201
|
Bisogno T, Piscitelli F, Di Marzo V. Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: Endocannabinoidomics. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
202
|
Malcher-Lopes R, Buzzi M. Glucocorticoid-regulated crosstalk between arachidonic acid and endocannabinoid biochemical pathways coordinates cognitive-, neuroimmune-, and energy homeostasis-related adaptations to stress. VITAMINS AND HORMONES 2009; 81:263-313. [PMID: 19647116 DOI: 10.1016/s0083-6729(09)81011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arachidonic acid and its derivatives constitute the major group of signaling molecules involved in the innate immune response and its communication with all cellular and systemic aspects involved on homeostasis maintenance. Glucocorticoids spread throughout the organism their influences over key enzymatic steps of the arachidonic acid biochemical pathways, leading, in the central nervous system, to a shift favoring the synthesis of anti-inflammatory endocannabinoids over proinflammatory metabolites, such as prostaglandins. This shift modifies local immune-inflammatory response and neuronal activity to ultimately coordinate cognitive, behavioral, neuroendocrine, neuroimmune, physiological, and metabolic adjustments to basal and stress conditions. In the hypothalamus, a reciprocal feedback between glucocorticoids and arachidonate-containing molecules provides a mechanism for homeostatic control. This neurochemical switch is susceptible to fine-tuning by neuropeptides, cytokines, and hormones, such as leptin and interleukin-1beta, assuring functional integration between energy homeostasis control and the immune/stress response.
Collapse
Affiliation(s)
- Renato Malcher-Lopes
- Laboratory of Mass Spectrometry, EMBRAPA-Center for Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
203
|
Pasquariello N, Oddi S, Malaponti M, Maccarrone M. Regulation of gene transcription and keratinocyte differentiation by anandamide. VITAMINS AND HORMONES 2009; 81:441-67. [PMID: 19647122 DOI: 10.1016/s0083-6729(09)81017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anandamide (AEA) is a member of an endogenous class of lipid mediators, known as endocannabinoids, which are involved in various biological processes. In particular, AEA regulates cell growth, differentiation, and death. Accumulating evidence demonstrates that AEA controls also epidermal differentiation, one of the best characterized mechanisms of cell specialization. Indeed, the epidermis is a keratinized multistratified epithelium that functions as a barrier to protect the organism from dehydration, mechanical trauma, and microbial insults. Its function is established during embryogenesis and is maintained during the whole life span of the organism, through a complex and tightly controlled program, termed epidermal terminal differentiation (or cornification). Whereas the morphological changes that occur during cornification have been extensively studied, the molecular mechanisms that underlie this process remain poorly understood. In this chapter, we summarize current knowledge about the molecular regulation of proliferation and terminal differentiation in mammalian epidermis. In this context, we show that endocannabinoids are finely regulated by, and can interfere with, the differentiation program. In addition, we review the role of AEA in the control of cornification, and show that it occurs by maintaining a transcriptional repression of gene expression through increased DNA methylation.
Collapse
|
204
|
Abstract
It has been known for decades that marijuana and its major psychoactive component Δ⁹-tetrahydrocannabinol (THC) alter both male and female reproductive functions in humans and laboratory animals. The discovery of cannabinoid-like molecules (endocannabinoids), anandamide (AEA) and 2-arachidonylglycerol (2AG), as well as G-protein-coupled cannabinoid/endocannabinoid receptors CB₁ and CB₂, created an opportunity to study the adverse and beneficial effects of cannabinoids/endocannabinoids on fertility using molecular, physiological and genetic approaches. In fact, studies to explore the significance of cannabinoid/endocannabinoid signaling in reproduction have revealed some intriguing physiological roles in early pregnant events. This review summarizes some aspects of these signaling molecules in preimplantation and implantation biology utilizing genetically engineered mouse models.
Collapse
Affiliation(s)
- Xiaofei Sun
- Reproductive Sciences, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, 45229, USA
| | | |
Collapse
|
205
|
Gaetani S, Dipasquale P, Romano A, Righetti L, Cassano T, Piomelli D, Cuomo V. The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:57-72. [PMID: 19607961 DOI: 10.1016/s0074-7742(09)85005-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Observational studies in humans suggest that exposure to marijuana and other cannabis-derived drugs produces a wide range of subjective effects on mood tone and emotionality. These observations have their counterpart in animal studies, showing that cannabinoid agonists strongly affect emotional reactivity in directions that vary depending on dose and context. Based on these evidence, the activation of central CB(1) receptor has emerged as potential target for the development of antianxiety and antidepressant therapies. However, the variable effects of exogenous cannabinoid agonists have gradually shifted the interest to the alternative approach of amplifying the effects of endogenous cannabinoids (EC), namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), by preventing their deactivation. The enzyme fatty acid amide hydrolase (FAAH) has been the target of intense research efforts aimed at developing potent and selective inhibitors that might prolong AEA actions in vivo. Among the inhibitors developed, the compound URB597 was found to potently inhibit FAAH activity in vivo and cause brain AEA levels to increase. Interestingly, the enhanced AEA tone produced by URB597 does not result in the behavioral effects typical of a direct-acting cannabinoid agonist. Though URB597 does not elicit a full-fledged cannabinoid profile of behavioral responses, it does elicit marked anxiolytic-like and antidepressant-like effects in rats and mice. Such effects involve the downstream activation of CB(1) receptors, since they are attenuated by the CB(1) antagonist SR141716 (rimonabant). Parallel to FAAH inhibition, similar results can also be observed by pharmacologically blocking the AEA transport system, which is responsible of the intracellular uptake of AEA from the synaptic cleft. The reason why FAAH inhibition approach produces a smaller set of cannabimimetic effects might depend on the mechanism of EC synthesis and release upon neuronal activation and on the target selectivity of the drug. The mechanism of EC release is commonly referred to as "on request", since they are not synthesized and stored in synaptic vesicles, such as classical neurotransmitters, but are synthesized from membrane precursors and immediately released in the synaptic cleft following neuronal activation. The neural stimulation in specific brain areas, for example, those involved in the regulation of mood tone and/or emotional reactivity, would result in an increased EC tone in these same areas, but not necessarily in others. Therefore, inhibition of AEA metabolism activity could amplify CB(1) activation mainly where AEA release is higher. Furthermore, the inhibition of FAAH causes an accumulation of AEA but not 2-AG, which, being 200-fold more abundant than AEA in the brain, might differently modulate CB(1)-mediated behavioral responses. The evidence outlined above supports the hypothesis that the EC system plays an important role in anxiety and mood disorders and suggests that modulation of FAAH activity might be a pharmacological target for novel anxiolytic and antidepressant therapies.
Collapse
Affiliation(s)
- Silvana Gaetani
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
206
|
Targeted lipidomics as a tool to investigate endocannabinoid function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:35-55. [PMID: 19607960 DOI: 10.1016/s0074-7742(09)85004-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endocannabinoids are a family of lipid messengers present in a wide range of living organisms. They bind and activate the membrane receptors that are targeted by Delta(9)-tetrahydrocannabinol, the main psychoactive principle in marijuana (Cannabis). In the brain, they regulate ion-channel activity and neurotransmitter release critical to biological processes such as synaptic plasticity and learning and memory. Endocannabinoids are embedded within an intricate network of lipid pathways, the regulation of which controls the strength and duration of their signaling. Therefore, physiological, pathological, or pharmacological perturbations of these interconnected lipid pathways have a profound effect on the regulation of endocannabinoid signaling. The recent development of high-sensitivity and high-throughput analytical tools affords a broader view of the endocannabinoid system, allowing researchers to place individual endocannabinoid molecules in the context of the interconnected network of their precursors and derivatives. Targeted lipidomics provides new opportunities for understanding endocannabinoid metabolism.
Collapse
|
207
|
Abstract
The active component of marijuana, Delta(9)-tetrahydrocannabinol, activates the CB1 and CB2 cannabinoid receptors, thus mimicking the action of endogenous cannabinoids. CB1 is predominantly neuronal and mediates the cannabinoid psychotropic effects. CB2 is predominantly expressed in peripheral tissues, mainly in pathological conditions. So far the main endocannabinoids, anandamide and 2-arachidonoylglycerol, have been found in bone at 'brain' levels. The CB1 receptor is present mainly in skeletal sympathetic nerve terminals, thus regulating the adrenergic tonic restrain of bone formation. CB2 is expressed in osteoblasts and osteoclasts, stimulates bone formation, and inhibits bone resorption. Because low bone mass is the only spontaneous phenotype so far reported in CB2 mutant mice, it appears that the main physiologic involvement of CB2 is associated with maintaining bone remodeling at balance, thus protecting the skeleton against age-related bone loss. Indeed, in humans, polymorphisms in CNR2, the gene encoding CB2, are strongly associated with postmenopausal osteoporosis. Preclinical studies have shown that a synthetic CB2-specific agonist rescues ovariectomy-induced bone loss. Taken together, the reports on cannabinoid receptors in mice and humans pave the way for the development of 1) diagnostic measures to identify osteoporosis-susceptible polymorphisms in CNR2, and 2) cannabinoid drugs to combat osteoporosis.
Collapse
Affiliation(s)
- Itai Bab
- Bone Laboratory, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
208
|
Tóth A, Blumberg PM, Boczán J. Chapter 15 Anandamide and the Vanilloid Receptor (TRPV1). VITAMINS AND HORMONES 2009; 81:389-419. [DOI: 10.1016/s0083-6729(09)81015-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
209
|
Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat 2008; 89:112-9. [PMID: 19126434 DOI: 10.1016/j.prostaglandins.2008.12.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/20/2008] [Accepted: 12/02/2008] [Indexed: 01/23/2023]
Abstract
Endocannabinoids (endogenous ligands of cannabinoid receptors) exert diverse physiological and pathophysiological functions in animal tissues. N-Arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG) are two representative endocannabinoids. Both the compounds are arachidonic acid-containing lipid molecules generated from membrane glycerophospholipids, but their biosynthetic pathways are totally different. Anandamide is principally formed together with other N-acylethanolamines (NAEs) in a two-step pathway, which is composed of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD). cDNA cloning of NAPE-PLD and subsequent analysis of its gene-disrupted mice led to the discovery of alternative pathways comprising multiple enzymes. As for the 2-AG biosynthesis, recent results, including cDNA cloning of diacylglycerol lipase and analyses of phospholipase Cbeta-deficient mice, demonstrated that these two enzymes are responsible for the in vivo formation of 2-AG functioning as a retrograde messenger in synapses. In this review article, we will focus on recent progress in the studies on the enzymes responsible for the endocannabinoid biosyntheses.
Collapse
|
210
|
Vellani V, Petrosino S, De Petrocellis L, Valenti M, Prandini M, Magherini PC, McNaughton PA, Di Marzo V. Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacology 2008; 55:1274-9. [DOI: 10.1016/j.neuropharm.2008.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 01/21/2023]
|
211
|
Hansen SL, Nielsen AH, Knudsen KE, Artmann A, Petersen G, Kristiansen U, Hansen SH, Hansen HS. Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus. Neurochem Int 2008; 54:199-204. [PMID: 19100800 DOI: 10.1016/j.neuint.2008.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/20/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
The ketogenic diet (KD) is used for the treatment of refractory epilepsy in children, however, the mechanism(s) remains largely unknown. Also, the antiepileptogenic potential in animal models of epilepsy has been poorly addressed. Activation of cannabinoid type-1 receptor (CB(1)-R) upon seizure activity may mediate neuroprotection as may several N-acylethanolamines. It is unknown how the KD interfere with the endocannabinoid system. We investigated the antiepileptogenic potential of the KD in the pentylenetetrazole kindling model in young mice and measured the hippocampal levels of CB(1)-R by Western blot and of endocannabinoids and N-acylethanolamines by mass spectrometry. The KD significantly decreased incidence and severity of seizures, and significantly increased the latency to clonic convulsions. There were no changes in levels of endocannabinoids or CB(1)-R expression by either seizure activity or type of diet. The level of oleoylethanolamide as well as the sum of N-acylethanolamines were significantly decreased by the KD, but were unaffected by seizure activity. The study shows that the KD had clear antiepileptogenic properties in the pentylenetetrazole kindling model and does not support a role of endocannabinoids in this model. The significance of the decreased hippocampal level of oleoylethanolamide awaits further studies.
Collapse
Affiliation(s)
- Suzanne L Hansen
- Department of Pharmacology and Pharmacotherapy, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Sun X, Wang H, Okabe M, Mackie K, Kingsley PJ, Marnett LJ, Cravatt BF, Dey SK. Genetic loss of Faah compromises male fertility in mice. Biol Reprod 2008; 80:235-42. [PMID: 18987328 DOI: 10.1095/biolreprod.108.072736] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Marijuana is the most commonly used illicit drug. Although there is some indication that reproductive functions in males are impaired in chronic marijuana users, the genetic evidence and underlying causes remain largely unknown. Herein we show that genetic loss of Faah, which encodes fatty acid amide hydrolase (FAAH), results in elevated levels of anandamide, an endocannabinoid, in the male reproductive system, leading to compromised fertilizing capacity of sperm. This defect is rescued by superimposing deletion of cannabinoid receptor 1 (Cnr1). Retention of Faah(-/-) sperm on the egg zona pellucida provides evidence that the capacity of sperm to penetrate the zona barrier is hampered by elevated anandamide levels. Collectively, the results show that aberrant endocannabinoid signaling via CNR1 impairs normal sperm function. Besides unveiling a new regulatory mechanism of sperm function, this study has clinical significance in male fertility.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Aneetha H, O'Dell DK, Tan B, Walker JM, Hurley TD. Alcohol dehydrogenase-catalyzed in vitro oxidation of anandamide to N-arachidonoyl glycine, a lipid mediator: synthesis of N-acyl glycinals. Bioorg Med Chem Lett 2008; 19:237-41. [PMID: 19013794 DOI: 10.1016/j.bmcl.2008.10.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 01/10/2023]
Abstract
N-Arachidonoyl ethanolamide or anandamide is an endocannabinoid found in most tissues where it acts as an important signaling mediator in a number of physiological and pathophysiological processes. Consequently, intense effort has been focused on understanding all its biosynthetic and metabolic pathways. Herein we report human alcohol dehydrogenase-catalyzed sequential oxidation of anandamide to N-arachidonoyl glycine, a prototypical member of the class of long chain fatty acyl glycines, a new group of lipid mediators with a wide array of physiological effects. We also present a straightforward synthesis for a series of N-acyl glycinals including N-arachidonoyl glycinal, an intermediate in the alcohol dehydrogenase-catalyzed oxidation of anandamide.
Collapse
Affiliation(s)
- Halikhedkar Aneetha
- The Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
214
|
Jin XH, Uyama T, Wang J, Okamoto Y, Tonai T, Ueda N. cDNA cloning and characterization of human and mouse Ca(2+)-independent phosphatidylethanolamine N-acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:32-8. [PMID: 19000777 DOI: 10.1016/j.bbalip.2008.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/25/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
The formation of N-acylphosphatidylethanolamine by N-acylation of phosphatidylethanolamine (PE) is the initial step in the biosynthetic pathway of bioactive N-acylethanolamines, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. We recently cloned a rat enzyme capable of catalyzing this reaction, and referred to the enzyme as Ca(2+)-independent N-acyltransferase (iNAT). Here we report cDNA cloning and characterization of human and mouse iNATs. We cloned iNAT-homologous cDNAs from human and mouse testes, and overexpressed them in COS-7 cells. The purified recombinant proteins abstracted an acyl group from both sn-1 and sn-2 positions of phosphatidylcholine, and catalyzed N-acylation of PE as well as phospholipase A(1)/A(2)-like hydrolysis. The iNAT activity was mainly detected in soluble rather than particulate fractions, and was only slightly increased by Ca(2+). These results demonstrated that the human and mouse homologues function as iNAT. As for the organ distribution of iNAT, human testis and pancreas and mouse testis exhibited by far the highest expression level, suggesting its physiological importance in the specific organs. Moreover, mutagenesis studies showed crucial roles of His-154 and Cys-241 of rat iNAT in the catalysis and a possible role of the N-terminal domain in membrane association or protein-protein interaction.
Collapse
Affiliation(s)
- Xing-Hua Jin
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
215
|
Placzek EA, Okamoto Y, Ueda N, Barker EL. Mechanisms for recycling and biosynthesis of endogenous cannabinoids anandamide and 2-arachidonylglycerol. J Neurochem 2008; 107:987-1000. [PMID: 18778304 DOI: 10.1111/j.1471-4159.2008.05659.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms of endogenous cannabinoid biosynthesis are not completely understood. We hypothesized that anandamide could be recycled by the cell to form new endocannabinoid molecules and released into the extracellular space. We determined that new endocannabinoids derived from exogenous anandamide or arachidonic acid were synthesized and released from RBL-2H3 cells in response to ionomycin. Treatment of RBL-2H3 cells with nystatin and progesterone, agents that disrupt organization of lipid raft/caveolae, resulted in the attenuation of anandamide and 2-arachidonyl glycerol synthesis and/or release in response to stimulation with ionomycin suggesting a role for these membrane microdomains in endocannabinoid biosynthesis. Furthermore, anandamide synthesis may be independent of N-acyl phosphatidylethanolamine phospholipase D as expression of the enzyme was not detected in RBL-2H3 cells. We also established that extracellular calcium is necessary for endocannabinoid biosynthesis because release of intracellular calcium stores alone does not promote endocannabinoid biosynthesis. Next, we examined the role of calcium as a 'switch' to activate the synthesis of anandamide and simultaneously reduce uptake. Indeed, [(3)H] anandamide uptake was reduced in the presence of calcium. Our findings suggest a mechanism indicative of calcium-modulated activation of anandamide synthesis and simultaneous termination of uptake.
Collapse
Affiliation(s)
- Ekaterina A Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47904, USA
| | | | | | | |
Collapse
|
216
|
Placzek EA, Okamoto Y, Ueda N, Barker EL. Membrane microdomains and metabolic pathways that define anandamide and 2-arachidonyl glycerol biosynthesis and breakdown. Neuropharmacology 2008; 55:1095-104. [PMID: 18760289 DOI: 10.1016/j.neuropharm.2008.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/16/2008] [Accepted: 07/22/2008] [Indexed: 01/31/2023]
Abstract
Anandamide (AEA) and 2-arachidonyl glycerol (2-AG), endogenous ligands for the CB1 and CB2 cannabinoid receptors, are referred to as endocannabinoids because they mimic the actions of delta9-tetrahydrocannabinol (Delta9-THC), a plant-derived cannabinoid. The processes by which AEA and 2-AG are biosynthesized, released, taken up by cells and hydrolyzed have been of much interest as potential therapeutic targets. In this review we will discuss the progress that has been made to characterize the primary pathways for AEA and 2-AG formation and breakdown as well as the role that specialized membrane microdomains known as lipid rafts play in these processes. Furthermore we will review the recent advances made to track and detect AEA in biological matrices.
Collapse
Affiliation(s)
- Ekaterina A Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, Room 202C, West Lafayette, IN 47904, USA
| | | | | | | |
Collapse
|
217
|
Suárez J, Bermúdez-Silva FJ, Mackie K, Ledent C, Zimmer A, Cravatt BF, de Fonseca FR. Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol 2008; 509:400-21. [DOI: 10.1002/cne.21774] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
218
|
Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R. CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J Biol Chem 2008; 283:24525-33. [PMID: 18606822 DOI: 10.1074/jbc.m801783200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cgi-58 (comparative gene identification-58) is a member of alpha/beta-hydrolase family of proteins. Mutations in CGI-58 are shown to be responsible for a rare genetic disorder known as Chanarin-Dorfman syndrome, characterized by an excessive accumulation of triacylglycerol in several tissues and ichthyosis. We have earlier reported that YLR099c encoding Ict1p in Saccharomyces cerevisiae can acylate lysophosphatidic acid to phosphatidic acid. Here we report that human CGI-58 is closely related to ICT1. To understand the biochemical function of cgi-58, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to specifically acylate lysophosphatidic acid in an acyl-CoA-dependent manner. Overexpression of CGI-58 in S. cerevisiae showed an increase in the formation of phosphatidic acid resulting in an overall increase in the total phospholipids. However, the triacylglycerol level was found to be significantly reduced. In addition, the physiological significance of cgi-58 in mice white adipose tissue was studied. We found soluble lysophosphatidic acid acyltransferase activity in mouse white adipose tissue. Immunoblot analysis using anti-Ict1p antibodies followed by mass spectrometry of the immunocross-reactive protein in lipid droplets revealed its identity as cgi-58. These observations suggest the existence of an alternate cytosolic phosphatidic acid biosynthetic pathway in the white adipose tissue. Collectively, these results reveal the role of cgi-58 as an acyltransferase.
Collapse
Affiliation(s)
- Ananda K Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 562, India
| | | | | | | |
Collapse
|
219
|
Sütt S, Raud S, Areda T, Reimets A, Kõks S, Vasar E. Cat odour-induced anxiety--a study of the involvement of the endocannabinoid system. Psychopharmacology (Berl) 2008; 198:509-20. [PMID: 17882402 DOI: 10.1007/s00213-007-0927-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 08/20/2007] [Indexed: 01/16/2023]
Abstract
RATIONALE Recent evidence suggests the involvement of the endocannabinoid (EC) system in the regulation of anxiety. OBJECTIVES The aim of present work was to study the role of the EC system in cat odour-induced anxiety in rats. Materials and methods Male Wistar rats were exposed to cat odour in home and motility cages. Exposure of rats to elevated zero-maze was used to determine changes in anxiety. Effect of rimonabant (0.3-3 mg/kg), antagonist of CB1 receptors, was studied on cat odour-induced alterations in exploratory behaviour. Real-time PCR was used to determine gene expression levels of EC-related genes in the brain. RESULTS Anxiogenic-like action of cat odour was evident in the elevated zero-maze. Cat odour increased the expression of FAAH, the enzyme responsible for the degradation of anandamide, in the mesolimbic area. By contrast, in the amygdala and periaqueductal grey (PAG) levels of NAPE-PLD, the enzyme related to the synthesis of anandamide, and FAAH were remarkably decreased. Cat odour also decreased the expression of enzymes related to metabolism of 2-archidonoyl-glycerol in the amygdala and PAG. Pre-treatment of rats with rimonabant (0.3-3 mg/kg) reduced the exploratory behaviour of rats, but did not affect cat odour-induced changes. CONCLUSION Exposure to cat odour induces anxiogenic-like effect on the behaviour in rats. Cat odour also causes moderate increase in expression of EC-related genes in the mesolimbic area, whereas significant down-regulation is established in the amygdala and PAG. Relation of predator odour-induced anxiety to the inhibition of the EC system in the amygdala and PAG is supported by behavioural studies where blockade of CB1 receptors by rimonabant induces anxiogenic-like action.
Collapse
Affiliation(s)
- Silva Sütt
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
220
|
Merritt LL, Martin BR, Walters C, Lichtman AH, Damaj MI. The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther 2008; 326:483-92. [PMID: 18451315 DOI: 10.1124/jpet.108.138321] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of evidence suggests that the endogenous cannabinoid system modulates the addictive properties of nicotine, the main component of tobacco that produces rewarding effects. In our study, complementary transgenic and pharmacological approaches were used to test the hypothesis that the endocannabinoid system modulates nicotine reward and dependence. An acute injection of nicotine elicited normal analgesic and hypothermic effects in cannabinoid receptor (CB)(1) knockout (KO) mice and mice treated with the CB(1) antagonist rimonabant. However, disruption of CB(1) receptor signaling blocked nicotine reward, as assessed in the conditioned place preference (CPP) paradigm. In contrast, genetic deletion, or pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for catabolism of the endocannabinoid anandamide, enhanced the expression of nicotine CPP. Although the expression of spontaneous nicotine withdrawal (14 days, 24 mg/kg/day nicotine) was unaffected in CB(1) KO mice, acute administration of rimonabant (3 mg/kg) ameliorated somatic withdrawal signs in wild-type mice. Increasing endogenous levels of anandamide through genetic or pharmacological approaches exacerbated the physical somatic signs of spontaneous nicotine withdrawal in a milder withdrawal model (7 days, 24 mg/kg/day nicotine). Moreover, FAAH-compromised mice displayed increased conditioned place aversion in a mecamylamine-precipitated model of nicotine withdrawal. These findings indicate that endocannabinoids play a role in the rewarding properties of nicotine as well as nicotine dependence liability. Specifically, increasing endogenous cannabinoid levels magnifies, although disrupting CB(1) receptor signaling, attenuates nicotine reward and withdrawal. Taken together, these results support the hypothesis that cannabinoid receptor antagonists may offer therapeutic advantages to treat tobacco dependence.
Collapse
Affiliation(s)
- Lisa L Merritt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
221
|
Abstract
The finding of specific binding sites for Delta(9)-tetrahydrocannabinol, the psychoactive component of Cannabis sativa, has led to the discovery of the endocannabinoid system and has emphasised the physiological and pathological relevance of endocannabidoid lipid signalling. Subsequently, an increasing number of papers have been published on the biochemistry and pharmacology of endocannabinoids. An overview of the current understanding of structure and metabolism of the best studied endocannabinoids is provided, with a focus on the mechanisms responsible for their biosynthesis and inactivation.
Collapse
Affiliation(s)
- T Bisogno
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy.
| |
Collapse
|
222
|
Abstract
The endocannabinoid system consists of the endogenous cannabinoids (endocannabinoids), cannabinoid receptors and the enzymes that synthesise and degrade endocannabinoids. Many of the effects of cannabinoids and endocannabinoids are mediated by two G protein-coupled receptors (GPCRs), CB(1) and CB(2), although additional receptors may be involved. CB(1) receptors are present in very high levels in several brain regions and in lower amounts in a more widespread fashion. These receptors mediate many of the psychoactive effects of cannabinoids. CB(2) receptors have a more restricted distribution, being found in a number of immune cells and in a few neurones. Both CB(1) and CB(2) couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. Thus, partial agonism, functional selectivity and inverse agonism all play important roles in determining the cellular response to specific cannabinoid receptor ligands.
Collapse
Affiliation(s)
- K Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47401, USA.
| |
Collapse
|
223
|
Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 2008; 108:1687-707. [PMID: 18429637 DOI: 10.1021/cr0782067] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kay Ahn
- Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
224
|
Sun X, Dey SK. Aspects of endocannabinoid signaling in periimplantation biology. Mol Cell Endocrinol 2008; 286:S3-11. [PMID: 18294762 PMCID: PMC2435201 DOI: 10.1016/j.mce.2008.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 12/13/2022]
Abstract
Physiological roles of endocannabinoids, a group of endogenously produced cannabinoid-like lipid molecules that activate G protein-coupled cannabinoid receptors, are being increasingly appreciated in female reproduction. Adverse effects of cannabinoids on female fertility have been suspected for decades; however, underlying molecular and genetic bases by which they exert these effects were not clearly understood. The discovery of cannabinoid receptors (CB1 and CB2), endocannabinoid ligands (anandamide and 2-acylglycerol) as well as their key synthetic and hydrolytic pathways has helped to better understand the roles of cannabinoid/endocannabinoid signaling in preimplantation embryo development, oviductal embryo transport, embryo implantation and postimplantation embryonic growth. This review focuses on various aspects of the endocannabinoid system in female fertility based on studies that used knockout mouse models. The information generated from studies in mice is likely to shed deeper insight into fertility regulation in women.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
225
|
Harkany T, Keimpema E, Barabás K, Mulder J. Endocannabinoid functions controlling neuronal specification during brain development. Mol Cell Endocrinol 2008; 286:S84-90. [PMID: 18394789 DOI: 10.1016/j.mce.2008.02.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 01/30/2023]
Abstract
Endocannabinoids (eCBs) regulate a broad range of physiological functions in the postnatal brain and are implicated in the neuropathogenesis of psychiatric and metabolic diseases. Accumulating evidence indicates that eCB signaling also serves key functions during neurodevelopment; and is inherently involved in the control of neurogenesis, neural progenitor proliferation, lineage segregation, and the migration and phenotypic specification of immature neurons. Recent advances in developmental biology define fundamental eCB-driven cellular mechanisms that also contribute to our understanding of the molecular substrates of prenatal drug, in particular cannabis, actions. Here, we summarize known organizing principles of eCB-signaling systems in the developing telencephalon, and outline the sequence of decision points and underlying signaling pathways upon CB1 cannabinoid receptor activation that contribute to neuronal diversification in the developing brain. Finally, we discuss how these novel principles affect the formation of complex neuronal networks.
Collapse
Affiliation(s)
- Tibor Harkany
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
226
|
Farrell EK, Merkler DJ. Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug Discov Today 2008; 13:558-68. [PMID: 18598910 DOI: 10.1016/j.drudis.2008.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/29/2008] [Accepted: 02/18/2008] [Indexed: 01/08/2023]
Abstract
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics.
Collapse
Affiliation(s)
- Emma K Farrell
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
227
|
Artmann A, Petersen G, Hellgren LI, Boberg J, Skonberg C, Nellemann C, Hansen SH, Hansen HS. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:200-12. [DOI: 10.1016/j.bbalip.2008.01.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/30/2007] [Accepted: 01/23/2008] [Indexed: 01/30/2023]
|
228
|
Egertová M, Simon GM, Cravatt BF, Elphick MR. Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: A new perspective on N-acylethanolamines as neural signaling molecules. J Comp Neurol 2008; 506:604-15. [PMID: 18067139 DOI: 10.1002/cne.21568] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-acylethanolamines (NAEs) are membrane-derived lipids that are utilized as signaling molecules in the nervous system (e.g., the endocannabinoid anandamide). An N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) that catalyzes formation of NAEs was recently identified as a member of the zinc metallohydrolase family of enzymes. NAPE-PLD(-/-) mice have greatly reduced brain levels of long-chain saturated NAEs but wild-type levels of polyunsaturated NAEs (e.g., anandamide), suggesting an important role for NAPE-PLD in the biosynthesis of at least a subset of endogenous NAEs in the mammalian nervous system. To provide a neuroanatomical basis for investigation of NAPE-PLD function, here we have analyzed expression of NAPE-PLD in the mouse brain using mRNA in situ hybridization and immunocytochemistry. NAPE-PLD(-/-) mice were utilized to establish the specificity of probes/antibodies used. The most striking feature of NAPE-PLD expression in the brain was in the dentate gyrus, where a strong mRNA signal was detected in granule cells. Accordingly, immunocytochemical analysis revealed intense NAPE-PLD immunoreactivity in the axons of granule cells (mossy fibers). Intense NAPE-PLD immunoreactivity was also detected in axons of the vomeronasal nerve that project to the accessory olfactory bulb. NAPE-PLD expression was detected in other brain regions (e.g., hippocampus, cortex, thalamus, hypothalamus), but the intensity of immunostaining was weaker than in mossy fibers. Collectively, the data obtained indicate that NAPE-PLD is expressed by specific populations of neurons in the brain and targeted to axonal processes. We suggest that NAEs generated by NAPE-PLD in axons may act as anterograde synaptic signaling molecules that regulate the activity of postsynaptic neurons.
Collapse
Affiliation(s)
- Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
229
|
An unannotated α/β hydrolase superfamily member, ABHD6 differentially expressed among cancer cell lines. Mol Biol Rep 2008; 36:691-6. [DOI: 10.1007/s11033-008-9230-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|
230
|
Effects of cocaine in 5-lipoxygenase-deficient mice. J Neural Transm (Vienna) 2008; 115:389-95. [PMID: 18327533 DOI: 10.1007/s00702-007-0848-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
5-Lipoxygenase (5-LOX), along with 12-lipoxygenase and cyclooxygenases, metabolizes arachidonic acid into eicosanoids. In rodents, 12-lipoxygenase deficiency alters behavioral responses to cocaine. We used 5-LOX-deficient mice and their controls to investigate cocaine's actions. After repeated cocaine injections, the increase in locomotor activity was greater in 5-LOX-deficient mice. Since the 5-LOX pathway may regulate the levels/metabolism of arachidonoylethanolamide (AEA) we assayed the AEA levels in the striatum, the binding of the endogenous AEA to the cannabinoid receptor CB1R, and anandamide hydrolase (FAAH) activity in the striatum, hippocampus, and cortex. Striatal AEA levels decreased after repeated cocaine injections. Cocaine also decreased CB1R binding in all brain regions studied and the only significant differences between 5-LOX-deficient and control mice was the greater hippocampal FAAH activity in 5-LOX-deficient mice. Our results demonstrated that a 5-LOX deficiency alters sensitivity to repeated cocaine. It should be investigated whether a human 5-LOX gene polymorphism affects cocaine's actions.
Collapse
|
231
|
The endocannabinoid receptor, CB1, is required for normal axonal growth and fasciculation. Mol Cell Neurosci 2008; 38:89-97. [PMID: 18378465 DOI: 10.1016/j.mcn.2008.02.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 02/07/2008] [Indexed: 11/20/2022] Open
Abstract
Endocannabinoids are retrograde neurotransmitters, which act upon the presynaptically located, G-protein coupled receptor CB1, to modulate synaptic transmission in the adult brain. Recently, however, a number of lines of evidence have suggested that endocannabinoid signalling may play an important role in early neuronal development. In this study, we show that the CB1 receptor has a wide expression pattern in the developing nervous system and that its expression follows neuronal differentiation in the embryo from the earliest stages. We also show that the enzymes involved in 2-AG synthesis are expressed in an overlapping manner at these stages. We further show that interfering with CB1 function using a pharmacological inhibitor causes problems in axon pathfinding and fasciculation. Similarly, CB1 gene knock down in the zebrafish by morpholino injection results in defects in axonal growth and fasciculation in these embryos. Thus CB1 function is required in the early embryo for axonal growth and fasciculation.
Collapse
|
232
|
Fezza F, Oddi S, Di Tommaso M, De Simone C, Rapino C, Pasquariello N, Dainese E, Finazzi-Agrò A, Maccarrone M. Characterization of biotin-anandamide, a novel tool for the visualization of anandamide accumulation. J Lipid Res 2008; 49:1216-23. [PMID: 18316795 DOI: 10.1194/jlr.m700486-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Anandamide (N-arachidonoylethanolamide; AEA) acts as an endogenous agonist of both cannabinoid and vanilloid receptors. During the last two decades, its metabolic pathways and biological activity have been investigated extensively and relatively well characterized. In contrast, at present, the effective nature and mechanism of AEA transport remain controversial and still unsolved issues. Here, we report the characterization of a biotinylated analog of AEA (b-AEA) that has the same lipophilicity of the parent compound. In addition, by means of biochemical assays and fluorescence microscopy, we show that b-AEA is accumulated inside the cells in a way superimposable on that of AEA. Conversely, b-AEA does not interact or interfere with the other components of the endocannabinoid system, such as type-1 and type-2 cannabinoid receptors, vanilloid receptor, AEA synthetase (N-acylphosphatidylethanolamine-hydrolyzing phospholipase D), or AEA hydrolase (fatty acid amide hydrolase). Together, our data suggest that b-AEA could be a very useful probe for visualizing the accumulation and intracellular distribution of this endocannabinoid.
Collapse
Affiliation(s)
- Filomena Fezza
- European Center for Brain Research/Istituto di Ricovero e Cura a Carattere Scientifico S. Lucia Foundation, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci 2008; 28:1058-63. [PMID: 18234884 DOI: 10.1523/jneurosci.5102-07.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoids are regarded as retrograde signaling molecules at various types of synapses throughout the CNS. The lipid derivatives anandamide and 2-arachidonoylglycerol (2-AG) are generally thought to be the key molecular players in this process. Previous anatomical and electrophysiological studies provided compelling evidence that the biosynthetic enzyme of 2-AG is indeed localized in the postsynaptic plasma membrane, whereas its target, the CB1 cannabinoid receptor, and the enzyme responsible for its inactivation are both found presynaptically. This molecular architecture of 2-AG signaling is a conserved feature of most synapses and supports the retrograde signaling role of 2-AG. Conversely, the molecular and neuroanatomical organization of synaptic anandamide signaling remains largely unknown. In contrast to its predicted role in retrograde signaling, here we show that N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD), a biosynthetic enzyme of anandamide and its related bioactive congeners, the N-acylethanolamines (NAEs), is concentrated presynaptically in several types of hippocampal excitatory axon terminals. Furthermore, high-resolution quantitative immunogold labeling demonstrates that this calcium-sensitive enzyme is localized predominantly on the intracellular membrane cisternae of axonal calcium stores. Finally, the highest density of NAPE-PLD is found in mossy terminals of granule cells, which do not express CB1 receptors. Together, these findings suggest that anandamide and related NAEs are also present at glutamatergic synapses, but the sites of their synthesis and action are remarkably different from 2-AG, indicating distinct physiological roles for given endocannabinoids in the regulation of synaptic neurotransmission and plasticity.
Collapse
|
234
|
Ghosh AK, Ramakrishnan G, Rajasekharan R. YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem 2008; 283:9768-75. [PMID: 18252723 DOI: 10.1074/jbc.m708418200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major determinants of organic solvent tolerance is the increase in membrane phospholipids. Here we report for the first time that an increase in the synthesis of phosphatidic acid is responsible for enhanced phospholipid synthesis that confers tolerance to the organic solvent in Saccharomyces cerevisiae. This increase in phosphatidic acid formation is because of the induction of Ict1p, a soluble oleoyl-CoA:lysophosphatidic acid acyltransferase. YLR099C (ICT1) was reported to be maximally expressed during solvent tolerance (Miura, S., Zou, W., Ueda, M., and Tanaka, A. (2000) Appl. Environ. Microbiol. 66, 4883-4889); however, its physiological significance was not understood. In silico analysis revealed the absence of any transmembrane domain in Ict1p. Domain analysis showed that it has a hydrolase/acyltransferase domain with a distinct lipid-binding motif and a lysophospholipase domain. Analysis of ict1Delta strain showed a drastic reduction in phosphatidic acid suggesting the role of Ict1p in phosphatidic acid biosynthesis. Overexpression of Ict1p in S. cerevisiae showed an increase in phosphatidic acid and other phospholipids on organic solvent exposure. To understand the biochemical function of Ict1p, the gene was cloned and expressed in Escherichia coli. The purified recombinant enzyme was found to specifically acylate lysophosphatidic acid. Specific activity of Ict1p was found to be higher for oleoyl-CoA as compared with palmitoyl- and stearoyl-CoAs. This study provides a mechanism for organic solvent tolerance from the point of membrane dynamics in S. cerevisiae.
Collapse
Affiliation(s)
- Ananda K Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
235
|
Simon GM, Cravatt BF. Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem 2008; 283:9341-9. [PMID: 18227059 DOI: 10.1074/jbc.m707807200] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anandamide (AEA) is an endogenous ligand of cannabinoid receptors and a well characterized mediator of many physiological processes including inflammation, pain, and appetite. The biosynthetic pathway(s) for anandamide and its N-acyl ethanolamine (NAE) congeners remain enigmatic. Previously, we proposed an enzymatic route for producing NAEs that involves the double-O-deacylation of N-acyl phosphatidylethanolamines (NAPEs) by alpha/beta-hydrolase 4 (ABDH4 or Abh4) to form glycerophospho (GP)-NAEs, followed by conversion of these intermediates to NAEs by an unidentified phosphodiesterase. Here, we report the detection and measurement of GP-NAEs, including the anandamide precursor glycerophospho-N-arachidonoylethanolamine (GP-NArE), as endogenous constituents of mouse brain tissue. Inhibition of the phosphodiesterase-mediated degradation of GP-NAEs ex vivo resulted in a striking accumulation of these lipids in brain extracts, suggesting a rapid endogenous flux through this pathway. Furthermore, we identify the glycerophosphodiesterase GDE1, also known as MIR16, as a broadly expressed membrane enzyme with robust GP-NAE phosphodiesterase activity. Together, these data provide evidence for a multistep pathway for the production of anandamide in the nervous system by the sequential actions of Abh4 and GDE1.
Collapse
Affiliation(s)
- Gabriel M Simon
- Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
236
|
|
237
|
Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 2008; 49:101-132. [PMID: 18751909 DOI: 10.1007/978-1-4020-8831-5_4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The family of endocannabinoids contains several polyunsaturated fatty acid amides such as anandamide (AEA), but also esters such as 2-arachidonoylglycerol (2-AG). These compounds are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Delta9-tetrahydrocannabinol (Delta9-THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake, through a putative membrane transporter, followed by intracellular degradation by fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutics of potential value for the treatment of pathologies of the central nervous system, and of peripheral tissues. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors, are the topic of this chapter.
Collapse
Affiliation(s)
- Filomena Fezza
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
238
|
Astarita G, Ahmed F, Piomelli D. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J Lipid Res 2008; 49:48-57. [DOI: 10.1194/jlr.m700354-jlr200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
239
|
Wang J, Okamoto Y, Tsuboi K, Ueda N. The stimulatory effect of phosphatidylethanolamine on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD). Neuropharmacology 2008; 54:8-15. [PMID: 17655883 DOI: 10.1016/j.neuropharm.2007.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/29/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
N-Acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD) is a membrane-bound enzyme which releases the endocannabinoid anandamide and other bioactive N-acylethanolamines from their corresponding NAPEs in animal tissues. Our previous studies showed that NAPE-PLD solubilized from the membrane is remarkably stimulated by millimolar concentrations of Ca(2+) while the membrane-bound form is much less sensitive to Ca(2+). This finding suggested that certain membrane constituents diminished the stimulatory effect of Ca(2+). In the present studies, we examined the effects of membrane fractions from COS-7 cells and brain tissue on the purified recombinant rat NAPE-PLD, and found that heat-stable membrane component(s) dose-dependently activated NAPE-PLD up to 4.8-5.0 fold. In the presence of the membrane fractions, however, the stimulatory effect of Ca(2+) on the purified NAPE-PLD was considerably reduced. When it was examined if the membrane fractions can be replaced with various pure phospholipids, phosphatidylethanolamine activated NAPE-PLD up to 3.3 fold, which was followed by decrease in the stimulatory effects of Ca(2+) and several other divalent cations. These results suggest that membrane components including phosphatidylethanolamine keep the membrane-associated form of NAPE-PLD constitutively active.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
240
|
Paradisi A, Pasquariello N, Barcaroli D, Maccarrone M. Anandamide regulates keratinocyte differentiation by inducing DNA methylation in a CB1 receptor-dependent manner. J Biol Chem 2007; 283:6005-12. [PMID: 18165231 DOI: 10.1074/jbc.m707964200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anandamide (arachidonoylethanolamide, AEA) belongs to an important class of endogenous lipids including amides and esters of long chain polyunsaturated fatty acids, collectively termed "endocannabinoids." Recently we have shown that AEA inhibits differentiation of human keratinocytes, by binding to type-1 cannabinoid receptors (CB1R). To further characterize the molecular mechanisms responsible for this effect, we investigated the expression of epidermal differentiation-related genes after AEA treatment. We observed that keratin 1 and 10, transglutaminase 5 and involucrin are transcriptionally down-regulated by AEA. Most importantly, we found that AEA is able to decrease differentiating gene expression by increasing DNA methylation in human keratinocytes, through a p38, and to a lesser extent p42/44, mitogen-activated protein kinase-dependent pathway triggered by CB1R. An effect of AEA on DNA methylation because of CB1R-mediated increase of methyltransferase activity is described here for the first time, and we believe that the importance of this effect clearly extends beyond the regulation of skin differentiation. In fact, the modulation of DNA methylation by endocannabinoids may affect the expression of a number of genes that regulate many cell functions in response to these substances.
Collapse
Affiliation(s)
- Andrea Paradisi
- Department of Biomedical Sciences, University of Teramo, Piazza A. Moro 45, Teramo, Italy
| | | | | | | |
Collapse
|
241
|
Di Marzo V, Bisogno T, De Petrocellis L. Endocannabinoids and related compounds: walking back and forth between plant natural products and animal physiology. ACTA ACUST UNITED AC 2007; 14:741-56. [PMID: 17656311 DOI: 10.1016/j.chembiol.2007.05.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 11/17/2022]
Abstract
Cannabis sativa has been known, used, and misused by mankind for centuries, and yet only over the last two decades has research stemming from the chemical constituents specific to this plant, the cannabinoids, started to provide fundamental insights into animal physiology and pathology, resulting in the development of new therapeutics. The discovery of the endocannabinoid system, and its targeting with two new pharmaceutical preparations now on the market in several countries, represent the most recent example of how studies on medicinal plants and on the mechanism of their biological effects can reveal, through a chain of breakthroughs, new systems of endogenous signals and physiological phenomena that can become the source of novel strategies for unmet therapeutic challenges.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | | | | |
Collapse
|
242
|
Abstract
A functional endocannabinoid system is present in several mammalian organs and tissues. Recently, endocannabinoids and their receptors have been reported in the skeleton. Osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells, produce the endocannabinoids anandamide and 2-arachidonoylglycerol and express CB2 cannabinoid receptors. Although CB2 has been implicated in pathological processes in the central nervous system and peripheral tissues, the skeleton appears as the main system physiologically regulated by CB2. CB2-deficient mice show a markedly accelerated age-related bone loss and the CNR2 gene (encoding CB2) in women is associated with low bone mineral density. The activation of CB2 attenuates ovariectomy-induced bone loss in mice by restraining bone resorption and enhancing bone formation. Hence synthetic CB2 ligands, which are stable and orally available, provide a basis for developing novel anti-osteoporotic therapies. Activation of CB1 in sympathetic nerve terminals in bone inhibits norepinephrine release, thus balancing the tonic sympathetic restrain of bone formation. Low levels of CB1 were also reported in osteoclasts. CB1-null mice display a skeletal phenotype that is dependent on the mouse strain, gender and specific mutation of the CB1 encoding gene, CNR1.
Collapse
|
243
|
Béquet F, Uzabiaga F, Desbazeille M, Ludwiczak P, Maftouh M, Picard C, Scatton B, Le Fur G. CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur J Neurosci 2007; 26:3458-64. [PMID: 18052990 DOI: 10.1111/j.1460-9568.2007.05900.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we examined the occurrence and potential regulation of endocannabinoid release by cannabinoid CB1 receptors in the rat brain. To this end, we developed a highly sensitive (limit of sensitivity 30-300 amol) new analytical method, combining online brain microdialysis with solid-phase extraction-liquid chromatography-tandem mass spectrometry, which allowed the detection in real time of trace amounts of endocannabinoids in the extracellular fluid. In the hypothalamus, anandamide and 2-arachidonoyl-glycerol release was stimulated following depolarization via local administration of K(+), with or without addition of Ca(2+), or glutamate application. Inhibition of fatty acid amide hydrolase by systemic administration of intraperitoneal (i.p.) URB597 (0.5 mg/kg) induced an increase of anandamide, but not 2-arachidonoyl-glycerol, outflow. The CB1 receptor antagonist rimonabant (10 mg/kg i.p.) increased, whereas the CB1 agonist WIN55,212-2 (2.5 mg/kg i.p.) decreased, anandamide release. Interestingly, the same treatments induced opposite changes in 2-arachidonoyl-glycerol release. At a dose of 3 mg/kg i.p., which by itself did not affect endocannabinoid release, rimonabant fully antagonized the effect of WIN55,212-2 (2.5 mg/kg i.p.). Taken together, these results suggest that CB1 receptors are able to control the local release of endocannabinoids in the hypothalamus via a feedback mechanism and strengthen the view that anandamide and 2-arachidonoyl-glycerol have distinct physiological roles.
Collapse
Affiliation(s)
- Frédéric Béquet
- Discovery Analytics, sanofi-aventis R&D, 195 route d'Espagne, BP1169 31036 Toulouse cedex 1, France.
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Degn M, Lambertsen KL, Petersen G, Meldgaard M, Artmann A, Clausen BH, Hansen SH, Finsen B, Hansen HS, Lund TM. Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice. J Neurochem 2007; 103:1907-16. [PMID: 17868306 DOI: 10.1111/j.1471-4159.2007.04892.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The N-acylethanolamines (NAEs) and 2-arachidonoylglycerol (2-AG) are bioactive lipids that can modulate inflammatory responses and protect neurons against glutamatergic excitotoxicity. We have used a model of focal cerebral ischemia in young adult mice to investigate the relationship between focal cerebral ischemia and endogenous NAEs. Over the first 24 h after induction of permanent middle cerebral artery occlusion, we observed a time-dependent increase in all the investigated NAEs, except for anandamide. Moreover, we found an accumulation of 2-AG at 4 h that returned to basal level 12 h after induction of ischemia. Accumulation of NAEs did not depend on regulation of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D or fatty acid amide hydrolase. Treatment with the fatty acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 1 mg/kg; i.p.) 1.5 h before arterial occlusion decreased the infarct volume in our model system. Our results suggest that NAEs and 2-AG may be involved in regulation of neuroprotection during focal cerebral ischemia in mice.
Collapse
Affiliation(s)
- Matilda Degn
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Guan Z, Li S, Smith DC, Shaw WA, Raetz CRH. Identification of N-acylphosphatidylserine molecules in eukaryotic cells. Biochemistry 2007; 46:14500-13. [PMID: 18031065 DOI: 10.1021/bi701907g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acylphosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1% of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, monounsaturated, and polyunsaturated species. N-Acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells, and yeast, but not Escherichia coli. N-Acyl-PSs may be biosynthetic precursors of N-acylserine molecules, such as the recently reported signaling lipid N-arachidonoylserine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acylserine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoylethanolamine (anadamide) from N-arachidonoylphosphatidylethanolamine.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
246
|
Lambert DM, Muccioli GG. Endocannabinoids and related N-acylethanolamines in the control of appetite and energy metabolism: emergence of new molecular players. Curr Opin Clin Nutr Metab Care 2007; 10:735-44. [PMID: 18089956 DOI: 10.1097/mco.0b013e3282f00061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Endocannabinoids (anandamide and 2-arachidonoylgycerol) and related N-acylethanolamines (N-oleoylethanolamine) exhibit opposite effects in the control of appetite. The purpose of this review is to highlight the similarities and differences of three major lipid-signaling molecules by focusing on their mode of action and the proteins involved in the control of food intake and energy metabolism. RECENT FINDINGS Anandamide and 2-arachidonoylglycerol promote food intake and are the main endogenous ligands of the cannabinoid receptors. One of them, the cannabinoid receptor 1, is responsible for the control of food intake and energy expenditure both at a central and a peripheral level, affecting numerous anorexigenic and orexigenic mediators (leptin, neuropeptide Y, ghrelin, orexin, endogenous opioids, corticotropin-releasing hormone, alpha-melanocyte stimulating hormone, cocaine and amphetamine-related transcript). In the gut, N-oleoylethanolamine plays an opposite role in food regulation, by interacting with two molecular targets different from the cannabinoid receptors: the nuclear receptor peroxisome proliferator-activated receptor alpha and a G-protein coupled receptor GPR119. SUMMARY Recent findings on the molecular mechanisms underlying the promotion of food intake or, in contrast, the suppression of food intake by anandamide and N-oleoylethanolamine, are summarized. Potential strategies for treating overweight, metabolic syndrome, and type II diabetes are briefly outlined.
Collapse
Affiliation(s)
- Didier M Lambert
- Medicinal Chemistry and Radiopharmacy Unit, School of Pharmacy, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
247
|
Miyata K, Nakayama M, Mizuta S, Hokimoto S, Sugamura K, Oshima S, Oike Y, Sugiyama S, Ogawa H, Yamamura KI. Elevated mature macrophage expression of human ABHD2 gene in vulnerable plaque. Biochem Biophys Res Commun 2007; 365:207-13. [PMID: 17980156 DOI: 10.1016/j.bbrc.2007.10.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/20/2007] [Indexed: 11/19/2022]
Abstract
We previously reported that the mouse alpha/beta hydrolase domain containing 2 (Abhd2) was expressed in smooth muscle cells (SMCs) which suppressed their migration and inhibited the development of intimal hyperplasia by cuff placement; however, the role of ABHD2 in human remains to be elucidated. In this study, we examined ABHD2 expression in the human coronary atherosclerotic lesions of the patients with unstable angina (UA) and stable angina (SA). Our results showed that the ABHD2 was expressed in atherosclerotic lesions, and that the ABHD2 expression was significantly higher in the patients with UA than with SA. Immunohistochemistry analysis revealed abundant expression of ABHD2 in macrophages, but low expression in SMCs of atherosclerotic lesions. Using human vascular primary culture cell lines, we also demonstrated that the expression of ABHD2 was significantly higher in macrophages than in SMCs, and that the expression of ABHD2 significantly increased proportionally with differentiation from monocyte into macrophage.
Collapse
Affiliation(s)
- Keishi Miyata
- Department of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Viveros MP, Marco EM, Llorente R, López-Gallardo M. Endocannabinoid system and synaptic plasticity: implications for emotional responses. Neural Plast 2007; 2007:52908. [PMID: 17641734 PMCID: PMC1906867 DOI: 10.1155/2007/52908] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/09/2007] [Accepted: 04/30/2007] [Indexed: 11/17/2022] Open
Abstract
The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long-term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms.
Collapse
Affiliation(s)
- María-Paz Viveros
- Departamento de Fisiología Fisiología Animal II, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
249
|
Bakovic M, Fullerton MD, Michel V. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: the role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem Cell Biol 2007; 85:283-300. [PMID: 17612623 DOI: 10.1139/o07-006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CDP-ethanolamine branch of the Kennedy pathway is the major route for the formation of ethanolamine-derived phospholipids, including diacyl phosphatidylethanolamine and alkenylacyl phosphatidylethanolamine derivatives, known as plasmalogens. Ethanolamine phospholipids are essential structural components of the cell membranes and play regulatory roles in cell division, cell signaling, activation, autophagy, and phagocytosis. The physiological importance of plasmalogens has not been not fully elucidated, although they are known for their antioxidant properties and deficiencies in a number of inherited peroxisomal disorders. This review highlights important aspects of ethanolamine phospholipid metabolism and reports current molecular information on 1 of the regulatory enzymes in their synthesis, CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2 is encoded by a single, nonredundant gene in animal species that could be alternatively spliced into 2 potential protein products. We describe properties of the mouse and human Pcyt2 genes and their regulatory promoters and provide molecular evidence for the existence of 2 distinct Pcyt2 proteins. The goal is to obtain more insight into Pcyt2 catalytic function and regulation to facilitate a better understanding of the production of ethanolamine phospholipids via the CDP-ethanolamine branch of the Kennedy pathway.
Collapse
Affiliation(s)
- Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | | | |
Collapse
|
250
|
Okamoto Y, Wang J, Morishita J, Ueda N. Biosynthetic Pathways of the Endocannabinoid Anandamide. Chem Biodivers 2007; 4:1842-57. [PMID: 17712822 DOI: 10.1002/cbdv.200790155] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anandamide (=N-arachidonoylethanolamine) is the first discovered endocannabinoid, and belongs to the class of bioactive, long-chain N-acylethanolamines (NAEs). In animal tissues, anandamide is principally formed together with other NAEs from glycerophospholipid by two successive enzymatic reactions: 1) N-acylation of phosphatidylethanolamine to generate N-acylphosphatidylethanolamine (NAPE) by Ca2+-dependent N-acyltransferase; 2) release of NAE from NAPE by a phosphodiesterase of the phospholipase D type (NAPE-PLD). Although these anandamide-synthesizing enzymes were poorly understood until recently, our cDNA cloning of NAPE-PLD in 2004 enabled molecular-biological approaches to the enzymes. NAPE-PLD is a member of the metallo-beta-lactamase family, which specifically hydrolyzes NAPE among glycerophospholipids, and appears to be constitutively active. Mutagenesis studies suggested that the enzyme functions through a mechanism similar to those of other members of the family. NAPE-PLD is widely expressed in animal tissues, including various regions in rat brain. Its expression level in the brain is very low at birth, and remarkably increases with development. Analysis of NAPE-PLD-deficient mice and other recent studies revealed the presence of NAPE-PLD-independent pathways for the anandamide formation. Furthermore, calcium-independent N-acyltransferase was discovered and characterized. In this article, we will review recent progress in the studies on these enzymes responsible for the biosynthesis of anandamide and other NAEs.
Collapse
Affiliation(s)
- Yasuo Okamoto
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|