201
|
Iyer LM, Burroughs AM, Aravind L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 2007; 7:R60. [PMID: 16859499 PMCID: PMC1779556 DOI: 10.1186/gb-2006-7-7-r60] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/12/2006] [Accepted: 07/06/2006] [Indexed: 11/14/2022] Open
Abstract
A systematic analysis of prokaryotic ubiquitin-related beta-grasp fold proteins provides new insights into the Ubiquitin family functional history. Background Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear. Results We systematically analyzed prokaryotic Ub-related β-grasp fold proteins using sensitive sequence profile searches and structural analysis. Consequently, we identified novel Ub-related proteins beyond the characterized ThiS, MoaD, TGS, and YukD domains. To understand their functional associations, we sought and recovered several conserved gene neighborhoods and domain architectures. These included novel associations involving diverse sulfur metabolism proteins, siderophore biosynthesis and the gene encoding the transfer mRNA binding protein SmpB, as well as domain fusions between Ub-like domains and PIN-domain related RNAses. Most strikingly, we found conserved gene neighborhoods in phylogenetically diverse bacteria combining genes for JAB domains (the primary de-ubiquitinating isopeptidases of the proteasomal complex), along with E1-like adenylating enzymes and different Ub-related proteins. Further sequence analysis of other conserved genes in these neighborhoods revealed several Ub-conjugating enzyme/E2-ligase related proteins. Genes for an Ub-like protein and a JAB domain peptidase were also found in the tail assembly gene cluster of certain caudate bacteriophages. Conclusion These observations imply that members of the Ub family had already formed strong functional associations with E1-like proteins, UBC/E2-related proteins, and JAB peptidases in the bacteria. Several of these Ub-like proteins and the associated protein families are likely to function together in signaling systems just as in eukaryotes.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
- Bioinformatics Program, Boston University, Cummington Street, Boston, Massachusetts 02215, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
202
|
Rentmeister A, Mayer G, Kuhn N, Famulok M. Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 2007; 35:3713-22. [PMID: 17517779 PMCID: PMC1920254 DOI: 10.1093/nar/gkm300] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The thiM riboswitch contains an aptamer domain that adaptively binds the coenzyme thiamine pyrophosphate (TPP). The binding of TPP to the aptamer domain induces structural rearrangements that are relayed to a second domain, the so-called expression domain, thereby interfering with gene expression. The recently solved crystal structures of the aptamer domains of the thiM riboswitches in complex with TPP revealed how TPP stabilizes secondary and tertiary structures in the RNA ligand complex. To understand the global modes of reorganization between the two domains upon metabolite binding the structure of the entire riboswitch in presence and absence of TPP needs to be determined. Here we report the secondary structure of the entire thiM riboswitch from Escherichia coli in its TPP-free form and its transition into the TPP-bound variant, thereby depicting domains of the riboswitch that serve as communication links between the aptamer and the expression domain. Furthermore, structural probing provides an explanation for the lack of genetic control exerted by a riboswitch variant with mutations in the expression domain that still binds TPP.
Collapse
Affiliation(s)
| | | | | | - Michael Famulok
- *To whom correspondence should be addressed. +49-228-735661+49-228-735388
| |
Collapse
|
203
|
Welz R, Breaker RR. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA (NEW YORK, N.Y.) 2007; 13:573-82. [PMID: 17307816 PMCID: PMC1831863 DOI: 10.1261/rna.407707] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most riboswitches are composed of a single metabolite-binding aptamer and a single expression platform that function together to regulate genes in response to changing metabolite concentrations. In rare instances, two aptamers or sometimes two complete riboswitches reside adjacent to each other in untranslated regions (UTRs) of mRNAs. We have examined an example of a tandem riboswitch in the Gram-positive bacterium Bacillus anthracis that includes two complete riboswitches for thiamine pyrophosphate (TPP). Unlike other complex riboswitch systems described recently, tandem TPP riboswitches do not exhibit cooperative ligand binding and do not detect two different types of metabolites. In contrast, both riboswitches respond independently to TPP and are predicted to function in concert to mimic the more "digital" gene control outcome observed when two aptamers bind ligands cooperatively. Our findings further demonstrate that simple gene control elements made only of RNA can be assembled in different architectures to yield more complex gene control outcomes.
Collapse
MESH Headings
- 5' Untranslated Regions
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Bacillus anthracis/genetics
- Bacillus anthracis/growth & development
- Bacillus anthracis/metabolism
- Base Sequence
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Reporter
- Genes, Switch
- Ligands
- Luciferases/metabolism
- Mathematics
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thiamine Pyrophosphate/genetics
- Thiamine Pyrophosphate/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Rüdiger Welz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
204
|
Fuchs RT, Grundy FJ, Henkin TM. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. Proc Natl Acad Sci U S A 2007; 104:4876-80. [PMID: 17360376 PMCID: PMC1829232 DOI: 10.1073/pnas.0609956104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The S(MK) box is a conserved riboswitch motif found in the 5' untranslated region of metK genes [encoding S-adenosylmethionine (SAM) synthetase] in lactic acid bacteria, including Enterococcus, Streptococcus, and Lactococcus sp. Previous studies showed that this RNA element binds SAM in vitro, and SAM binding causes a structural rearrangement that sequesters the Shine-Dalgarno (SD) sequence by pairing with an anti-SD (ASD) element. A model was proposed in which SAM binding inhibits metK translation by preventing binding of the ribosome to the SD region of the mRNA. In the current work, the addition of SAM was shown to inhibit binding of 30S ribosomal subunits to S(MK) box RNA; in contrast, the addition of S-adenosylhomocysteine (SAH) had no effect. A mutant RNA, which has a disrupted SD-ASD pairing, was defective in SAM binding and showed no reduction of ribosome binding in the presence of SAM, whereas a compensatory mutation that restored SD-ASD pairing restored the response to SAM. Primer extension inhibition assays provided further evidence for SD-ASD pairing in the presence of SAM. These results strongly support the model that S(MK) box translational repression operates through occlusion of the ribosome binding site and that SAM binding requires the SD-ASD pairing.
Collapse
Affiliation(s)
| | | | - Tina M. Henkin
- *Department of Microbiology and
- RNA Group, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
205
|
Knöckel J, Müller IB, Bergmann B, Walter RD, Wrenger C. The apicomplexan parasite Toxoplasma gondii generates pyridoxal phosphate de novo. Mol Biochem Parasitol 2007; 152:108-11. [PMID: 17222923 DOI: 10.1016/j.molbiopara.2006.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/06/2006] [Accepted: 12/10/2006] [Indexed: 11/30/2022]
Affiliation(s)
- Julia Knöckel
- Bernhard Nocht Institute for Tropical Medicine, Department of Biochemistry, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
206
|
Miranda-Ríos J. The THI-box Riboswitch, or How RNA Binds Thiamin Pyrophosphate. Structure 2007; 15:259-65. [PMID: 17355861 DOI: 10.1016/j.str.2007.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/01/2007] [Accepted: 02/07/2007] [Indexed: 01/19/2023]
Abstract
Riboswitches are genetic control elements present mainly in the 5' untranslated regions of messenger RNAs that, upon binding of a small metabolite (like some vitamins, amino acids, and nucleobases), undergo conformational changes, affecting the expression of downstream genes. Structural studies of riboswitches are important for understanding how they recognize their ligands with high specificity and affinity. The thiamin pyrophosphate binding riboswitch (THI- box) is widely distributed in the three kingdoms of life and is involved in very distinct modes of gene regulation. Three recent THI-box structural analyses revealed how polyanionic RNA is able to bind a molecule with a negatively charged pyrophosphate group like thiamin pyrophosphate (TPP) and how it can discriminate between TPP and monophosphorylated analog molecules. These studies give insight into the genetic regulatory mechanisms in which the THI-box is involved.
Collapse
Affiliation(s)
- Juan Miranda-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| |
Collapse
|
207
|
Abstract
New validated cellular targets are needed to reinvigorate antibacterial drug discovery. This need could potentially be filled by riboswitches-messenger RNA (mRNA) structures that regulate gene expression in bacteria. Riboswitches are unique among RNAs that serve as drug targets in that they have evolved to form structured and highly selective receptors for small drug-like metabolites. In most cases, metabolite binding to the receptor represses the expression of the gene(s) encoded by the mRNA. If a new metabolite analog were designed that binds to the receptor, the gene(s) regulated by that riboswitch could be repressed, with a potentially lethal effect to the bacteria. Recent work suggests that certain antibacterial compounds discovered decades ago function at least in part by targeting riboswitches. Herein we will summarize the experiments validating riboswitches as drug targets, describe the existing technology for riboswitch drug discovery and discuss the challenges that may face riboswitch drug discoverers.
Collapse
Affiliation(s)
- Kenneth F Blount
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
208
|
Eschbach ML, Müller IB, Gilberger TW, Walter RD, Wrenger C. The human malaria parasite Plasmodium falciparum expresses an atypical N-terminally extended pyrophosphokinase with specificity for thiamine. Biol Chem 2007; 387:1583-91. [PMID: 17132104 DOI: 10.1515/bc.2006.197] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vitamin B(1) is an essential cofactor for key enzymes such as 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase. Plants, bacteria and fungi, as well as Plasmodium falciparum, are capable of synthesising vitamin B(1)de novo, whereas mammals have to take up this cofactor from their diet. Thiamine, a B(1) vitamer, has to be pyrophosphorylated by thiamine pyrophosphokinase (TPK) to the active form. The human malaria parasite P. falciparum expresses an N-terminally extended pyrophosphokinase throughout the entire erythrocytic life cycle, which was analysed by Northern and Western blotting. The recombinant enzyme shows a specific activity of 27 nmol min(-1) mg(-1) protein and specificity for thiamine with a K(m) value of 73 microM, while thiamine monophosphate is not accepted. Mutational analysis of the N-terminal extension of the plasmodial TPK showed that it influences thiamine binding as well as metal dependence, which suggests N-terminal participation in the conformation of the active site. Protein sequences of various plasmodial TPKs were analysed for their phylogeny, which classified the Plasmodium TPKs to a group distinct from the mammalian TPKs. To verify the location of the parasite TPK within the cell, immunofluorescence analyses were performed. Co-staining of PfTPK with a GFP marker visualised its cytosolic localisation.
Collapse
|
209
|
Grundy FJ, Henkin TM. From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol 2007; 41:329-38. [PMID: 17092822 DOI: 10.1080/10409230600914294] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structural elements in the 5' region of a bacterial mRNA can have major effects on expression of downstream coding sequences. Folding of the nascent RNA into the helix of an intrinsic transcriptional terminator results in premature termination of transcription and in failure to synthesize the full-length transcript. Structure in the translation initiation region of an mRNA blocks access of the translation initiation complex to the ribosome binding site, thereby preventing protein synthesis. RNA structures can also affect the stability of an RNA by altering sensitivity to ribonucleases. A wide variety of mechanisms have been uncovered in which changes in mRNA structure in response to a regulatory signal are used to modulate gene expression in bacteria. These systems allow the cell to recognize an impressive array of signals, and to monitor those signals in many different ways.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
210
|
Krause L, McHardy AC, Nattkemper TW, Pühler A, Stoye J, Meyer F. GISMO--gene identification using a support vector machine for ORF classification. Nucleic Acids Res 2006; 35:540-9. [PMID: 17175534 PMCID: PMC1802617 DOI: 10.1093/nar/gkl1083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We present the novel prokaryotic gene finder GISMO, which combines searches for protein family domains with composition-based classification based on a support vector machine. GISMO is highly accurate; exhibiting high sensitivity and specificity in gene identification. We found that it performs well for complete prokaryotic chromosomes, irrespective of their GC content, and also for plasmids as short as 10 kb, short genes and for genes with atypical sequence composition. Using GISMO, we found several thousand new predictions for the published genomes that are supported by extrinsic evidence, which strongly suggest that these are very likely biologically active genes. The source code for GISMO is freely available under the GPL license.
Collapse
Affiliation(s)
- Lutz Krause
- Center for Biotechnology, Bielefeld University (CeBiTec), D-33594 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
211
|
Edwards TE, Ferré-D'Amaré AR. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 2006; 14:1459-68. [PMID: 16962976 DOI: 10.1016/j.str.2006.07.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 01/06/2023]
Abstract
Riboswitches are noncoding mRNA elements that bind small-molecule metabolites with high affinity and specificity, and they regulate the expression of associated genes. The thi-box riboswitch can exhibit a 1000-fold higher affinity for thiamine pyrophosphate over closely related noncognate compounds such as thiamine monophosphate. To understand the chemical basis of thi-box pyrophosphate specificity, we have determined crystal structures of an E. coli thi-box bound to thiamine pyrophosphate, thiamine monophosphate, and the structural analogs benfotiamine and pyrithiamine. When bound to monophosphorylated compounds, the RNA elements that recognize the thiamine and phosphate moieties of the ligand move closer together. This allows the riboswitch to recognize the monophosphate in a manner similar to how it recognizes the beta-phosphate of thiamine pyrophosphate. In the pyrithiamine complex, the pyrophosphate binding site is largely unstructured. These results show how the riboswitch can bind to various metabolites, and why the thi-box preferentially binds thiamine pyrophosphate.
Collapse
Affiliation(s)
- Thomas E Edwards
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
212
|
Link KH, Guo L, Breaker RR. Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection. Nucleic Acids Res 2006; 34:4968-75. [PMID: 16982640 PMCID: PMC1635283 DOI: 10.1093/nar/gkl643] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 12/22/2022] Open
Abstract
Self-cleaving ribozymes associated with the glmS genes of many Gram-positive bacteria are activated by binding to glucosamine-6-phosphate (GlcN6P). Representatives of the glmS ribozyme class function as metabolite-sensing riboswitches whose self-cleavage activities down-regulate the expression of GlmS enzymes that synthesizes GlcN6P. As with other riboswitches, natural glmS ribozyme isolates are highly specific for their target metabolite. Other small molecules closely related to GlcN6P, such as glucose-6-phosphate, cannot activate self-cleavage. We applied in vitro selection methods in an attempt to identify variants of a Bacillus cereus glmS ribozyme that expand the range of compounds that induce self-cleavage. In addition, we sought to increase the number of variant ribozymes of this class to further examine the proposed secondary structure model. Although numerous variant ribozymes were obtained that efficiently self-cleave, none exhibited changes in target specificity. These findings are consistent with the hypothesis that GlcN6P is used by the ribozyme as a coenzyme for RNA cleavage, rather than an allosteric effector.
Collapse
Affiliation(s)
- Kristian H. Link
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale UniversityNew Haven, CT 06520, USA
| | - Lixia Guo
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT 06520, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale UniversityNew Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
| |
Collapse
|
213
|
Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 2006; 188:6661-8. [PMID: 16952958 PMCID: PMC1595474 DOI: 10.1128/jb.00641-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.
Collapse
Affiliation(s)
- R Karunakaran
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
214
|
Newman JA, Das SK, Sedelnikova SE, Rice DW. The crystal structure of an ADP complex of Bacillus subtilis pyridoxal kinase provides evidence for the parallel emergence of enzyme activity during evolution. J Mol Biol 2006; 363:520-30. [PMID: 16978644 DOI: 10.1016/j.jmb.2006.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 11/28/2022]
Abstract
Pyridoxal kinase catalyses the phosphorylation of pyridoxal, pyridoxine and pyridoxamine to their 5' phosphates and plays an important role in the pyridoxal 5' phosphate salvage pathway. The crystal structure of a dimeric pyridoxal kinase from Bacillus subtilis has been solved in complex with ADP to 2.8 A resolution. Analysis of the structure suggests that binding of the nucleotide induces the ordering of two loops, which operate independently to close a flap on the active site. Comparisons with other ribokinase superfamily members reveal that B. subtilis pyridoxal kinase is more closely related in both sequence and structure to the family of HMPP kinases than to other pyridoxal kinases, suggesting that this structure represents the first for a novel family of "HMPP kinase-like" pyridoxal kinases. Moreover this further suggests that this enzyme activity has evolved independently on multiple occasions from within the ribokinase superfamily.
Collapse
Affiliation(s)
- Joseph A Newman
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
215
|
|
216
|
Spirin V, Gelfand MS, Mironov AA, Mirny LA. A metabolic network in the evolutionary context: multiscale structure and modularity. Proc Natl Acad Sci U S A 2006; 103:8774-9. [PMID: 16731630 PMCID: PMC1482654 DOI: 10.1073/pnas.0510258103] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Indexed: 01/09/2023] Open
Abstract
The enormous complexity of biological networks has led to the suggestion that networks are built of modules that perform particular functions and are "reused" in evolution in a manner similar to reusable domains in protein structures or modules of electronic circuits. Analysis of known biological networks has revealed several modules, many of which have transparent biological functions. However, it remains to be shown that identified structural modules constitute evolutionary building blocks, independent and easily interchangeable units. An alternative possibility is that evolutionary modules do not match structural modules. To investigate the structure of evolutionary modules and their relationship to functional ones, we integrated a metabolic network with evolutionary associations between genes inferred from comparative genomics. The resulting metabolic-genomic network places metabolic pathways into evolutionary and genomic context, thereby revealing previously unknown components and modules. We analyzed the integrated metabolic-genomic network on three levels: macro-, meso-, and microscale. The macroscale level demonstrates strong associations between neighboring enzymes and between enzymes that are distant on the network but belong to the same linear pathway. At the mesoscale level, we identified evolutionary metabolic modules and compared them with traditional metabolic pathways. Although, in some cases, there is almost exact correspondence, some pathways are split into independent modules. On the microscale level, we observed high association of enzyme subunits and weak association of isoenzymes independently catalyzing the same reaction. This study shows that evolutionary modules, rather than pathways, may be thought of as regulatory and functional units in bacterial genomes.
Collapse
Affiliation(s)
- Victor Spirin
- *Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetnu Pereulok 19, Moscow 127994, Russia
- State Scientific Center GosNIIGenetika, 1-j Dorozhny Proezd 1, Moscow 117545, Russia; and
| | - Andrey A. Mironov
- State Scientific Center GosNIIGenetika, 1-j Dorozhny Proezd 1, Moscow 117545, Russia; and
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorobjevy Gory 1-73, Moscow 119992, Russia
| | - Leonid A. Mirny
- *Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
217
|
Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 2006; 441:1167-71. [PMID: 16728979 PMCID: PMC4689313 DOI: 10.1038/nature04740] [Citation(s) in RCA: 332] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/22/2006] [Indexed: 02/01/2023]
Abstract
Riboswitches are metabolite-sensing RNAs, typically located in the non-coding portions of messenger RNAs, that control the synthesis of metabolite-related proteins. Here we describe a 2.05 angstroms crystal structure of a riboswitch domain from the Escherichia coli thiM mRNA that responds to the coenzyme thiamine pyrophosphate (TPP). TPP is an active form of vitamin B1, an essential participant in many protein-catalysed reactions. Organisms from all three domains of life, including bacteria, plants and fungi, use TPP-sensing riboswitches to control genes responsible for importing or synthesizing thiamine and its phosphorylated derivatives, making this riboswitch class the most widely distributed member of the metabolite-sensing RNA regulatory system. The structure reveals a complex folded RNA in which one subdomain forms an intercalation pocket for the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety of TPP, whereas another subdomain forms a wider pocket that uses bivalent metal ions and water molecules to make bridging contacts to the pyrophosphate moiety of the ligand. The two pockets are positioned to function as a molecular measuring device that recognizes TPP in an extended conformation. The central thiazole moiety is not recognized by the RNA, which explains why the antimicrobial compound pyrithiamine pyrophosphate targets this riboswitch and downregulates the expression of thiamine metabolic genes. Both the natural ligand and its drug-like analogue stabilize secondary and tertiary structure elements that are harnessed by the riboswitch to modulate the synthesis of the proteins coded by the mRNA. In addition, this structure provides insight into how folded RNAs can form precision binding pockets that rival those formed by protein genetic factors.
Collapse
|
218
|
Lyubetsky VA, Rubanov LI, Seliverstov AV, Pirogov SA. Model of gene expression regulation in bacteria via formation of RNA secondary structures. Mol Biol 2006. [DOI: 10.1134/s0026893306030113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
219
|
Wrenger C, Eschbach ML, Müller IB, Laun NP, Begley TP, Walter RD. Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine. Biol Chem 2006; 387:41-51. [PMID: 16497163 DOI: 10.1515/bc.2006.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K(m)app values of 68 microM for THZ and 12 microM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors.
Collapse
Affiliation(s)
- Carsten Wrenger
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
220
|
Wels M, Francke C, Kerkhoven R, Kleerebezem M, Siezen RJ. Predicting cis-acting elements of Lactobacillus plantarum by comparative genomics with different taxonomic subgroups. Nucleic Acids Res 2006; 34:1947-58. [PMID: 16614445 PMCID: PMC1435977 DOI: 10.1093/nar/gkl138] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cis-acting elements in Lactobacillus plantarum were predicted by comparative analysis of the upstream regions of conserved genes and predicted transcriptional units (TUs) in different bacterial genomes. TUs were predicted for two species sets, with different evolutionary distances to L.plantarum. TUs were designated ‘cluster of orthologous transcriptional units’ (COT) when >50% of the genes were orthologous in different species. Conserved DNA sequences were detected in the upstream regions of different COTs. Subsequently, conserved motifs were used to scan upstream regions of all TUs. This method revealed 18 regulatory motifs only present in lactic acid bacteria (LAB). The 18 LAB-specific candidate regulatory motifs included 13 that were not described previously. These LAB-specific different motifs were found in front of genes encoding functions varying from cold shock proteins to RNA and DNA polymerases, and many unknown functions. The best-described LAB-specific motif found was the CopR-binding site, regulating expression of copper transport ATPases. Finally, all detected motifs were used to predict co-regulated TUs (regulons) for L.plantarum, and transcriptome profiling data were analyzed to provide regulon prediction validation. It is demonstrated that phylogenetic footprinting using different species sets can identify and distinguish between general regulatory motifs and LAB-specific regulatory motifs.
Collapse
Affiliation(s)
- Michiel Wels
- Wageningen Centre for Food Sciences, PO Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
221
|
Barash D, Sikorski J, Perry EB, Nevo E, Nudler E. Adaptive Mutations In RNA-Based Regulatory Mechanisms: Computational and Experimental Investigations. Isr J Ecol Evol 2006. [DOI: 10.1560/ijee_52_3-4_263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent discoveries of RNA-based regulatory mechanisms have prompted substantial interest in how they formed and the extent to which varying environmental conditions have influenced their evolution. One class of RNA-based regulatory mechanism that has been found in bacteria is the riboswitch, regulating the biosynthesis of certain vitamins by an RNA genetic control element that senses small molecules and responds with a structural change that affects transcription termination or translation initiation without the participation of proteins. By taking the thiamin pyrophosphate (TPP)-riboswitch inBacillus subtilisas a model system, we wish to examine whether beneficial mutations may exist at the level of RNA that will cause an improvement in organism fitness. By computationally analyzing the difference in primary and secondary structure of theB. subtilisTPP-riboswitch collected from the xeric "African" south-facing slope (SFS) vs. the mesic, "European", north-facing slope (NFS) in "Evolution Canyon" III at Nahal Shaharut, southern Israel, we wish to experimentally study the environmental effect on transcription termination in these RNA-based regulatory mechanisms that are believed to be of ancient origin in the evolutionary time scale. Computational results, so far, indicate that specific mutations affect the riboswitch conformation by causing a global rearrangement. We would like to check whether such mutations could be adaptive mutations that may have a beneficial fitness effect, taking the TPP-riboswitch as a model system at the micro-scale. Empirical results so far indicate that in the promoter region of the TPP-riboswitch, all mutations increase nucleotide GC content in the xeric SFS, whereas in the mesic NFS they increase AT content. Preliminary examination of termination efficiency of strains found exclusively on one slope or the other, reveal increased termination efficiency in the presence of TPP and at more moderate temperatures, but only a suggestion of greater termination efficiency from strains found on both slopes. We expect that further results will shed light on the mutational differences of TPP-riboswitch sequences found on opposite slopes of "Evolution Canyon" III at Nahal Shaharut, potentially leading to interesting discoveries that relate to the topic of adaptive, nonrandom mutations.
Collapse
Affiliation(s)
- Danny Barash
- Institute of Evolution, University of Haifa
- Department of Computer Science, Ben-Gurion University of the Negev
| | - Johannes Sikorski
- Institute of Evolution, University of Haifa
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GMbH (DSMZ)
| | | | | | - Evgeny Nudler
- Department of Biochemistry, New York University Medical School,
| |
Collapse
|
222
|
Madan Babu M, Teichmann SA, Aravind L. Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks. J Mol Biol 2006; 358:614-33. [PMID: 16530225 DOI: 10.1016/j.jmb.2006.02.019] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 01/06/2023]
Abstract
The structure of complex transcriptional regulatory networks has been studied extensively in certain model organisms. However, the evolutionary dynamics of these networks across organisms, which would reveal important principles of adaptive regulatory changes, are poorly understood. We use the known transcriptional regulatory network of Escherichia coli to analyse the conservation patterns of this network across 175 prokaryotic genomes, and predict components of the regulatory networks for these organisms. We observe that transcription factors are typically less conserved than their target genes and evolve independently of them, with different organisms evolving distinct repertoires of transcription factors responding to specific signals. We show that prokaryotic transcriptional regulatory networks have evolved principally through widespread tinkering of transcriptional interactions at the local level by embedding orthologous genes in different types of regulatory motifs. Different transcription factors have emerged independently as dominant regulatory hubs in various organisms, suggesting that they have convergently acquired similar network structures approximating a scale-free topology. We note that organisms with similar lifestyles across a wide phylogenetic range tend to conserve equivalent interactions and network motifs. Thus, organism-specific optimal network designs appear to have evolved due to selection for specific transcription factors and transcriptional interactions, allowing responses to prevalent environmental stimuli. The methods for biological network analysis introduced here can be applied generally to study other networks, and these predictions can be used to guide specific experiments.
Collapse
Affiliation(s)
- M Madan Babu
- National Center for Biotechnology Information, National Institutes of Health, MD 20894, USA.
| | | | | |
Collapse
|
223
|
Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. ACTA ACUST UNITED AC 2006; 12:1325-35. [PMID: 16356850 DOI: 10.1016/j.chembiol.2005.10.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/28/2022]
Abstract
Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria.
Collapse
Affiliation(s)
- Narasimhan Sudarsan
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
224
|
Abstract
Riboswitches are structured domains that usually reside in the noncoding regions of mRNAs, where they bind metabolites and control gene expression. Like their protein counterparts, these RNA gene control elements form highly specific binding pockets for the target metabolite and undergo allosteric changes in structure. Numerous classes of riboswitches are present in bacteria and they comprise a common and robust metabolite-sensing system.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
225
|
Schyns G, Potot S, Geng Y, Barbosa TM, Henriques A, Perkins JB. Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. J Bacteriol 2005; 187:8127-36. [PMID: 16291685 PMCID: PMC1291275 DOI: 10.1128/jb.187.23.8127-8136.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, thiamine pyrophosphate (TPP) is an essential cofactor that is synthesized de novo. Thiamine, however, is not an intermediate in the biosynthetic pathway but is salvaged from the environment and phosphorylated to TPP. We have isolated and characterized new mutants of Bacillus subtilis that deregulate thiamine biosynthesis and affect the export of thiamine products from the cell. Deletion of the ydiA gene, which shows significant similarity to the thiamine monophosphate kinase gene of Escherichia coli (thiL), did not generate the expected thiamine auxotroph but instead generated a thiamine bradytroph that grew to near-wild-type levels on minimal medium. From this DeltathiL deletion mutant, two additional ethyl methanesulfonate-induced mutants that derepressed the expression of a thiC-lacZ transcriptional reporter were isolated. One mutant, Tx1, contained a nonsense mutation within the B. subtilis yloS (thiN) gene that encodes a thiamine pyrophosphokinase, a result which confirmed that B. subtilis contains a single-step, yeast-like thiamine-to-TPP pathway in addition to the bacterial TPP de novo pathway. A second mutant, strain Tx26, was shown to contain two lesions. Genetic mapping and DNA sequencing indicated that the first mutation affected yuaJ, which encodes a thiamine permease. The second mutation was located within the ykoD cistron of the ykoFEDC operon, which putatively encodes the ATPase component of a unique thiamine-related ABC transporter. Genetic and microarray studies indicated that both the mutant yuaJ and ykoD genes were required for the derepression of thiamine-regulated genes. Moreover, the combination of the four mutations (the DeltathiL, thiN, yuaJ, and ykoD mutations) into a single strain significantly increased the production and excretion of thiamine products into the culture medium. These results are consistent with the proposed "riboswitch" mechanism of thiamine gene regulation (W. C. Winkler, A. Nahvi, and R. R. Breaker, Nature 419:952-956, 2002).
Collapse
Affiliation(s)
- Ghislain Schyns
- Biotechnology R&D, DSM Nutritional Products, Ltd., Kaiseraugst, Switzerland.
| | | | | | | | | | | |
Collapse
|
226
|
Teusink B, van Enckevort FHJ, Francke C, Wiersma A, Wegkamp A, Smid EJ, Siezen RJ. In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: comparing predictions of nutrient requirements with those from growth experiments. Appl Environ Microbiol 2005; 71:7253-62. [PMID: 16269766 PMCID: PMC1287688 DOI: 10.1128/aem.71.11.7253-7262.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of the annotated genome we reconstructed the metabolic pathways of the lactic acid bacterium Lactobacillus plantarum WCFS1. After automatic reconstruction by the Pathologic tool of Pathway Tools (http://bioinformatics.ai.sri.com/ptools/), the resulting pathway-genome database, LacplantCyc, was manually curated extensively. The current database contains refinements to existing routes and new gram-positive bacterium-specific reactions that were not present in the MetaCyc database. These reactions include, for example, reactions related to cell wall biosynthesis, molybdopterin biosynthesis, and transport. At present, LacplantCyc includes 129 pathways and 704 predicted reactions involving some 670 chemical species and 710 enzymes. We tested vitamin and amino acid requirements of L. plantarum experimentally and compared the results with the pathways present in LacplantCyc. In the majority of cases (32 of 37 cases) the experimental results agreed with the final reconstruction. LacplantCyc is the most extensively curated pathway-genome database for gram-positive bacteria and is open to the microbiology community via the World Wide Web (www.lacplantcyc.nl). It can be used as a reference pathway-genome database for gram-positive microbes in general and lactic acid bacteria in particular.
Collapse
Affiliation(s)
- Bas Teusink
- Wageningen Centre for Food Sciences, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
AbstractSmall non-coding RNAs (sRNAs) have attracted considerable attention as an emerging class of gene expression regulators. In bacteria, a few regulatory RNA molecules have long been known, but the extent of their role in the cell was not fully appreciated until the recent discovery of hundreds of potential sRNA genes in the bacteriumEscherichia coli. Orthologs of theseE. colisRNA genes, as well as unrelated sRNAs, were also found in other bacteria. Here we review the disparate experimental approaches used over the years to identify sRNA molecules and their genes in prokaryotes. These include genome-wide searches based on the biocomputational prediction of non-coding RNA genes, global detection of non-coding transcripts using microarrays, and shotgun cloning of small RNAs (RNomics). Other sRNAs were found by either co-purification with RNA-binding proteins, such as Hfq or CsrA/RsmA, or classical cloning of abundant small RNAs after size fractionation in polyacrylamide gels. In addition, bacterial genetics offers powerful tools that aid in the search for sRNAs that may play a critical role in the regulatory circuit of interest, for example, the response to stress or the adaptation to a change in nutrient availability. Many of the techniques discussed here have also been successfully applied to the discovery of eukaryotic and archaeal sRNAs.
Collapse
MESH Headings
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Eukaryotic Cells/metabolism
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Jörg Vogel
- Max Planck Institute for Infection Biology, RNA Biology, Schumannstr. 21/22, D-10117 Berlin, Germany.
| | | |
Collapse
|
228
|
Winkler WC. Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr Opin Chem Biol 2005; 9:594-602. [PMID: 16226486 DOI: 10.1016/j.cbpa.2005.09.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/27/2005] [Indexed: 12/22/2022]
Abstract
Microorganisms use a plethora of genetic strategies to regulate expression of their genes. In recent years there has been an increase in the discovery and characterization of riboswitches, cis-acting regulatory RNAs that function as direct receptors for intracellular metabolites. Nine classes have been uncovered that together regulate many essential biochemical pathways. Two classes, responding to either glucosamine-6-phosphate (GlcN6P) or glycine, have been found to employ novel mechanisms of genetic control. Additionally, progress has been achieved in elucidating molecular details for regulation by the other riboswitches, via X-ray crystallography and biochemical analyses of riboswitch-metabolite interactions. The complete repertoire of metabolite-sensing RNAs and extent of their usage in modern organisms remains to be determined; however, these current data assist in establishing a foundation from which to build future expectations.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA.
| |
Collapse
|
229
|
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005; 33:5691-702. [PMID: 16214803 PMCID: PMC1251668 DOI: 10.1093/nar/gki866] [Citation(s) in RCA: 1453] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.
Collapse
Affiliation(s)
- Ross Overbeek
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Tadhg Begley
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY14853, USA
| | - Ralph M. Butler
- Computer Science Dept, Middle Tennessee State UniversityMurfreesboro, TN 37132, USA
| | - Jomuna V. Choudhuri
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | | | - Matthew Cohoon
- Computation Institute, University of ChicagoChicago, IL 60637, USA
| | - Valérie de Crécy-Lagard
- Departments of Microbiology and Cell Science, University of FloridaGainesville, FL 32611, USA
| | - Naryttza Diaz
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Terry Disz
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Robert Edwards
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
- Center for Microbial Sciences, San Diego State UniversitySan Diego, CA 92813, USA
- The Burnham InstituteSan Diego CA 92037, USA
| | - Michael Fonstein
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
- Cleveland BioLabs, Inc.Cleveland, OH 44106, USA
| | - Ed D. Frank
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL 60439, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Elizabeth M. Glass
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL 60439, USA
| | - Alexander Goesmann
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Andrew Hanson
- Department of Horticultural Science, University of FloridaGainesville, FL 32611, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State UniversityPortland, OR 97207, USA
| | - Roy Jensen
- Emerson Hall, University of FloridaPO Box 14425, Gainesville, FL 32604, USA
| | | | - Lutz Krause
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Michael Kubal
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Niels Larsen
- Danish Genome InstituteGustav Wieds vej 10 C, DK-8000 Aarhus C, Denmark
| | - Burkhard Linke
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Alice C. McHardy
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Folker Meyer
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Heiko Neuweger
- Center for Biotechnology, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | - Gary Olsen
- Department of Microbiology, University of Illinois at Urbana-ChampaignUrbana, IL 61801
| | - Robert Olson
- Computation Institute, University of ChicagoChicago, IL 60637, USA
| | - Andrei Osterman
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
- The Burnham InstituteSan Diego CA 92037, USA
| | | | - Gordon D. Pusch
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Dmitry A. Rodionov
- Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
| | - Christian Rückert
- International NRW Graduate School in Bioinformatics & Genome Research, Institute for Genome Research, Bielefeld University33594 Bielefeld, Germany, USA
| | | | - Rick Stevens
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL 60439, USA
- Computation Institute, University of ChicagoChicago, IL 60637, USA
| | - Ines Thiele
- University of CaliforniaSan Diego, CA 92093, USA
| | - Olga Vassieva
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Yuzhen Ye
- The Burnham InstituteSan Diego CA 92037, USA
| | - Olga Zagnitko
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
| | - Veronika Vonstein
- Fellowship for Interpretation of Genomes15W155 81st Street, Burr Ridge, IL 60527, USA
- To whom correspondence should be addressed. Tel: +1 630 325 4178; Fax: +1 630 325 4179;
| |
Collapse
|
230
|
Seliverstov AV, Putzer H, Gelfand MS, Lyubetsky VA. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol 2005; 5:54. [PMID: 16202131 PMCID: PMC1262725 DOI: 10.1186/1471-2180-5-54] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 10/03/2005] [Indexed: 01/25/2023] Open
Abstract
Background Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. Results Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element) was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. Conclusion The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns allowed for identification of ML1624 of M. leprae and its orthologs as the candidate regulatory proteins that may bind to the LEU element. T-boxes upstream of the ileS genes are unusual, as their regulatory mechanism seems to be inhibition of translation initiation via a hairpin sequestering the Shine-Dalgarno box.
Collapse
Affiliation(s)
- Alexander V Seliverstov
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| | - Harald Putzer
- Institut de Biologie Physico-Chimique, CNRS UPR9073, 13, rue P. et M. Curie, 75005 Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| | - Vassily A Lyubetsky
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| |
Collapse
|
231
|
Ettema TJG, de Vos WM, van der Oost J. Discovering novel biology by in silico archaeology. Nat Rev Microbiol 2005; 3:859-69. [PMID: 16175172 DOI: 10.1038/nrmicro1268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are prokaryotes that evolved in parallel with bacteria. Since the discovery of the distinct status of the Archaea, extensive physiological and biochemical research has been conducted to elucidate the molecular basis of their remarkable lifestyle and their unique biology. Here, we discuss how in-depth comparative genomics has been used to improve the annotation of archaeal genomes. Combined with experimental verification, bioinformatic analysis contributes to the ongoing discovery of novel metabolic conversions and control mechanisms, and as such to a better understanding of the intriguing biology of the Archaea.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands
| | | | | |
Collapse
|
232
|
Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol 2005; 15:342-8. [PMID: 15919195 DOI: 10.1016/j.sbi.2005.05.003] [Citation(s) in RCA: 382] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 03/16/2005] [Accepted: 05/03/2005] [Indexed: 01/22/2023]
Abstract
Riboswitches are structured elements typically found in the 5' untranslated regions of mRNAs, where they regulate gene expression by binding to small metabolites. In all examples studied to date, these RNA control elements do not require the involvement of protein factors for metabolite binding. Riboswitches appear to be pervasive in eubacteria, suggesting that this form of regulation is an important mechanism by which metabolic genes are controlled. Recently discovered riboswitch classes have surprisingly complex mechanisms for regulating gene expression and new high-resolution structural models of these RNAs provide insight into the molecular details of metabolite recognition by natural RNA aptamers.
Collapse
Affiliation(s)
- Brian J Tucker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
233
|
Tsubouchi T, Mineki R, Taka H, Kaga N, Murayama K, Nishiyama C, Yamane H, Kuzuyama T, Nishiyama M. Leader Peptide-mediated Transcriptional Attenuation of Lysine Biosynthetic Gene Cluster in Thermus thermophilus. J Biol Chem 2005; 280:18511-6. [PMID: 15753090 DOI: 10.1074/jbc.m414456200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism for regulation of the genes involved in the biosynthesis of amino acids is poorly identified in Thermus thermophilus. In this study, we analyzed the transcriptional control of the major lysine biosynthetic gene cluster in T. thermophilus. S1 nuclease mapping revealed that the transcription, which is repressed by lysine, starts at 111 bp, upstream of the translational start codon, ATG, for the homocitrate synthase (hcs) gene. The 5'-leader region of 111 bp carries a sequence that can encode a short peptide of 14 amino acids with tandem-arranged lysine residues in its sequence. The nucleotide sequence of the region suggests that the transcript can form complicated secondary structures. Deletion of most of the 5'-leader region or mutation of the tandem lysine codons suppressed the transcriptional repression by lysine. Mutation of the tandem codons from lysine to glutamine resulted in glutamine-dependent repression of the gene connected downstream, indicating that the leader peptide mediated the transcriptional attenuation of the gene expression. This is the first report demonstrating the transcriptional regulation of amino acid biosynthesis in T. thermophilus.
Collapse
Affiliation(s)
- Taishi Tsubouchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Winkler WC. Metabolic monitoring by bacterial mRNAs. Arch Microbiol 2005; 183:151-9. [PMID: 15750802 DOI: 10.1007/s00203-005-0758-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/05/2005] [Accepted: 01/12/2005] [Indexed: 02/04/2023]
Abstract
There is growing appreciation for diversity in the strategies that bacteria utilize in regulating gene expression. Bacteria must be able to respond in different ways to different stresses and thus require unique regulatory solutions for the physiological challenges they encounter. Recent data indicate that bacteria commonly employ a variety of posttranscriptional regulatory mechanisms to coordinate expression of their genes. In many instances, RNA structures embedded at the 5' ends of mRNAs are utilized to sense particular metabolic cues and regulate the encoded genes. These RNA elements are likely to range in structural sophistication, from short sequences recognized by RNA-binding proteins to complex shapes that fold into high-affinity receptors for small organic molecules. Enough examples of RNA-mediated genetic strategies have been found that it is becoming useful to view this overall mode of regulatory control at a genomic level. Eventually, a complete picture of bacterial gene regulation within a single bacterium, from control at transcription initiation to control of mRNA stability, will emerge. But for now, this article seeks to provide a brief overview of the known categories of RNA-mediated genetic mechanisms within the bacterium Bacillus subtilis, with the expectation that it is representative of bacteria as a whole.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, Room L1.404 , University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|
235
|
Havgaard JH, Lyngsø RB, Stormo GD, Gorodkin J. Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 2005; 21:1815-24. [PMID: 15657094 DOI: 10.1093/bioinformatics/bti279] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Searching for non-coding RNA (ncRNA) genes and structural RNA elements (eleRNA) are major challenges in gene finding today as these often are conserved in structure rather than in sequence. Even though the number of available methods is growing, it is still of interest to pairwise detect two genes with low sequence similarity, where the genes are part of a larger genomic region. RESULTS Here we present such an approach for pairwise local alignment which is based on foldalign and the Sankoff algorithm for simultaneous structural alignment of multiple sequences. We include the ability to conduct mutual scans of two sequences of arbitrary length while searching for common local structural motifs of some maximum length. This drastically reduces the complexity of the algorithm. The scoring scheme includes structural parameters corresponding to those available for free energy as well as for substitution matrices similar to RIBOSUM. The new foldalign implementation is tested on a dataset where the ncRNAs and eleRNAs have sequence similarity <40% and where the ncRNAs and eleRNAs are energetically indistinguishable from the surrounding genomic sequence context. The method is tested in two ways: (1) its ability to find the common structure between the genes only and (2) its ability to locate ncRNAs and eleRNAs in a genomic context. In case (1), it makes sense to compare with methods like Dynalign, and the performances are very similar, but foldalign is substantially faster. The structure prediction performance for a family is typically around 0.7 using Matthews correlation coefficient. In case (2), the algorithm is successful at locating RNA families with an average sensitivity of 0.8 and a positive predictive value of 0.9 using a BLAST-like hit selection scheme. AVAILABILITY The program is available online at http://foldalign.kvl.dk/
Collapse
Affiliation(s)
- Jakob Hull Havgaard
- Center for Bioinformatics and Division of Genetics, IBHV, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
236
|
Lesnik EA, Fogel GB, Weekes D, Henderson TJ, Levene HB, Sampath R, Ecker DJ. Identification of conserved regulatory RNA structures in prokaryotic metabolic pathway genes. Biosystems 2004; 80:145-54. [PMID: 15823413 DOI: 10.1016/j.biosystems.2004.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/04/2004] [Accepted: 11/05/2004] [Indexed: 11/24/2022]
Abstract
A combination of algorithms to search RNA sequence for the potential for secondary structure formation, and search large numbers of sequences for structural similarity, were used to search the 5'UTRs of annotated genes in the Escherichia coli genome for regulatory RNA structures. Using this approach, similar RNA structures that regulate genes in the thiamin metabolic pathway were identified. In addition, several putative regulatory structures were discovered upstream of genes involved in other metabolic pathways including glycerol metabolism and ethanol fermentation. The results demonstrate that this computational approach is a powerful tool for discovery of important RNA structures within prokaryotic organisms.
Collapse
|
237
|
Pagel P, Wong P, Frishman D. A Domain Interaction Map Based on Phylogenetic Profiling. J Mol Biol 2004; 344:1331-46. [PMID: 15561146 DOI: 10.1016/j.jmb.2004.10.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/20/2004] [Accepted: 10/12/2004] [Indexed: 11/17/2022]
Abstract
Phylogenetic profiling is a well established method for predicting functional relations and physical interactions between proteins. We present a new method for finding such relations based on phylogenetic profiling of conserved domains rather than proteins, avoiding computationally expensive all versus all sequence comparisons among genomes. The resulting domain interaction map (DIMA) can be explored directly or mapped to a genome of interest. We demonstrate that the performance of DIMA is comparable to that of classical phylogenetic profiling and its predictions often yield information that cannot be detected by profiling of entire protein chains. We provide a list of novel domain associations predicted by our method.
Collapse
Affiliation(s)
- Philipp Pagel
- Institute for Bioinformatics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
238
|
Affiliation(s)
- Wade C Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, Kline Biology Tower 506, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | |
Collapse
|
239
|
Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 2004; 5:R90. [PMID: 15535866 PMCID: PMC545781 DOI: 10.1186/gb-2004-5-11-r90] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/20/2004] [Accepted: 09/30/2004] [Indexed: 12/23/2022] Open
Abstract
A study of the genetic and regulatory factors in several biosynthesis, metal ion homeostasis, stress response, and energy metabolism pathways suggests that phylogenetically diverse δ-proteobacteria have homologous regulatory components. Background Relatively little is known about the genetic basis for the unique physiology of metal-reducing genera in the delta subgroup of the proteobacteria. The recent availability of complete finished or draft-quality genome sequences for seven representatives allowed us to investigate the genetic and regulatory factors in a number of key pathways involved in the biosynthesis of building blocks and cofactors, metal-ion homeostasis, stress response, and energy metabolism using a combination of regulatory sequence detection and analysis of genomic context. Results In the genomes of δ-proteobacteria, we identified candidate binding sites for four regulators of known specificity (BirA, CooA, HrcA, sigma-32), four types of metabolite-binding riboswitches (RFN-, THI-, B12-elements and S-box), and new binding sites for the FUR, ModE, NikR, PerR, and ZUR transcription factors, as well as for the previously uncharacterized factors HcpR and LysX. After reconstruction of the corresponding metabolic pathways and regulatory interactions, we identified possible functions for a large number of previously uncharacterized genes covering a wide range of cellular functions. Conclusions Phylogenetically diverse δ-proteobacteria appear to have homologous regulatory components. This study for the first time demonstrates the adaptability of the comparative genomic approach to de novo reconstruction of a regulatory network in a poorly studied taxonomic group of bacteria. Recent efforts in large-scale functional genomic characterization of Desulfovibrio species will provide a unique opportunity to test and expand our predictions.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, Moscow 127994, Russia
| | - Inna Dubchak
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- University of California, Berkeley, CA 94720, USA
| | - Eric Alm
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, Moscow 127994, Russia
- State Scientific Center GosniiGenetika, 1st Dorozhny pr. 1, Moscow 117545, Russia
| |
Collapse
|
240
|
Devedjiev Y, Surendranath Y, Derewenda U, Gabrys A, Cooper DR, Zhang RG, Lezondra L, Joachimiak A, Derewenda ZS. The structure and ligand binding properties of the B. subtilis YkoF gene product, a member of a novel family of thiamin/HMP-binding proteins. J Mol Biol 2004; 343:395-406. [PMID: 15451668 PMCID: PMC2792028 DOI: 10.1016/j.jmb.2004.08.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 11/20/2022]
Abstract
The crystal structure of the Bacillus subtilis YkoF gene product, a protein involved in the hydroxymethyl pyrimidine (HMP) salvage pathway, was solved by the multiwavelength anomalous dispersion (MAD) method and refined with data extending to 1.65 A resolution. The atomic model of the protein shows a homodimeric association of two polypeptide chains, each containing an internal repeat of a ferredoxin-like betaalphabetabetaalphabeta fold, as seen in the ACT and RAM-domains. Each repeat shows a remarkable similarity to two members of the COG0011 domain family, the MTH1187 and YBL001c proteins, the crystal structures of which were recently solved by the Northeast Structural Genomics Consortium. Two YkoF monomers form a tightly associated dimer, in which the amino acid residues forming the interface are conserved among family members. A putative small-ligand binding site was located within each repeat in a position analogous to the serine-binding site of the ACT-domain of the Escherichia coli phosphoglycerate dehydrogenase. Genetic data suggested that this could be a thiamin or HMP-binding site. Calorimetric data confirmed that YkoF binds two thiamin molecules with varying affinities and a thiamine-YkoF complex was obtained by co-crystallization. The atomic model of the complex was refined using data to 2.3 A resolution and revealed a unique H-bonding pattern that constitutes the molecular basis of specificity for the HMP moiety of thiamin.
Collapse
Affiliation(s)
- Yancho Devedjiev
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville, VA 22908-0736 USA
| | - Yogesh Surendranath
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville, VA 22908-0736 USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville, VA 22908-0736 USA
| | - Alexandra Gabrys
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville, VA 22908-0736 USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville, VA 22908-0736 USA
| | - Rong-guang Zhang
- Biosciences Division and Structural Biology Center Argonne National Laboratory 9700 South Cass Avenue Building 202, Argonne, IL 60439 USA
| | - Lour Lezondra
- Biosciences Division and Structural Biology Center Argonne National Laboratory 9700 South Cass Avenue Building 202, Argonne, IL 60439 USA
| | - Andrzej Joachimiak
- Biosciences Division and Structural Biology Center Argonne National Laboratory 9700 South Cass Avenue Building 202, Argonne, IL 60439 USA
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville, VA 22908-0736 USA
| |
Collapse
|
241
|
Alkema WBL, Lenhard B, Wasserman WW. Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus. Genome Res 2004; 14:1362-73. [PMID: 15231752 PMCID: PMC442153 DOI: 10.1101/gr.2242604] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A transcriptional regulatory network encompasses sets of genes (regulons) whose expression states are directly altered in response to an activating signal, mediated by trans-acting regulatory proteins and cis-acting regulatory sequences. Enumeration of these network components is an essential step toward the creation of a framework for systems-based analysis of biological processes. Profile-based methods for the detection of cis-regulatory elements are often applied to predict regulon members, but they suffer from poor specificity. In this report we describe Regulogger, a novel computational method that uses comparative genomics to eliminate spurious members of predicted gene regulons. Regulogger produces regulogs, sets of coregulated genes for which the regulatory sequence has been conserved across multiple organisms. The quantitative method assigns a confidence score to each predicted regulog member on the basis of the degree of conservation of protein sequence and regulatory mechanisms. When applied to a reference collection of regulons from Escherichia coli, Regulogger increased the specificity of predictions up to 25-fold over methods that use cis-element detection in isolation. The enhanced specificity was observed across a wide range of biologically meaningful parameter combinations, indicating a robust and broad utility for the method. The power of computational pattern discovery methods coupled with Regulogger to unravel transcriptional networks was demonstrated in an analysis of the genome of Staphylococcus aureus. A total of 125 regulogs were found in this organism, including both well-defined functional groups and a subset with unknown functions.
Collapse
Affiliation(s)
- Wynand B L Alkema
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
242
|
Martinez-Gomez NC, Robers M, Downs DM. Mutational Analysis of ThiH, a Member of the Radical S-Adenosylmethionine (AdoMet) Protein Superfamily. J Biol Chem 2004; 279:40505-10. [PMID: 15271986 DOI: 10.1074/jbc.m403985200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.
Collapse
Affiliation(s)
- Norma C Martinez-Gomez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726-4087, USA
| | | | | |
Collapse
|
243
|
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 2004; 31:6748-57. [PMID: 14627808 PMCID: PMC290268 DOI: 10.1093/nar/gkg900] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative analysis of genes, operons and regulatory elements was applied to the lysine biosynthetic pathway in available bacterial genomes. We report identification of a lysine-specific RNA element, named the LYS element, in the regulatory regions of bacterial genes involved in biosynthesis and transport of lysine. Similarly to the previously described RNA regulatory elements for three vitamins (riboflavin, thiamin and cobalamin), purine and methionine regulons, this regulatory RNA structure is highly conserved on the sequence and structural levels. The LYS element includes regions of lysine-constitutive mutations previously identified in Escherichia coli and Bacillus subtilis. A possible mechanism of the lysine-specific riboswitch is similar to the previously defined mechanisms for the other metabolite-specific riboswitches and involves either transcriptional or translational attenuation in various groups of bacteria. Identification of LYS elements in Gram-negative gamma-proteobacteria, Gram-positive bacteria from the Bacillus/Clostridium group, and Thermotogales resulted in description of the previously uncharacterized lysine regulon in these bacterial species. Positional analysis of LYS elements led to identification of a number of new candidate lysine transporters, namely LysW, YvsH and LysXY. Finally, the most likely candidates for genes of lysine biosynthesis missing in Gram- positive bacteria were identified using the genome context analysis.
Collapse
|
244
|
Abstract
Recent studies have revealed several genetic systems in bacteria that use complex RNA structural elements to monitor regulatory signals and control expression of downstream genes. These include RNA thermosensors, in which an inhibitory structure melts at high temperature, and systems where binding of small RNAs or cellular metabolites modulates the structure of the RNA. The remarkable feature of these systems is the ability of the regulatory RNA elements to specifically sense the regulatory signal, without accessory components, and convey that information to the gene expression machinery via a structural change in the nascent RNA.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
245
|
Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 2004; 101:6421-6. [PMID: 15096624 PMCID: PMC404060 DOI: 10.1073/pnas.0308014101] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 03/17/2004] [Indexed: 12/13/2022] Open
Abstract
The expression of certain genes involved in fundamental metabolism is regulated by metabolite-binding "riboswitch" elements embedded within their corresponding mRNAs. We have identified at least six additional elements within the Bacillus subtilis genome that exhibit characteristics of riboswitch function (glmS, gcvT, ydaO/yuaA, ykkC/yxkD, ykoK, and yybP/ykoY). These motifs exhibit extensive sequence and secondary-structure conservation among many bacterial species and occur upstream of related genes. The element located upstream of the glmS gene in Gram-positive organisms functions as a metabolite-dependent ribozyme that responds to glucosamine-6-phosphate. Other motifs form complex folded structures when transcribed as RNA molecules and carry intrinsic terminator structures. These findings indicate that riboswitches serve as a major genetic regulatory mechanism for the control of metabolic genes in many microbial species.
Collapse
Affiliation(s)
- Jeffrey E Barrick
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jäger JG, Hüttenhofer A, Wagner EGH. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 2004; 31:6435-43. [PMID: 14602901 PMCID: PMC275561 DOI: 10.1093/nar/gkg867] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent bioinformatics-aided searches have identified many new small RNAs (sRNAs) in the intergenic regions of the bacterium Escherichia coli. Here, a shot-gun cloning approach (RNomics) was used to generate cDNA libraries of small sized RNAs. Besides many of the known sRNAs, we found new species that were not predicted previously. The present work brings the number of sRNAs in E.coli to 62. Experimental transcription start site mapping showed that some sRNAs were encoded from independent genes, while others were processed from mRNA leaders or trailers, indicative of a parallel transcriptional output generating sRNAs co-expressed with mRNAs. Two of these RNAs (SroA and SroG) consist of known (THI and RFN) riboswitch elements. We also show that two recently identified sRNAs (RyeB and SraC/RyeA) interact, resulting in RNase III-dependent cleavage. To the best of our knowledge, this represents the first case of two non-coding RNAs interacting by a putative antisense mechanism. In addition, intracellular metabolic stabilities of sRNAs were determined, including ones from previous screens. The wide range of half-lives (<2 to >32 min) indicates that sRNAs cannot generally be assumed to be metabolically stable. The experimental characterization of sRNAs analyzed here suggests that the definition of an sRNA is more complex than previously assumed.
Collapse
Affiliation(s)
- Jörg Vogel
- Institute of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
Methods for computationally predicting deleterious mutations have recently been investigated for proteins, mainly by probabilistic estimations in the context of genomic research for identifying single nucleotide polymorphisms that can potentially affect protein function. It has been demonstrated that in cases where a few homologs are available, ab initio predicted structures modeled by the Rosetta method can become useful for including structural information to improve the deleterious mutation prediction methods for proteins. In the field of RNAs where very few homologs are available at present, this analogy can serve as a precursor to investigate a deleterious mutation prediction approach that is based on RNA secondary structure. When attempting to develop models for the prediction of deleterious mutations in RNAs, useful structural information is available from folding algorithms that predict the secondary structure of RNAs, based on energy minimization. Detecting mutations with desired structural effects among all possible point mutations may then be valuable for the prediction of deleterious mutations that can be tested experimentally. Here, a method is introduced for the prediction of deleterious mutations in the secondary structure of RNAs. The mutation prediction method, based on subdivision of the initial structure into smaller substructures and construction of eigenvalue tables, is independent of the folding algorithms but relies on their success to predict the folding of small RNA structures. Application of this method to predict mutations that may cause structural rearrangements, thereby disrupting stable motifs, is given for prokaryotic transcription termination in the thiamin pyrophosphate and S-adenosyl-methionine induced riboswitches. Ribo switches are mRNA structures that have recently been found to regulate transcription termination or translation initiation in bacteria by conformation rearrangement in response to direct metabolite binding. Predicting deleterious mutations on riboswitches may succeed to systematically intervene in bacterial genetic control.
Collapse
Affiliation(s)
- Danny Barash
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| |
Collapse
|
248
|
Dorrestein PC, Zhai H, Taylor SV, McLafferty FW, Begley TP. The Biosynthesis of the Thiazole Phosphate Moiety of Thiamin (Vitamin B1): The Early Steps Catalyzed by Thiazole Synthase. J Am Chem Soc 2004; 126:3091-6. [PMID: 15012138 DOI: 10.1021/ja039616p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thiazole synthase (ThiG) catalyzes an Amadori-type rearrangement of 1-deoxy-d-xylulose-5-phosphate (DXP) via an imine intermediate. In support of this, we have demonstrated enzyme-catalyzed exchange of the C2 carbonyl of DXP. Borohydride reduction of the enzyme DXP imine followed by top-down mass spectrometric analysis localized the imine to lysine 96. On the basis of these observations, a new mechanism for the biosynthesis of the thiazole phosphate moiety of thiamin pyrophosphate in Bacillus subtilis is proposed. This mechanism involves the generation of a ketone at C3 of DXP by an Amadori-type rearrangement of the imine followed by nucleophillic addition of the sulfur carrier protein (ThiS-thiocarboxylate) to this carbonyl group.
Collapse
Affiliation(s)
- Pieter C Dorrestein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
249
|
Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 2004; 32:143-50. [PMID: 14704351 PMCID: PMC373277 DOI: 10.1093/nar/gkh167] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12-dependent riboswitch that causes repressed translation of the encoded cobalamin-transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand- binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram-positive and Gram-negative organisms. In addition, we find that the 5'-untranslated region (5'-UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25-gene operon for cobalamin production in this pathogen.
Collapse
Affiliation(s)
- Ali Nahvi
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
250
|
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 2003; 278:41148-59. [PMID: 12869542 DOI: 10.1074/jbc.m305837200] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using comparative analysis of genes, operons, and regulatory elements, we describe the cobalamin (vitamin B12) biosynthetic pathway in available prokaryotic genomes. Here we found a highly conserved RNA secondary structure, the regulatory B12 element, which is widely distributed in the upstream regions of cobalamin biosynthetic/transport genes in eubacteria. In addition, the binding signal (CBL-box) for a hypothetical B12 regulator was identified in some archaea. A search for B12 elements and CBL-boxes and positional analysis identified a large number of new candidate B12-regulated genes in various prokaryotes. Among newly assigned functions associated with the cobalamin biosynthesis, there are several new types of cobalt transporters, ChlI and ChlD subunits of the CobN-dependent cobaltochelatase complex, cobalt reductase BluB, adenosyltransferase PduO, several new proteins linked to the lower ligand assembly pathway, l-threonine kinase PduX, and a large number of other hypothetical proteins. Most missing genes detected within the cobalamin biosynthetic pathways of various bacteria were identified as nonorthologous substitutes. The variable parts of the cobalamin metabolism appear to be the cobalt transport and insertion, the CobG/CbiG- and CobF/CbiD-catalyzed reactions, and the lower ligand synthesis pathway. The most interesting result of analysis of B12 elements is that B12-independent isozymes of the methionine synthase and ribonucleotide reductase are regulated by B12 elements in bacteria that have both B12-dependent and B12-independent isozymes. Moreover, B12 regulons of various bacteria are thought to include enzymes from known B12-dependent or alternative pathways.
Collapse
|