201
|
Misiura M, Kolomeisky AB. Kinetic network model to explain gain-of-function mutations in ERK2 enzyme. J Chem Phys 2019; 150:155101. [PMID: 31005085 DOI: 10.1063/1.5088647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
ERK2 is a kinase protein that belongs to a Ras/Raf/MEK/ERK signaling pathway, which is activated in response to a range of extracellular signals. Malfunctioning of this cascade leads to a variety of serious diseases, including cancers. This is often caused by mutations in proteins belonging to the cascade, frequently leading to abnormally high activity of the cascade even in the absence of an external signal. One such "gain-of-function" mutation in the ERK2 protein, called a "sevenmaker" mutation (D319N), was discovered in 1994 in Drosophila. The mutation leads to disruption of interactions of other proteins with the D-site of ERK2 and results, contrary to expectations, in an increase of its activity in vivo. However, no molecular mechanism to explain this effect has been presented so far. The difficulty is that this mutation should equally negatively affect interactions of ERK2 with all substrates, activators, and deactivators. In this paper, we present a semiquantitative kinetic network model that gives a possible explanation of the increased activity of mutant ERK2 species. A simplified biochemical network for ERK2, viewed as a system of coupled Michaelis-Menten processes, is presented. Its dynamic properties are calculated explicitly using the method of first-passage processes. The effect of mutation is associated with changes in the strength of interaction energy between the enzyme and the substrates. It is found that the dependence of kinetic properties of the protein on the interaction energy is nonmonotonic, suggesting that some mutations might lead to more efficient catalytic properties, despite weakening intermolecular interactions. Our theoretical predictions agree with experimental observations for the sevenmaker mutation in ERK2. It is also argued that the effect of mutations might depend on the concentrations of substrates.
Collapse
Affiliation(s)
- Mikita Misiura
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | | |
Collapse
|
202
|
In vitro and in vivo pharmacokinetics and metabolism of MK-8353 by liquid chromatography combined with diode array detector and Q-Exactive-Orbitrap tandem mass spectrometry. J Pharm Biomed Anal 2019; 168:64-74. [DOI: 10.1016/j.jpba.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022]
|
203
|
Kawiak A, Domachowska A, Lojkowska E. Plumbagin Increases Paclitaxel-Induced Cell Death and Overcomes Paclitaxel Resistance in Breast Cancer Cells through ERK-Mediated Apoptosis Induction. JOURNAL OF NATURAL PRODUCTS 2019; 82:878-885. [PMID: 30810041 DOI: 10.1021/acs.jnatprod.8b00964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ERK is a component of mitogen-activated protein kinases that controls a range of cellular processes including cell proliferation and survival. The upregulation of ERK has been associated with apoptosis inhibition in response to various stimuli including chemotherapeutic agents. Research has suggested that the upregulation of ERK signaling by the anticancer agent paclitaxel leads to acquired resistance of cells to this compound. The presented research focused on determining the role of plumbagin, a naturally derived naphthoquinone, in the sensitization of breast cancer cells to paclitaxel-induced cell death and the involvement of ERK signaling in this process. The results of the study indicated that plumbagin increases the sensitivity of breast cancer cells to paclitaxel. Moreover, a synergistic effect between plumbagin and paclitaxel was observed. Plumbagin was shown to decrease levels of phosphorylated ERK in breast cancer cells and abrogated paclitaxel-induced ERK phosphorylation. The role of ERK in plumbagin-mediated sensitization of breast cancer cells to paclitaxel was shown through the enhancement of the synergistic effect between compounds in cells with decreased ERK expression. Furthermore, plumbagin reduced p-ERK levels in paclitaxel-resistant breast cancer cells and resensitized paclitaxel-resistant cells to this compound. These results imply that plumbagin inhibits ERK activation in breast cancer cells, which plays a role in the sensitization of cells to paclitaxel-induced cell death.
Collapse
Affiliation(s)
- Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| | - Anna Domachowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| |
Collapse
|
204
|
Jin X, Li Y, Guo Y, Jia Y, Qu H, Lu Y, Song P, Zhang X, Shao Y, Qi D, Xu W, Quan C. ERα is required for suppressing OCT4-induced proliferation of breast cancer cells via DNMT1/ISL1/ERK axis. Cell Prolif 2019; 52:e12612. [PMID: 31012189 PMCID: PMC6668970 DOI: 10.1111/cpr.12612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Objective POU5F1 (OCT4) is implicated in cancer stem cell self‐renewal. Currently, some studies have shown that OCT4 has a dual function in suppressing or promoting cancer progression. However, the precise molecular mechanism of OCT4 in breast cancer progression remains unclear. Materials and Methods RT‐PCR and Western blot were utilized to investigate OCT4 expression in breast cancer tissues and cells. Cell proliferation assays and mouse models were applied to determine the effects of OCT4 on breast cancer cell proliferation. DNMT1 inhibitors, ChIP, CoIP, IHC and ERα inhibitors were used to explore the molecular mechanism of OCT4 in breast cancer. Results OCT4 was down‐regulated in breast cancer tissues, and the overexpression of OCT4 promoted MDA‐MB‐231 cell proliferation and inhibited the proliferation of MCF‐7 cells in vitro and in vivo, respectively. Two DNMT1 inhibitors (5‐aza‐dC and zebularine) suppressed OCT4‐induced MDA‐MB‐231 cell proliferation through Ras/Raf1/ERK inactivation by targeting ISL1, which is the downstream of DNMT1. In contrast, OCT4 interacted with ERα, decreased DNMT1 expression and inactivated the Ras/Raf1/ERK signalling pathway in MCF‐7 cells. Moreover, ERα inhibitor (AZD9496) reversed the suppression of OCT4‐induced proliferation in MCF‐7 cells via the activation of ERK signalling pathway. Conclusions OCT4 is dependent on ERα to suppress the proliferation of breast cancer cells through DNMT1/ISL1/ERK axis.
Collapse
Affiliation(s)
- Xiangshu Jin
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yanru Li
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yantong Guo
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yiyang Jia
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Huinan Qu
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yan Lu
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Peiye Song
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xiaoli Zhang
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yijia Shao
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Da Qi
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wenhong Xu
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chengshi Quan
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
205
|
Cohen-Armon M, Yeheskel A, Pascal JM. Signal-induced PARP1-Erk synergism mediates IEG expression. Signal Transduct Target Ther 2019; 4:8. [PMID: 30993015 PMCID: PMC6459926 DOI: 10.1038/s41392-019-0042-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
A recently disclosed Erk-induced PARP1 activation mechanism mediates the expression of immediate early genes (IEGs) in response to a variety of extra- and intracellular signals implicated in memory acquisition, development and proliferation. Here, we review this mechanism, which is initiated by stimulation-induced binding of PARP1 to phosphorylated Erk translocated into the nucleus. This binding maintains long-lasting synergistic activity of these proteins, which offers a new pattern for targeted therapy.
Collapse
Affiliation(s)
- Malka Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
206
|
Guo C, Wang L, Zhao Y, Jiang B, Luo J, Shi D. BOS-93, a novel bromophenol derivative, induces apoptosis and autophagy in human A549 lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathway. Exp Ther Med 2019; 17:3848-3858. [PMID: 30988770 PMCID: PMC6447907 DOI: 10.3892/etm.2019.7402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
The novel bromophenol derivative, 3-(3-bromo-5-methoxy-4-(3-(piperidin-1-yl)propoxy)benzylidene)-N-(4-bromophenyl)-2-oxoindoline-5-sulfonamide (BOS-93), was synthesized in the CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (Qingdao, China). Experimental studies have demonstrated that it could induce apoptosis and autophagy in human A549 lung cancer cells, and it could also inhibit tumor growth in human A549 lung cancer xenograft models. In the present study, the molecular pathways underlying these effects were identified. The results demonstrated that BOS-93 could inhibit cell proliferation in A549 cells and block A549 cells at the G0/G1 phase. Furthermore, BOS-93 could induce apoptosis, activate caspase-3 and poly ADP ribose polymerase, and increase the B cell lymphoma (Bcl)-2 associated X protein/Bcl-2 ratio. Notably, BOS-93 could also induce autophagy in A549 cells. BOS-93-induced autophagy was confirmed by detecting light chain 3 (LC3)-I/LC3-II conversion and increasing expression of beclin1 and autophagy-related gene 14. Notably, BOS-93-induced autophagy could be inhibited by the autophagy inhibitor 3-MA. Flow cytometry, transmission electron microscopy (TEM) and western blot analysis indicated that BOS-93 induced apoptosis and autophagy activities by deactivating phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin and activating the mitogen-activated protein kinase signaling pathway. The present findings indicated that BOS-93 might be a novel anti-cancer agent for treatment of human lung cancer.
Collapse
Affiliation(s)
- Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Yue Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Bo Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Jiao Luo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
207
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
208
|
Cascade Signals of Papaverine Inhibiting LPS-Induced Retinal Microglial Activation. J Mol Neurosci 2019; 68:111-119. [PMID: 30852743 PMCID: PMC6453874 DOI: 10.1007/s12031-019-01289-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/28/2019] [Indexed: 02/04/2023]
Abstract
Studies have shown that papaverine can inhibit lipopolysaccharide (LPS)-induced microglial activation. The retinal primary microglia of newborn SD rats were isolated and purified, and a LPS-induced microglia activation model was established. The protein phosphorylation level of the signaling pathway was detected by western blotting. The transcription and expression of TNF-α, IL-1β, and IL-10 were respectively detected by RT-PCR and ELISA to observe the abnormal activation of primary microglia. The cAMP inhibitor Rp-isomer, PKA inhibitor H89, and MEK inhibitor U0126 were separately added to further investigate the role of MEK/Erk in PAP inhibition of primary microglial activation and the relationship between cAMP/PKA and MEK/Erk. It was found that the level of MEK phosphorylation was upregulated after LPS stimulation, which was blocked by 10 μg/ml of papaverine.10μM U0126 significantly inhibited TNF-α and IL-1β and increased IL-10 transcription and expression in retinal microglia (P < 0.01). Both Rp-isomer and H89 upregulated the phosphorylation levels of MEK and Erk. Papaverine may inhibit inflammatory factors and promote the expression of anti-inflammatory factors through the cAMP/PKA and MEK/Erk pathway, thereby inhibiting LPS-induced activation of primary retinal microglia, and the MEK/Erk pathway may be partially regulated by cAMP/PKA, which can provide theoretical basis and experimental basis for its protection of the central nervous system.
Collapse
|
209
|
Maik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int J Mol Sci 2019; 20:ijms20051194. [PMID: 30857244 PMCID: PMC6429060 DOI: 10.3390/ijms20051194] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinases 1/2 (ERK) are central signaling components that regulate stimulated cellular processes such as proliferation and differentiation. When dysregulated, these kinases participate in the induction and maintenance of various pathologies, primarily cancer. While ERK is localized in the cytoplasm of resting cells, many of its substrates are nuclear, and indeed, extracellular stimulation induces a rapid and robust nuclear translocation of ERK. Similarly to other signaling components that shuttle to the nucleus upon stimulation, ERK does not use the canonical importinα/β mechanism of nuclear translocation. Rather, it has its own unique nuclear translocation signal (NTS) that interacts with importin7 to allow stimulated shuttling via the nuclear pores. Prevention of the nuclear translocation inhibits proliferation of B-Raf- and N/K-Ras-transformed cancers. This effect is distinct from the one achieved by catalytic Raf and MEK inhibitors used clinically, as cells treated with the translocation inhibitors develop resistance much more slowly. In this review, we describe the mechanism of ERK translocation, present all its nuclear substrates, discuss its role in cancer and compare its translocation to the translocation of other signaling components. We also present proof of principle data for the use of nuclear ERK translocation as an anti-cancer target. It is likely that the prevention of nuclear ERK translocation will eventually serve as a way to combat Ras and Raf transformed cancers with less side-effects than the currently used drugs.
Collapse
Affiliation(s)
- Galia Maik-Rachline
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Avital Hacohen-Lev-Ran
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
210
|
The Role of M3 Muscarinic Receptor Ligand-Induced Kinase Signaling in Colon Cancer Progression. Cancers (Basel) 2019; 11:cancers11030308. [PMID: 30841571 PMCID: PMC6468573 DOI: 10.3390/cancers11030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Despite a reduction in incidence over the past decade, colon cancer remains the second most common cause of cancer death in the United States; recent demographics suggest this disease is now afflicting younger persons. M3 muscarinic receptor (M3R) mRNA and protein are over-expressed in colon cancer, and M3R can be activated by both traditional (e.g., acetylcholine) and non-traditional (e.g., bile acids) muscarinic ligands. In this review, we weigh the data supporting a prominent role for key protein kinases downstream of M3R activation in promoting colon cancer progression and dissemination. Specifically, we explore the roles that downstream activation of the mitogen activated protein kinase/extracellular signal-related kinase (MAPK/ERK), protein kinase C, p38 MAPK, and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathways play in mediating colon cancer cell proliferation, survival, migration and invasion. We assess the impact of M3R-stimulated induction of selected matrix metalloproteinases germane to these hallmarks of colon cancer progression. In this context, we also critically review the reproducibility of findings derived from a variety of in vivo and in vitro colon cancer models, and their fidelity to human disease. Finally, we summarize the therapeutic potential of targeting various steps from ligand-M3R interaction to the activation of key downstream molecules.
Collapse
|
211
|
Signaling characteristics and functional regulation of delta opioid-kappa opioid receptor (DOP-KOP) heteromers in peripheral sensory neurons. Neuropharmacology 2019; 151:208-218. [PMID: 30776373 PMCID: PMC6500751 DOI: 10.1016/j.neuropharm.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Receptor heteromers often display distinct pharmacological and functional properties compared to the individual receptor constituents. In this study, we compared the properties of the DOP-KOP heteromer agonist, 6'-guanidinonaltrindole (6'-GNTI), with agonists for DOP ([D-Pen2,5]-enkephalin [DPDPE]) and KOP (U50488) in peripheral sensory neurons in culture and in vivo. In primary cultures, all three agonists inhibited PGE2-stimulated cAMP accumulation as well as activated extracellular signal-regulated kinase 1/2 (ERK) with similar efficacy. ERK activation by U50488 was Gi-protein mediated but that by DPDPE or 6'-GNTI was Gi-protein independent (i.e., pertussis toxin insensitive). Brief pretreatment with DPDPE or U50488 resulted in loss of cAMP signaling, however, no desensitization occurred with 6'-GNTI pretreatment. In vivo, following intraplantar injection, all three agonists reduced thermal nociception. The dose-response curves for DPDPE and 6'-GNTI were monotonic whereas the curve for U50488 was an inverted U-shape. Inhibition of ERK blocked the downward phase and shifted the curve for U50488 to the right. Following intraplantar injection of carrageenan, antinociceptive responses to either DPDPE or U50488 were transient but could be prolonged with inhibitors of 12/15-lipoxgenases (LOX). By contrast, responsiveness to 6'-GNTI remained for a prolonged time in the absence of LOX inhibitors. Further, pretreatment with the 12/15-LOX metabolites, 12- and 15- hydroxyeicosatetraenoic acid, abolished responses to U50488 and DPDPE but had no effect on 6'-GNTI-mediated responses either in cultures or in vivo. Overall, these results suggest that DOP-KOP heteromers exhibit unique signaling and functional regulation in peripheral sensory neurons and may be a promising therapeutic target for the treatment of pain.
Collapse
|
212
|
Vigneswara V, Ahmed Z. Pigment epithelium-derived factor mediates retinal ganglion cell neuroprotection by suppression of caspase-2. Cell Death Dis 2019; 10:102. [PMID: 30718480 PMCID: PMC6362048 DOI: 10.1038/s41419-019-1379-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Retinal ganglion cells (RGCs) undergo rapid cell death by apoptosis after injury but can be rescued by suppression of caspase-2 (CASP2) using an siRNA to CASP2 (siCASP2). Pigment epithelium-derived factor (PEDF), has neuroprotective and anti-angiogenic functions and protects RGC from death. The purpose of this study was to investigate if suppression of CASP2 is a possible mechanism of neuroprotection by PEDF in RGC. Adult rat retinal cells were treated in vitro with sub-optimal and optimal concentrations of siCASP2 and PEDF and levels of CASP2 mRNA and RGC survival were then quantified. Optic nerve crush (ONC) injury followed by intravitreal injections of siCASP2 or PEDF and eye drops of PEDF-34 were also used to determine CASP2 mRNA and protein reduction. Results showed that PEDF and PEDF-34 significantly suppressed CASP2 mRNA in culture, by 1.85- and 3.04-fold, respectively, and increased RGC survival by 63.2 ± 3.8% and 81.9 ± 6.6%, respectively compared to cells grown in Neurobasal-A alone. RGC survival was significantly reduced in glial proliferation inhibited and purified RGC cultures suggesting that some of the effects of PEDF were glia-mediated. In addition, intravitreal injection of PEDF and eye drops of PEDF-34 after ONC also suppressed CASP2 mRNA levels by 1.82- and 3.89-fold and cleaved caspase-2 (C-CASP2) protein levels by 4.98- and 8.93-fold compared to ONC + PBS vehicle groups, respectively, without affecting other executioner caspases. Treatment of retinal cultures with PEDF and PEDF-34 promoted the secretion of neurotrophic factors (NTF) into the culture media, of which brain-derived neurotrophic factor (BDNF) caused the greatest reduction in CASP2 mRNA and C-CASP2 protein. The neuroprotective effects of PEDF were blocked by a polyclonal antibody and PEDF suppressed key elements in the apoptotic pathway. In conclusion, this study shows that some of the RGC neuroprotective effects of PEDF is regulated through suppression of CASP2 and downstream apoptotic signalling molecules.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
213
|
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res 2019; 35:775-795. [PMID: 30707354 DOI: 10.1007/s12640-019-0003-y] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Disruption of Akt and Erk-mediated signal transduction significantly contributes in the pathogenesis of various neurodegenerative diseases (NDs), such as Parkinson's disease, Alzheimer's diseases, Huntington's disease, and many others. These regulatory proteins serve as the regulator of cell survival, motility, transcription, metabolism, and progression of the cell cycle. Therefore, targeting Akt and Erk pathway has been proposed as a reasonable approach to suppress ND progression. This review has emphasized on involvement of Akt/Erk cascade in the neurodegeneration. Akt has been reported to regulate neuronal toxicity through its various substrates like FOXos, GSK3β, and caspase-9 etc. Akt is also involved with PI3K in signaling pathway to mediate neuronal survival. ERK is another kinase which also regulates proliferation, differentiation, and survival of the neural cell. There has also been much progress in developing a therapeutic molecule targeting Akt and Erk signaling. Therefore, improved understanding of the molecular mechanism behind the regulatory aspect of Akt and Erk networks can make strong impact on exploration of the neurodegenerative disease pathogenesis.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- BDNF, brain-derived neurotrophic factor
- HD, Huntington disease
- MAPK, mitogen-activated protein-extracellular kinase
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NDs, neurodegenerative disorders
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- PD, Parkinson’s disease
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
214
|
Li J, Wang R, Hu X, Gao Y, Wang Z, Li J, Wong J. Activated MEK/ERK Pathway Drives Widespread and Coordinated Overexpression of UHRF1 and DNMT1 in Cancer cells. Sci Rep 2019; 9:907. [PMID: 30696879 PMCID: PMC6351616 DOI: 10.1038/s41598-018-37258-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
The UHRF1-DNMT1 axis plays a key role in DNA maintenance methylation in mammals. Accumulative studies demonstrate that UHRF1 is broadly overexpressed in cancers, which contributes to cancer cell proliferation and tumorigenesis. Interestingly, a proteasome-dependent downregulation of UHRF1 has been observed in pluripotent ground state mouse embryonic stem cells (mESCs) cultured in the presence of two kinase (MEK1/MEK2 and GSK3β) inhibitors (termed 2i), raising the question whether UHRF1 is similarly regulated in cancer cells. Here we present evidence that while addition of 2i broadly downregulates UHRF1 and DNMT1 in various cancer cells, distinct underlying mechanisms are involved. In contrast to mESCs, 2i-induced downregulation of UHRF1 and DNMT1 in cancer cells cannot be rescued by proteasome inhibitor and occurs primarily at the level of transcription. Furthermore, downregulation of UHRF1 and DNMT1 by 2i is due to inhibition of MEK1/MEK2, but not GSK3β activity. Data mining reveals a marked co-expression of UHRF1 and DNMT1 in normal tissues as well as cancers. We provide evidence that multiple transcription factors including E2F1 and SP1 mediate the transcriptional activation of UHRF1 and DNMT1 by the activated MEK/ERK pathway. Together our study reveals distinct regulation of UHRF1/DNMT1 in mESCs and cancer cells and identifies activated MEK/ERK pathway as a driving force for coordinated and aberrant over-expression of UHRF1 and DNMT1 in cancers.
Collapse
Affiliation(s)
- Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruiping Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Gao
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
215
|
Zhao J, Liu Y, Lin F, Wang W, Yang S, Ge Y, Chen PR. Bioorthogonal Engineering of Bacterial Effectors for Spatial-Temporal Modulation of Cell Signaling. ACS CENTRAL SCIENCE 2019; 5:145-152. [PMID: 30693333 PMCID: PMC6346392 DOI: 10.1021/acscentsci.8b00751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 05/02/2023]
Abstract
The complicated and entangled cell signaling network is dynamically regulated by a wide array of enzymes such as kinases. It remains desirable but challenging to specifically modulate individual, endogenous kinases within a cell, particularly in a spatial-temporally controlled fashion. Current strategies toward regulating the intracellular functions of a kinase of interest either lack specificity or require genetic engineering that may perturb its physiological activity. Herein, we harnessed a bacterial effector OspF for optical and chemical modulation of the endogenous mitogen-activated protein kinase (MAPK) cascade in living cells and mice. The phospho-lyase OspF provided high specificity and spatial resolution toward the desired kinase such as the extracellular signal-regulated kinase (ERK), while the genetically encoded bioorthogonal decaging strategy enabled its temporal activation in living systems. The photocaged OspF (OspF*) was applied to dissect the subcellular signaling roles of ERK in nucleus as opposed to cytoplasm, while the chemically caged OspF (OspFc) was introduced into living mice to modulate ERK-mediated gene expression. Finally, our spatially and chemically controlled OspFc was further used to precisely tune immune responses in T cells. Together, our bioorthogonal engineering strategy on bacterial effectors offers a general tool to modulate cell signaling with high specificity and spatial-temporal resolution.
Collapse
Affiliation(s)
- Jingyi Zhao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanjun Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Lin
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weixia Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shaojun Yang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Ge
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- E-mail:
| |
Collapse
|
216
|
Ketamine-induced hypnosis and neuroplasticity in mice is associated with disrupted p-MEK/p-ERK sequential activation and sustained upregulation of survival p-FADD in brain cortex: Involvement of GABA A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:121-131. [PMID: 30003929 DOI: 10.1016/j.pnpbp.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022]
Abstract
Ketamine (KET) is an antidepressant and hypnotic drug acting as an antagonist at excitatory NMDA glutamate receptors. The working hypothesis postulated that KET-induced sleep in mice results in dysregulation of mitogen-activated protein kinases (MAPK) MEK-ERK sequential phosphorylation and upregulation of survival p-FADD and other neuroplastic markers in brain. Low (5-15 mg/kg) and high (150 mg/kg) doses of KET on target proteins were assessed by Western immunoblot in mouse brain cortex. During the time course of KET (150 mg/kg)-induced sleep (up to 50 min) p-MEK was increased (up to +79%) and p-ERK decreased (up to -46%) indicating disruption of MEK to ERK signal. Subhypnotic KET (5-15 mg/kg) also revealed uncoupling of p-MEK (+13-81%) to p-ERK (unchanged content). KET did not alter contraregulatory MAPK mechanisms such as inactivated p-MEK1 (ERK dampening) and phosphatases MKP1/2/3 (ERK dephosphorylation). As other relevant findings, KET (5, 15 and 150 mg/kg) upregulated p-FADD in a dose-dependent manner, and for the hypnotic dose the effect paralleled the time course of sleep which resulted in increased p-FADD/FADD ratios. KET (150 mg/kg) also increased NF-κΒ and PSD-95 neuroplastic markers. Flumazenil (a neutral allosteric antagonist at GABAA receptor) prolonged KET sleep and blocked p-MEK upregulation, indicating the involvement of this receptor as a negative modulator. SL-327 (a MEK inhibitor) augmented KET sleep, further indicating the relevance of reduced p-ERK1/2 in KET-induced hypnosis. These findings suggest that hypnotic and subhypnotic doses of KET inducing uncoupling of p-MEK to p-ERK signal and regulation of p-ERK (downregulation) and p-FADD (upregulation) may participate in the expression of some of its adverse effects (e.g. amnesia, dissociative effects).
Collapse
|
217
|
Flores K, Yadav SS, Katz AA, Seger R. The Nuclear Translocation of Mitogen-Activated Protein Kinases: Molecular Mechanisms and Use as Novel Therapeutic Target. Neuroendocrinology 2019; 108:121-131. [PMID: 30261516 DOI: 10.1159/000494085] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades are central signaling pathways that play a central role in the regulation of most stimulated cellular processes including proliferation, differentiation, stress response and apoptosis. Currently 4 such cascades are known, each termed by its downstream MAPK components: the extracellular signal-regulated kinase 1/2 (ERK1/2), cJun-N-terminal kinase (JNK), p38 and ERK5. One of the hallmarks of these cascades is the stimulated nuclear translocation of their MAPK components using distinct mechanisms. ERK1/2 are shuttled into the nucleus by importin7, JNK and p38 by a dimer of importin3 with either importin9 or importin7, and ERK5 by importin-α/β. Dysregulation of these cascades often results in diseases, including cancer and inflammation, as well as developmental and neurological disorders. Much effort has been invested over the years in developing inhibitors to the MAPK cascades to combat these diseases. Although some inhibitors are already in clinical use or clinical trials, their effects are hampered by development of resistance or adverse side-effects. Recently, our group developed 2 myristoylated peptides: EPE peptide, which inhibits the interaction of ERK1/2 with importin7, and PERY peptide, which prevents JNK/p38 interaction with either importin7 or importin9. These peptides block the nuclear translocation of their corresponding kinases, resulting in prevention of several cancers, while the PERY peptide also inhibits inflammation-induced diseases. These peptides provide a proof of concept for the use of the nuclear translocation of MAPKs as therapeutic targets for cancer and/or inflammation.
Collapse
Affiliation(s)
- Karen Flores
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot,
| |
Collapse
|
218
|
Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:57-61. [DOI: 10.1016/j.bbapap.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
219
|
Pottakkat B, Ashokachakkaravarthy K. Sorafenib resistance and autophagy in hepatocellular carcinoma: A concealed threat. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
220
|
Ji D, Zhang L, Zhu Q, Bai Y, Wu Y, Xu Y. Discovery of potent, orally bioavailable ERK1/2 inhibitors with isoindolin-1-one structure by structure-based drug design. Eur J Med Chem 2018; 164:334-341. [PMID: 30605831 DOI: 10.1016/j.ejmech.2018.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/28/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Constitutive activation of MAPK (RAS/RAF/MEK/ERK) pathway is frequently observed in many tumors and thus has become an interesting therapeutic target for cancer therapy. Despite the successful development of BRAF and MEK inhibitors in clinic treatment, resistance often appears to re-enhance ERK1/2 signaling. Inspired by the central role of the ERK1/2 signaling cascade in cancer, we describe the scaffold-hopping generation of a series of isoindolin-1-one ERK1/2 inhibitors. Our new compounds could inhibit proliferation of KRAS and BRAF mutant cells lines at low nanomolar concentrations. Compound 22a possesses acceptable pharmacokinetic profiles and showed considerable in vivo antitumor efficacy in a HCT-116 xenograft model, providing a promising basis for further optimization towards clinical ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Dezhong Ji
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Lingzhi Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaoyao Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
221
|
Liu F, Zu X, Xie X, Liu K, Chen H, Wang T, Liu F, Bode AM, Zheng Y, Dong Z, Kim DJ. Ethyl gallate as a novel ERK1/2 inhibitor suppresses patient-derived esophageal tumor growth. Mol Carcinog 2018; 58:533-543. [DOI: 10.1002/mc.22948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Feifei Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Xueyin Zu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
| | - Xiaomeng Xie
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
- The Affiliated Cancer Hospital; Zhengzhou University; Zhengzhou Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention; Zhengzhou Henan China
| | - Hanyong Chen
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Ting Wang
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Fangfang Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
| | - Ann M. Bode
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Yan Zheng
- The Affiliated Cancer Hospital; Zhengzhou University; Zhengzhou Henan China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention; Zhengzhou Henan China
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute; Henan China
| |
Collapse
|
222
|
Ghose R. Nature of the Pre-Chemistry Ensemble in Mitogen-Activated Protein Kinases. J Mol Biol 2018; 431:145-157. [PMID: 30562484 DOI: 10.1016/j.jmb.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
In spite of the availability of a significant amount of structural detail on docking interactions involving mitogen-activated protein kinases (MAPKs) and their substrates, the mechanism by which the disordered phospho-acceptor on the substrate transiently interacts with the kinase catalytic elements and is phosphorylated, often with high efficiency, remains poorly understood. Here, this dynamic interaction is analyzed in the context of available biophysical and biochemical data for ERK2, an archetypal MAPK. A hypothesis about the nature of the ternary complex involving a MAPK, its substrate, and ATP immediately prior to the chemical step (the pre-chemistry complex) is proposed. It is postulated that the solution ensemble (the pre-chemistry ensemble) representing the pre-chemistry complex comprises several conformations that are linked by dynamics on multiple timescales. These individual conformations possess different intrinsic abilities to proceed through the chemical step. The overall rate of chemistry is therefore related to the microscopic nature of the pre-chemistry ensemble, its constituent conformational microstates, and their intrinsic abilities to yield a phosphorylated product. While characterizing these microstates within the pre-chemistry ensemble in atomic or near-atomic detail is an extremely challenging proposition, recent developments in hybrid methodologies that employ computational approaches driven by experimental data appear to provide the most promising path forward toward achieving this goal.
Collapse
Affiliation(s)
- Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
223
|
Zhang L, Deng X, Shi X, Dong X. Silencing H19 regulated proliferation, invasion, and autophagy in the placenta by targeting miR-18a-5p. J Cell Biochem 2018; 120:9006-9015. [PMID: 30536700 PMCID: PMC6587755 DOI: 10.1002/jcb.28172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased perinatal mortality and morbidity. It may lead to neurodevelopmental impairment and adulthood onset disorders. Recently, long noncoding RNAs (lncRNAs) were found to be associated with the pathogenesis of FGR. Here we report that the lncRNAH19 is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced proliferation and invasion of extravillous trophoblast cells. This is identified with reduced trophoblast invasion, which has been discovered in FGR. Autophagy is exaggerated in FGR. Downregulation of H19 promotes autophagy via the PI3K/AKT/mTOR and MAPK/ERK/mTOR pathways of extravillous trophoblast cells in FGR. We also found that the expression level of microRNAs miR-18a-5p was negatively correlated with that of H19. H19 can act as an endogenous sponge by directly binding to miR-18a-5p, which targets IRF2. The expression of miR-18a-5p was upregulated, but IRF2 expression was downregulated after the H19 knockdown. In conclusion, our study revealed that H19 downexpressed could inhibit proliferation and invasion, and promote autophagy by targeting miR-18a-5pin HTR8 and JEG3 cells. We propose that aberrant regulation of H19/miR-18a-5p-mediated regulatory pathway may contribute to the molecular mechanism of FGR. We indicated that H19 may be a potential predictive, diagnostic, and therapeutic modality for FGR.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinru Deng
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xian Shi
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiaojing Dong
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
224
|
Haghighi F, Dahlmann J, Nakhaei-Rad S, Lang A, Kutschka I, Zenker M, Kensah G, Piekorz RP, Ahmadian MR. bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun Signal 2018; 16:96. [PMID: 30518391 PMCID: PMC6282345 DOI: 10.1186/s12964-018-0307-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (PSCs) open new windows for basic research and regenerative medicine due to their remarkable properties, i.e. their ability to self-renew indefinitely and being pluripotent. There are different, conflicting data related to the role of basic fibroblast growth factor (bFGF) in intracellular signal transduction and the regulation of pluripotency of PSCs. Here, we investigated the effect of bFGF and its downstream pathways in pluripotent vs. differentiated human induced (hi) PSCs. METHODS bFGF downstream signaling pathways were investigated in long-term culture of hiPSCs from pluripotent to differentiated state (withdrawing bFGF) using immunoblotting, immunocytochemistry and qPCR. Subcellular distribution of signaling components were investigated by simple fractionation and immunoblotting upon bFGF stimulation. Finally, RAS activity and RAS isoforms were studied using RAS assays both after short- and long-term culture in response to bFGF stimulation. RESULTS Our results revealed that hiPSCs were differentiated into the ectoderm lineage upon withdrawing bFGF as an essential pluripotency mediator. Pluripotency markers OCT4, SOX2 and NANOG were downregulated, following a drastic decrease in MAPK pathway activity levels. Notably, a remarkable increase in phosphorylation levels of p38 and JAK/STAT3 was observed in differentiated hiPSCs, while the PI3K/AKT and JNK pathways remained active during differentiation. Our data further indicate that among the RAS paralogs, NRAS predominantly activates the MAPK pathway in hiPSCs. CONCLUSION Collectively, the MAPK pathway appears to be the prime signaling pathway downstream of bFGF for maintaining pluripotency in hiPSCs and among the MAPK pathways, the activity of NRAS-RAF-MEK-ERK is decreased during differentiation, whereas p38 is activated and JNK remains constant.
Collapse
Affiliation(s)
- Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Julia Dahlmann
- Department of Thoracic and Cardiovascular Surgery, University of Göttingen, Göttingen, Germany.,Department of Cardiothoracic Surgery, University Clinic, Otto von Guericke-University, Magdeburg, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Present address: Department of Urology, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Ingo Kutschka
- Department of Cardiothoracic Surgery, University Clinic, Otto von Guericke-University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke-University, Magdeburg, Germany
| | - George Kensah
- Department of Thoracic and Cardiovascular Surgery, University of Göttingen, Göttingen, Germany.,Department of Cardiothoracic Surgery, University Clinic, Otto von Guericke-University, Magdeburg, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
225
|
Hey F, Andreadi C, Noble C, Patel B, Jin H, Kamata T, Straatman K, Luo J, Balmanno K, Jones DT, Collins VP, Cook SJ, Caunt CJ, Pritchard C. Over-expressed, N-terminally truncated BRAF is detected in the nucleus of cells with nuclear phosphorylated MEK and ERK. Heliyon 2018; 4:e01065. [PMID: 30603699 PMCID: PMC6304467 DOI: 10.1016/j.heliyon.2018.e01065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
BRAF is a cytoplasmic protein kinase, which activates the MEK-ERK signalling pathway. Deregulation of the pathway is associated with the presence of BRAF mutations in human cancer, the most common being V600E BRAF, although structural rearrangements, which remove N-terminal regulatory sequences, have also been reported. RAF-MEK-ERK signalling is normally thought to occur in the cytoplasm of the cell. However, in an investigation of BRAF localisation using fluorescence microscopy combined with subcellular fractionation of Green Fluorescent Protein (GFP)-tagged proteins expressed in NIH3T3 cells, surprisingly, we detected N-terminally truncated BRAF (ΔBRAF) in both nuclear and cytoplasmic compartments. In contrast, ΔCRAF and full-length, wild-type BRAF (WTBRAF) were detected at lower levels in the nucleus while full-length V600EBRAF was virtually excluded from this compartment. Similar results were obtained using ΔBRAF tagged with the hormone-binding domain of the oestrogen receptor (hbER) and with the KIAA1549-ΔBRAF translocation mutant found in human pilocytic astrocytomas. Here we show that GFP-ΔBRAF nuclear translocation does not involve a canonical Nuclear Localisation Signal (NLS), but is suppressed by N-terminal sequences. Nuclear GFP-ΔBRAF retains MEK/ERK activating potential and is associated with the accumulation of phosphorylated MEK and ERK in the nucleus. In contrast, full-length GFP-WTBRAF and GFP-V600EBRAF are associated with the accumulation of phosphorylated ERK but not phosphorylated MEK in the nucleus. These data have implications for cancers bearing single nucleotide variants or N-terminal deleted structural variants of BRAF.
Collapse
Affiliation(s)
- Fiona Hey
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Catherine Andreadi
- Leicester Cancer Research Centre, Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Catherine Noble
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Bipin Patel
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Hong Jin
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Tamihiro Kamata
- Leicester Cancer Research Centre, Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Kees Straatman
- Core Biotechnology Services, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Jinli Luo
- Leicester Cancer Research Centre, Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - David T.W. Jones
- Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - V. Peter Collins
- Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Simon J. Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Christopher J. Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Catrin Pritchard
- Leicester Cancer Research Centre, Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| |
Collapse
|
226
|
Grisham RN, Moore KN, Gordon MS, Harb W, Cody G, Halpenny DF, Makker V, Aghajanian CA. Phase Ib Study of Binimetinib with Paclitaxel in Patients with Platinum-Resistant Ovarian Cancer: Final Results, Potential Biomarkers, and Extreme Responders. Clin Cancer Res 2018. [PMID: 29844129 DOI: 10.1158/1078-0432.ccr-18-0494] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Epithelial ovarian cancer (EOC) is a molecularly diverse disease. MEK inhibition targets tumors harboring MAPK pathway alterations and enhances paclitaxel-induced apoptosis in EOC. This phase Ib study evaluated the MEK inhibitor binimetinib combined with paclitaxel in patients with platinum-resistant EOC.Patients and Methods: Patients received intravenous weekly paclitaxel with oral binimetinib in three different administration schedules. Outcomes were assessed by RECIST and CGIC CA-125 response criteria. Tumor samples were analyzed using next-generation sequencing.Results: Thirty-four patients received ≥1 binimetinib dose. A 30-mg twice-a-day continuous or 45-mg twice-a-day intermittent binimetinib dose was deemed the recommended phase II dose (RP2D) in combination with 80 mg/m2 i.v. weekly paclitaxel. Rate of grade 3/4 adverse events was 65%. The best overall response rate was 18%-one complete (CR) and four partial responses (PR)-among 28 patients with RECIST-measurable disease. Eleven patients achieved stable disease (SD), yielding a clinical benefit rate (CR+PR+SD) of 57%. Response rates, per both RECIST and CA-125 criteria, were highest in the 45-mg twice-a-day continuous cohort and lowest in the 45-mg twice-a-day intermittent cohort. All four evaluable patients with MAPK pathway-altered tumors experienced clinical benefit.Conclusions: The combination of binimetinib and intravenous weekly paclitaxel was tolerable in this patient population. The RP2D of binimetinib in combination with paclitaxel was 30 mg twice a day as a continuous or 45 mg twice a day as an intermittent dose. Although response rates were modest, a higher clinical benefit rate was seen in patients harboring alterations affecting the MAPK pathway. Clin Cancer Res; 24(22); 5525-33. ©2018 AACR.
Collapse
Affiliation(s)
- Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Wael Harb
- Horizon Oncology Research, Inc., Lafayette, Indiana
| | - Gwendolyn Cody
- New York University School of Medicine, New York, New York
| | - Darragh F Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Carol A Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
227
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Pentobarbital and other anesthetic agents induce opposite regulations of MAP kinases p-MEK and p-ERK, and upregulate p-FADD/FADD neuroplastic index in brain during hypnotic states in mice. Neurochem Int 2018; 122:59-72. [PMID: 30423425 DOI: 10.1016/j.neuint.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Abstract
Midazolam and ketamine-induced anesthesia were recently shown to induce a disruption of MEK/ERK sequential phosphorylation with parallel upregulation of p-FADD in the mouse brain. The present study was designed to assess whether other structurally diverse anesthetic agents (pentobarbital, ethanol, chloral hydrate, isoflurane) also impair brain p-MEK to p-ERK signal and increase p-FADD during the particular time course of 'sleep' in mice. Pentobarbital (50 mg/kg)-, ethanol (4000 mg/kg)-, chloral hydrate (400 mg/kg)-, and isoflurane (2% in O2)-induced anesthesia (range: 24-60 min) were associated with unaltered or increased p-MEK1/2 (up to +155%) and decreased p-ERK1/2 (up to -60%) contents, revealing disruption of MEK to ERK activation in mouse brain cortex. These anesthetic agents also upregulated cortical p-FADD (up to +110%), but not total FADD (moderately decreased), which resulted in increased neuroplastic/survival p-FADD/FADD ratios (up to +2.8 fold). The inhibition of pentobarbital metabolism with SKF525-A (a cytochrome P450 inhibitor) augmented barbiturate anesthesia (2.6 times) and induced a greater and sustained upregulation of p-MEK with p-ERK downregulation, as well as prolonged increases of p-FADD content and p-FADD/FADD ratio (effects lasting for more than 240 min). Pentobarbital also upregulated significantly the cortical contents of other markers of neuroplasticity such as the ERK inhibitor p-PEA-15 (up to +46%), the transcription factor NF-κB (up to +27%) and the synaptic density protein PSD-95 (up to +20%) during 'sleep'. The results reveal a paradoxical stimulation of p-MEK without the concomitant (canonical) activation of p-ERK (e.g. with pentobarbital and isoflurane), for which various molecular mechanisms are discussed. The downregulation of brain p-ERK may participate in the manifestations of adverse effects displayed by most hypnotic/anesthetic agents in clinical use (e.g. amnesia).
Collapse
Affiliation(s)
- Glòria Salort
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| |
Collapse
|
228
|
Structural snapshots of RAF kinase interactions. Biochem Soc Trans 2018; 46:1393-1406. [PMID: 30381334 DOI: 10.1042/bst20170528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein-protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.
Collapse
|
229
|
Dizdar L, Werner TA, Drusenheimer JC, Möhlendick B, Raba K, Boeck I, Anlauf M, Schott M, Göring W, Esposito I, Stoecklein NH, Knoefel WT, Krieg A. BRAF V600E mutation: A promising target in colorectal neuroendocrine carcinoma. Int J Cancer 2018; 144:1379-1390. [PMID: 30144031 DOI: 10.1002/ijc.31828] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/04/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
To determine the role of BRAFV600E mutation and MAPK signaling as well as the effects of BRAF and MEK directed therapy in gastroenteropancreatic neuroendocrine neoplasia (GEP-NEN), with a focus on highly aggressive gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC). Using Sanger sequencing of BRAF exon 15 we determined the frequency of BRAFV600E mutations in 71 primary GEP-NENs. MEK phosphorylation was examined by immunohistochemistry in corresponding tissue samples. To evaluate the biological relevance of BRAFV600E mutation and MAPK signaling in GEP-NECs, effects of a pharmacological BRAF and MEK inhibition were analyzed in NEC cell lines both in vitro and in vivo. BRAFV600E mutation was detected in 9.9% of all GEP-NENs. Interestingly, only NECs of the colon harbored BRAFV600E mutations, leading to a mutation frequency of 46.7% in this subgroup of patients. In addition, a BRAFV600E mutation was significantly associated with high levels of MEK phosphorylation (pMEK) and advanced tumor stages. Pharmacological inhibition of BRAF and MEK abrogated NEC cell growth, inducing G1 cell cycle arrest and apoptosis only in BRAFV600E mutated cells. BRAF inhibitor dabrafenib and MEK inhibitor trametinib prevented growth of BRAFV600E positive NEC xenografts. High frequencies of BRAFV600E mutation and elevated expression levels of pMEK were detected in biologically aggressive and highly proliferative colorectal NECs. We provide evidence that targeting BRAF oncogene may represent a therapeutic strategy for patients with BRAF mutant colorectal NECs.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jasmin C Drusenheimer
- Institute of Pathology, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Birte Möhlendick
- Department of Surgery (A), Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inga Boeck
- Institute of Pathology and Cytology, St. Vincenz Hospital Limburg, Limburg, Germany
| | - Martin Anlauf
- Institute of Pathology and Cytology, St. Vincenz Hospital Limburg, Limburg, Germany
| | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Göring
- Institute of Pathology, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
230
|
Lou LL, Li W, Zhou BH, Chen L, Weng HZ, Zou YH, Tang GH, Bu XZ, Yin S. (+)-Isobicyclogermacrenal and spathulenol from Aristolochia yunnanensis alleviate cardiac fibrosis by inhibiting transforming growth factor β/small mother against decapentaplegic signaling pathway. Phytother Res 2018; 33:214-223. [PMID: 30375049 DOI: 10.1002/ptr.6219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/03/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022]
Abstract
Cardiac fibrosis contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. Antifibrotic therapies are likely to be a crucial strategy in curbing many fibrosis-related cardiac diseases. In our previous study, an ethyl acetate extract of a traditional Chinese medicine Aristolochia yunnanensis Franch. was found to have a therapeutic effect on myocardial fibrosis in vitro and in vivo. However, the exact chemicals and their mechanisms responsible for the activity of the crude extract have not been illustrated yet. In the current study, 10 sesquiterpenoids (1-10) were isolated from the active extract, and their antifibrotic effects were systematically evaluated in transforming growth factor β 1 (TGFβ1)-stimulated cardiac fibroblasts and NIH3T3 fibrosis models. (+)-Isobicyclogermacrenal (1) and spathulenol (2) were identified as the main active components, being more potent than the well-known natural antifibrotic agent oxymatrine. Compounds 1 and 2 could inhibit the TGFβ1-induced cardiac fibroblasts proliferation and suppress the expression of the fibrosis biomarkers fibronectin and α-smooth muscle actin via down-regulation of their mRNA levels. The mechanism study revealed that 1 and 2 could inhibit the phosphorylation of TGFβ type I receptor, leading to the decrease of the phosphorylation levels of downstream Smad2/3, then consequently blocking the nuclear translocation of Smad2/3 in the TGFβ/Smad signaling pathway. These findings suggest that 1 and 2 may serve as promising natural leads for the development of anticardiac fibrosis drugs.
Collapse
Affiliation(s)
- Lan-Lan Lou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bin-Hua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lin Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Han-Zhuang Weng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Hong Zou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xian-Zhang Bu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
231
|
Li P, Jie Y, YuGen S, Yu W, Yan S. High mobility group box-1 in hypothalamic paraventricular nuclei attenuates sympathetic tone in rats at post-myocardial infarction. Cardiol J 2018; 26:555-563. [PMID: 30338842 DOI: 10.5603/cj.a2018.0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Inflammation is associated with increased sympathetic drive in cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity at post-myocardial infarction (MI). High mobility group box-1 (HMGB1) exhibits inflammatory cytokine like activity in the extracellular space. Inflammation is associated with increased sympathetic drive in cardiovscular diseases. However, the role of HMGB1 in sympathetic nerve activity at post-MI remains unknown. The aim of the present study is to determine the role and mechanism of HMGB1 in the PVN, in terms of sympathetic activity and arrhythmia after MI. METHODS Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce MI. Anti-HMGB1 polyclonal antibody or control IgG was bilaterally microinjected into the PVN (5 μL every second day for seven consecutive days). Then, renal sympathetic nerve activity (RSNA) was recorded. The association between ventricular arrhythmias (VAs) and MI was evaluated using programmed electrophysiological stimulation. After performing electrophysiological experiments in vivo, immunohistochemistry was used to detect the distribution of HMGB1, while Western blot was used to detect the expression of HMGB1 and p-ERK in the PVN of MI rats. RESULTS HMGB1 and p-ERK were upregulated in the PVN in rats at post-MI. Moreover, bilateral PVN microinjection of anti-HMGB1 polyclonal antibody reversed the expression of HMGB1 and p-ERK, and consequently decreased the baseline RSNA and inducible VAs, when compared to those in sham rats. CONCLUSIONS These results suggest that MI causes the translocation of HMGB1 in the PVN, which leads to sympathetic overactivation through the ERK1/2 signaling pathway. The bilateral PVN microinjection of anti-HMGB1 antibody can be an effective therapy for MI-induced arrhythmia.
Collapse
Affiliation(s)
- Pang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Yin Jie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shi YuGen
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wang Yu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
232
|
Dóczi R, Bögre L. The Quest for MAP Kinase Substrates: Gaining Momentum. TRENDS IN PLANT SCIENCE 2018; 23:918-932. [PMID: 30143312 DOI: 10.1016/j.tplants.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are versatile signaling mechanisms in all eukaryotes. Their signaling outputs are defined by the protein substrates phosphorylated by MAPKs. An expanding list of substrates has been identified by high-throughput screens and targeted approaches in plants. The majority of these are phosphorylated by MPK3/6, and a few by MPK4, which are the best-characterized plant MAPKs, participating in the regulation of numerous biological processes. The identified substrates clearly represent the functional diversity of MAPKs: they are associated with pathogen defense, abiotic stress responses, ethylene signaling, and various developmental functions. Understanding their outputs is integral to unraveling the complex regulatory mechanisms of MAPK cascades. We review here methodological approaches and provide an overview of known MAPK substrates.
Collapse
Affiliation(s)
- Róbert Dóczi
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik utca 2, H-2462 Martonvásár, Hungary.
| | - László Bögre
- School of Biological Sciences and Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
233
|
Bohush A, Niewiadomska G, Filipek A. Role of Mitogen Activated Protein Kinase Signaling in Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19102973. [PMID: 30274251 PMCID: PMC6213537 DOI: 10.3390/ijms19102973] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by insufficient dopamine production due to the loss of 50% to 70% of dopaminergic neurons. A shortage of dopamine, which is predominantly produced by the dopaminergic neurons within the substantia nigra, causes clinical symptoms such as reduction of muscle mass, impaired body balance, akinesia, bradykinesia, tremors, postural instability, etc. Lastly, this can lead to a total loss of physical movement and death. Since no cure for PD has been developed up to now, researchers using cell cultures and animal models focus their work on searching for potential therapeutic targets in order to develop effective treatments. In recent years, genetic studies have prominently advocated for the role of improper protein phosphorylation caused by a dysfunction in kinases and/or phosphatases as an important player in progression and pathogenesis of PD. Thus, in this review, we focus on the role of selected MAP kinases such as JNKs, ERK1/2, and p38 MAP kinases in PD pathology.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
234
|
Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9570-E9579. [PMID: 30249660 DOI: 10.1073/pnas.1810209115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) regulates the uptake of cell-surface receptors as well as their downstream signaling activities. We recently reported that signaling can reciprocally regulate CME in cancer cells and that this crosstalk can contribute to cancer progression. To further explore the nature and extent of the crosstalk between signaling and CME in cancer cell biology, we analyzed a panel of oncogenic signaling kinase inhibitors for their effects on CME across a panel of normal and cancerous cells. Inhibition of several kinases selectively affected CME in cancer cells, including inhibition of ERK1/2, which selectively inhibited CME by decreasing the rate of clathrin-coated pit (CCP) initiation. We identified an ERK1/2 substrate, the FCH/F-BAR and SH3 domain-containing protein FCHSD2, as being essential for the ERK1/2-dependent effects on CME and CCP initiation. Our data suggest that ERK1/2 phosphorylation activates FCHSD2 and regulates EGF receptor (EGFR) endocytic trafficking as well as downstream signaling activities. Loss of FCHSD2 activity in nonsmall cell lung cancer (NSCLC) cells leads to increased cell-surface expression and altered signaling downstream of EGFR, resulting in enhanced cell proliferation and migration. The expression level of FCHSD2 is positively correlated with higher NSCLC patient survival rates, suggesting that FCHSD2 can negatively affect cancer progression. These findings provide insight into the mechanisms and consequences of the reciprocal regulation of signaling and CME in cancer cells.
Collapse
|
235
|
Sabbir MG, Fernyhough P. Muscarinic receptor antagonists activate ERK-CREB signaling to augment neurite outgrowth of adult sensory neurons. Neuropharmacology 2018; 143:268-281. [PMID: 30248305 DOI: 10.1016/j.neuropharm.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/09/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023]
Abstract
A major cellular effector activated by G protein coupled receptors is extracellular signal-regulated kinase (ERK). The ERK signaling cascade regulates a variety of cellular processes including growth and proliferation. Both G protein and β-arrestin-mediated signaling lead to ERK activation by phosphorylation through different kinases. Recently, we have shown muscarinic acetylcholine type 1 receptor (M1R) antagonists, muscarinic toxin 7 (MT7) and pirenzepine, elevated neurite outgrowth and protected from small and large fiber neuropathy in adult sensory neurons in various animal models. Thus, we tested the novel hypothesis that muscarinic antagonists could drive neurite outgrowth through altered M1R-ERK signaling. We have used two dimensional isoelectric focusing/SDS-PAGE combined with analysis using multiple phospho-epitope specific antibodies to study ERK1/2 phosphorylation and activation of its downstream nuclear effector cyclic response element binding protein (CREB). Activated CREB is known to exhibit neuroprotective and growth promoting effects. One hour of treatment with MT7 and pirenzepine activated ERK through M1R and induced a significant increase in levels of pCREB(S133) in cultured sensory neurons. Further, pharmacological blockade or siRNA based knockdown of ERK abolished the MT7 and pirenzepine mediated neuritogenic effect. In addition, we have shown drug-induced alterations of charged protein fractions that may possess additional post-translationally modified forms of ERK and CREB. For the first time we show that long-term treatment, e.g. 1 h, with muscarinic antagonists selective or specific for M1R can activate a biased β-arrestin dependent ERK-CREB signal cascade. Our study gives novel insight into muscarinic antagonist-mediated modulation of M1R-ERK-CREB signaling which could be exploited for therapy in neuropathic diseases.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Dept of Pharmacology & Therapeutics, University of Manitoba, MB, R3T 2N2, Canada.
| |
Collapse
|
236
|
Abstract
One challenge in biology is to make sense of the complexity of biological networks. A good system to approach this is signaling pathways, whose well-characterized molecular details allow us to relate the internal processes of each pathway to their input-output behavior. In this study, we analyzed mathematical models of three metazoan signaling pathways: the canonical Wnt, MAPK/ERK, and Tgfβ pathways. We find an unexpected convergence: the three pathways behave in some physiological contexts as linear signal transmitters. Testing the results experimentally, we present direct measurements of linear input-output behavior in the Wnt and ERK pathways. Analytics from each model further reveal that linearity arises through different means in each pathway, which we tested experimentally in the Wnt and ERK pathways. Linearity is a desired property in engineering where it facilitates fidelity and superposition in signal transmission. Our findings illustrate how cells tune different complex networks to converge on the same behavior.
Collapse
Affiliation(s)
- Harry Nunns
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Lea Goentoro
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
237
|
Demiroglu-Zergeroglu A, Ayvali N, Turhal G, Ceylan H, Nacak Baytas S. Investigation of potent anticarcinogenic activity of 1, 3-diarylpyrazole acrylamide derivatives in vitro. J Pharm Pharmacol 2018; 70:1619-1629. [PMID: 30198567 DOI: 10.1111/jphp.13012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Pyrazole derivatives are pharmacologically powerful agents pointing at new horizons in the development of anticancer therapies. In this study, anticarcinogenic potential of a series of pyrazole-acrylamide derivatives has been investigated in mesothelial, malignant mesothelioma and lung cancer cell lines. METHODS The effect of compounds on the viability of cells and the distribution of cell cycle were examined through MTS assay and PI staining, respectively. Apoptosis was evaluated via caspase-3 enzymatic assay and AO/EB staining. Proteins involved in proliferation, survival and apoptosis were analysed by immunoblotting. KEY FINDINGS Twelve compounds of 21 (4a-4v) reduced the viability of cells but, only the subset of five (4f, 4i, 4j, 4k and 4v) induced the caspase-3 activity. Among five, only one compound (4k) significantly suppressed phosphorylation and expression of ERK1/2 and AKT proteins in 24 h. Exposing cancer cells to successive concentrations of 4k gave rise to dose- and time-dependent G2/M phase arrest and apoptosis. CONCLUSIONS 4k has revealed its potent antiproliferative activity by decreasing viability and inhibiting proliferation and survival signals of cancer cells. Moreover, 4k has exposed cytostatic and apoptotic effect especially, on cancer cells. Therefore, it may be necessary to examine the biological actions of 4k in vivo as well.
Collapse
Affiliation(s)
| | - Nurettin Ayvali
- Department of Molecular Biology & Genetics, Gebze Technical University, Gebze/Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology & Genetics, Gebze Technical University, Gebze/Kocaeli, Turkey
| | - Hurmuz Ceylan
- Department of Molecular Biology & Genetics, Gebze Technical University, Gebze/Kocaeli, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
238
|
Omóbòwálé TO, Oyagbemi AA, Alaba BA, Ola-Davies OE, Adejumobi OA, Asenuga ER, Ajibade TO, Adedapo AA, Yakubu MA. Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling. J Basic Clin Physiol Pharmacol 2018; 29:155-164. [PMID: 28981443 DOI: 10.1515/jbcpp-2017-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Toxicities due to fluoride exposure from natural and industrial sources occur commonly in man and animals with severe consequences ranging from mild cardiac derangements to sudden death. In this study, we investigated the protective effects of the methanol extract of Azadirachta indica (AI) against sodium fluoride (NaF)-induced hypertension and genotoxicity in rats. METHODS Sixty rats were divided into six groups of ten rats each as follows: Group A, the control group received distilled water; Group B rats were administered NaF at 600 ppm in drinking water; Groups C and D rats were pre-treated with the methanol extract of AI and thereafter administered NaF at 600 ppm in drinking water for 7 consecutive days; Groups E and F rats were co-administered with AI and NaF. RESULTS The administration of NaF caused significant (p<0.05) increases in the blood pressure, markers of oxidative stress, serum myeloperoxidase, xanthine oxidase values in NaF-alone treated rats, compared with the control. Significant (p<0.05) decreases were observed in cardiac and renal antioxidant defence system in rats administered NaF alone compared with the control group. NaF treatment also resulted in a reduction in the expressions of extracellular signal-regulated kinase (ERK) 1/2 in cardiac and renal tissues of NaF-treated rats. Moreover, NaF treatment elicited an increase in the frequency of micronucleated polychromatic erythrocytes when compared with the control group. CONCLUSIONS This study shows the protective effect of AI on NaF-induced hypertension and genotoxicity through antioxidant and ERK 1/2 signaling in rats.
Collapse
Affiliation(s)
- Temidayo Olutayo Omóbòwálé
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Bukola Ayokunmi Alaba
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Faculty of Veterinary Medicine, Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Benin, Benin, Nigeria
| | - Temitayo Olabisi Ajibade
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, College of Pharmacy, Texas Southern University, Houston, TX, USA
| |
Collapse
|
239
|
Ordan M, Pallara C, Maik-Rachline G, Hanoch T, Gervasio FL, Glaser F, Fernandez-Recio J, Seger R. Intrinsically active MEK variants are differentially regulated by proteinases and phosphatases. Sci Rep 2018; 8:11830. [PMID: 30087384 PMCID: PMC6081382 DOI: 10.1038/s41598-018-30202-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
MAPK/ERK kinase (MEK) 1/2 are central signaling proteins that serve as specificity determinants of the MAPK/ERK cascade. More than twenty activating mutations have been reported for MEK1/2, and many of them are known to cause diseases such as cancers, arteriovenous malformation and RASopathies. Changes in their intrinsic activity do not seem to correlate with the severity of the diseases. Here we studied four MEK1/2 mutations using biochemical and molecular dynamic methods. Although the studied mutants elevated the activating phosphorylation of MEK they had no effect on the stimulated ERK1/2 phosphorylation. Studying the regulatory mechanism that may explain this lack of effect, we found that one type of mutation affects MEK stability and two types of mutations demonstrate a reduced sensitivity to PP2A. Together, our results indicate that some MEK mutations exert their function not only by their elevated intrinsic activity, but also by modulation of regulatory elements such as protein stability or dephosphorylation.
Collapse
Affiliation(s)
- Merav Ordan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chiara Pallara
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Galia Maik-Rachline
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Fabian Glaser
- Bioinformatics Knowledge Unit, Technion, Haifa, Israel
| | - Juan Fernandez-Recio
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
240
|
Small molecule inhibition of RAS/MAPK signaling ameliorates developmental pathologies of Kabuki Syndrome. Sci Rep 2018; 8:10779. [PMID: 30018450 PMCID: PMC6050262 DOI: 10.1038/s41598-018-28709-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Kabuki Syndrome (KS) is a rare disorder characterized by distinctive facial features, short stature, skeletal abnormalities, and neurodevelopmental deficits. Previously, we showed that loss of function of RAP1A, a RAF1 regulator, can activate the RAS/MAPK pathway and cause KS, an observation recapitulated in other genetic models of the disorder. These data suggested that suppression of this signaling cascade might be of therapeutic benefit for some features of KS. To pursue this possibility, we performed a focused small molecule screen of a series of RAS/MAPK pathway inhibitors, where we tested their ability to rescue disease-relevant phenotypes in a zebrafish model of the most common KS locus, kmt2d. Consistent with a pathway-driven screening paradigm, two of 27 compounds showed reproducible rescue of early developmental pathologies. Further analyses showed that one compound, desmethyl-Dabrafenib (dmDf), induced no overt pathologies in zebrafish embryos but could rescue MEK hyperactivation in vivo and, concomitantly, structural KS-relevant phenotypes in all KS zebrafish models (kmt2d, kmd6a and rap1). Mass spectrometry quantitation suggested that a 100 nM dose resulted in sub-nanomolar exposure of this inhibitor and was sufficient to rescue both mandibular and neurodevelopmental defects. Crucially, germline kmt2d mutants recapitulated the gastrulation movement defects, micrognathia and neurogenesis phenotypes of transient models; treatment with dmDf ameliorated all of them significantly. Taken together, our data reinforce a causal link between MEK hyperactivation and KS and suggest that chemical suppression of BRAF might be of potential clinical utility for some features of this disorder.
Collapse
|
241
|
Lo Nigro C, Vivenza D, Denaro N, Lattanzio L, Fortunato M, Crook T, Merlano MC. DUSP2 methylation is a candidate biomarker of outcome in head and neck cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:271. [PMID: 30094257 DOI: 10.21037/atm.2018.06.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Biomarkers predictive of response to chemoradiotherapy (CRT) regimens for locally advanced head and neck squamous cell carcinoma (LA-HNSCC) are urgently required to identify patients in whom this approach is likely to be effective. TP53 mutations and epidermal growth factor (EGFR) overexpression are common markers of disease. Dual-specificity-phosphatase-2 (DUSP2) has an essential role in cell proliferation, cancer and immune responses. Methods Aberrant DUSP2 methylation was investigated by pyrosequencing in 5 HNSCC cell lines, 112 LA-HNSCC tumours. EGFR was investigated by immunohistochemistry and TP53 was analysed by sequencing. Results We demonstrate methylation-dependent transcriptional silencing of DUSP2 in HNSCC cell lines. In LA-HNSCC patients, aberrant methylation in the DUSP2 CpG island was present in 51/112 cases (45.5%). LA-HNSCC cases with wild-type TP53, overexpression of EGFR and unmethylated DUSP2 had the worst overall survival (P≤0.001). Conclusions DUSP2 methylation, when combined with EGFR and TP53, is a candidate biomarker of clinical outcome in LA-HNSCC treated with CRT.
Collapse
Affiliation(s)
- Cristiana Lo Nigro
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Daniela Vivenza
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Nerina Denaro
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Laura Lattanzio
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Mirella Fortunato
- Department of Pathology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Tim Crook
- Department of Oncology, St. Lukes Cancer Centre, Guildford, UK
| | - Marco Carlo Merlano
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| |
Collapse
|
242
|
McNeill RS, Canoutas DA, Stuhlmiller TJ, Dhruv HD, Irvin DM, Bash RE, Angus SP, Herring LE, Simon JM, Skinner KR, Limas JC, Chen X, Schmid RS, Siegel MB, Van Swearingen AED, Hadler MJ, Sulman EP, Sarkaria JN, Anders CK, Graves LM, Berens ME, Johnson GL, Miller CR. Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro Oncol 2018; 19:1469-1480. [PMID: 28379424 DOI: 10.1093/neuonc/nox044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Prognosis remains poor despite multimodal therapy. Developing alternative treatments is essential. Drugs targeting kinases within the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) effectors of receptor tyrosine kinase (RTK) signaling represent promising candidates. Methods We previously developed a non-germline genetically engineered mouse model of GBM in which PI3K and MAPK are activated via Pten deletion and KrasG12D in immortalized astrocytes. Using this model, we examined the influence of drug potency on target inhibition, alternate pathway activation, efficacy, and synergism of single agent and combination therapy with inhibitors of these 2 pathways. Efficacy was then examined in GBM patient-derived xenografts (PDX) in vitro and in vivo. Results PI3K and mitogen-activated protein kinase kinase (MEK) inhibitor potency was directly associated with target inhibition, alternate RTK effector activation, and efficacy in mutant murine astrocytes in vitro. The kinomes of GBM PDX and tumor samples were heterogeneous, with a subset of the latter harboring MAPK hyperactivation. Dual PI3K/MEK inhibitor treatment overcame alternate effector activation, was synergistic in vitro, and was more effective than single agent therapy in subcutaneous murine allografts. However, efficacy in orthotopic allografts was minimal. This was likely due to dose-limiting toxicity and incomplete target inhibition. Conclusion Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.
Collapse
Affiliation(s)
- Robert S McNeill
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Demitra A Canoutas
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Timothy J Stuhlmiller
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Harshil D Dhruv
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David M Irvin
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ryan E Bash
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Steven P Angus
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Laura E Herring
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jeremy M Simon
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Kasey R Skinner
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Juanita C Limas
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Xin Chen
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ralf S Schmid
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Marni B Siegel
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Amanda E D Van Swearingen
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Michael J Hadler
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Erik P Sulman
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jann N Sarkaria
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Carey K Anders
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lee M Graves
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Michael E Berens
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gary L Johnson
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - C Ryan Miller
- Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Proteomics Core Facility, Neurosciences Center, Carolina Institute for Developmental Disabilities, and Biological and Biomedical Sciences Program, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina; Cancer & Cell Biology Division, TGen, Phoenix, Arizona; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
243
|
Mukilan M, Bogdanowicz W, Marimuthu G, Rajan KE. Odour discrimination learning in the Indian greater short-nosed fruit bat ( Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus. ACTA ACUST UNITED AC 2018; 221:jeb.175364. [PMID: 29674380 DOI: 10.1242/jeb.175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odour. The present study was designed to investigate whether there is differential expression of IEGs (Egr-1, C-fos) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat, Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odour (PO) and aversive odour (AO) memory in C. sphinx We used preferred (0.8% w/w cinnamon powder) and aversive (0.4% w/v citral) odour substances, with freshly prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of EGR-1 and c-Fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but was different for AO. The response to AO elevated the level of c-Fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism involving protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that C-fos expression is possibly controlled by odour-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Wieslaw Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
| | - Ganapathy Marimuthu
- Department of Animal Behavior and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
244
|
Boga SB, Alhassan AB, Cooper AB, Doll R, Shih NY, Shipps G, Deng Y, Zhu H, Nan Y, Sun R, Zhu L, Desai J, Patel M, Muppalla K, Gao X, Wang J, Yao X, Kelly J, Gudipati S, Paliwal S, Tsui HC, Wang T, Sherborne B, Xiao L, Hruza A, Buevich A, Zhang LK, Hesk D, Samatar AA, Carr D, Long B, Black S, Dayananth P, Windsor W, Kirschmeier P, Bishop R. Discovery of 3(S)-thiomethyl pyrrolidine ERK inhibitors for oncology. Bioorg Med Chem Lett 2018; 28:2029-2034. [PMID: 29748051 DOI: 10.1016/j.bmcl.2018.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Compound 5 (SCH772984) was identified as a potent inhibitor of ERK1/2 with excellent selectivity against a panel of kinases (0/231 kinases tested @ 100 nM) and good cell proliferation activity, but suffered from poor PK (rat AUC PK @10 mpk = 0 μM h; F% = 0) which precluded further development. In an effort to identify novel ERK inhibitors with improved PK properties with respect to 5, a systematic exploration of sterics and composition at the 3-position of the pyrrolidine led to the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 28 with vastly improved PK (rat AUC PK @10 mpk = 26 μM h; F% = 70).
Collapse
Affiliation(s)
- Sobhana Babu Boga
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States.
| | - Abdul-Basit Alhassan
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Alan B Cooper
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Ronald Doll
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Neng-Yang Shih
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Gerald Shipps
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Yongqi Deng
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Hugh Zhu
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Yang Nan
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Robert Sun
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Liang Zhu
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jagdish Desai
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Mehul Patel
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Kiran Muppalla
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Xiaolei Gao
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - James Wang
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Xin Yao
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Joseph Kelly
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Subrahmanyam Gudipati
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Sunil Paliwal
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Hon-Chung Tsui
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Tong Wang
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Bradley Sherborne
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Li Xiao
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Alan Hruza
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Alexei Buevich
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Li-Kang Zhang
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - David Hesk
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Ahmed A Samatar
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Donna Carr
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Brian Long
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Stuart Black
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Priya Dayananth
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - William Windsor
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Paul Kirschmeier
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Robert Bishop
- Discovery Chemistry, Merck & Co., Inc., 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| |
Collapse
|
245
|
Protein kinase Cε regulates nuclear translocation of extracellular signal-regulated kinase, which contributes to bradykinin-induced cyclooxygenase-2 expression. Sci Rep 2018; 8:8535. [PMID: 29867151 PMCID: PMC5986758 DOI: 10.1038/s41598-018-26473-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/04/2018] [Indexed: 01/18/2023] Open
Abstract
The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca2+. Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E2 synthesis in dermal fibroblasts.
Collapse
|
246
|
Coleman B, Topalidou I, Ailion M. Modulation of Gq-Rho Signaling by the ERK MAPK Pathway Controls Locomotion in Caenorhabditis elegans. Genetics 2018; 209:523-535. [PMID: 29615470 PMCID: PMC5972424 DOI: 10.1534/genetics.118.300977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
The heterotrimeric G protein Gq regulates neuronal activity through distinct downstream effector pathways. In addition to the canonical Gq effector phospholipase Cβ, the small GTPase Rho was recently identified as a conserved effector of Gq. To identify additional molecules important for Gq signaling in neurons, we performed a forward genetic screen in the nematode Caenorhabditis elegans for suppressors of the hyperactivity and exaggerated waveform of an activated Gq mutant. We isolated two mutations affecting the MAP kinase scaffold protein KSR-1 and found that KSR-1 modulates locomotion downstream of, or in parallel to, the Gq-Rho pathway. Through epistasis experiments, we found that the core ERK MAPK cascade is required for Gq-Rho regulation of locomotion, but that the canonical ERK activator LET-60/Ras may not be required. Through neuron-specific rescue experiments, we found that the ERK pathway functions in head acetylcholine neurons to control Gq-dependent locomotion. Additionally, expression of activated LIN-45/Raf in head acetylcholine neurons is sufficient to cause an exaggerated waveform phenotype and hypersensitivity to the acetylcholinesterase inhibitor aldicarb, similar to an activated Gq mutant. Taken together, our results suggest that the ERK MAPK pathway modulates the output of Gq-Rho signaling to control locomotion behavior in C. elegans.
Collapse
Affiliation(s)
- Brantley Coleman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
247
|
Krygowska AA, Castellano E. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031450. [PMID: 28847905 DOI: 10.1101/cshperspect.a031450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance.
Collapse
Affiliation(s)
- Agata Adelajda Krygowska
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Esther Castellano
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
248
|
Hong S, Song W, Zushin PJH, Liu B, Jedrychowski MP, Mina AI, Deng Z, Cabarkapa D, Hall JA, Palmer CJ, Aliakbarian H, Szpyt J, Gygi SP, Tavakkoli A, Lynch L, Perrimon N, Banks AS. Phosphorylation of Beta-3 adrenergic receptor at serine 247 by ERK MAP kinase drives lipolysis in obese adipocytes. Mol Metab 2018; 12:25-38. [PMID: 29661693 PMCID: PMC6001906 DOI: 10.1016/j.molmet.2018.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The inappropriate release of free fatty acids from obese adipose tissue stores has detrimental effects on metabolism, but key molecular mechanisms controlling FFA release from adipocytes remain undefined. Although obesity promotes systemic inflammation, we find activation of the inflammation-associated Mitogen Activated Protein kinase ERK occurs specifically in adipose tissues of obese mice, and provide evidence that adipocyte ERK activation may explain exaggerated adipose tissue lipolysis observed in obesity. METHODS AND RESULTS We provide genetic and pharmacological evidence that inhibition of the MEK/ERK pathway in human adipose tissue, mice, and flies all effectively limit adipocyte lipolysis. In complementary findings, we show that genetic and obesity-mediated activation of ERK enhances lipolysis, whereas adipose tissue specific knock-out of ERK2, the exclusive ERK1/2 protein in adipocytes, dramatically impairs lipolysis in explanted mouse adipose tissue. In addition, acute inhibition of MEK/ERK signaling also decreases lipolysis in adipose tissue and improves insulin sensitivity in obese mice. Mice with decreased rates of adipose tissue lipolysis in vivo caused by either MEK or ATGL pharmacological inhibition were unable to liberate sufficient White Adipose Tissue (WAT) energy stores to fuel thermogenesis from brown fat during a cold temperature challenge. To identify a molecular mechanism controlling these actions, we performed unbiased phosphoproteomic analysis of obese adipose tissue at different time points following acute pharmacological MEK/ERK inhibition. MEK/ERK inhibition decreased levels of adrenergic signaling and caused de-phosphorylation of the β3-adrenergic receptor (β3AR) on serine 247. To define the functional implications of this phosphorylation, we showed that CRISPR/Cas9 engineered cells expressing wild type β3AR exhibited β3AR phosphorylation by ERK2 and enhanced lipolysis, but this was not seen when serine 247 of β3AR was mutated to alanine. CONCLUSION Taken together, these data suggest that ERK activation in adipocytes and subsequent phosphorylation of the β3AR on S247 are critical regulatory steps in the enhanced adipocyte lipolysis of obesity.
Collapse
Affiliation(s)
- Shangyu Hong
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Song
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Peter-James H Zushin
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bingyang Liu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Amir I Mina
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhaoming Deng
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dimitrije Cabarkapa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jessica A Hall
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Colin J Palmer
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hassan Aliakbarian
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tavakkoli
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Lydia Lynch
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
249
|
Grisham RN, Moore KN, Gordon MS, Harb W, Cody G, Halpenny DF, Makker V, Aghajanian CA. Phase Ib Study of Binimetinib with Paclitaxel in Patients with Platinum-Resistant Ovarian Cancer: Final Results, Potential Biomarkers, and Extreme Responders. Clin Cancer Res 2018; 24:5525-5533. [PMID: 29844129 DOI: 10.1158/1078-0432.ccr-18-0494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Purpose: Epithelial ovarian cancer (EOC) is a molecularly diverse disease. MEK inhibition targets tumors harboring MAPK pathway alterations and enhances paclitaxel-induced apoptosis in EOC. This phase Ib study evaluated the MEK inhibitor binimetinib combined with paclitaxel in patients with platinum-resistant EOC.Patients and Methods: Patients received intravenous weekly paclitaxel with oral binimetinib in three different administration schedules. Outcomes were assessed by RECIST and CGIC CA-125 response criteria. Tumor samples were analyzed using next-generation sequencing.Results: Thirty-four patients received ≥1 binimetinib dose. A 30-mg twice-a-day continuous or 45-mg twice-a-day intermittent binimetinib dose was deemed the recommended phase II dose (RP2D) in combination with 80 mg/m2 i.v. weekly paclitaxel. Rate of grade 3/4 adverse events was 65%. The best overall response rate was 18%-one complete (CR) and four partial responses (PR)-among 28 patients with RECIST-measurable disease. Eleven patients achieved stable disease (SD), yielding a clinical benefit rate (CR+PR+SD) of 57%. Response rates, per both RECIST and CA-125 criteria, were highest in the 45-mg twice-a-day continuous cohort and lowest in the 45-mg twice-a-day intermittent cohort. All four evaluable patients with MAPK pathway-altered tumors experienced clinical benefit.Conclusions: The combination of binimetinib and intravenous weekly paclitaxel was tolerable in this patient population. The RP2D of binimetinib in combination with paclitaxel was 30 mg twice a day as a continuous or 45 mg twice a day as an intermittent dose. Although response rates were modest, a higher clinical benefit rate was seen in patients harboring alterations affecting the MAPK pathway. Clin Cancer Res; 24(22); 5525-33. ©2018 AACR.
Collapse
Affiliation(s)
- Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Wael Harb
- Horizon Oncology Research, Inc., Lafayette, Indiana
| | - Gwendolyn Cody
- New York University School of Medicine, New York, New York
| | - Darragh F Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Carol A Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
250
|
Forte L, Turdo F, Ghirelli C, Aiello P, Casalini P, Iorio MV, D'Ippolito E, Gasparini P, Agresti R, Belmonte B, Sozzi G, Sfondrini L, Tagliabue E, Campiglio M, Bianchi F. The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer. BMC Cancer 2018; 18:586. [PMID: 29792166 PMCID: PMC5967041 DOI: 10.1186/s12885-018-4500-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/11/2018] [Indexed: 01/29/2023] Open
Abstract
Background CDCP1, a transmembrane protein with tumor pro-metastatic activity, was recently identified as a prognostic marker in TNBC, the most aggressive breast cancer subtype still lacking an effective molecular targeted therapy. The mechanisms driving CDCP1 over-expression are not fully understood, although several stimuli derived from tumor microenvironment, such as factors present in Wound Healing Fluids (WHFs), reportedly increase CDCP1 levels. Methods The expression of CDCP1, PDGFRβ and ERK1/2cell was tested by Western blot after stimulation of MDA-MB-231 cells with PDGF-BB and, similarly, in presence or not of ERK1/2 inhibitor in a panel of TNBC cell lines. Knock-down of PDGFRβ was established in MDA-MB-231 cells to detect CDCP1 upon WHF treatment. Immunohistochemical staining was used to detect the expression of CDCP1 and PDGFRβ in TNBC clinical samples. Results We discovered that PDGF-BB-mediated activation of PDGFRβ increases CDCP1 protein expression through the downstream activation of ERK1/2. Inhibition of ERK1/2 activity reduced per se CDCP1 expression, evidence strengthening its role in CDCP1 expression regulation. Knock-down of PDGFRβ in TNBC cells impaired CDCP1 increase induced by WHF treatment, highlighting the role if this receptor as a central player of the WHF-mediated CDCP1 induction. A significant association between CDCP1 and PDGFRβ immunohistochemical staining was observed in TNBC specimens, independently of CDCP1 gene gain, thus corroborating the relevance of the PDGF-BB/PDGFRβ axis in the modulation of CDCP1 expression. Conclusion We have identified PDGF-BB/PDGFRβ–mediated pathway as a novel player in the regulation of CDCP1 in TNCBs through ERK1/2 activation. Our results provide the basis for the potential use of PDGFRβ and ERK1/2 inhibitors in targeting the aggressive features of CDCP1-positive TNBCs. Electronic supplementary material The online version of this article (10.1186/s12885-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Forte
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Federica Turdo
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Piera Aiello
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | | | - Elvira D'Ippolito
- Start Up Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health, Human Pathology Section, University of Palermo, Palermo, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| | - Manuela Campiglio
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| |
Collapse
|