderluh M. An assay for functional dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) inhibitors of human dendritic cell adhesion. Anal Biochem 2010; 406:222-9. [PMID: 20667443 DOI: 10.1016/j.ab.2010.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/12/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
We report a new dendritic cell adhesion assay, using either immature or mature dendritic cells, for identifying functional dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) inhibitors. Because immature dendritic cells are responsible for pathogen binding and invasion, this in vitro assay provides an important link between in vitro results and pathogen-based in vivo assays. Furthermore, this assay does not require laborious expression, refolding, and purification of DC-SIGN carbohydrate recognition domain or extracellular domain as receptor-based assays. The assay power evaluated with Z and Z' parameters enables screening of compound libraries and determination of IC(50) values in the first stage of DC-SIGN inhibitor development.
Collapse
Affiliation(s)
- Natasa Obermajer
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
214
|
Ilyas R, Wallis R, Soilleux EJ, Townsend P, Zehnder D, Tan BK, Sim RB, Lehnert H, Randeva HS, Mitchell DA. High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus. Immunobiology 2010; 216:126-31. [PMID: 20674073 DOI: 10.1016/j.imbio.2010.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 12/11/2022]
Abstract
Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins.
Collapse
Affiliation(s)
- Rebecca Ilyas
- Clinical Sciences Research Institute, University of Warwick, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
SIGNR1 ligation on murine peritoneal macrophages induces IL-12 production through NFκB activation. Glycoconj J 2010; 27:525-31. [DOI: 10.1007/s10719-010-9298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/14/2022]
|
216
|
François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2010; 32:349-87. [PMID: 20577974 PMCID: PMC7168447 DOI: 10.1002/med.20216] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Twenty‐seven years after the discovery of HIV as the cause of AIDS more than 25 drugs directed against four different viral targets (i.e. reverse transcriptase, protease, integrase, envelope gp41) and one cellular target (i.e. CCR5 co‐receptor) are available for treatment. However, the search for an efficient vaccine is still ongoing. One of the main problems is the presence of a continuously evolving dense carbohydrate shield, consisting of N‐linked glycans that surrounds the virion and protects it against efficient recognition and persistent neutralization by the immune system. However, several lectins from the innate immune system specifically bind to these glycans in an attempt to process the virus antigens to provoke an immune response. Across a wide variety of different species in nature lectins can be found that can interact with the glycosylated envelope of HIV‐1 and can block the infection of susceptible cells by the virus. In this review, we will give an overview of the lectins from non‐mammalian origin that are endowed with antiviral properties and discuss the complex interactions between lectins of the innate immune system and HIV‐1. Also, attention will be given to different carbohydrate‐related modalities that can be exploited for antiviral chemotherapy. © 2010 Wiley Periodicals, Inc. Med Res Rev
Collapse
Affiliation(s)
- K O François
- Rega Institute for Medical Research, K. U. Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
217
|
A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol 2010; 84:8753-64. [PMID: 20573835 DOI: 10.1128/jvi.00554-10] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mannose-binding lectin (MBL) is a serum protein that plays an important role in host defenses as an opsonin and through activation of the complement system. The objective of this study was to assess the interactions between MBL and severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein (SARS-S). MBL was found to selectively bind to retroviral particles pseudotyped with SARS-S. Unlike several other viral envelopes to which MBL can bind, both recombinant and plasma-derived human MBL directly inhibited SARS-S-mediated viral infection. Moreover, the interaction between MBL and SARS-S blocked viral binding to the C-type lectin, DC-SIGN. Mutagenesis indicated that a single N-linked glycosylation site, N330, was critical for the specific interactions between MBL and SARS-S. Despite the proximity of N330 to the receptor-binding motif of SARS-S, MBL did not affect interactions with the ACE2 receptor or cathepsin L-mediated activation of SARS-S-driven membrane fusion. Thus, binding of MBL to SARS-S may interfere with other early pre- or postreceptor-binding events necessary for efficient viral entry.
Collapse
|
218
|
Recent advancements in cytotoxic T lymphocyte generation methods using carbohydrate-coated liposomes. J Biomed Biotechnol 2010; 2010:242539. [PMID: 20617143 PMCID: PMC2896661 DOI: 10.1155/2010/242539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/22/2010] [Indexed: 01/14/2023] Open
Abstract
Both tumor-specific CD4+ and CD8+ T cells have been identified, and the latter is known as a major effector of adaptive antitumor immune responses. Optimal antitumor immune responses are considered to require the concomitant activation of both CD8+ and CD4+ T cells and the additional selective activation of CD4+ T cells with helper, but not regulatory function. As optimal antitumor immune responses are generated by the concomitant activation of both T cell types, it is necessary for vaccine methods involving cytotoxic T-lymphocytes (CTLs) generation to possess a mechanism whereby antigen presenting cells can present administrated exogenous antigens on not only Major histocompatibility complex (MHC) class II, but also MHC class I molecules.
Collapse
|
219
|
Abstract
Surface plasmon resonance is a valuable tool to determine the affinity between glycoconjugates and sugar-binding proteins such as plant and animal lectins. The main interest of using such an approach is that neither the lectins - which are proteins - nor their ligands - natural compounds such as glycoproteins, oligosaccharides, polysaccharides, or synthetic glycoconjugates such as glycoclusters or neoglycoproteins - require any tag. Because lectins bear several binding sites, they behave like immunoglobulin eliciting avidity phenomena. This peculiarity may lead to erroneous results if special conditions are not applied. We obtained best and reproducible results when the lectin was immobilized and its ligands were used as soluble analytes. With heterogeneous glycoconjugates such as neoglycoproteins (which are heterogeneous in terms of nature, number, and position of sugar residues) or a mixture of oligosaccharides, the data may be more accurately gathered by using the Sips approach, which has been used to determine mean binding constants of polyclonal antibodies. With small analytes such as oligosaccharides, we found it convenient to determine binding constants by using an inhibitory approach: a neoglycoprotein (M (r) = approximately 80,000) was allowed to bind to the immobilized lectin and small oligosaccharides were used as inhibitors. With larger glycoconjugates such as peptides substituted with glycoclusters, direct binding measurements gave accurate results. Because of the availability of low-cost simple sugars (mono- or disaccharides) it is very convenient to use large concentrations of such carbohydrates to clean the sensor chips instead of more drastic cleaning solutions such as acids or alkali, in such a way that the immobilized lectin is stable for many experiments.
Collapse
|
220
|
Abstract
Immunoglobulin E (IgE) antibodies are key effector molecules in the allergic inflammatory response and are also involved in the protection against extracellular parasites. Allergic symptoms often develop early in life, and the intrauterine environment has been proposed to play an important role in affecting the risk of later allergy development. The placenta constitutes a selective barrier between the maternal and foetal circulation. Recently, we reported that maternal IgE antibodies are present on foetal macrophages in the villous tissue of the human placenta irrespective of maternal allergy status. This review discusses the presence of IgE antibodies in the human placenta and its possible roles in normal and pathologic pregnancy. It also deals with the relationship between placental IgE and development of allergy during childhood. A better understanding of the role of IgE in placenta could give us clues on how to prevent allergy development in the future generations.
Collapse
|
221
|
Raska M, Novak J. Involvement of Envelope-Glycoprotein Glycans in HIV-1 Biology and Infection. Arch Immunol Ther Exp (Warsz) 2010; 58:191-208. [DOI: 10.1007/s00005-010-0072-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/30/2009] [Indexed: 01/24/2023]
|
222
|
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010; 22:1397-405. [PMID: 20363321 PMCID: PMC7127357 DOI: 10.1016/j.cellsig.2010.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-κB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
Collapse
|
223
|
Recognition of secretory IgA by DC-SIGN: implications for immune surveillance in the intestine. Immunol Lett 2010; 131:59-66. [PMID: 20362001 DOI: 10.1016/j.imlet.2010.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/20/2010] [Accepted: 03/22/2010] [Indexed: 12/19/2022]
Abstract
Secretory IgA (SIgA), the predominant class of antibody in intestinal secretions, serves as the first line of defense against enteric infections. SIgA has also been proposed to function in immune surveillance, given that both SIgA and SIgA-antigen complexes are actively transported by Peyer's patch M cells from the intestinal lumen to sub-epithelial dendritic cells (DCs). The goal of the present study was to identify the receptor(s) potentially utilized by mucosal DCs to recognize and internalize SIgA. We demonstrate that human colostral SIgA is recognized by purified recombinant human DC-specific ICAM-3 grabbing nonintegrin (DC-SIGN) in a solid phase binding assay, as well as by DC-SIGN ectopically expressed on the surface of Chinese hamster ovary (CHO-S) cells. The interaction between SIgA and DC-SIGN was specific, given that it was Ca(2+)-dependent and inhibited by mannan. Moreover, SIgA bound to, and was internalized by, endogenous DC-SIGN expressed on THP-1 cells following monocyte to macrophage-like cell differentiation by stimulation with phorbol ester and interleukin-4. These data identify DC-SIGN as a putative receptor for SIgA, and reveal a mechanism by which DCs could collaborate with M cells in immune surveillance at mucosal surfaces.
Collapse
|
224
|
Sattin S, Daghetti A, Thépaut M, Berzi A, Sánchez-Navarro M, Tabarani G, Rojo J, Fieschi F, Clerici M, Bernardi A. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol 2010; 5:301-12. [PMID: 20085340 DOI: 10.1021/cb900216e] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV infection is pandemic in humans and is responsible for millions of deaths every year. The discovery of new cellular targets that can be used to prevent the infection process represents a new opportunity for developing more effective antiviral drugs. In this context, dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), a lectin expressed at the surface of immature dendritic cells and involved in the initial stages of HIV infection, is a promising therapeutic target. Herein we show the ability of a new tetravalent dendron containing four copies of a linear trimannoside mimic to inhibit the trans HIV infection process of CD4+ T lymphocytes at low micromolar range. This compound presents a high solubility in physiological media, a neglectable cytotoxicity, and a long-lasting effect and is based on carbohydrate-mimic units. Notably, the HIV antiviral activity is independent of viral tropism (X4 or R5). The formulation of this compound as a gel could allow its use as topical microbicide.
Collapse
Affiliation(s)
- Sara Sattin
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Anna Daghetti
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Michel Thépaut
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- CNRS, UMR 5075, 38000 Grenoble, France
| | - Angela Berzi
- Dipartimento di Scienze Precliniche, Università degli Studi di Milano, via GB Grassi 74, 20157 Milano, Italy
| | - Macarena Sánchez-Navarro
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Georges Tabarani
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Javier Rojo
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Franck Fieschi
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Mario Clerici
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, via Flli Cervi 93, 20090 Segrate, Italy
- Don C. Gnocchi ONLUS Foundation IRCCS, Via Capecelatro 66, 20148 Milano, Italy
| | - Anna Bernardi
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
225
|
Zhu D, Kawana-Tachikawa A, Iwamoto A, Kitamura Y. Influence of polymorphism in dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related (DC-SIGNR) gene on HIV-1 trans-infection. Biochem Biophys Res Commun 2010; 393:598-602. [PMID: 20152818 DOI: 10.1016/j.bbrc.2010.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 02/05/2010] [Indexed: 11/26/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and DC-SIGN-related (DC-SIGNR) molecules on the cell surface are known to enhance human immunodeficiency virus type 1 (HIV-1) infection by capturing the virions and transmitting them to CD4+ T-cell, a process termed trans-infection. The neck region and carbohydrate recognition domain of the two proteins are important for efficient binding to the HIV-1 envelope protein. DC-SIGNR is polymorphic in Exons 4 and 5 that encode the neck region and carbohydrate recognition domain, respectively; the former contains a variable number of tandem repeats, and the latter the SNP (rs2277998). Since it remains unclear whether the DC-SIGNR polymorphism is related to the risk of HIV-1 infection, we tested possible effects of the polymorphism on HIV-1 trans-infection efficiency, by constructing six kinds of cDNAs encoding DC-SIGNR variants with various numbers of repeat units and various SNP. We were able to express the variants on the surface of Raji cells, a human B cell line. Flow cytometry showed that all the tested DC-SIGNR molecules were efficiently expressed on the cell surface at various levels; the assay for HIV trans-infection efficacy showed that all the tested variants had that activity with different efficacy levels. We found a correlation between the HIV trans-infection efficiency and the mean fluorescent intensity of DC-SIGNR expression (R(2)=0.95). Thus, our results suggest that the variation of the tested DC-SIGNR genotypes affects the efficacy of trans-infection by affecting the amounts of the protein expressed on the cell surface.
Collapse
Affiliation(s)
- Dayong Zhu
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
226
|
Martínez-Avila O, Hijazi K, Marradi M, Clavel C, Campion C, Kelly C, Penadés S. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chemistry 2010; 15:9874-88. [PMID: 19681073 DOI: 10.1002/chem.200900923] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The HIV envelope glycoprotein gp120 takes advantage of the high-mannose clusters on its surface to target the C-type lectin dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) on dendritic cells. Mimicking the cluster presentation of oligomannosides on the virus surface is a strategy for designing carbohydrate-based antiviral agents. Bio-inspired by the cluster presentation of gp120, we have designed and prepared a small library of multivalent water-soluble gold glyconanoparticles (manno-GNPs) presenting truncated (oligo)mannosides of the high-mannose undecasaccharide Man(9)GlcNAc(2) and have tested them as inhibitors of DC-SIGN binding to gp120. These glyconanoparticles are ligands for DC-SIGN, which also interacts in the early steps of infection with a large number of pathogens through specific recognition of associated glycans. (Oligo)mannosides endowed with different spacers ending in thiol groups, which enable attachment of the glycoconjugates to the gold surface, have been prepared. manno-GNPs with different spacers and variable density of mannose (oligo)saccharides have been obtained and characterized. Surface plasmon resonance (SPR) experiments with selected manno-GNPs have been performed to study their inhibition potency towards DC-SIGN binding to gp120. The tested manno-GNPs completely inhibit the binding from the micro- to the nanomolar range, while the corresponding monovalent mannosides require millimolar concentrations. manno-GNPs containing the disaccharide Manalpha1-2Manalpha are the best inhibitors, showing more than 20 000-fold increased activity (100 % inhibition at 115 nM) compared to the corresponding monomeric disaccharide (100 % inhibition at 2.2 mM). Furthermore, increasing the density of dimannoside on the gold platform from 50 to 100 % does not improve the level of inhibition.
Collapse
Affiliation(s)
- Olga Martínez-Avila
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterial Unit, CIC biomaGUNE and CIBER-BBN, Parque Tecnológico, San Sebastián, Spain
| | | | | | | | | | | | | |
Collapse
|
227
|
Chung NPY, Breun SKJ, Bashirova A, Baumann JG, Martin TD, Karamchandani JM, Rausch JW, Le Grice SFJ, Wu L, Carrington M, KewalRamani VN. HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN). J Biol Chem 2010; 285:2100-12. [PMID: 19833723 PMCID: PMC2804366 DOI: 10.1074/jbc.m109.030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/23/2009] [Indexed: 11/06/2022] Open
Abstract
In this study, we identify determinants in dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) necessary for human immunodeficiency virus, type 1 (HIV-1), transmission. Although human B cell lines expressing DC-SIGN efficiently capture and transmit HIV-1 to susceptible target cells, cells expressing the related molecule liver/lymph node-specific ICAM-3-grabbing nonintegrin (L-SIGN) do not. To understand the differences between DC-SIGN and L-SIGN that affect HIV-1 interactions, we developed Raji B cell lines expressing different DC-SIGN/L-SIGN chimeras. Testing of the chimeras demonstrated that replacement of the DC-SIGN carbohydrate-recognition domain (CRD) with that of L-SIGN was sufficient to impair virus binding and prevent transmission. Conversely, the ability to bind and transmit HIV-1 was conferred to L-SIGN chimeras containing the DC-SIGN CRD. We identified Trp-258 in the DC-SIGN CRD to be essential for HIV-1 transmission. Although introduction of a K270W mutation at the same position in L-SIGN was insufficient for HIV-1 binding, an L-SIGN mutant molecule with K270W and a C-terminal DC-SIGN CRD subdomain transmitted HIV-1. These data suggest that DC-SIGN structural elements distinct from the oligosaccharide-binding site are required for HIV-1 glycoprotein selectivity.
Collapse
Affiliation(s)
- Nancy P. Y. Chung
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Sabine K. J. Breun
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany
| | - Arman Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Joerg G. Baumann
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany
| | - Thomas D. Martin
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Jaideep M. Karamchandani
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Jason W. Rausch
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Stuart F. J. Le Grice
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Li Wu
- the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Vineet N. KewalRamani
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
228
|
Abstract
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). DC-SIGN is a C-type lectin receptor that recognizes N-linked high-mannose oligosaccharides and branched fucosylated structures. It is now clear that the biological role of DC-SIGN is two-fold. It is primarily expressed by dendritic cells and mediates important functions necessary for the induction of successful immune responses that are essential for the clearance of microbial infections, such as the capture, destruction, and presentation of microbial pathogens to induce successful immune responses. Yet, on the other hand, pathogens may also exploit DC-SIGN to modulate DC functioning thereby skewing the immune response and promoting their own survival. This chapter presents an overview of the structure of DC-SIGN and its expression pattern among immune cells. The current state of knowledge of DC-SIGN-carbohydrate interactions is discussed and how these interactions influence dendritic cell functioning is examined. The molecular aspects that underlie the selectivity of DC-SIGN for mannose-and fucose-containing carbohydrates are detailed. Furthermore, the chapter discusses the role of DC-SIGN in dendritic cell biology and how certain bacterial pathogens exploit DC-SIGN to escape immune surveillance.
Collapse
|
229
|
Sierra-Filardi E, Estecha A, Samaniego R, Fernández-Ruiz E, Colmenares M, Sánchez-Mateos P, Steinman RM, Granelli-Piperno A, Corbí AL. Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Mol Immunol 2010; 47:840-8. [DOI: 10.1016/j.molimm.2009.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 09/20/2009] [Accepted: 09/30/2009] [Indexed: 12/26/2022]
|
230
|
Go EP, Chang Q, Liao HX, Sutherland LL, Alam SM, Haynes BF, Desaire H. Glycosylation site-specific analysis of clade C HIV-1 envelope proteins. J Proteome Res 2009; 8:4231-42. [PMID: 19610667 DOI: 10.1021/pr9002728] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive glycosylation of HIV-1 envelope proteins (Envs), gp120/gp41, is known to play an important role in evasion of host immune response by masking key neutralization epitopes and presenting the Env glycosylation as "self" to the host immune system. The Env glycosylation is mostly conserved but continues to evolve to modulate viral infectivity. Thus, profiling Env glycosylation and distinguishing interclade and intraclade glycosylation variations are necessary components in unraveling the effects of glycosylation on Env's immunogenicity. Here, we describe a mass spectrometry-based approach to characterize the glycosylation profiles of two rVV-expressed clade C Envs by identifying the glycan motifs on each glycosylation site and determining the degree of glycosylation site occupancy. One Env is a wild-type Env, while the other is a synthetic "consensus" Env (C.CON). The observed differences in the glycosylation profiles between the two clade C Envs show that C.CON has more unutilized sites and high levels of high mannose glycans; these features mimic the glycosylation profile of a Group M consensus immunogen, CON-S. Our results also reveal a clade-specific glycosylation pattern. Discerning interclade and intraclade glycosylation variations could provide valuable information in understanding the molecular differences among the different HIV-1 clades and in designing new Env-based immunogens.
Collapse
Affiliation(s)
- Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Li H, Wang CY, Wang JX, Tang NLS, Xie L, Gong YY, Yang Z, Xu LY, Kong QP, Zhang YP. The neck-region polymorphism of DC-SIGNR in peri-centenarian from Han Chinese population. BMC MEDICAL GENETICS 2009; 10:134. [PMID: 20003397 PMCID: PMC2797785 DOI: 10.1186/1471-2350-10-134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022]
Abstract
Background DC-SIGNR (also called CD209L) has been extensively studied on its role in host genetic predisposition to viral infection. In particular, variable number tandem repeat (VNTR) of the neck-region of DC-SIGNR is highly polymorphic and the polymorphism has been investigated for genetic predisposition to various infectious diseases, though conflicting results had been reported. As infection is a major cause of human death and a mechanism of natural selection, we hypothesized that VNTR polymorphism of DC-SIGNR might have an effect on human life span. Methods Here we collected 361 peri-centenarian individuals (age ≥94 for female and age ≥90 for male) and 342 geographically matched controls (age 22-53, mean 35.0 ± 12.0) from Han Chinese. The VNTR polymorphism of the neck region was determined by PCR and genotype was called by separating the PCR products in agarose gel. Results A total of 11 genotypes and 5 alleles were found in our population. The genotype distribution, allele frequencies and homozygote proportion did not show a significant difference between peri-centenarian and control group. As gender differences in lifespan are ubiquitously observed throughout the animal kingdom, we then stratified the samples by gender. There was more 6/7 genotypes in female peri-centenarian group than that in female control group, at a marginal level of significance (5.56 vs. 1.28%, p = 0.041). The difference was not significant after correction by Bonferroni method. It suggests a possible differential effect of DC-SIGNR VNTR genotypes between sexes. Further studies are warranted to confirm our preliminary findings and investigate the mechanisms of the underlying functions. Conclusions Our study indicated that there was absence of association between the neck region polymorphism of DC-SIGNR and longevity in Han Chinese population. But the question of whether the DC-SIGNR could affect longevity in a gender-specific pattern remains open.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Coombs PJ, Harrison R, Pemberton S, Quintero-Martinez A, Parry S, Haslam SM, Dell A, Taylor ME, Drickamer K. Identification of novel contributions to high-affinity glycoprotein-receptor interactions using engineered ligands. J Mol Biol 2009; 396:685-96. [PMID: 20004209 PMCID: PMC2824085 DOI: 10.1016/j.jmb.2009.11.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/22/2023]
Abstract
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.
Collapse
|
233
|
Ehlers S. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. Eur J Cell Biol 2009; 89:95-101. [PMID: 19892432 DOI: 10.1016/j.ejcb.2009.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is recognized by pattern recognition receptors on macrophages and dendritic cells, thereby triggering phagocytosis, antigen presentation to T cells and cytokine secretion. The dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN) is a calcium-dependent carbohydrate-binding protein with specificity for mannose-containing glycoconjugates and fucose-containing Lewis antigens. Mannosylated moieties of the mycobacterial cell wall, such as mannose-capped lipoarabinomannan (manLAM) or higher-order phosphatidylinositol-mannosides (PIMs) of Mtb, were previously shown to bind to DC-SIGN on immature dendritic cells and macrophage subpopulations. This interaction reportedly impaired dendritic cell maturation, modulated cytokine secretion by phagocytes and dendritic cells and was postulated to cause suppression of protective immunity to TB. However, experimental Mtb infections in mice transgenic for human DC-SIGN revealed that, instead of favoring immune evasion of mycobacteria, DC-SIGN may promote host protection by limiting tissue pathology. Furthermore, infection studies with mycobacterial strains genetically engineered to lack manLAM or PIMs demonstrated that the manLAM/PIM-DC-SIGN interaction was not critical for cytokine secretion in vitro and protective immunity in vivo. The dominant Mtb-derived ligands for DC-SIGN are presently unknown, and a major role of DC-SIGN in the immune response to Mtb infection may lie in its capacity to maintain a balanced inflammatory state during chronic TB.
Collapse
Affiliation(s)
- Stefan Ehlers
- Microbial Inflammation Research, Research Center Borstel, Parkallee 1, 23845 Borstel, Germany.
| |
Collapse
|
234
|
Kang ML, Cho CS, Yoo HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 2009; 27:857-865. [DOI: 10.1016/j.biotechadv.2009.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/24/2009] [Accepted: 06/27/2009] [Indexed: 12/01/2022]
|
235
|
Geijtenbeek TBH, den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol 2009; 4:879-90. [PMID: 19722841 DOI: 10.2217/fmb.09.51] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) tailor adaptive immune responses to specific pathogens. This diversity is mediated by cooperation between different pattern recognition receptors that are triggered by specific pathogens. DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a pattern recognition receptor with a broad pathogen recognition specificity as a result of its affinity for mannose and fucose carbohydrates. DC-SIGN induces very diverse immune responses to different pathogens, such as bacteria, fungi, helminths and viruses. Recent data show that DC-SIGN triggering by pathogens modulates Toll-like receptor signaling at the level of nuclear factor-kappaB. In this article, we will discuss the signaling pathways induced by DC-SIGN and its central role in the regulation of adaptive immunity to bacterial, fungal and viral pathogens.
Collapse
Affiliation(s)
- Teunis B H Geijtenbeek
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, 1007 MC Amsterdam, The Netherlands.
| | | | | |
Collapse
|
236
|
Segmented helical structure of the neck region of the glycan-binding receptor DC-SIGNR. J Mol Biol 2009; 394:613-20. [PMID: 19835887 PMCID: PMC2971551 DOI: 10.1016/j.jmb.2009.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022]
Abstract
Carbohydrate-recognition domains (CRDs) in the glycan-binding receptors DC-SIGN (dendritic-cell-specific intercellular adhesion molecule 1-grabbing nonintegrin; CD209) and DC-SIGNR (DC-SIGN-related receptor, also known as L-SIGN and variously designated CD209L and CD299) are projected from the membrane surface by extended neck domains containing multiple repeats of a largely conserved 23-amino-acid sequence motif. Crystals of a fragment of the neck domain of DC-SIGNR containing multiple repeats in which each molecule extends through multiple unit cells, such that the observed crystallographic asymmetric unit represents one repeat averaged over six repeats of the protein, have been obtained. The repeats are largely α-helical. Based on the structure and arrangement of the repeats in the crystal, the neck region can be described as a series of four-helix bundles connected by short, non-helical linkers. Combining the structure of the isolated neck domain with a previously determined overlapping structure of the distal end of the neck region with the CRDs attached provides a model of the almost-complete extracellular portion of the receptor. The results are consistent with previous characterization of the extended structure for the isolated neck region and the extracellular domain. The organization of the neck suggests how CRDs may be disposed differently in DC-SIGN compared with DC-SIGNR and in variant forms of DC-SIGNR assembled from polypeptides with different numbers of repeats in the neck domain.
Collapse
|
237
|
Singh SK, Stephani J, Schaefer M, Kalay H, García-Vallejo JJ, den Haan J, Saeland E, Sparwasser T, van Kooyk Y. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol Immunol 2009; 47:164-74. [PMID: 19818504 DOI: 10.1016/j.molimm.2009.09.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/09/2009] [Indexed: 02/05/2023]
Abstract
Dendritic cells have gained much interest in the field of anti-cancer vaccine development because of their central function in immune regulation. One of the receptors that facilitate DC-specific targeting of antigens is the DC-specific C-type lectin DC-SIGN. Although DC-SIGN is specifically expressed on human DCs, its murine homologue is not present on any murine DC subsets, which makes in vivo evaluation of potential DC-SIGN targeting vaccines very difficult. Here we describe the use of DC-SIGN transgenic mice, as a good model system to evaluate DC-SIGN targeting vaccines. We demonstrate that glycan modification of OVA with DC-SIGN targeting glycans, targets antigen specifically to bone marrow (BM)** derived DCs and splenic DCs. Glycan modification of OVA with Lewis X or Lewis B oligosaccharides, that target DC-SIGN transgenic DCs, resulted in efficient 10-fold induction of OT-II compared to unmodified OVA. Interestingly, glycan modified OVA proteins were significantly cross-presented to OT-I T cells by wild type DC, 10-fold more than native OVA, and the expression of DC-SIGN further enhanced this cross-presentation. Targeting of glycosylated OVA was neither accompanied with any DC maturation, nor the production of inflammatory or anti-inflammatory cytokines. Thus, we conclude that glycan modification of antigens and targeting to DC-SIGN enhance both CD4 and CD8 T cell responses. Furthermore, our data demonstrate that DC-SIGN transgenic mice are valuable tool for optimisation and efficiency testing of DC vaccination strategies that are designed to target in particular the human DC-SIGN receptor.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Geurtsen J, Chedammi S, Mesters J, Cot M, Driessen NN, Sambou T, Kakutani R, Ummels R, Maaskant J, Takata H, Baba O, Terashima T, Bovin N, Vandenbroucke-Grauls CMJE, Nigou J, Puzo G, Lemassu A, Daffé M, Appelmelk BJ. Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. THE JOURNAL OF IMMUNOLOGY 2009; 183:5221-31. [PMID: 19783687 DOI: 10.4049/jimmunol.0900768] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis possesses a variety of immunomodulatory factors that influence the host immune response. When the bacillus encounters its target cell, the outermost components of its cell envelope are the first to interact. Mycobacteria, including M. tuberculosis, are surrounded by a loosely attached capsule that is mainly composed of proteins and polysaccharides. Although the chemical composition of the capsule is relatively well studied, its biological function is only poorly understood. The aim of this study was to further assess the functional role of the mycobacterial capsule by identifying host receptors that recognize its constituents. We focused on alpha-glucan, which is the dominant capsular polysaccharide. Here we demonstrate that M. tuberculosis alpha-glucan is a novel ligand for the C-type lectin DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin). By using related glycogen structures, we show that recognition of alpha-glucans by DC-SIGN is a general feature and that the interaction is mediated by internal glucosyl residues. As for mannose-capped lipoarabinomannan, an abundant mycobacterial cell wall-associated glycolipid, binding of alpha-glucan to DC-SIGN stimulated the production of immunosuppressive IL-10 by LPS-activated monocyte-derived dendritic cells. By using specific inhibitors, we show that this IL-10 induction was DC-SIGN-dependent and also required acetylation of NF-kappaB. Finally, we demonstrate that purified M. tuberculosis alpha-glucan, in contrast to what has been reported for fungal alpha-glucan, was unable to activate TLR2.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Carlson TK, Torrelles JB, Smith K, Horlacher T, Castelli R, Seeberger PH, Crouch EC, Schlesinger LS. Critical role of amino acid position 343 of surfactant protein-D in the selective binding of glycolipids from Mycobacterium tuberculosis. Glycobiology 2009; 19:1473-84. [PMID: 19684355 DOI: 10.1093/glycob/cwp122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Surfactant protein D (SP-D), a lectin that recognizes carbohydrates via its C-type carbohydrate recognition domains (CRDs), regulates Mycobacterium tuberculosis (M.tb)-macrophage interactions via recognition of M.tb mannosylated cell wall components. SP-D binds to, agglutinates, and reduces phagocytosis and intracellular growth of M.tb. Species-specific variations in the CRD amino acid sequence contribute to carbohydrate recognition preferences and have been exploited to enhance the antimicrobial properties of SP-D in vitro. Here, we characterized the binding interaction between several wild-type and mutant SP-D neck + CRD trimeric subunits (NCRDs) and pathogenic and nonpathogenic mycobacterial species. Specific amino acid substitutions (i.e., the 343-amino-acid position) that flank the carbohydrate binding groove led to significant increases in binding of only virulent and attenuated M.tb strains and to a lesser extent M. marinum, whereas there was negligible binding to M. avium complex and M. smegmatis. Moreover, a nonconserved mutation at the critical 321-amino-acid position (involved in Ca(2+) coordination) abrogated binding to M.tb and M. marinum. We further characterized the binding of NCRDs to the predominant surface-exposed mannosylated lipoglycans of the M.tb cell envelope. Results showed a binding pattern that is dependent on the nature of the side chain of the 343-amino-acid position flanking the SP-D CRD binding groove and the nature of the terminal mannosyl sugar linkages of the mycobacterial lipoglycans. We conclude that the 343 position is critical in defining the binding pattern of SP-D proteins to M.tb and its mannosylated cell envelope components.
Collapse
Affiliation(s)
- Tracy K Carlson
- Division of Infectious Diseases, Department of Internal Medicine, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Capture and transmission of HIV-1 by the C-type lectin L-SIGN (DC-SIGNR) is inhibited by carbohydrate-binding agents and polyanions. Antiviral Res 2009; 83:61-70. [PMID: 19514109 DOI: 10.1016/j.antiviral.2009.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It was recently shown that capture of HIV-1 by DC-SIGN-expressing cells and the subsequent transmission of HIV to CD4+ T-lymphocytes can be prevented by carbohydrate-binding agents (CBAs), whereas polyanions were unable to block virus capture by DC-SIGN. In this study, we could show that a short pre-exposure of HIV-1 to both mannose- and N-acetylglucosamine (GlcNAc)-specific CBAs or polyanions dose-dependently prevented virus capture by L-SIGN-expressing 293T-REx/L-SIGN cells and subsequent syncytia formation in co-cultures of the drug-exposed HIV-1-captured 293T-REx/L-SIGN cells and uninfected C8166 CD4+ T-lymphocytes. Additionally, the inhibitory potential of the compounds against L-SIGN-mediated HIV-1 capture and transmission was more pronounced than observed for DC-SIGN expressing293T-REx/DC-SIGN cells. The excess value of CBAs and polyanions to prevent HIV-1 capture and transmission by DC-SIGN and L-SIGN-expressing cells to susceptible T-lymphocytes could be of interest for the development of new drug leads targeting HIV entry/fusion.
Collapse
|
241
|
den Dunnen J, Gringhuis SI, Geijtenbeek TBH. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother 2009; 58:1149-57. [PMID: 18998127 PMCID: PMC11030075 DOI: 10.1007/s00262-008-0615-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
Effective immune responses depend on the recognition of pathogens by dendritic cells (DCs) through pattern recognition receptors (PRRs). These receptors induce specific signaling pathways that lead to the induction of immune responses against the pathogens. It is becoming evident that C-type lectins are also important PRRs. In particular, the C-type lectin DC-SIGN has emerged as a key player in the induction of immune responses against numerous pathogens by modulating TLR-induced activation. Recent reports have begun to elucidate the molecular mechanisms underlying these immune responses. Upon pathogen binding, DC-SIGN induces an intracellular signaling pathway with a central role for the serine/threonine kinase Raf-1. For several pathogens that interact with DC-SIGN, including Mycobacterium tuberculosis and HIV-1, Raf-1 activation leads to acetylation of NF-kappaB subunit p65, which induces specific gene transcription profiles. In addition, other DC-SIGN-ligands induce different signaling pathways downstream of Raf-1, indicating that DC-SIGN-signaling is tailored to the pathogen. In this review we will discuss in detail the current knowledge about DC-SIGN signaling and its implications on immunity.
Collapse
Affiliation(s)
- Jeroen den Dunnen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, P.O. Box 7057, 1007 MC Amsterdam, The Netherlands
| | - Sonja I. Gringhuis
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, P.O. Box 7057, 1007 MC Amsterdam, The Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, P.O. Box 7057, 1007 MC Amsterdam, The Netherlands
| |
Collapse
|
242
|
Martínez-Ávila O, Bedoya LM, Marradi M, Clavel C, Alcamí J, Penadés S. Multivalent Manno-Glyconanoparticles Inhibit DC-SIGN-Mediated HIV-1 Trans-Infection of Human T Cells. Chembiochem 2009; 10:1806-9. [DOI: 10.1002/cbic.200900294] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
243
|
Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proc Natl Acad Sci U S A 2009; 106:11524-9. [PMID: 19553201 DOI: 10.1073/pnas.0901783106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The dendritic cell receptor DC-SIGN mediates pathogen recognition by binding to glycans characteristic of pathogen surfaces, including those found on HIV. Clustering of carbohydrate-binding sites in the receptor tetramer is believed to be critical for targeting of pathogen glycans, but the arrangement of these sites remains poorly understood. Surface force measurements between apposed lipid bilayers displaying the extracellular domain of DC-SIGN and a neoglycolipid bearing an oligosaccharide ligand provide evidence that the receptor is in an extended conformation and that glycan docking is associated with a conformational change that repositions the carbohydrate-recognition domains during ligand binding. The results further show that the lateral mobility of membrane-bound ligands enhances the engagement of multiple carbohydrate-recognition domains in the receptor oligomer with appropriately spaced ligands. These studies highlight differences between pathogen targeting by DC-SIGN and receptors in which binding sites at fixed spacing bind to simple molecular patterns.
Collapse
|
244
|
Tabarani G, Thépaut M, Stroebel D, Ebel C, Vivès C, Vachette P, Durand D, Fieschi F. DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain. J Biol Chem 2009; 284:21229-40. [PMID: 19502234 DOI: 10.1074/jbc.m109.021204] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DC-SIGN is a C-type lectin receptor of dendritic cells and is involved in the early stages of numerous infectious diseases. DC-SIGN is organized into a tetramer enabling multivalent interaction with pathogens. Once formed, the DC-SIGN-pathogen complex can be internalized into compartments of increasing acidity. We have studied the pH dependence of the oligomerization state and conformation of the entire extracellular domain and neck region. We present evidence for equilibrium between the monomeric and tetrameric states of the extracellular domain, which exhibits a marked dependence with respect to both pH and ionic strength. Using solution x-ray scattering we have obtained a molecular envelope of the extracellular domain in which a model has been built. Our results highlight the central role of the neck domain in the pH-sensitive control of the oligomerization state, in the extended conformation of the protein, and in carbohydrate recognition domain organization and presentation. This work opens new insight into the molecular mechanism of ligand release and points to new avenues to block the first step of this important infection pathway.
Collapse
|
245
|
Hacker K, White L, de Silva AM. N-linked glycans on dengue viruses grown in mammalian and insect cells. J Gen Virol 2009; 90:2097-106. [PMID: 19494052 DOI: 10.1099/vir.0.012120-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study compared the ability of mosquito and mammalian cell-derived dengue virus (DENV) to infect human dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN)-expressing cells and characterized the structure of envelope (E) protein N-linked glycans on DENV derived from the two cell types. DENVs derived from both cell types were equally effective at infecting DC-SIGN-expressing human monocytes and dendritic cells. The N-linked glycans on mosquito cell-derived virus were a mix of high-mannose and paucimannose glycans. In virus derived from mammalian cells, the N-linked glycans were a mix of high-mannose and complex glycans. These results indicate that N-linked glycans are incompletely processed during DENV egress from cells, resulting in high-mannose glycans on viruses derived from both cell types. Studies with full-length and truncated E protein demonstrated that incomplete processing was most likely a result of the poor accessibility of glycans on the membrane-anchored protein.
Collapse
Affiliation(s)
- Kari Hacker
- Department of Microbiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
246
|
Graham SA, Jégouzo SAF, Yan S, Powlesland AS, Brady JP, Taylor ME, Drickamer K. Prolectin, a glycan-binding receptor on dividing B cells in germinal centers. J Biol Chem 2009; 284:18537-44. [PMID: 19419970 PMCID: PMC2709368 DOI: 10.1074/jbc.m109.012807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolectin, a previously undescribed glycan-binding receptor, has been identified by re-screening of the human genome for genes encoding proteins containing potential C-type carbohydrate-recognition domains. Glycan array analysis revealed that the carbohydrate-recognition domain in the extracellular domain of the receptor binds glycans with terminal alpha-linked mannose or fucose residues. Prolectin expressed in fibroblasts is found at the cell surface, but unlike many glycan-binding receptors it does not mediate endocytosis of a neoglycoprotein ligand. However, compared with other known glycan-binding receptors, the receptor contains an unusually large intracellular domain that consists of multiple sequence motifs, including phosphorylated tyrosine residues, that allow it to interact with signaling molecules such as Grb2. Immunohistochemistry has been used to demonstrate that prolectin is expressed on a specialized population of proliferating B cells in germinal centers. Thus, this novel receptor has the potential to function in carbohydrate-mediated communication between cells in the germinal center.
Collapse
Affiliation(s)
- Sarah A Graham
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
247
|
Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL. Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 2009; 284:11027-38. [PMID: 19224860 PMCID: PMC2670108 DOI: 10.1074/jbc.m809698200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/03/2009] [Indexed: 12/30/2022] Open
Abstract
C-type lectin receptors expressed on the surface of dendritic cells and macrophages are able to bind glycoproteins of microbial pathogens via mannose, fucose, and N-acetylglucosamine. Langerin on Langerhans cells, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin on dendritic cells, and mannose receptor (MR) on dendritic cells and macrophages bind the human immunodeficiency virus (HIV) envelope protein gp120 principally via high mannose oligosaccharides. These C-type lectin receptors can also oligomerize to facilitate enhanced ligand binding. This study examined the effect of oligomerization of MR on its ability to bind to mannan, monomeric gp120, native trimeric gp140, and HIV type 1 BaL. Mass spectrometry analysis of cross-linked MR showed homodimerization on the surface of primary monocyte-derived dendritic cells and macrophages. Both monomeric and dimeric MR were precipitated by mannan, but only the dimeric form was co-immunoprecipitated by gp120. These results were confirmed independently by flow cytometry analysis of soluble monomeric and trimeric HIV envelope and a cellular HIV virion capture assay. As expected, mannan bound to the carbohydrate recognition domains of MR dimers mostly in a calcium-dependent fashion. Unexpectedly, gp120-mediated binding of HIV to dimers on MR-transfected Rat-6 cells and macrophages was not calcium-dependent, was only partially blocked by mannan, and was also partially inhibited by N-acetylgalactosamine 4-sulfate. Thus gp120-mediated HIV binding occurs via the calcium-dependent, non-calcium-dependent carbohydrate recognition domains and the cysteine-rich domain at the C terminus of MR dimers, presenting a much broader target for potential inhibitors of gp120-MR binding.
Collapse
Affiliation(s)
- Joey Lai
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, Westmead, Sydney, New South Wales 2145, Australia
| | | | | | | | | | | |
Collapse
|
248
|
Huang Y, Dryman B, Li W, Meng X. Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:464-480. [PMID: 18951915 PMCID: PMC7103218 DOI: 10.1016/j.dci.2008.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/14/2008] [Accepted: 09/16/2008] [Indexed: 05/27/2023]
Abstract
DC-SIGN, a human C-type lectin, is involved in the transmission of many enveloped viruses. Here we report the cloning and characterization of the cDNA and gene encoding porcine DC-SIGN (pDC-SIGN). The full-length pDC-SIGN cDNA encodes a type II transmembrane protein of 240 amino acids. Phylogenetic analysis revealed that pDC-SIGN, together with bovine, canis and equine DC-SIGN, are more closely related to mouse SIGNR7 and SIGNR8 than to human DC-SIGN. pDC-SIGN has the same gene structure as bovine, canis DC-SIGN and mouse SIGNR8 with eight exons. pDC-SIGN mRNA expression was detected in pig spleen, thymus, lymph node, lung, bone marrow and muscles. pDC-SIGN protein was found to express on the surface of monocyte-derived macrophages and dendritic cells, alveolar macrophages, lymph node sinusoidal macrophage-like, dendritic-like and endothelial cells but not of monocytes, peripheral blood lymphocytes or lymph node lymphocytes. A BHK cell line stably expressing pDC-SIGN binds to human ICAM-3 and ICAM-2 immunoadhesins in a calcium-dependent manner, and enhances the transmission of porcine reproductive and respiratory syndrome virus (PRRSV) to target cells in trans. The results will help better understand the biological role(s) of DC-SIGN family in innate immunity during the evolutionary process.
Collapse
Affiliation(s)
| | | | | | - X.J. Meng
- Corresponding author. Tel.: +1 540 231 6912; fax: +1 540 231 3426.
| |
Collapse
|
249
|
Alen MMF, Kaptein SJF, De Burghgraeve T, Balzarini J, Neyts J, Schols D. Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology 2009; 387:67-75. [PMID: 19264337 DOI: 10.1016/j.virol.2009.01.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/17/2008] [Accepted: 01/26/2009] [Indexed: 12/15/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is an important binding receptor for dengue virus (DENV) that recognizes N-glycosylation sites on the viral E-glycoprotein. DENV cannot bind nor infect the human B-cell line Raji/0. However, DENV productively infects Raji/DC-SIGN(+) cells that constitutively express DC-SIGN on their surface. IL-4-treated monocytes, expressing high levels of DC-SIGN, are also susceptible for DENV infection. Several carbohydrate-binding agents (CBAs), such as the plant lectins HHA, GNA (mannose-specific) and UDA (N-acetylglucosamine-specific), inhibited dose-dependently the binding of DENV and subsequently viral replication in Raji/DC-SIGN(+) cells (EC(50): 0.1-2.2 microM). These CBAs were clearly more active against DENV in IL-4-treated monocytes (EC(50): 4-56 nM). However, the CBAs were devoid of antiviral activity in DENV-susceptible Vero-B (DC-SIGN(-)) cells, demonstrating cell type-dependent differences in viral entry mechanisms.
Collapse
Affiliation(s)
- Marijke M F Alen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
250
|
A yeast glycoprotein shows high-affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC-SIGN. J Virol 2009; 83:4861-70. [PMID: 19264785 DOI: 10.1128/jvi.02537-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein contains numerous N-linked carbohydrates that shield conserved peptide epitopes and promote trans infection by dendritic cells via binding to cell surface lectins. The potent and broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose-type oligosaccharides on the gp120 subunit of Env, revealing a conserved and highly exposed epitope on the glycan shield. To find an effective antigen for eliciting 2G12-like antibodies, we searched for endogenous yeast proteins that could bind to 2G12 in a panel of Saccharomyces cerevisiae glycosylation knockouts and discovered one protein that bound weakly in a Delta pmr1 strain deficient in hyperglycosylation. 2G12 binding to this protein, identified as Pst1, was enhanced by adding the Delta mnn1 deletion to the Delta pmr1 background, ensuring the exposure of terminal alpha1,2-linked mannose residues on the D1 and D3 arms of high-mannose glycans. However, optimum 2G12 antigenicity was found when Pst1, a heavily N-glycosylated protein, was expressed with homogenous Man(8)GlcNAc(2) structures in Delta och1 Delta mnn1 Delta mnn4 yeast. Surface plasmon resonance analysis of this form of Pst1 showed high affinity for 2G12, which translated into Pst1 efficiently inhibiting gp120 interactions with 2G12 and DC-SIGN and blocking 2G12-mediated neutralization of HIV-1 pseudoviruses. The high affinity of the yeast glycoprotein Pst1 for 2G12 highlights its potential as a novel antigen to induce 2G12-like antibodies.
Collapse
|