201
|
Dietary Phosphatidylcholine Supplementation Attenuates Inflammatory Mucosal Damage in a Rat Model of Experimental Colitis. Shock 2012; 38:177-85. [DOI: 10.1097/shk.0b013e31825d1ed0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
202
|
Pathil A, Mueller J, Warth A, Chamulitrat W, Stremmel W. Ursodeoxycholyl lysophosphatidylethanolamide improves steatosis and inflammation in murine models of nonalcoholic fatty liver disease. Hepatology 2012; 55:1369-78. [PMID: 22183915 DOI: 10.1002/hep.25531] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/23/2011] [Indexed: 01/18/2023]
Abstract
UNLABELLED Hepatic fat accumulation and changes in lipid composition are hallmarks of nonalcoholic fatty liver disease (NAFLD). As an experimental approach for treatment of NAFLD, we synthesized the bile acid-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE). Previous work demonstrated profound hepatoprotective properties of the conjugate in vitro and in vivo. Here we investigated the effects of UDCA-LPE in two nutritional mouse models of NAFLD. C57BL/6 mice were fed a high-fat diet (HFD) for 28 weeks, resulting in steatosis with hyperlipidemia. In a second model, mice received a methionin-choline-deficient (MCD) diet for up to 11 weeks, which induced advanced nonalcoholic steatohepatitis (NASH). Establishment of liver injury was followed by intraperitoneal injections of 30 mg/kg UDCA-LPE three times a week for different time periods. UDCA-LPE ameliorated both HFD- and MCD-induced increases in alanine aminotransferase (ALT) values near to normalization. As for metabolic parameters, UDCA-LPE reduced elevated serum triglyceride and cholesterol values in HFD mice. Liver histology showed improvement of steatosis in HFD and MCD mice concomitant with reductions in hepatic triglyceride and cholesterol levels. Additionally, the conjugate lowered serum caspase-8 activity in both models and decreased lipid hydroperoxides in MCD mice. Abundance of proinflammatory lysophosphatidylcholine (LPC), which was detectable in both HFD and MCD mice, was reduced by UDCA-LPE. Quantitative reverse transcriptase-polymerase chain reaction qRT-PCR of liver specimens revealed that UDCA-LPE strongly down-regulated inflammatory genes and modified the expression of genes involved in lipid metabolism. CONCLUSION The current study demonstrates that UDCA-LPE improves hepatic injury at different stages of NAFLD. By concurrently lowering hepatic lipid overloading as well as susceptibility of hepatocytes toward inflammatory stimuli, the conjugate may be able to ameliorate disease progression. Thus, UDCA-LPE represents a promising compound suitable for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anita Pathil
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
203
|
Pathil A, Warth A, Chamulitrat W, Stremmel W. Comparison of different bile acid-phospholipid conjugates in acute hepatitis. Eur J Clin Invest 2012; 42:130-8. [PMID: 21707612 DOI: 10.1111/j.1365-2362.2011.02563.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The bile acid-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a promising novel compound with profound hepatoprotective functions in vitro and in vivo. Because of high costs of LPE synthesis from hydrolysis of phosphatidylethanolamide (PE), costs for UDCA-LPE synthesis for in vivo and human use can become quite high. In this study, we evaluated whether ursodeoxycholyl phosphatidylethanolamide (udca-pe), which is more cost-effective, could replace udca-lpe in terms of protection from hepatocellular injury. MATERIALS AND METHODS Anti-apoptotic and anti-inflammatory properties of UDCA-PE and UDCA-LPE were compared in TNFα/cyclohexamide (CHX)-treated HepG2 cells as well as in a mouse model of d-galactosamine/lipopolysaccharide (Gal/LPS)-induced acute liver injury. RESULTS Ursodeoxycholyl lysophosphatidylethanolamide inhibited TNFα/CHX-induced apoptosis in HepG2 cells in a dose-dependent manner and markedly ameliorated Gal/LPS-mediated fulminant hepatitis in mice. In contrast, UDCA-PE showed weaker hepatoprotective functions at low concentrations, and protection was lost at higher dosage. Analysis of hepatic gene expression showed that both conjugates significantly reduced Gal/LPS-mediated expression of chemoattractants, such as monocyte chemotactic protein 1 (MCP1) and RANTES. These inhibitory effects by UDCA-PE were transient while those by UDCA-LPE were sustained in attenuating expression of inflammatory MCP1 and RANTES expression. CONCLUSIONS Our data underline the superiority of UDCA-LPE compared to UDCA-PE in ameliorating acute liver inflammation. This indicates the significance of the lyso-functional group of bile acid conjugate for optimal hepatoprotection and reduction in inflammation in vivo.
Collapse
Affiliation(s)
- Anita Pathil
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
204
|
Küllenberg D, Taylor LA, Schneider M, Massing U. Health effects of dietary phospholipids. Lipids Health Dis 2012; 11:3. [PMID: 22221489 PMCID: PMC3316137 DOI: 10.1186/1476-511x-11-3] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/05/2012] [Indexed: 12/31/2022] Open
Abstract
Beneficial effects of dietary phospholipids (PLs) have been mentioned since the early 1900's in relation to different illnesses and symptoms, e.g. coronary heart disease, inflammation or cancer. This article gives a summary of the most common therapeutic uses of dietary PLs to provide an overview of their approved and proposed benefits; and to identify further investigational needs.From the majority of the studies it became evident that dietary PLs have a positive impact in several diseases, apparently without severe side effects. Furthermore, they were shown to reduce side effects of some drugs. Both effects can partially be explained by the fact that PL are highly effective in delivering their fatty acid (FA) residues for incorporation into the membranes of cells involved in different diseases, e.g. immune or cancer cells. The altered membrane composition is assumed to have effects on the activity of membrane proteins (e.g. receptors) by affecting the microstructure of membranes and, therefore, the characteristics of the cellular membrane, e.g. of lipid rafts, or by influencing the biosynthesis of FA derived lipid second messengers. However, since the FAs originally bound to the applied PLs are increased in the cellular membrane after their consumption or supplementation, the FA composition of the PL and thus the type of PL is crucial for its effect. Here, we have reviewed the effects of PL from soy, egg yolk, milk and marine sources. Most studies have been performed in vitro or in animals and only limited evidence is available for the benefit of PL supplementation in humans. More research is needed to understand the impact of PL supplementation and confirm its health benefits.
Collapse
Affiliation(s)
- Daniela Küllenberg
- Tumor Biology Center, Dept, of Clinical Research, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|
205
|
Jung HJ, Moon JS, Park AR, Choi H, Lee JE, Choi SH, Lim CJ. Anti-inflammatory, antinociceptive and anti-angiogenic activities of a phospholipid mixture purified from porcine lung tissues. Immunopharmacol Immunotoxicol 2011; 34:398-407. [PMID: 21981117 DOI: 10.3109/08923973.2011.611137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aimed to assess anti-inflammatory and related properties of a phospholipid mixture purified from porcine lung tissues, named KT&G101, which is being developed as a novel topical remedy for atopic dermatitis. KT&G101 consists of pure phospholipids, mainly phosphatidylcholine (PC) and other phospholipids such as phosphatidylinositol (PI) and phosphatidylserine (PS). Its predominant PC species is 1,2-dipalmitoylphosphatidylcholine (DPPC). KT&G101 exhibited an anti-angiogenic activity in the chick chorioallantoic membrane (CAM) assay. Oral administration of KT&G101 at the dosages of 100, 200 and 400 mg/kg body weight gave rise to an inhibition of 15.4%, 25.3% and 30.1% in the vascular permeability assay, respectively. In the carrageenan-induced inflammation in the air pouches, KT&G101 significantly diminished the volume of exudates in the pouches, the number of polymorphonuclear leukocytes and nitrite content in exudates. In the acetic acid-induced writhing response, oral administration of KT&G101 at the dosages of 50, 100 and 200 mg/kg body weight showed the reduction of 21.6%, 51.6% and 60.8% in the pain response of mice, respectively. It was also able to diminish the nitric oxide (NO) and reactive oxygen species (ROS) levels in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. KT&G101 displayed a significant suppression on the induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the stimulated RAW264.7 cells. However, the free radical scavenging activity of KT&G101 was detected to be very weak in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Taken together, KT&G101 possesses anti-inflammatory and related antinociceptive and anti-angiogenic activities, which indirectly supports its use as an anti-atopic therapy.
Collapse
Affiliation(s)
- Hyun-Joo Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
206
|
Snow DR, Ward RE, Olsen A, Jimenez-Flores R, Hintze KJ. Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. J Dairy Sci 2011; 94:2201-12. [PMID: 21524510 DOI: 10.3168/jds.2010-3886] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/04/2011] [Indexed: 01/07/2023]
Abstract
Milk fat globule membrane is a protein-lipid complex that may strengthen the gut barrier. The main objective of this study was to assess the ability of a membrane-rich milk fat diet to promote the integrity of the gut barrier and to decrease systemic inflammation in lipopolysaccharide (LPS)-challenged mice. Animals were randomly assigned to one of 2 American Institute of Nutrition (AIN)-76A formulations differing only in fat source: control diet (corn oil) and milk fat diet (anhydrous milk fat with 10% milk fat globule membrane). Each diet contained 12% calories from fat. Mice were fed diets for 5 wk, then injected with vehicle or LPS (10mg/kg of BW) and gavaged with dextran-fluorescein to assess gut barrier integrity. Serum was assayed for fluorescence 24h after gavage, and 16 serum cytokines were measured to assess the inflammatory response. Gut permeability was 1.8-fold higher in LPS-challenged mice fed the control diet compared with the milk fat diet. Furthermore, mice fed the milk fat diet and injected with LPS had lower serum levels of IL-6, IL-10, IL-17, monocyte chemotactic protein (MCP)-1, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and IL-3 compared with LPS-injected mice fed the control diet. The results indicate that the membrane-rich milk fat diet decreases the inflammatory response to a systemic LPS challenge compared with corn oil, and the effect coincides with decreased gut permeability.
Collapse
Affiliation(s)
- D R Snow
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan 84322, USA
| | | | | | | | | |
Collapse
|
207
|
Abstract
Human milk TG are a remarkable example of stereo-specific positioning of fatty acids with structures that are highly conserved and unusual. Not only does human milk contain high amounts of fat and 16:0, but ~70% of the 16:0 is esterified at the TG stereo-specifically numbered (sn)-2 position, with preferential positioning of 18:1(n-9) and 18:2(n-6) at the TG sn-1,3 positions. The milk TG structures and digestive lipases combine to enable efficient digestion and absorption of 16:0 by conserving 16:0 in sn-2 monoacylglycerols, which are absorbed, reassembled, and secreted in plasma conserving the original milk TG configuration; these studies are reviewed in this article. The reason why the mammary gland invests in enzymes to provide the infant with 20-25% milk fatty acids as 16:0 rather than selecting against 16:0 is unknown, yet likely has a purpose given the mammary gland capacity for 10:0, 12:0, and 14:0 synthesis. Recent advances in the development-, tissue-, and species-specific activity of enzymes of TG synthesis and knowledge that dietary TG structures are maintained postabsorption suggest that the purpose of the milk TG structures is more sophisticated than simply avoiding 16:0 malabsorption. The overall aim is to expand consideration of fatty acids in the infant diet from a simple view of average fatty acid compositions to the complex lipids and molecular structures in which fatty acids are provided to tissues during early life and the biology through which the unique features of human milk enable the infant to grow and thrive on a high-fat, high-saturated-fat milk diet.
Collapse
|
208
|
Pathil A, Warth A, Chamulitrat W, Stremmel W. The synthetic bile acid-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide suppresses TNFα-induced liver injury. J Hepatol 2011; 54:674-84. [PMID: 21146893 DOI: 10.1016/j.jhep.2010.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/10/2010] [Accepted: 07/29/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Excessive apoptosis and leukocyte-dependent inflammation mediated by pro-inflammatory cytokines, such as TNFα, are cardinal features of acute liver injury. This study evaluated the ability of the newly designed bile acid-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) to protect from hepatocellular injury in comparison to the known hepatoprotectant ursodeoxycholic acid (UDCA) and phosphatidylcholine (PC). METHODS Anti-apoptotic and anti-inflammatory properties of UDCA-LPE were evaluated after TNFα treatment of embryonic human hepatocyte cell line CL48 as well as of primary human hepatocytes. Acute liver injury was induced in C57BL/6 mice with d-galactosamine/lipopolysaccharide (GalN/LPS) in order to determine in vivo efficacy of the conjugate. RESULTS UDCA-LPE inhibited TNFα-induced apoptosis and inflammation in hepatocytes in vitro and markedly ameliorated GalN/LPS-mediated fulminant hepatitis in mice, whereas UDCA or PC failed to show protection. The conjugate was able to decrease injury-induced elevation of phospholipase A(2) activity as well as its product lysophosphatidylcholine. Analysis of hepatic gene expression showed that UDCA-LPE treatment led to favourable inhibitory effects on expression profiles of key pro-inflammatory cytokines and chemokines, which are crucial for leukocyte recruitment and activation thereby inhibiting chemokine-mediated aggravation of parenchymal damage. CONCLUSIONS Thus, UDCA-LPE as a synthetic bile acid-phospholipid conjugate may represent a potent anti-inflammatory agent that is more effective than UDCA and PC for treatment of liver diseases.
Collapse
Affiliation(s)
- Anita Pathil
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
209
|
Tokumura A. Physiological Significance of Lysophospholipids that Act on the Lumen Side of Mammalian Lower Digestive Tracts. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biosciences, University of Tokushima Graduate School
| |
Collapse
|
210
|
Lipid based therapy for ulcerative colitis-modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int J Mol Sci 2010; 11:4149-64. [PMID: 21152327 PMCID: PMC2996791 DOI: 10.3390/ijms11104149] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is the result of an inappropriate colonic inflammatory response triggered by environmental and genetic factors. We have recently shown that mucus from UC patients has a decreased phosphatidylcholine (PC) content, while clinical trials revealed that therapeutic addition of PC to the colonic mucus alleviated the inflammatory activity. The mechanisms behind this are still unclear. We hypothesized that PC has at least two possible functions in the intestine: First, it establishes the surface hydrophobicity of the mucus and therefore protects the underlying tissue against intraluminal aggressors; recent experiments on surgical specimens revealed reduced surface tension and hydrophobicity in UC patients. Second, mucus phospholipids might also be integrated into the plasma membranes of enterocytes and thereby influence the signaling state of the mucosa. PC has been shown to inhibit TNF-α induced pro-inflammatory responses including: (1) assembly of plasma membrane actin; (2) activation of MAP kinases ERK and p38; and (3) activation of NF-κB and synthesis of pro-inflammatory gene products. Other phospholipids like phosphatidylethanolamine or sphingomyelin had no effect. PC also inhibited latex bead phagosome actin assembly, killing of M. tuberculosis in macrophages, and sphingosine-1-phosphate induced actin assembly in macrophages. Collectively, these results provide a molecular foundation that shows PC, firstly, as an anti-inflammatory, and secondly, as a surface hydrophobicity increasing compound with promising therapeutic potential in the treatment of inflammatory bowel disease.
Collapse
|
211
|
Schneider H, Treede I, Braun A, Stremmel W, Fuellekrug J, Ehehalt R. Role of plasma membrane PC metabolism in pro-inflammatory signalling. Chem Phys Lipids 2010. [DOI: 10.1016/j.chemphyslip.2010.05.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
212
|
Sánchez-Garrido MA, Chico Y, González R, Ranchal I, González-Rubio S, Hidalgo AB, Díaz-López C, Costán G, Padillo FJ, De la Mata M, Ochoa B, Muntané J. Interleukin-6 is associated with liver lipid homeostasis but not with cell death in experimental hepatic steatosis. Innate Immun 2010; 15:337-49. [PMID: 19710104 DOI: 10.1177/1753425909104900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatic steatosis is a risk factor for the progression of non-alcoholic fatty liver disease. The role of pro-inflammatory interleukin (IL)-6 in hepatic steatosis etiology is controversial. We investigated in vivo and in primary hepatocyte cultures whether IL-6 has a modulator role in liver and mitochondria lipid composition and cell death in a choline-deficient (CD) diet rat model of hepatic steatosis. Dietary choline deficiency increased triglycerides and cholesterol, and reduced phosphatidylcholine (PC), phosphatidylethanolamine (PE) and the membrane integrity marker PC:PE ratio in liver. Choline-deficient diet enhanced systemic IL-6, and IL-6 receptor expression and cell death vulnerability in hepatocytes. Derangement of the mitochondrial electron transport chain and of its phospholipid environment was found in CD rat liver mitochondria, which exhibited elevated concentrations of triglycerides, cardiolipin and PC and elevated PC:PE ratio. The cell treatment with IL-6, but not PC, eliminated much of the CD-promoted lipid imbalance in mitochondria but not tumor-necrosis factor (TNF)-alpha-induced cell death. However, PC supplementation prevented the TNF-alpha-induced DNA fragmentation, cytochrome-c release and caspase-3 activity in control and CD hepatocytes. In conclusion, IL-6 ameliorated the mitochondria lipid disturbance in hepatocytes isolated from steatotic animals. Furthermore, PC is identified as a new survival agent that reverses several TNFalpha-inducible responses that are likely to promote steatosis and necrosis.
Collapse
|
213
|
Ehehalt R, Braun A, Karner M, Füllekrug J, Stremmel W. Phosphatidylcholine as a constituent in the colonic mucosal barrier--physiological and clinical relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:983-93. [PMID: 20595010 DOI: 10.1016/j.bbalip.2010.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 02/09/2023]
Abstract
Phosphatidylcholine (PC) is an important constituent of the gastrointestinal tract. PC molecules are not only important in intestinal cell membranes but also receiving increasing attention as protective agents in the gastrointestinal barrier. They are largely responsible for establishing the hydrophobic surface of the colon. Decreased phospholipids in colonic mucus could be linked to the pathogenesis of ulcerative colitis, a chronic inflammatory bowel disease. Clinical studies revealed that therapeutic addition of PC to the colonic mucus of these patients alleviated the inflammatory activity. This positive role is still elusive, however, we hypothesized that luminal PC has two possible functions: first, it is essential for surface hydrophobicity, and second, it is integrated into the plasma membrane of enterocytes and it modulates the signaling state of the mucosa. The membrane structure and lipid composition of cells is a regulatory component of the inflammatory signaling pathways. In this perspective, we will shortly summarize what is known about the localization and protective properties of PC in the colonic mucosa before turning to its evident medical importance. We will discuss how PC contributes to our understanding of the pathogenesis of ulcerative colitis and how reinforcing the luminal phospholipid monolayer can be used as a therapeutic concept in humans.
Collapse
Affiliation(s)
- Robert Ehehalt
- Department of Gastroenterology, University hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
214
|
Son Y, Lee JH, Kim NH, Surh NY, Kim EC, Chung HT, Kang DG, Pae HO. Dilinoleoylphosphatidylcholine induces the expression of the anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Biofactors 2010; 36:210-5. [PMID: 20336709 DOI: 10.1002/biof.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1,2-Dilinoleoyl-sn-glycero-3-phosphocholine (DLPC), the main and active component of soybean lecithin, has been reported to exert anti-inflammatory effects, but the underlying mechanisms remain to be established. It was found that DLPC could induce the expression of the anti-inflammatory heme oxygenase-1 (HO-1) through the activation of nuclear erythroid 2-related factor 2 (Nrf2) in RAW264.7 macrophages. Pretreatment with DLPC suppressed the expression of inducible nitric oxide (NO) synthase (iNOS), one of proinflammatory enzymes, and reduced NO production in lipopolysaccharide (LPS)-stimulated macrophages. Similarly, DLPC also diminished the production of tumor necrosis factor-alpha (TNF-alpha), one of proinflammatory cytokines. Interestingly, the inhibitory effects of DLPC on LPS-induced iNOS expression and TNF-alpha production were reversed by tin protoporphyrin, a HO-1 inhibitor. Thus, HO-1 expression via Nrf2 activation may be one of the possible mechanisms explaining the anti-inflammatory effects of DLPC.
Collapse
Affiliation(s)
- Yong Son
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Nassimi M, Schleh C, Lauenstein HD, Hussein R, Hoymann HG, Koch W, Pohlmann G, Krug N, Sewald K, Rittinghausen S, Braun A, Müller-Goymann C. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm 2010; 75:107-16. [PMID: 20206256 DOI: 10.1016/j.ejpb.2010.02.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/03/2010] [Accepted: 02/27/2010] [Indexed: 01/13/2023]
Abstract
Inhalation is a non-invasive approach for both local and systemic drug delivery. This study aimed to define the therapeutic window for solid lipid nanoparticles (SLNs) as a drug delivery system by inhalation from a toxicological point of view. To estimate the toxic dose of SLNs in vitro, A549 cells and murine precision-cut lung slices (PCLS) were exposed to increasing concentrations of SLNs. The cytotoxic effect of SLNs on A549 cells was evaluated by MTT and NRU assays. Viability of lung tissue was determined with WST assay and by life/dead staining using calcein AM/EthD-1 for confocal microscopy (CLSM) followed by quantitative analysis with IMARIS. Inflammation was assessed by measuring chemokine KC and TNF-alpha levels. The in vivo effects were determined in a 16-day repeated-dose inhalation toxicity study using female BALB/c mice, which were daily exposed to different concentrations of SLN30 aerosols (1-200 microg deposit dose). Local inflammatory effects in the respiratory tract were evaluated by determination of total protein content, LDH, chemokine KC, IL-6, and differential cell counts, performed on days 4, 8, 12, and 16 in bronchoalveolar lavage fluid. Additionally, a histopathological evaluation of toxicologically relevant organs was accomplished. The in vitro and ex vivo dose finding experiments showed toxic effects beginning at concentrations of about 500 microg/ml. Therefore, we used 1-200 microg deposit doses/animal for the in vivo experiments. Even after 16 days of challenge with a 200-microg deposit dose, SLNs induced no significant signs of inflammation. We observed no consistent increase in LDH release, protein levels, or other signs of inflammation such as chemokine KC, IL-6, or neutrophilia. In contrast, the particle control (carbon black) caused inflammatory and cytotoxic effects at corresponding concentrations. These results confirm that repeated inhalation exposure to SLN30 at concentrations lower than a 200-microg deposit dose is safe in a murine inhalation model.
Collapse
Affiliation(s)
- M Nassimi
- Fraunhofer Institute for Toxicology and Experimental Medicine, Department of Immunology, Allergology and Immunotoxicology, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Sivan S, Schroeder A, Verberne G, Merkher Y, Diminsky D, Priev A, Maroudas A, Halperin G, Nitzan D, Etsion I, Barenholz Y. Liposomes act as effective biolubricants for friction reduction in human synovial joints. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1107-16. [PMID: 20014818 DOI: 10.1021/la9024712] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phospholipids (PL) form the matrix of biological membranes and of the lipoprotein envelope monolayer, and are responsible for many of the unique physicochemical, biochemical, and biological properties of these supermolecular bioassemblies. It was suggested that phospholipids present in the synovial fluid (SF) and on the surface of articular cartilage have major involvement in the low friction of cartilage, which is essential for proper mobility of synovial joints. In pathologies, such as impaired biolubrication (leading to common joint disorders such as osteoarthritis), the level of phospholipids in the SF is reduced. Using a human-sourced cartilage-on-cartilage setup, we studied to what extent and how phospholipids act as highly effective cartilage biolubricants. We found that large multilamellar vesicles (MLV), >800 nm in diameter, composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or of a mixture of DMPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are superior lubricants in comparison to MLV composed of other phosphatidylcholines. Introducing cholesterol into liposomes resulted in less effective lubricants. DMPC-MLV was also superior to small unilamellar vesicles (SUV), <100 nm in diameter, composed of DMPC. MLV are superior to SUV due to MLV retention at and near (<200 microm below) the cartilage surface, while SUV penetrate deeper into the cartilage (450-730 microm). Superiority of specific PL compositions is explained by the thermotropic behavior (including compressibility) of the lipid bilayer. Correlating physicochemical properties of the MLV with the friction results suggests that MLV having lipid bilayers in the liquid-disordered phase and having a solid-ordered to liquid-disordered phase transition temperature slightly below physiological temperature are optimal for lubrication. High phospholipid headgroup hydration, high compressibility, and softness are the common denominators of all efficient PL compositions. The high efficiency of DMPC-MLV and DMPC/DPPC-MLV as cartilage lubricants combined with their resistance to degradation at 37 degrees C supports further evaluation of these MLV for treatment of joint impairments related to poor lubrication. This work also demonstrates the relevance of basic physicochemical properties of phospholipids to their activities in biological systems.
Collapse
Affiliation(s)
- Sarit Sivan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Braun A, Treede I, Gotthardt D, Tietje A, Zahn A, Ruhwald R, Schoenfeld U, Welsch T, Kienle P, Erben G, Lehmann WD, Fuellekrug J, Stremmel W, Ehehalt R. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm Bowel Dis 2009; 15:1705-20. [PMID: 19504612 DOI: 10.1002/ibd.20993] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phospholipids are essential for the normal function of the intestinal mucus barrier. The objective of this study was to systematically investigate phospholipids in the intestinal mucus of humans suffering from inflammatory bowel diseases, where a barrier defect is strongly supposed to be pathogenetic. METHODS Optimal mucus recovery was first validated in healthy mice and the method was then transferred to the endoscopic acquisition of ileal and colonic mucus from 21 patients with ulcerative colitis (UC), 10 patients with Crohn's disease (CD), and 29 healthy controls. Nano-electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to determine phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) in lipid extracts of mucus specimens. RESULTS Human and rodent mucus contained very similar phospholipid species. In the ileal and colonic mucus from patients suffering from UC, the concentration of PC was highly significantly lower (607 +/- 147 pmol/100 microg protein and 745 +/- 148 pmol/100 microg protein) compared to that of patients with CD (3223 +/- 1519 pmol/100 microg protein and 2450 +/- 431 pmol/100 microg protein) and to controls (3870 +/- 760 pmol/100 microg protein and 2790 +/- 354 pmol/100 microg protein); overall, P = 0.0002 for ileal specimens and P < 0.0001 for colonic specimens. Independent of disease activity, patients suffering from UC showed an increased saturation grade of PC fatty acid residues and a higher LPC-to-PC ratio. CONCLUSIONS The intestinal mucus barrier of patients with UC is significantly altered concerning its phospholipid concentration and species composition. These alterations may be very important for the pathogenesis of this disease and underline new therapeutic strategies.
Collapse
Affiliation(s)
- Annika Braun
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Hartmann P, Szabó A, Erős G, Gurabi D, Horváth G, Németh I, Ghyczy M, Boros M. Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur J Pharmacol 2009; 622:58-64. [DOI: 10.1016/j.ejphar.2009.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/27/2009] [Accepted: 09/08/2009] [Indexed: 12/11/2022]
|
219
|
Bauer J, Liebisch G, Hofmann C, Huy C, Schmitz G, Obermeier F, Bock J. Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression. PLoS One 2009; 4:e7197. [PMID: 19787068 PMCID: PMC2749204 DOI: 10.1371/journal.pone.0007197] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 08/25/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD). Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. METHODOLOGY/PRINCIPAL FINDINGS Chronic colitis was induced by dextran-sulphate-sodium (DSS) or transfer of CD4(+)CD62L(+) cells into RAG1(-/-)-mice. Lipid content of isolated murine intestinal epithelial cells (IEC) was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM). Ceramide increased by 71% in chronic DSS-induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC) decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1beta in Caco-2-IEC and human intestinal fibroblasts. CONCLUSIONS/SIGNIFICANCE Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1beta is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions.
Collapse
Affiliation(s)
- Jessica Bauer
- Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry, University Medical Center, Regensburg, Germany
| | - Claudia Hofmann
- Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| | - Christian Huy
- Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry, University Medical Center, Regensburg, Germany
| | - Florian Obermeier
- Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| | - Jürgen Bock
- Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| |
Collapse
|
220
|
Phospholipids block nuclear factor-kappa B and tau phosphorylation and inhibit amyloid-beta secretion in human neuroblastoma cells. Neuroscience 2009; 164:1744-53. [PMID: 19788916 DOI: 10.1016/j.neuroscience.2009.09.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/24/2022]
Abstract
Inflammation and oxidative stress have been shown to play a critical role in the pathophysiology that leads to neurodegeneration. Omega-6 phospholipids, e.g. dilinoleoylphosphatidylcholine (DLPC), have been shown to have anti-inflammatory properties and therefore experiments were undertaken to determine whether DLPC can prevent inflammatory neurodegenerative events in the model neuronal cell line, SH-SY5Y. Tumor necrosis factor (TNF-alpha) and H(2)O(2) activate mitogen-activated protein kinase (MAPK) in SH-SY5Y cells within 5 min and this activation is completely blocked by DLPC (12 microM). DLPC blocks IkappaBalpha phosphorylation in the SH-SY5Y cells and prevents the phosphorylation and activation of nuclear factor-kappa B (NF-kappaB). The phospholipid inhibits induction of MAPK and NF-kappaB in similar fashion to the MEK1/2-inhibitor, U0126 (10 microM). DLPC completely abolishes TNF-alpha, H(2)O(2) and lipopolysaccaride (LPS)-induced neuronal tau phosphorylation. Cellular amyloid precursor protein levels are reduced by DLPC and LPS-induced amyloid-beta expression and secretion in SH-SY5Y cells are completely blocked by DLPC. Taken together, these data suggest that DLPC can act through MAPK to block neuronal inflammatory cascades and prevent potential pathological consequences in the neuronal metabolism of amyloid and tau proteins.
Collapse
|
221
|
Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RRV, Xu HE, Turk J, Semenkovich CF. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 2009; 138:476-88. [PMID: 19646743 DOI: 10.1016/j.cell.2009.05.036] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/10/2009] [Accepted: 05/07/2009] [Indexed: 12/13/2022]
Abstract
The nuclear receptor PPARalpha is activated by drugs to treat human disorders of lipid metabolism. Its endogenous ligand is unknown. PPARalpha-dependent gene expression is impaired with inactivation of fatty acid synthase (FAS), suggesting that FAS is involved in generation of a PPARalpha ligand. Here we demonstrate the FAS-dependent presence of a phospholipid bound to PPARalpha isolated from mouse liver. Binding was increased under conditions that induce FAS activity and displaced by systemic injection of a PPARalpha agonist. Mass spectrometry identified the species as 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Knockdown of Cept1, required for phosphatidylcholine synthesis, suppressed PPARalpha-dependent gene expression. Interaction of 16:0/18:1-GPC with the PPARalpha ligand-binding domain and coactivator peptide motifs was comparable to PPARalpha agonists, but interactions with PPARdelta were weak and none were detected with PPARgamma. Portal vein infusion of 16:0/18:1-GPC induced PPARalpha-dependent gene expression and decreased hepatic steatosis. These data suggest that 16:0/18:1-GPC is a physiologically relevant endogenous PPARalpha ligand.
Collapse
Affiliation(s)
- Manu V Chakravarthy
- Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Weigert A, Weis N, Brüne B. Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology 2009; 214:748-60. [PMID: 19625101 DOI: 10.1016/j.imbio.2009.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) fulfils manifold tasks in the immune system acting in auto- and/or paracrine fashion. This includes regulation of apoptosis, migration and proliferation. Upon its generation by sphingosine kinases from plasma membrane sphingolipids, S1P can either act as a second messenger within cells or can be released from cells to occupy a family of specific G-protein-coupled receptors (S1P1-5). This diversity is reflected by the impact of S1P on macrophage biology and function. Over the last years it became apparent that the sphingosine kinase/S1P/S1P-receptor signalling axis in macrophages might play a central role in the pathogenesis of inflammatory diseases such as atherosclerosis, asthma, rheumatoid arthritis and cancer. Here, we summarize the current knowledge of the function of S1P in macrophage biology and discuss potential implications for pathology.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt am Main, Germany
| | | | | |
Collapse
|
223
|
Treede I, Braun A, Jeliaskova P, Giese T, Füllekrug J, Griffiths G, Stremmel W, Ehehalt R. TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol 2009; 9:53. [PMID: 19594939 PMCID: PMC2714528 DOI: 10.1186/1471-230x-9-53] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 07/13/2009] [Indexed: 12/16/2022] Open
Abstract
Background Phosphatidylcholine (PC) is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT)-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs). Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC induces a prolonged inhibition of TNF-α-induced pro-inflammatory signalling. This inhibition may be caused by a shift of the TNF-α receptors at the surface to lipid rafts. Our results may offer a potential molecular explanation for the positive role of PC seen in clinical studies for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Irina Treede
- Department of Gastroenterology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Chamulitrat W, Burhenne J, Rehlen T, Pathil A, Stremmel W. Bile salt-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide as a hepatoprotective agent. Hepatology 2009; 50:143-54. [PMID: 19496180 DOI: 10.1002/hep.22955] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED A decrease of hepatocellular phosphatidylcholine (PC) is associated with hepatic injury, e.g., in nonalcoholic steatohepatitis (NASH). Therefore, we evaluated the hepatoprotective effect of a PC-precursor lipid specifically targeted to the liver. We synthesized the bile acid-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), which was designed to target PC to hepatocytes by way of bile-acid transport systems. We synthesized a fluorescently labeled analogue UDCA-6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl PE (UDCA-NBDPE) for uptake and metabolism studies. Unexpectedly, the majority of UDCA-NBDPE was still intact and not hydrolyzed efficiently in HepG2 cells. For targeting in vivo, NBD fluorescence from UDCA-NBDPE-injected mice was recovered in the liver the most, whereas injection of NBDPE alone resulted in an even distribution in liver, kidneys, and intestine. Cytoprotection by UDCA-LPE was tested in starvation and tumor necrosis factor alpha (TNF-alpha) apoptosis models using HepG2 cells. Only the intact UDCA-LPE was able to persistently stimulate growth after 36 to 120-hour starvation, and significantly inhibited TNF-alpha-induced apoptosis. In both models, LPC, LPE, UDCA, or UDCA added with LPE exhibited weak to no cytoprotection. UDCA-LPE stabilized mitochondrial membranes by lowering mitochondrial membrane potential. Western blot analyses of phosphorylated Akt and glycogen synthase kinase-3 (GSK-3)alpha/beta revealed that UDCA-LPE activated phosphatidyl inositol 3-kinase (PI3K)/Akt signaling pathways. The PI3K inhibitor LY294002 or Akt small interfering (si)RNA consistently inhibited the proproliferative effects of UDCA-LPE during starvation. The TNF-alpha death-receptor extrinsic pathway involves caspase 8 activation, which is inhibited by cellular FLICE-inhibitory protein (cFLIP); thus, cFLIP siRNA was employed in our studies. cFLIP siRNA was able to reverse the cytoprotective effects of UDCA-LPE during TNF-alpha-induced apoptosis, and UDCA-LPE concomitantly upregulated protein expression of cFLIP(L). CONCLUSION UDCA-LPE, which targeted the liver in vivo, elicited potent biological activities in vitro by stimulating hepatocyte growth and by inhibiting TNF-alpha-induced apoptosis. Thus, UDCA-LPE may be suitable for evaluation of treatment efficacy in NASH.
Collapse
Affiliation(s)
- Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
225
|
Oral phosphatidylcholine pretreatment decreases ischemia-reperfusion-induced methane generation and the inflammatory response in the small intestine. Shock 2009; 30:596-602. [PMID: 18461026 DOI: 10.1097/shk.0b013e31816f204a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have shown that phosphatidylcholine (PC) metabolites may have a function in counteracting the production of reactive oxygen species (ROS), and that this mechanism can lead to the generation of methane from choline. The aims were to establish whether the dietary administration of PC can protect the reperfused small bowel mucosa by its acting as an anti-inflammatory agent and to investigate this possibility in association with in vivo methane generation. Group 1 (n = 5) of anesthetized dogs served as sham-operated controls, whereas in groups 2 (n = 6) and 3 (n = 6), complete small intestinal ischemia was induced by occluding the superior mesenteric artery for 60 min. Groups 1 and 2 were fed with normal laboratory chow for 1 week before the experiments, whereas the animals in group 3 received a special diet containing 1% soybean PC. The intramucosal pH and the difference of the arterial and local PCO2 (PCO2 gap) were detected by indirect tonometry. Intestinal superoxide production and myeloperoxidase (MPO) activity (a marker of tissue leukocyte infiltration) were ascertained on ileal biopsy samples 180 min after reperfusion. The content of methane in the exhaled air was determined by gas chromatography. I/R was characterized by significant tissue acidosis with ROS generation and elevated MPO activity. These changes were accompanied by increased methane production in the exhaled air during reoxygenation. The PC-enriched diet prevented the decrease in intramucosal pH, diminished the intestinal superoxide generation and the MPO activity, and significantly decreased the exhaled methane concentration. The increased dietary uptake of PC exerts an anti-inflammatory influence in the gastrointestinal tract. Exhaled methane is linked to abnormal ROS generation; a decreased methane production is associated with significantly reduced inflammatory activation during I/R.
Collapse
|
226
|
Erős G, Ibrahim S, Siebert N, Boros M, Vollmar B. Oral phosphatidylcholine pretreatment alleviates the signs of experimental rheumatoid arthritis. Arthritis Res Ther 2009; 11:R43. [PMID: 19296835 PMCID: PMC2688190 DOI: 10.1186/ar2651] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/16/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Phosphatidylcholine and phosphatidylcholine-derived metabolites exhibit anti-inflammatory properties in various stress conditions. We hypothesized that dietary phosphatidylcholine may potentially function as an anti-inflammatory substance and may decrease inflammatory activation in a chronic murine model of rheumatoid arthritis (collagen-induced arthritis). METHODS The experiments were performed on male DBA1/J mice. In groups 1 to 3 (n = 10 each), collagen-induced arthritis was induced by administration of bovine collagen II. In group 2 the animals were fed ad libitum with phosphatidylcholine-enriched diet as a pretreatment, while the animals of group 3 received this nourishment as a therapy, after the onset of the disease. The severity of the disease and inflammation-linked hyperalgesia were evaluated with semiquantitative scoring systems, while the venular leukocyte-endothelial cell interactions and functional capillary density were assessed by means of in vivo fluorescence microscopy of the synovial tissue. Additionally, the mRNA expressions of cannabinoid receptors 1 and 2, TNFalpha and endothelial and inducible nitric oxide synthase were determined, and classical histological analysis was performed. RESULTS Phosphatidylcholine pretreatment reduced the collagen-induced arthritis-induced hypersensitivity, and decreased the number of leukocyte-endothelial cell interactions and the extent of functional capillary density as compared with those of group 1. It also ameliorated the tissue damage and decreased inducible nitric oxide synthase expression. The expressions of the cannabinoid receptors and TNFalpha were not influenced by the phosphatidylcholine intake. Phosphatidylcholine-enriched food administrated as therapy failed to evoke the aforementioned changes, apart from the reduction of the inducible nitric oxide synthase expression. CONCLUSIONS Phosphatidylcholine-enriched food as pretreatment, but not as therapy, appears to exert beneficial effects on the morphological, functional and microcirculatory characteristics of chronic arthritis. We propose that oral phosphatidylcholine may be a preventive approach in ameliorating experimental rheumatoid arthritis-induced joint damage.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/prevention & control
- Blood Circulation
- Male
- Mice
- Microscopy, Fluorescence
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type III/biosynthesis
- Phosphatidylcholines/administration & dosage
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Cannabinoid, CB2/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Synovial Membrane/blood supply
- Synovial Membrane/pathology
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Gabor Erős
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock D-18057, Germany
- Institute of Surgical Research, University of Szeged, Pécsi u. 6, Szeged H-6720, Hungary
| | - Saleh Ibrahim
- Immunogenetics Group, University of Rostock, Schillingallee 70, Rostock D-18057, Germany
| | - Nikolai Siebert
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock D-18057, Germany
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Pécsi u. 6, Szeged H-6720, Hungary
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock D-18057, Germany
| |
Collapse
|
227
|
Kuehnel MP, Rybin V, Anand PK, Anes E, Griffiths G. Lipids regulate P2X7-receptor-dependent actin assembly by phagosomes via ADP translocation and ATP synthesis in the phagosome lumen. J Cell Sci 2009; 122:499-504. [PMID: 19174471 DOI: 10.1242/jcs.034199] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latex bead phagosomes isolated from J774 macrophages polymerize actin. We show here that five lipids--phosphatidylinositol-4-phosphate, phosphatidylinositol-(4,5)-bisphosphate, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and phosphatidic acid--stimulate both actin assembly and transport of ADP across the phagosomal membrane into the lumen. Once there, this ADP is converted to ATP by adenylate kinase activity. High luminal ATP concentrations correlated well with phagosome actin assembly under different conditions. The ATP-binding P2X7 receptor (P2X7R) was detected in phagosomes. Although S1P stimulated actin assembly by phagosomes from P2X7R-containing bone marrow macrophages, S1P-stimulated actin assembly was inhibited in phagosomes from cells lacking P2X7R. We propose that luminal ATP accumulates in response to selected lipids and activates the P2X7R that signals across the phagosomal membrane to trigger actin assembly on the cytoplasmic membrane surface. In the accompanying paper by Kuehnel et al. (doi:10.1242/jcs.034207), more evidence is provided in support of this model from the analysis of actin assembly at the plasma membrane of intact macrophages.
Collapse
|
228
|
Kühnel M, Mayorga LS, Dandekar T, Thakar J, Schwarz R, Anes E, Griffiths G, Reich J. Modelling phagosomal lipid networks that regulate actin assembly. BMC SYSTEMS BIOLOGY 2008; 2:107. [PMID: 19061496 PMCID: PMC2628873 DOI: 10.1186/1752-0509-2-107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022]
Abstract
Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator). However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box) approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an initial complex model and experimental observations, we could narrow the set of differential equations and parameters required to characterize the time-dependent changes of metabolites influencing actin nucleation on phagosomes. For this, the global model was dissected into three sub-models: ATP consumption, lipid interconversion, and nucleation of actin on phagosomal membranes. This scheme allowed us to describe this complex system with a relatively small set of differential equations and kinetic parameters that satisfactorily reproduced the experimental data.
Collapse
Affiliation(s)
- Mark Kühnel
- EMBL, Postfach 102209, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
ORAL PHOSPHATIDYLCHOLINE PRESERVES THE GASTROINTESTINAL MUCOSAL BARRIER DURING LPS-INDUCED INFLAMMATION. Shock 2008; 30:729-33. [DOI: 10.1097/shk.0b013e318173e8d4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
230
|
Gutierrez MG, Gonzalez AP, Anes E, Griffiths G. Role of lipids in killing mycobacteria by macrophages: evidence for NF-kappaB-dependent and -independent killing induced by different lipids. Cell Microbiol 2008; 11:406-20. [PMID: 19016780 DOI: 10.1111/j.1462-5822.2008.01263.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have shown that several lipids can modulate the macrophage innate immune response against mycobacteria and enhance their killing. Since NF-kappaB is required for mycobacterial killing, we tested the ability of lipids to activate NF-kappaB in uninfected macrophages and those infected with mycobacteria. In uninfected cells, sphingomyelin (SM), phosphatidylinositol-4-phosphate (PIP) and arachidonic acid (AA) enhanced NF-kappaB activation and the cell surface expression of CD69, a macrophage activation marker regulated by NF-kappaB. Sphingosine (Sph), sphingosine-1-phosphate (S1P), diacylglycerol (DAG), eicosapentanoic acid (EPA) and phosphatidyl choline (PC) failed to activate either NF-kappaB or CD69. Ceramide (Cer) activated CD69 expression without activating NF-kappaB. In Mycobacterium smegmatis-infected cells, NF-kappaB was transiently activated in a manner that was enhanced by SM, PIP and AA. In contrast Mycobacterium avium mostly repressed NF-kappaB activation and only SM and AA could induce its partial activation. While lipids that activate NF-kappaB in uninfected cells tend to kill mycobacteria in macrophages Sph and S1P failed to activate NF-kappaB under most conditions but nevertheless enhanced killing of M. smegmatis, M. avium and M. tuberculosis H37Rv. Our results argue that both NF-kappaB-dependent and -independent mechanisms are involved in macrophage killing of mycobacteria and that both mechanisms can be enhanced by selected lipids.
Collapse
Affiliation(s)
- Maximiliano Gabriel Gutierrez
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Postfach 102209, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
231
|
Bakshi S, Zhang X, Godoy-Tundidor S, Cheng RYS, Sartor MA, Medvedovic M, Ho SM. Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:769-76. [PMID: 18560533 PMCID: PMC2430233 DOI: 10.1289/ehp.11215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cadmium is implicated in prostate carcinogenesis, but its oncogenic action remains unclear. OBJECTIVES In this study we aimed to decipher changes in cell growth and the transcriptome in an immortalized human normal prostate epithelial cell line (NPrEC) following exposure to low-dose Cd. METHODS Synchronized NPrEC cells were exposed to different doses of Cd and assayed for cell viability and cell-cycle progression. We investigated changes in transcriptome by global profiling and used Ingenuity Pathways Analysis software to develop propositions about functional connections among differentially expressed genes. A neutralizing antibody was used to negate the effect of Cd-induced up-regulation of tumor necrosis factor (TNF) in NPrEC cells. RESULTS Exposure of NPrEC to 2.5 microM Cd enhanced cell viability and accelerated cell-cycle progression. Global expression profiling identified 48 genes that exhibited >or= 1.5-fold changes in expression after 4, 8, 16, and 32 hr of Cd treatment. Pathway analyses inferred a functional connection among 35 of these genes in one major network, with TNF as the most prominent node. Fourteen of the 35 genes are related to TNF, and 11 exhibited an average of >2-fold changes in gene expression. Real-time reverse transcriptase-polymerase chain reaction confirmed the up-regulation of 7 of the 11 genes (ADAM8, EDN1, IL8, IL24, IL13RA2, COX2/PTGS2, and SERPINB2) and uncovered a 28-fold transient increase in TNF expression in Cd-treated NPrEC cells. A TNF-neutralizing antibody effectively blocked Cd-induced elevations in the expression of these genes. CONCLUSIONS Noncytotoxic, low-dose Cd has growth-promoting effects on NPrEC cells and induces transient overexpression of TNF, leading to up-regulation of genes with oncogenic and immunomodulation functions.
Collapse
Affiliation(s)
- Shlomo Bakshi
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
- Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sonia Godoy-Tundidor
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Robert Yuk Sing Cheng
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Maureen A. Sartor
- Center for Environmental Genetics, and
- Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Center for Environmental Genetics, and
- Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
- Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Environmental Genetics, and
| |
Collapse
|
232
|
Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a "come-and-get-me" signal. FASEB J 2008; 22:2629-38. [PMID: 18362204 DOI: 10.1096/fj.08-107169] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates myriad important cellular processes, including growth, survival, cytoskeleton rearrangements, motility, and immunity. Here we report that treatment of Jurkat and U937 leukemia cells with the pan-sphingosine kinase (SphK) inhibitor N,N-dimethylsphingosine to block S1P formation surprisingly caused a large increase in expression of SphK1 concomitant with induction of apoptosis. Another SphK inhibitor, D,L-threo-dihydrosphingosine, also induced apoptosis and produced dramatic increases in SphK1 expression. However, up-regulation of SphK1 was not a specific effect of its inhibition but rather was a consequence of apoptotic stress. The chemotherapeutic drug doxorubicin, a potent inducer of apoptosis in these cells, also stimulated SphK1 expression and activity and promoted S1P secretion. The caspase inhibitor ZVAD reduced not only doxorubicin-induced lethality but also the increased expression of SphK1 and secretion of S1P. Apoptotic cells secrete chemotactic factors to attract phagocytic cells, and we found that S1P potently stimulated chemotaxis of monocytic THP-1 and U937 cells and primary monocytes and macrophages. Collectively, our data suggest that apoptotic cells may up-regulate SphK1 to produce and secrete S1P that serves as a "come-and-get-me" signal for scavenger cells to engulf them in order to prevent necrosis.
Collapse
Affiliation(s)
- David R Gude
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, VCU School of Medicine, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|