201
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
202
|
Foolchand A, Ghazi T, Chuturgoon AA. Malnutrition and Dietary Habits Alter the Immune System Which May Consequently Influence SARS-CoV-2 Virulence: A Review. Int J Mol Sci 2022; 23:2654. [PMID: 35269795 PMCID: PMC8910702 DOI: 10.3390/ijms23052654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.
Collapse
Affiliation(s)
| | | | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, Howard College Campus, University of Kwa-Zulu Natal, Durban 4041, South Africa; (A.F.); (T.G.)
| |
Collapse
|
203
|
SINGH G. Resveratrol Delivery <i>via</i> Gene Therapy: Entering the Modern Era. Turk J Pharm Sci 2022; 19:104-109. [DOI: 10.4274/tjps.galenos.2020.89577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
204
|
Cheng T, Wang C, Lu Q, Cao Y, Yu W, Li W, Liu B, Gao X, Lü J, Pan X. Metformin inhibits the tumor-promoting effect of low-dose resveratrol, and enhances the anti-tumor activity of high-dose resveratrol by increasing its reducibility in triple negative breast cancer. Free Radic Biol Med 2022; 180:108-120. [PMID: 35038549 DOI: 10.1016/j.freeradbiomed.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Resveratrol, a natural antioxidant that maintains better bioactivity under hypoxia, has anti-tumor effects, but its underlying mechanism is controversial and the effect on Triple-negative breast cancer (TNBC) remains unclear. Herein, we investigated the anti-TNBC mechanism of resveratrol under a mimic hypoxic tumor microenvironment and explored a method of combining metformin to improve the therapeutic effect. The results showed an inverted "U" shaped relationship between the cell viability and resveratrol concentrations. Low concentrations of resveratrol (LRes) promoted proliferation and migration in MDA-MB-231 cells by activating JAK3/STAT3 signaling pathway, while high concentrations of resveratrol (HRes) inhibited cell growth and induced both autophagy and apoptosis through MAPK signaling pathway. Meanwhile, HRes treatment resulted in the up-regulation of antioxidant-related genes SOD3 and FAM213B, the increase of catalase activity and NAD(P)H level, which leading to a reducing microenvironment in cells. Notably, metformin could inhibit the proliferation and migration induced by LRes, whereas promote apoptosis induced by HRes. Moreover, metformin enhanced the reducing environment via further increasing the catalase activity and NAD(P)H level. These findings conclude the anti-TNBC mechanism of HRes should be attributed to its antioxidant activity and metformin enhances its reducibility. Metformin combined with resveratrol exerts a synergistic therapeutic effect on TNBC and effectively prevents tumor progression.
Collapse
Affiliation(s)
- Tingting Cheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Cheng Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qianqian Lu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China
| | - Yuru Cao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China
| | - Weiwei Yu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China; Institute of Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
205
|
Effects of Annurca Flesh Apple Polyphenols in Human Thyroid Cancer Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6268755. [PMID: 35222800 PMCID: PMC8872649 DOI: 10.1155/2022/6268755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
Among natural macromolecules, the polyphenol extract from Annurca flesh (AFPE) apple could play a potential therapeutic role for a large spectrum of human cancer also by exerting antioxidant properties. Thyroid cancer is a common neoplasia in women, and it is in general responsive to treatments although patients may relapse and metastasize or therapy-related side effects could occur. In this study, we explored the effects of AFPE on papillary (TPC-1) and anaplastic (CAL62) thyroid cancer cell line proliferation and viability. We found that AFPE exposure induced a reduction of cell proliferation and cell viability in dose-dependent manner. The effect was associated with the reduction of phosphorylation of Rb protein. To study the mechanisms underlying the biological effects of AFPE treatment in thyroid cancer cells, we investigated the modulation of miRNA (miR) expression. We found that AFPE treatment increased the expression of the miR-141, miR-145, miR-200a-5p, miR-425, and miR-551b-5p. Additionally, since natural polyphenols could exert their beneficial effects through the antioxidant properties, we investigated this aspect, and we found that AFPE treatment reduced the production of reactive oxygen species (ROS) in CAL62 cells. Moreover, AFPE pretreatment protects against hydrogen peroxide-induced oxidative stress in thyroid cancer cell lines. Taken together, our findings suggest that AFPE, by acting at micromolar concentration in thyroid cancer cell lines, may be considered a promising adjuvant natural agent for thyroid cancer treatment approach.
Collapse
|
206
|
Mousavi P, Rahimi Esboei B, Pourhajibagher M, Fakhar M, Shahmoradi Z, Hejazi SH, Hassannia H, Nasrollahi Omran A, Hasanpour H. Anti-leishmanial effects of resveratrol and resveratrol nanoemulsion on Leishmania major. BMC Microbiol 2022; 22:56. [PMID: 35168553 PMCID: PMC8845381 DOI: 10.1186/s12866-022-02455-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Background Leishmaniasis is a vector-borne disease that is endemic in the tropical and sub-tropical areas of the world. Low efficacy and high cytotoxicity of the current treatment regimens for leishmaniasis is one of the most important health problems. In this experimental study, anti-leishmanial effects of different concentrations of resveratrol and resveratrol nano-emulsion (RNE) were assessed. Methods RNE was prepared using the probe ultra-sonication method. The cytotoxicity was evaluated using the MTT technique on the L929 cell line. The anti-leishmanial activities on promastigotes of leishmania were assessed using vital staining and infected BALB/c mice were used to assess the in vivo anti-leishmanial effects. Results In vitro and in vivo assays revealed that all concentrations of resveratrol and RNE had valuable inhibitory effects against Leishmania major in comparison to the control group (P < 0.05). The half maximal inhibitory concentration (IC50) values were calculated as 16.23 and 35.71 µg/mL for resveratrol and RNE, respectively. Resveratrol and RNE showed no cytotoxicity against the L929 cell line. Conclusions According to the potent in vitro and in vivo anti-leishmanial activity of RNE at low concentration against L. major, we suggest that it could be a promising anti-leishmanial therapeutic against L. major in the future.
Collapse
Affiliation(s)
- Parisa Mousavi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rahimi Esboei
- Department of Parasitology and Mycology, School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Fakhar
- Toxoplasma Research Center, Department of Parasitology, Iranian National Registry Center for Toxoplasmosis (INRCT), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zabihollah Shahmoradi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medial Sciences, Isfahan, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayatollah Nasrollahi Omran
- Department of Parasitology and Mycology, School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Hamid Hasanpour
- Department of Parasitology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
207
|
Li X, Yu H, Gong Y, Wu P, Feng Q, Liu C. Fuzheng Xiaozheng prescription relieves rat hepatocellular carcinoma through improving anti-inflammation capacity and regulating lipid related metabolisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114801. [PMID: 34748868 DOI: 10.1016/j.jep.2021.114801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Xiaozheng prescription (FZXZP) is a traditional Chinese medicine (TCM) that was derived from Sanjiasan, a famous decoction documented in the book of Wenyilun in Ming dynasty. Based on our years' clinic application, FZXZP demonstrated satisfactory therapeutic effects in cirrhosis and hepatocellular carcinoma (HCC) treatments. However, the underlying mechanisms are still largely unknown. AIM OF STUDY In this study, we aim to systematically evaluate the intervention effects of FZXZP on rat HCC and deeply elucidate the underlying regulative mechanisms on rat HCC. MATERIALS AND METHODS The HCC rats were induced by using diethylnitrosamine (DEN) and two doses of FZXZP were adopted to treat the HCC rats. Liver phenotype, blood chemistry and liver histopathology were used to evaluate the intervention effects. High performance liquid chromatography (HPLC) was conducted to analyze the components of FZXZP. Finally, miRNA-Seq and mRNA-Seq were performed to investigate the regulative mechanisms of FZXZP on rat HCC and qRT-PCR was carried out to verify the accuracies of the two RNA-Seqs. RESULTS Results of liver phenotypes, blood chemistry and liver histopathology demonstrated that FZXZP significantly alleviated the liver damage, inhibited the progresses of HCC. Nine potential components were identified from FZXZP, and anti-cancer prediction suggested that almost all of them were reported to show an anti-cancer effect. Mechanistically, FZXZP was found to promote the lipid related metabolisms, improve the anti-inflammation ability by activating PPAR signaling pathway, arachidonic acid metabolism, bile secretion, etc. CONCLUSION: our results suggested that FZXZP significantly alleviated the rat HCC, mechanistically by improving the anti-inflammation ability and promoting the lipid related metabolisms.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
208
|
Molina-García M, Malvehy J, Granger C, Garre A, Trullàs C, Puig S. Exposome and Skin. Part 2. The Influential Role of the Exposome, Beyond UVR, in Actinic Keratosis, Bowen's Disease and Squamous Cell Carcinoma: A Proposal. Dermatol Ther (Heidelb) 2022; 12:361-380. [PMID: 35112326 PMCID: PMC8850498 DOI: 10.1007/s13555-021-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Actinic keratosis (AK) is the main risk factor for the development of cutaneous invasive squamous cell carcinoma (SCC). It represents the first sign of severe chronic ultraviolet radiation exposure, which has a clear significant effect. Nevertheless, the skin is exposed to many other exposome factors which should be thoroughly considered. Our aim was to assess the impact of exposome factors other than ultraviolet radiation (UVR) on the etiopathology of AK and Bowen's disease (BD) and progression of AK to SCC and to design tailored prevention strategies. We performed an exhaustive literature search in September 2021 through PubMed on the impact of exposome factors other than UVR on AK, BD and SCC. We conducted several parallel searches combining terms of the following topics: AK, BD, SCC and microbiome, hormones, nutrition, alcohol, tobacco, viral infections, chemical contaminants and air pollution. Notably, skin microbiome studies have shown how Staphylococcus aureus infections are associated with AK and AK-to-SCC progression by the production of chronic inflammation. Nutritional studies have demonstrated how a caloric restriction in fat intake, oral nicotinamide and moderate consumption of wine significantly reduce the number of premalignant keratoses and SCC. Regarding lifestyle factors, both alcohol and smoking are associated with the development of SCC in a dose-dependent manner. Relevant environmental factors are viral infections and chemical contaminants. Human papillomavirus infections induce deregulation of cellular proliferation and are associated with AK, BD and SCC. In addition to outdoor jobs, occupations such as industrial processing and farming also increase the risk of developing keratoses and SCC. The exposome of AK will undoubtedly help the understanding of its etiopathology and possible progression to SCC and will serve as a basis to design tailored prevention strategies.
Collapse
Affiliation(s)
- Manuel Molina-García
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036 Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clinic, Universitat de Barcelona, 170 Villarroel, 08036 Barcelona, Spain
| | - Josep Malvehy
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036 Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clinic, Universitat de Barcelona, 170 Villarroel, 08036 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Corinne Granger
- Innovation and Development, ISDIN, 33 Provençals, 08019 Barcelona, Spain
| | - Aurora Garre
- Innovation and Development, ISDIN, 33 Provençals, 08019 Barcelona, Spain
| | - Carles Trullàs
- Innovation and Development, ISDIN, 33 Provençals, 08019 Barcelona, Spain
| | - Susana Puig
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036 Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clinic, Universitat de Barcelona, 170 Villarroel, 08036 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
209
|
Resveratrol impairs cellular mechanisms associated with the pathogenesis of endometriosis. Reprod Biomed Online 2022; 44:976-990. [DOI: 10.1016/j.rbmo.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
210
|
Robertson I, Wai Hau T, Sami F, Sajid Ali M, Badgujar V, Murtuja S, Saquib Hasnain M, Khan A, Majeed S, Tahir Ansari M. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int J Pharm 2022; 618:121605. [DOI: 10.1016/j.ijpharm.2022.121605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
211
|
Pérez-Navarro J, Hermosín-Gutiérrez I, Gómez-Alonso S, Kurt-Celebi A, Colak N, Akpınar E, Hayirlioglu-Ayaz S, Ayaz FA. Vitis vinifera Turkish novel table grape 'Karaerik'. Part II: Non-anthocyanin phenolic composition and antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:813-822. [PMID: 34223652 DOI: 10.1002/jsfa.11416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 'Karaerik' is a novel table grape (Vitis vinifera L.) native to Turkey and widely cultivated in areas bordering the city of Erzincan. Because of the demonstrated beneficial effects on human health of the grape phenolic composition, the aim of this work was to conduct a detailed profiling of non-anthocyanin phenolic fractions from different grape tissues of the 'Karaerik' table grape. Both qualitative and quantitative characterization of phenolic compounds were achieved using high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry. Total phenolic content and oxygen radical absorbance capacity were also determined to evaluate the antioxidant properties of this table grape. RESULTS A high number of non-anthocyanin phenolic compounds was identified in 'Karaerik' table grape skins and seeds, including 11 flavonols, six hydroxycinnamic acid derivatives, two stilbenes, several monomeric and dimeric flavan-3-ols and proanthocyanidins. Quercetin-type derivatives dominated the flavonol profile of grape skins, followed by myricetin type. Tartaric acid esters of three acids (caffeic, coumaric and ferulic acids) were the main hydroxycinnamic acid derivatives in this cultivar. Qualitative and quantitative differences were observed in flavan-3-ol composition among the grape tissues. Proanthocyanidins were the most abundant class of phenolic compounds in 'Karaerik' grapes, being mainly located in seeds. Higher antioxidant capacity values were determined in grape seeds, in correlation with the total phenolic content. CONCLUSION These results provide useful information for a better understanding of phenolic antioxidants from the 'Karaerik' table grape and will contribute to promoting the varietal identity and health-related properties of this fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- José Pérez-Navarro
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isidro Hermosín-Gutiérrez
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Aynur Kurt-Celebi
- Graduate School of Natural and Applied Sciences, Biology Graduate Program, Karadeniz Technical University, Trabzon, Turkey
| | - Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Erdal Akpınar
- Department of Geography, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Sema Hayirlioglu-Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Faik A Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
212
|
Ersöz NŞ, Adan A. Resveratrol triggers anti-proliferative and apoptotic effects in FLT3-ITD-positive acute myeloid leukemia cells via inhibiting ceramide catabolism enzymes. Med Oncol 2022; 39:35. [DOI: 10.1007/s12032-021-01627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
|
213
|
Feng C, Chen J, Ye W, Liao K, Wang Z, Song X, Qiao M. Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives. Front Bioeng Biotechnol 2022; 10:833920. [PMID: 35127664 PMCID: PMC8811299 DOI: 10.3389/fbioe.2022.833920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Resveratrol, a bioactive natural product found in many plants, is a secondary metabolite and has attracted much attention in the medicine and health care products fields due to its remarkable biological activities including anti-cancer, anti-oxidation, anti-aging, anti-inflammation, neuroprotection and anti-glycation. However, traditional chemical synthesis and plant extraction methods are impractical for industrial resveratrol production because of low yield, toxic chemical solvents and environmental pollution during the production process. Recently, the biosynthesis of resveratrol by constructing microbial cell factories has attracted much attention, because it provides a safe and efficient route for the resveratrol production. This review discusses the physiological functions and market applications of resveratrol. In addition, recent significant biotechnology advances in resveratrol biosynthesis are systematically summarized. Furthermore, we discuss the current challenges and future prospects for strain development for large-scale resveratrol production at an industrial level.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Kaisen Liao
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- The Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Xiaofei Song, ; Mingqiang Qiao,
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Xiaofei Song, ; Mingqiang Qiao,
| |
Collapse
|
214
|
Catarina Duarte A, Raquel Costa A, Gonçalves I, Quintela T, Preissner R, R A Santos C. The druggability of bitter taste receptors for the treatment of neurodegenerative disorders. Biochem Pharmacol 2022; 197:114915. [PMID: 35051386 DOI: 10.1016/j.bcp.2022.114915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The delivery of therapeutic drugs to the brain remains a major pharmacology challenge. A complex system of chemical surveillance to protect the brain from endogenous and exogenous toxicants at brain barriers hinders the uptake of many compounds with significant in vitro and ex vivo therapeutic properties. Despite the advances in the field in recent years, the components of this system are not completely understood. Recently, a large group of chemo-sensing receptors, have been identified in the blood-cerebrospinal fluid barrier. Among these chemo-sensing receptors, bitter taste receptors (TAS2R) hold promise as potential drug targets, as many TAS2R bind compounds with recognized neuroprotective activity (quercetin, resveratrol, among others). Whether activation of TAS2R by their ligands contributes to their diverse biological actions described in other cells and tissues is still debatable. In this review, we discuss the potential role of TAS2R gene family as the mediators of the biological activity of their ligands for the treatment of central nervous system disorders and discuss their potential to counteract drug resistance by improving drug delivery to the brain.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-IPG- Centro de Potencial e Inovação de Recursos Naturais- Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559, Guarda, Portugal
| | - Ana Raquel Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
215
|
Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Sci Rep 2022; 12:704. [PMID: 35027628 PMCID: PMC8758722 DOI: 10.1038/s41598-021-04654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, we examined the antileukemic effects of pterostilbene, a natural methylated polyphenol analog of resveratrol that is predominantly found in berries and nuts, using various human and murine leukemic cells, as well as bone marrow samples obtained from patients with leukemia. Pterostilbene administration significantly induced apoptosis of leukemic cells, but not of non-malignant hematopoietic stem/progenitor cells. Interestingly, pterostilbene was highly effective in inducing apoptosis of leukemic cells harboring the BCR/ABL fusion gene, including ABL tyrosine kinase inhibitor (TKI)-resistant cells with the T315I mutation. In BCR/ABL+ leukemic cells, pterostilbene decreased the BCR/ABL fusion protein levels and suppressed AKT and NF-κB activation. We further demonstrated that pterostilbene along with U0126, an inhibitor of the MEK/ERK signaling pathway, synergistically induced apoptosis of BCR/ABL+ cells. Our results further suggest that pterostilbene-promoted downregulation of BCR/ABL involves caspase activation triggered by proteasome inhibition-induced endoplasmic reticulum stress. Moreover, oral administration of pterostilbene significantly suppressed tumor growth in mice transplanted with BCR/ABL+ leukemic cells. Taken together, these results suggest that pterostilbene may hold potential for the treatment of BCR/ABL+ leukemia, in particular for those showing ABL-dependent TKI resistance.
Collapse
|
216
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
217
|
Mohd Zaid NA, Sekar M, Bonam SR, Gan SH, Lum PT, Begum MY, Mat Rani NNI, Vaijanathappa J, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des Devel Ther 2022; 16:23-66. [PMID: 35027818 PMCID: PMC8749048 DOI: 10.2147/dddt.s326332] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
The skin is the largest organ in the human body, composed of the epidermis and the dermis. It provides protection and acts as a barrier against external menaces like allergens, chemicals, systemic toxicity, and infectious organisms. Skin disorders like cancer, dermatitis, psoriasis, wounds, skin aging, acne, and skin infection occur frequently and can impact human life. According to a growing body of evidence, several studies have reported that natural products have the potential for treating skin disorders. Building on this information, this review provides brief information about the action of the most important in vitro and in vivo research on the use of ten selected natural products in inflammatory, neoplastic, and infectious skin disorders and their mechanisms that have been reported to date. The related studies and articles were searched from several databases, including PubMed, Google, Google Scholar, and ScienceDirect. Ten natural products that have been reported widely on skin disorders were reviewed in this study, with most showing anti-inflammatory, antioxidant, anti-microbial, and anti-cancer effects as the main therapeutic actions. Overall, most of the natural products reported in this review can reduce and suppress inflammatory markers, like tumor necrosis factor-alpha (TNF-α), scavenge reactive oxygen species (ROS), induce cancer cell death through apoptosis, and prevent bacteria, fungal, and virus infections indicating their potentials. This review also highlighted the challenges and opportunities of natural products in transdermal/topical delivery systems and their safety considerations for skin disorders. Our findings indicated that natural products might be a low-cost, well-tolerated, and safe treatment for skin diseases. However, a larger number of clinical trials are required to validate these findings. Natural products in combination with modern drugs, as well as the development of novel delivery mechanisms, represent a very promising area for future drug discovery of these natural leads against skin disorders.
Collapse
Affiliation(s)
- Nurul Amirah Mohd Zaid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, 47500, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Jaishree Vaijanathappa
- Faculty of Life Sciences, JSS Academy of Higher Education and Research Mauritius, Vacoas-Phoenix, Mauritius
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | | | | | | |
Collapse
|
218
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
219
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:660-680. [DOI: 10.1093/jpp/rgac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
|
220
|
Muñoz-López S, Sánchez-Melgar A, Martín M, Albasanz JL. Resveratrol enhances A 1 and hinders A 2A adenosine receptors signaling in both HeLa and SH-SY5Y cells: Potential mechanism of its antitumoral action. Front Endocrinol (Lausanne) 2022; 13:1007801. [PMID: 36407311 PMCID: PMC9669387 DOI: 10.3389/fendo.2022.1007801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite great efforts, effective treatment against cancer has not yet been found. However, natural compounds such as the polyphenol resveratrol have emerged as promising preventive agent in cancer therapy. The mode of action of resveratrol is still poorly understood, but it can modulate many signaling pathways related to the initiation and progression of cancer. Adenosinergic signaling may be involved in the antitumoral action of resveratrol since resveratrol binds to the orthosteric binding site of adenosine A2A receptors and acts as a non-selective agonist for adenosine receptors. In the present study, we measured the impact of resveratrol treatment on different adenosinergic pathway components (i.e. adenosine receptors levels, 5'-nucleotidase, adenosine deaminase, and adenylyl cyclase activities, protein kinase A levels, intracellular adenosine and other related metabolites levels) and cell viability and proliferation in HeLa and SH-SY5Y cell lines. Results revealed changes leading to turning off cAMP signaling such as decreased levels of A2A receptors and reduced adenylyl cyclase activation, increased levels of A1 receptors and increased adenylyl cyclase inhibition, and lower levels of PKA. All these changes could contribute to the antitumoral action of resveratrol. Interestingly, these effects were almost identical in HeLa and SH-SY5Y cells suggesting that resveratrol enhances A1 and hinders A2A adenosine receptors signaling as part of a potential mechanism of antitumoral action.
Collapse
|
221
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
222
|
Zhang Y, Ni C, Huang Y, Tang Y, Yang K, Shi X, Zhang Y, Li Z, Wang J, Zhu Y, Li H, Ma Y, Lin J, Wang J, Liu Q, Wu W. Hair Growth-Promoting Effect of Resveratrol in Mice, Human Hair Follicles and Dermal Papilla Cells. Clin Cosmet Investig Dermatol 2021; 14:1805-1814. [PMID: 34866922 PMCID: PMC8637427 DOI: 10.2147/ccid.s335963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Background Oxidative damage has been found in various types of hair loss. As a polyphenolic phytoalexin, resveratrol (RSV) is known as an antioxidant, anti-inflammatory and anti-apoptotic agent. Objective Thus, we aim to examine the effects of RSV on hair growth. Methods In vivo C57BL/6 mice were used to evaluate the effects of RSV on hair cycle, hair length, skin thickness, hair follicle diameter, hair cycle score and the percentage of hair cycle stage. Then hair shaft length and hair cycle were evaluated by human hair follicles (HFs) ex vivo. The proliferative activities of human dermal papilla cells (hDPCs) cultured in vitro with RSV were assessed using RTCA. The ability of RSV to protect hDPCs against H2O2-induced oxidative damage is examined by a ROS assay kit. Results Topical application of RSV significantly promoted hair growth and stimulated the transition of hair cycle from telogen into the anagen phase on shaved C57BL/6 mice. Ex vivo experiments showed that RSV increased the hair shaft length of HFs and delayed the entry into catagen. In vitro experiments indicated that RSV proliferated hDPCs and prevented hDPCs from oxidative damage caused by H2O2. Conclusion RSV can promote hair growth and may be a potential candidate for the treatment of hair loss.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chunya Ni
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, People's Republic of China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yue Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zheng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ji'an Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yifei Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haiyang Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, People's Republic of China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenyu Wu
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, People's Republic of China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
223
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
224
|
Bertuccioli A, Cardinali M, Biagi M, Moricoli S, Morganti I, Zonzini GB, Rigillo G. Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action? Microorganisms 2021; 9:2427. [PMID: 34946029 PMCID: PMC8703584 DOI: 10.3390/microorganisms9122427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous nutraceuticals and botanical food supplements are used with the intention of modulating body weight. A recent review examined the main food supplements used in weight loss, dividing them according to the main effects for which they were investigated. The direct or indirect effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances. The aim of this review is to evaluate whether any prebiotic effects, which could help to explain their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals and herbal food supplements used for weight loss management. Several prebiotic effects have been reported for various nutraceutical substances, which have shown activity on Bifidobacterium spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely independent from those nutraceuticals for which certain products are normally used. Further studies are necessary to clarify the different levels at which a nutraceutical substance can exert its action.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47900 Rimini, Italy;
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy;
| | - Sara Moricoli
- AIFeM, 48100 Ravenna, Italy; (S.M.); (I.M.); (G.B.Z.)
| | | | | | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
225
|
Wang C, Wang N, Li N, Yu Q, Wang F. Combined Effects of Resveratrol and Vitamin E From Peanut Seeds and Sprouts on Colorectal Cancer Cells. Front Pharmacol 2021; 12:760919. [PMID: 34803703 PMCID: PMC8595107 DOI: 10.3389/fphar.2021.760919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RES) and Vitamin E (VE) are anti-cancer active ingredients with relatively high content in peanut seeds and sprouts. This study aimed to determine the synergistic inhibitory effect of RES and VE on colorectal cancer. Using 5-FU as a positive drug control, the effect of RES combined with VE on HCT-8 cells was determined, and cell viability was detected using the cell-counting kit 8 (CCK8) method. Cell morphology changes were observed using optical microscopy. Cell migration ability was evaluated by the scratch test, while cell colonies were determined by the cloning test formation ability. Apoptosis status was assessed by flow cytometry and nuclear staining by DAPI, and the expression level of apoptosis-related proteins was determined by western blotting. Compared with the single component group, the RES combined with VE group significantly inhibited the growth and proliferation of HCT-8 intestinal cancer cells in vitro. The RES combined with VE group had a greater impact on cell morphology changes and cell colony formation and significantly reduced cell migration ability and intestinal cancer cell apoptosis (p < 0.05). Additionally, combined treatment with RES and VE significantly upregulated the expression of pro-apoptotic proteins BAX, caspase-3, caspase-8, and caspase-9, and downregulated the expression of anti-apoptotic protein BCL-2, compared to the single component treatment. RES combined with VE is effective in promoting intestinal cancer cell apoptosis. This study demonstrated the significant positive synergy of RES and VE on HCT-8 cells, providing a new perspective for more effective use of RES.
Collapse
Affiliation(s)
- Chunfeng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Zhengzhou Nutrition and Health Food Laboratory, Zhengzhou, China
| | - Na Wang
- Zhengzhou Nutrition and Health Food Laboratory, Zhengzhou, China.,School of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Na Li
- School of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qiuying Yu
- Zhengzhou Nutrition and Health Food Laboratory, Zhengzhou, China.,School of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Fangyu Wang
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
226
|
Hu Z, Li M, Cao Y, Akan OD, Guo T, Luo F. Targeting AMPK Signaling by Dietary Polyphenols in Cancer Prevention. Mol Nutr Food Res 2021; 66:e2100732. [PMID: 34802178 DOI: 10.1002/mnfr.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.
Collapse
Affiliation(s)
- Zuomin Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Mengyuan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yunyun Cao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
227
|
Yuan B, Liu H, Dong X, Pan X, Sun X, Sun J, Pan LL. A Novel Resveratrol Analog Upregulates SIRT1 Expression and Ameliorates Neointima Formation. Front Cardiovasc Med 2021; 8:756098. [PMID: 34796214 PMCID: PMC8594564 DOI: 10.3389/fcvm.2021.756098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Neointima formation is a serious complication caused by mechanical trauma to the vessel. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML 104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±)-isopaucifloral F. The present study aimed to investigate the effects and underlying mechanisms of (R)-TML104 on neointima formation. Our results showed that (R)-TML104 prevented neointima formation based on a carotid artery injury model in mice. Furthermore, (R)-TML104 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced vascular smooth muscle cells (VSMC) phenotypic transformation, evidenced by increased α-smooth muscle actin, reduced VSMC proliferation, and migration. Simultaneously, (R)-TML104 upregulated sirtuin-1 (SIRT1) expression in VSMC. We further uncovered that SIRT1 expression is critical for the inhibitory effects of (R)-TML104 on PDGF-BB-induced VSMC phenotypic transformation in vitro and injury-induced neointima formation in vivo. Finally, (R)-TML104-upregulated SIRT1 inhibited PDGF-BB-induced VSMC phenotypic transformation by downregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression via decreasing nuclear factor-κB acetylation. Taken together, these results revealed that (R)-TML104 upregulates SIRT1 expression and ameliorates neointima formation. Therefore, the application of (R)-TML104 may constitute an effective strategy to ameliorate neointima formation.
Collapse
Affiliation(s)
- Baohui Yuan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoliang Dong
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xun Sun
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
228
|
Liu J, Chen C, Wang Y, Qian C, Wei J, Xing Y, Bai J. Comprehensive of N1-Methyladenosine Modifications Patterns and Immunological Characteristics in Ovarian Cancer. Front Immunol 2021; 12:746647. [PMID: 34777359 PMCID: PMC8588846 DOI: 10.3389/fimmu.2021.746647] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background recently, many researches have concentrated on the relevance between N1-methyladenosine (m1A) methylation modifications and tumor progression and prognosis. However, it remains unknown whether m1A modification has an effect in the prognosis of ovarian cancer (OC) and its immune infiltration. Methods Based on 10 m1A modulators, we comprehensively assessed m1A modification patterns in 474 OC patients and linked them to TME immune infiltration characteristics. m1Ascore computed with principal component analysis algorithm was applied to quantify m1A modification pattern in OC patients. m1A regulators protein and mRNA expression were respectively obtained by HPA website and RT-PCR in clinical OC and normal samples. Results We finally identified three different m1A modification patterns. The immune infiltration features of these m1A modification patterns correspond to three tumor immune phenotypes, including immune-desert, immune-inflamed and immune-excluded phenotypes. The results demonstrate individual tumor m1A modification patterns can predict patient survival, stage and grade. The m1Ascore was calculated to quantify individual OC patient's m1A modification pattern. A high m1Ascore is usually accompanied by a better survival advantage and a lower mutational load. Research on m1Ascore in the treatment of OC patients showed that patients with high m1Ascore showed marked therapeutic benefits and clinical outcomes in terms of chemotherapy and immunotherapy. Lastly, we obtained four small molecule drugs that may potentially ameliorate prognosis. Conclusion This research demonstrates that m1A methylation modification makes an essential function in the prognosis of OC and in shaping the immune microenvironment. Comprehensive evaluation of m1A modifications improves our knowledge of immune infiltration profile and provides a more efficient individualized immunotherapy strategy for OC patients.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junting Wei
- The Second Clinical School of Nanjing Medical University, Nanjing, China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| |
Collapse
|
229
|
Elbagory AM, Marima RM, Dlamini Z. Role and Merits of Green Based Nanocarriers in Cancer Treatment. Cancers (Basel) 2021; 13:cancers13225686. [PMID: 34830840 PMCID: PMC8616350 DOI: 10.3390/cancers13225686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The use of chemotherapy drugs against tumours is associated with various drawbacks such as poor solubility, low stability, high toxicity, lack of selectivity and rapid clearance. Nanocarriers can improve the safety and efficiency of drugs by increasing their solubility, enhance their circulation time and improve their uptake into cancer cells. Natural materials can be incorporated in the fabrication of nanocarriers as a substitute to synthetic ingredients. Several studies developed different types of green based nanocarriers using materials obtained from plant or microbial sources such as polysaccharides and polyphenols without the need of toxic chemicals in the synthesis. The green components can have many roles for example as mechanical support, trigger pH response for drug release, or act as a targeting ligand. The inclusion of these green components will support the cost effective and feasible large-scale production of nanocarriers with minimum negative impact on the environment. Abstract The use of nanocarriers for biomedical applications has been gaining interests from researchers worldwide for the delivery of therapeutics in a controlled manner. These “smart” vehicles enhance the dissolution and the bioavailability of drugs and enable their delivery to the target site. Taking the potential toxicity into consideration, the incorporation of natural “green” materials, derived from plants or microbial sources, in the nanocarriers fabrication, improve their safety and biocompatibility. These green components can be used as a mechanical platform or as targeting ligand for the payload or can play a role in the synthesis of nanoparticles. Several studies reported the use of green based nanocarriers for the treatment of diseases such as cancer. This review article provides a critical analysis of the different types of green nanocarriers and their synthesis mechanisms, characterization, and their role in improving drug delivery of anticancer drugs to achieve precision cancer treatment. Current evidence suggests that green-based nanocarriers can constitute an effective treatment against cancer.
Collapse
|
230
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
231
|
Zhou J, Azrad M, Kong L. Effect of Limonene on Cancer Development in Rodent Models: A Systematic Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.725077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancer is a major health issue and one of the leading causes of death worldwide. Many natural compounds, e.g., lycopene, curcumin, resveratrol, etc., have been shown to inhibit the growth of cancer cells. Similarly, limonene, a major active component in citrus essential oils and widely used flavoring additive, has demonstrated anticarcinogenic effects in both cell and animal studies. This systematic review aimed to evaluate the anticarcinogenic effects of limonene and its potential underlying mechanisms. Eight peer-reviewed articles published in English between 2000 and 2020 were identified after screening using MEDLINE, Academic Search Premier, and CINAHL plus. All 8 studies showed an effect of limonene on reducing tumor burden, resulting in either decreased size, number, weight, or multiplicities of tumors. Limonene treatment extended the latency and survival periods in 2 studies yet did not reduce tumor incidence rate in another study. Limonene was shown to promote cell apoptosis in 4 studies that examined either the apoptosis index or apoptosis related gene/protein expressions. Two studies tried to explain the cancer preventive mechanisms of limonene and found limonene could restore the antioxidant capacity or immune functions that were impaired by cancer. These results supported the potential applicability of limonene on inhibiting cancer development, yet the real-world applicability on human requires more research and evaluation through clinical studies.Systematic Review Registration: PROSPERO, identifier: CRD42020168387.
Collapse
|
232
|
Sarı H, Çelik S, Çağlar F, Aktaş S, Bozkurt O, Yörükoğlu K, Çelebi İ, Mungan MU. A candidate antineoplastic herbal agent for bladder cancer: Ankaferd Blood Stopper. Int J Clin Pract 2021; 75:e14789. [PMID: 34480836 DOI: 10.1111/ijcp.14789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/02/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND AIMS Ankaferd Blood Stopper (ABS) was used for in vitro studies of osteosarcoma and colon carcinoma cancer cell lines to reveal the apoptotic and antineoplastic effects. The aim of this study is to evaluate the antineoplastic effect of ABS on bladder cancer cell cultures. METHODS We prospectively collected minimum 0.5 cm parts of fresh frozen tumour samples from patients with bladder tumour from 2015 to 2017. Primary bladder cancer cultures were produced from the frozen tumour samples. Two different doses of ABS were used on cancer cell cultures. Viability tests of each cell cultures were performed. Flow cytometry was used for the determination of apoptosis and necroptosis. We also checked the effect of ABS on different stages, grade and variant histology of bladder cancer cells. The results of all cancer cell cultures were compared with their own controls. RESULTS This study included 24 patients. Mean age of patients was 66.2 ± 11.7 years (34-83 years), where 19 of them (79.5%) were males and five (20.5%) were females. When we compared the data, we found decreased cancer cell viability ratio in each ABS group compared with their own controls. Necroptosis was observed in the great majority of ABS groups, and necroptosis and apoptosis were observed in some cell cultures. CONCLUSIONS In this study, we demonstrated the cytotoxic effect of ABS on bladder cancer cells. The results of this study suggests planning of animal model of bladder cancer for ABS with intravesical application as an antineoplastic agent. In the future, ABS may be a candidate intravesical treatment agent for bladder cancer.
Collapse
Affiliation(s)
- Hilmi Sarı
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Çelik
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
- Department of Urology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Fulya Çağlar
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Ozan Bozkurt
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Kutsal Yörükoğlu
- Department of Pathology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - İlhan Çelebi
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Uğur Mungan
- Department of Urology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
233
|
Xu XL, Deng SL, Lian ZX, Yu K. Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10111718. [PMID: 34829589 PMCID: PMC8614917 DOI: 10.3390/antiox10111718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a heterogeneous disease and is also the major cause of death among women from gynecologic malignancies. A combination of surgery and chemotherapy is the major therapy for ovarian cancer. Unfortunately, despite good response rates to initial surgery and chemotherapy, most patients relapse and have a generally poor survival rate. The present research sheds light on the therapeutic effects of multiple natural products in patients with ovarian cancer. Notably, these natural ingredients do not have adverse effects on healthy cells and tissues, indicating that natural products can serve as a safe alternative therapy for ovarian cancer. Trans-3,4,5′-Trihydroxystibene (resveratrol) is a natural product that is commonly found in the human diet and that has been shown to have anticancer effects on various human cancer cells. This review summarizes current knowledge regarding the progress of resveratrol against tumor cell proliferation, metastasis, apoptosis induction, autophagy, sensitization, and antioxidation as well as anti-inflammation. It also provides information regarding the role of resveratrol analogues in ovarian cancer. A better understanding of the role of resveratrol in ovarian cancer may provide a new array for the prevention and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; or
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| |
Collapse
|
234
|
Hu M, Wang R, Chen X, Zheng M, Zheng P, Boz Z, Tang R, Zheng K, Yu Y, Huang XF. Resveratrol prevents haloperidol-induced mitochondria dysfunction through the induction of autophagy in SH-SY5Y cells. Neurotoxicology 2021; 87:231-242. [PMID: 34688786 DOI: 10.1016/j.neuro.2021.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Haloperidol is a commonly used antipsychotic drug and may increase neuronal oxidative stress associated with the side effects, including tardive dyskinesia and neurite withdraw. Autophagy plays a protective role in response to the accumulated reactive oxygen species (ROS) induced mitochondria damage. Resveratrol is an antioxidant compound having neuroprotective effects; however, it is unknown if resveratrol may stimulate autophagy and decrease mitochondria damage induced by haloperidol. HYPOTHESIS We hypothesis that resveratrol stimulates the autophagic process and protects mitochondria lesion induced by haloperidol. METHODS MitoSOX™ Red Mitochondrial Superoxide Indicator and MitoTracker™ Green FM staining were used to measure the amount of the mitochondria ROS production and mitochondria mass in human SH-SY5Y cells treated with haloperidol and/or resveratrol. Autophagic related dyes and Western blot were applied to study the autophagic process and related protein expression. Besides, tandem monomeric mRFP-GFP-LC3 was used to investigate the fusion of autophagosome and lysosome. Transmission electron microscopy was used to investigate the mitochondrial and autophagic ultrastructures with or without haloperidol and resveratrol treatment. RESULTS Haloperidol administration significantly increased mitochondria ROS and mitochondrial mass, indicating the increase of mitochondria dysfunction. Although haloperidol increased the autophagosomes and lysosome formation, the autophagosome-lysosome fusion and degradation were impaired. This was because we found an increased p62 after haloperidol treatment, an indication of autophagy incompletion. Importantly, resveratrol promoted the degradation of p62, upregulated the formation of autophagolysosome, and reversed haloperidol-induced mitochondria damage. CONCLUSION These results collectively suggest that resveratrol may be introduced as a protective compound against haloperidol-induced mitochondria impairment and aberrant autophagy.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Ruiqi Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
235
|
Gawandi SJ, Desai VG, Joshi S, Shingade S, Pissurlenkar RR. Assessment of elementary derivatives of 1,5-benzodiazepine as anticancer agents with synergy potential. Bioorg Chem 2021; 117:105331. [PMID: 34689084 DOI: 10.1016/j.bioorg.2021.105331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Herein, we designed and synthesized 1,5-benzodiazepines as a lead molecule for anticancer activity and as potent synergistic activity with drug Methotrexate. Working under the framework of green chemistry principles, series of 1,5-benzodiazepine derivatives (3a-3a1) were synthesized using biocatalyst i.e. thiamine hydrochloride under solvent free neat heat conditions. These compounds were screened for in vitro anti cancer activity against couple of cancer cell lines (HeLa and HEPG2) and normal human cell line HEK-293 via MTT assay. The IC50 values for the compounds were in the range 0.067 to 0.35 µM, better than Paclitaxel and compatible with the drug Methotrexate. Compound 3x was found to be influential against both the cell lines with IC50 values of 0.067 ± 0.002 µM against HeLa and 0.087 ± 0.003 µM against HEPG2 cell line, having activity as compatible to the standard drug Methotrexate. Bioinformatic analysis showed that these compounds are good tyrosine kinase inhibitors which was then proved using enzyme inhibition assay. The studies of apoptosis revealed late apoptotic mode of cell death for the compounds against HEPG2 cancer cell line using flow cytometry method. Synergistic studies of compound 3x and drug Methotrexate showed that the combination was highly active against cancer HeLa and HEPG2 cell line with IC50 value 0.046 ± 0.002 µM and 0.057 ± 0.002 µM respectively, which was well supported by apoptosis pathway. Further the compounds proved its scope as DNA intercalating agents, as its molecular docking and DNA binding studies revealed that the compounds would fit well into the DNA strands.
Collapse
Affiliation(s)
- Sinthiya J Gawandi
- Department of Chemistry, Dnyanprassarak Mandal's College & Research Centre, Assagao, Bardez, 403507, India
| | - Vidya G Desai
- Department of Chemistry, Dnyanprassarak Mandal's College & Research Centre, Assagao, Bardez, 403507, India.
| | - Shrinivas Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580 002, Karnataka, India
| | - Sunil Shingade
- SSPM's V P College of Pharmacy, Madkhol, Sawantwadi, Sindhudurg, Maharashtra
| | - Raghuvir R Pissurlenkar
- (Bio) Molecular Simulations Group, Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji, Goa, India
| |
Collapse
|
236
|
Xia M, Cao H, Zheng J, Yao Y, Xu F, Lu G, Ma Y, Zhou J. A novel stilbene derivative (GMQ3) suppressed proliferation and induced apoptosis in lung cancer via the p38-MAPK/SIRT1 pathway. Biochem Pharmacol 2021; 193:114808. [PMID: 34678220 DOI: 10.1016/j.bcp.2021.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lung cancer is the primary cause of cancer-related mortality worldwide. The anticancer effect of stilbene has been noted in various tumor types. GMQ3, which has a stilbene-mimicking skeleton, is a novel small-molecule compound with promising antitumor activity. Our results revealed that GMQ3 not only suppressed cell proliferation and cell migration of lung cancer cells but also led to G1 phase cell cycle arrest and triggered caspase-dependent apoptosis. Furthermore, investigation of the molecular mechanism showed that GMQ3 could inhibited proliferation and induced apoptosis via the p38-MAPK/SIRT1 pathway both in vitro and in vivo. Xenograft tumor mouse models showed that GMQ3 significantly inhibited tumor growth in vivo without affecting body weight. Our findings indicated that GMQ3 exerts a strong anticancer action by suppressing cell proliferation, inhibiting cell migration and inducing cell apoptosis. Moreover, the efficacy of GMQ3 was enhanced in the presence of CDK4/6 inhibitor Abemaciclib. We conclude that GMQ3 is a promising agent with potential for lung cancer.
Collapse
Affiliation(s)
- Mengling Xia
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - He Cao
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Xu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
237
|
Wang B, Wang Y, Xu K, Zeng Z, Xu Z, Yue D, Li T, Luo J, Liu J, Yuan J. Resveratrol alleviates sepsis-induced acute kidney injury by deactivating the lncRNA MALAT1/MiR-205 axis. Cent Eur J Immunol 2021; 46:295-304. [PMID: 34764801 PMCID: PMC8574118 DOI: 10.5114/ceji.2021.109195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Resveratrol plays a protective role against sepsis development, and the long noncoding RNA (lncRNA) MALAT1 is an inflammation-relevant biomarker. This investigation attempted to reveal whether resveratrol attenuated inflammation of sepsis-induced acute kidney injury (AKI) by regulating MALAT1. MATERIAL AND METHODS In total 120 rats were divided into a control group (n = 20), a Sham group (n = 20), a sepsis group (n = 40) and a resveratrol group (n = 40), and serum levels of inflammatory cytokines and AKI biomarkers were determined. An equal number of rats under identical treatments were, additionally, tracked for their survival, and the serum level of lncRNA MALAT1 was measured by RT-PCR. Moreover, septic cell models were constructed by treating HK-2 cells with lipopolysaccharide (LPS), and tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 levels released by the cells were determined with ELISA. RESULTS Resveratrol treatment significantly brought down serum levels of inflammatory cytokines (i.e. TNF-α, IL-1β and IL-6), kidney function indicators (i.e. Scr, blood urea nitrogen [BUN] and Scys C), AKI biomarkers (i.e. NGAL and KIM-1) and MALAT1 in cecal ligation and puncture (CLP)-induced septic model rats (all p < 0.05), and the life span of septic rats was elongated by resveratrol treatment (p < 0.05). Viability and cytokine release of LPS-treated HK2 cells were rescued by resveratrol (p < 0.05), which was accompanied by a marked fall of MALAT1 expression (p < 0.05). In addition, si-MALAT1 diminished viability and suppressed cytokine release of HK2 cells, while pcDNA3.1-MALAT1 hindered the impact of resveratrol on the inflammatory response of HK2 cells (p < 0.05). Ultimately, miR-205, a protective molecule in sepsis-relevant AKI, was down-regulated by resveratrol and si-MALAT1 (p < 0.05). CONCLUSIONS Resveratrol relieved sepsis-induced AKI by restraining the lncRNA MALAT1/miR-205 axis.
Collapse
Affiliation(s)
- Biao Wang
- The Second Hospital, University of South China, China
| | | | - Ke Xu
- Chenzhou No. 1 People’s Hospital, China
| | - Zhenhua Zeng
- Nanfang Hospital, Southern Medical University, China
| | | | | | - Tao Li
- Chenzhou No. 1 People’s Hospital, China
| | - Jihui Luo
- Chenzhou No. 1 People’s Hospital, China
| | | | | |
Collapse
|
238
|
Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021; 8:727951. [PMID: 34631766 PMCID: PMC8495072 DOI: 10.3389/fnut.2021.727951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
239
|
Aktepe N, Yukselten Y. Induction of apoptosis in human hormone-refractory prostate cancer cell lines by using resveratrol in combination with AT-101. Andrologia 2021; 54:e14267. [PMID: 34633104 DOI: 10.1111/and.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to determine the appropriate doses of AT-101 and resveratrol combination in the in vitro hormone-refractory prostate cancer (PC) cell lines, in order to evaluate the cytotoxic and genotoxic effects of this combination on the proliferation of cancer cells, namely PC-3, DU-145 and LNCAP. Cytotoxicity in PC cell lines was analysed by using the XTT Cell Proliferation Assay. DNA damage was performed with the cell death assay. Apoptotic protein levels were performed by Roche Human Apoptosis Array. IC50 values were determined by XTT analysis. The strongest combined doses (100 µM resveratrol + 5µM AT-101) were found to have the strongest synergistic apoptotic and cytotoxic effects on DU-145 cells at 72 hr. While the combined use of resveratrol and AT-101 increased the expression of markers in apoptotic cell pathways on cells, a decrease in the expression of anti-apoptotic markers was detected (p ˂ 0.05). Combined applications of these compounds showed an important synergism in the hormone-refractory PC cell lines, and it was determined that after the post-translational modification, they were significantly effective on the apoptotic pathway. These results have revealed that the combination of resveratrol and AT-101 holds great expectation as a new chemotherapeutic application in the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Necmettin Aktepe
- Faculty of Health, Department of Nursing, Mardin Artuklu University, Mardin, Turkey
| | - Yunus Yukselten
- School of Medicine, Department of Medical Biology, Ankara University, Ankara, Turkey.,Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd., Ankara, Turkey
| |
Collapse
|
240
|
Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol Adv 2021; 53:107844. [PMID: 34626788 DOI: 10.1016/j.biotechadv.2021.107844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Most drugs or the natural substances reputed to display some biological activity are hydrophobic molecules that demonstrate low bioavailability regardless of their mode of absorption. Resveratrol and its derivatives belong to the chemical group of stilbenes; while stilbenes are known to possess very interesting properties, these are limited by their poor aqueous solubility as well as low bioavailability in animals and humans. Among the substances capable of forming nanomolecular inclusion complexes which can be used for drug delivery, cyclodextrins show spectacular physicochemical and biomedical implications in stilbene chemistry for their possible application in nanomedicine. By virtue of their properties, cyclodextrins have also demonstrated their possible use in green chemistry for the synthesis of stilbene glucosylated derivatives with potential applications in dermatology and cosmetics. Compared to chemical synthesis and genetically modified microorganisms, plant cell or tissue systems provide excellent models for obtaining stilbenes in few g/L quantities, making feasible the production of these compounds at a large scale. However, the biosynthesis of stilbenes is only possible in the presence of the so-called elicitor compounds, the most commonly used of which are cyclodextrins. We also report here on the induction of resveratrol production by cyclodextrins or combinatory elicitation with methyljasmonate in plant cell systems as well as the mechanisms by which they are able to trigger a stilbene response. The present article therefore discusses the role of cyclodextrins in stilbene chemistry both at the physico-chemical level as well as the biomedical and biotechnological levels, emphasizing the notion of "easy alliance" between these compounds and stilbenes.
Collapse
|
241
|
Dal-Fabbro R, Cosme-Silva L, Rezende Silva Martins de Oliveira F, Capalbo LC, Plazza FA, Ervolino E, Cintra LTA, Gomes-Filho JE. Effect of red wine or its polyphenols on induced apical periodontitis in rats. Int Endod J 2021; 54:2276-2289. [PMID: 34534374 DOI: 10.1111/iej.13633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
AIM To evaluate the effect of red wine consumption or its polyphenols on the inflammation/resorption processes associated with apical periodontitis in rats. METHODOLOGY Thirty-two three-month-old Wistar rats had apical periodontitis induced in four first molars and were then arranged into four groups: control (C)-rats with apical periodontitis; wine (W)-rats with apical periodontitis receiving 4.28 ml/kg of red wine; resveratrol+quercetin (R+Q)-rats with apical periodontitis receiving 4.28 ml/kg of a solution containing 1.00 mg/L of quercetin and 0.86 mg/L of resveratrol and alcohol (ALC)-rats with apical periodontitis receiving the alcoholic dose contained in the wine. The oral gavage treatments were administered daily, from day 0 to day 45. On the 15th day, apical periodontitis was induced, and on the 45th day, the animals were euthanized. Histological, immunohistochemical (RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1β) and micro-computed tomography for bone resorption analysis were performed in the jaws. The Kruskal-Wallis with Dunn's test was performed for nonparametric data, and the anova with Tukey's test for parametric data, p < .05. RESULTS The median score of the inflammatory process was significantly lower in the R+Q group (1) compared to the C (2) (p = .0305) and ALC (3) (p = .0003) groups, and not different from the W (1.5) group. The immunolabeling for OPG was significantly higher in the R+Q group (p = .0054) compared to all groups; the same was observed for IL-10 (p = .0185), different from groups C and ALC. The R+Q group had the lowest TRAP cell count (p < .0001), followed by the W group, both inferior to C and ALC groups. The lowest bone resorption value was in the R+Q group (0.50mm3 ± 0.21mm3 ), significantly lower (p = .0292) than the C group (0.88mm3 ± 0.10mm3 ). The W group (0.60 mm3 ± 0.25 mm3 ) and R+Q group had less bone resorption compared to the ALC group (0.97 mm3 ± 0.22 mm3 ), p = .0297 and p = .0042, respectively. CONCLUSION Red wine administration to rats for 15 days before induction of apical periodontitis decreased inflammation, TRAP marking and periapical bone resorption compared to alcohol. Resveratrol-quercetin administration reduced the inflammatory process in apical periodontitis, periapical bone resorption, and altered the OPG, IL-10 and TRAP expression compared to C and ALC groups.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, Michigan, USA
| | - Leopoldo Cosme-Silva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | - Letícia Cabrera Capalbo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Flávia Alfredo Plazza
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - João Eduardo Gomes-Filho
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
242
|
Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv 2021; 28:123-133. [PMID: 33355019 PMCID: PMC7758053 DOI: 10.1080/10717544.2020.1862365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acne Vulgaris is one of the most common chronic inflammatory skin disorders that affect majority of teen-agers worldwide. Isotretinoin (ITT) is the drug of choice in the management of acne, but, it suffers from serious side-effects including hepatotoxicity, and some psychological disturbances following its oral intake. The objective of this study was to develop and optimize ITT loaded nanoemulsions (ITT-SNEDDS) and to incorporate resveratrol (RSV)in optimum formulation to decrease ITT side effects The ITT solubility was first tested in various essential oils, surfactants, and co-surfactants to select the essential nanoemulsion ingredients. Mixture design was applied to study the effect of independent variables and their interactions on the selected dependent responses. The developed ITT-SNEDDS were characterized for their globule size and ex vivo permeation. The optimized batch was further loaded with RSV and evaluated for in vitro and ex vivo permeation and for in vivo hepatotoxicity. The developed ITT-SNEDDS exhibited globule size below 300 nm, up to 272.27 ± 7.12 mcg/cm2.h and 61.27 ± 2.83% of steady-state flux (JSS) and permeability % respectively. Optimum formulation consisted of 0.15 g oil mixture, 0.6 g of surfactant (Labrasol), and 0.250 g co-surfactant (Transcutol). Permeability studies confirmed the enhanced permeation percentage of ITT (40.77 ± 1.18%), and RSV (29.94 ± 2.02%) from optimized formulation, with enhanced steady-state flux (JSS). In vivo studies demonstrated the superior hepatoprotective activity of optimized formulation compared to a different drug formulations and marketed product. Therefore, RVS loaded ITT-SNEDDS might be a successful strategy for acne management with improved action, and minimum side effects.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
243
|
Duan J, Guo H, Fang Y, Zhou G. The mechanisms of wine phenolic compounds for preclinical anticancer therapeutics. Food Nutr Res 2021; 65:6507. [PMID: 34512232 PMCID: PMC8396239 DOI: 10.29219/fnr.v65.6507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/24/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Wine is one of the oldest and most popular drinks worldwide, which is rich in phenolic compounds. Epidemiological studies show that moderate consumption of wine can reduce the risk of certain diseases, and this effect is attributed to its phenolic compounds. Objective The objective of this review was to elaborate the effects of wine-derived phenolic compounds for preclinical anticancer therapeutics and their major mechanisms. Methods In this review, we discuss the classification and content of common phenolic compounds in wine and summarize previous studies that have evaluated the anticancer properties of wine-derived phenolic compounds and their mechanisms. Results Wine-derived phenolic compounds have been proven to participate in several mechanisms against cancers, including deoxyribonucleic acid damage, oxidative stress, cell proliferation, cell cycle arrest, cell apoptosis, autophagy, cell invasion and metastasis, immunity and metabolism, regulation of multiple signaling molecules, and gene expression. However, the exact anticancer mechanisms of the phenolic compounds in wine need to be further investigated. Conclusion Wine-derived phenolic compounds are promising chemoprotective and chemotherapeutic agents for cancer.
Collapse
Affiliation(s)
- Jing Duan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
244
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
245
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
246
|
Di Prima G, Angellotti G, Scarpaci AG, Murgia D, D’agostino F, Campisi G, De Caro V. Improvement of Resveratrol Permeation through Sublingual Mucosa: Chemical Permeation Enhancers versus Spray Drying Technique to Obtain Fast-Disintegrating Sublingual Mini-Tablets. Pharmaceutics 2021; 13:pharmaceutics13091370. [PMID: 34575446 PMCID: PMC8470294 DOI: 10.3390/pharmaceutics13091370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol with several interesting broad-spectrum pharmacological properties. However, it is characterized by poor oral bioavailability, extensive first-pass effect metabolism and low stability. Indeed, RSV could benefit from the advantage of the sublingual route of administration. In this view, RSV attitudes to crossing the porcine sublingual mucosa were evaluated and promoted both by six different chemical permeation enhancers (CPEs) as well as by preparing four innovative fast-disintegrating sublingual mini-tablets by spray drying followed by direct compression. Since RSV by itself exhibits a low permeation aptitude, this could be significantly enhanced by the use of CPEs as well as by embedding RSV in a spray-dried powder to be compressed in order to prepare fast-disintegrating mini-tablets. The most promising observed CPEs (menthol, lysine and urea) were then inserted into the most promising spray-dried excipients’ compositions (RSV-B and RSV-C), thus preparing CPE-loaded mini-tablets. However, this procedure leads to unsatisfactory results which preclude the possibility of merging the two proposed approaches. Finally, the best spray-dried composition (RSV-B) was further evaluated by SEM, FTIR, XRD and disintegration as well as dissolution behavior to prove its effectiveness as a sublingual fast-disintegrating formulation.
Collapse
Affiliation(s)
- Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
- Correspondence:
| | - Giuseppe Angellotti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Denise Murgia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Fabio D’agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS—CNR), Campobello di Mazara, 91021 Trapani, Italy;
| | - Giuseppina Campisi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| |
Collapse
|
247
|
Kaur A, Tiwari R, Tiwari G, Ramachandran V. Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits. Drug Res (Stuttg) 2021; 72:5-17. [PMID: 34412126 DOI: 10.1055/a-1555-2919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV's use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti- inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells' cellular functions.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Ruchi Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
248
|
Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. Cell Immunol 2021; 368:104423. [PMID: 34399171 DOI: 10.1016/j.cellimm.2021.104423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancer (TNBC) is an invasive breast cancer with the characteristics of easy to develop distant metastasis. Immune escape is one of the main reasons for TNBC growth and metastasis. Enhancement of T cell-mediated anti-tumor activity may benefit to inhibit tumor metastasis and improve the efficacy of cancer therapy. As a natural bioactive substance, resveratrol shows potential capability to prevent or suppress the development of a variety of cancers through direct or indirect effects, including immunoregulatory effect. However, whether resveratrol might affect lung metastasis of TNBC, and whether the effect of resveratrol might be associated with resveratrol-regulated immune responses in tumor microenvironment is still unknown. In this study, by using an experimental metastatic mouse 4 T1 tumor model, we identified that resveratrol may suppress TNBC lung metastasis by elevating local anti-tumor immunity. Indeed, an increase in the cytotoxic activity of CD8+T cells as well as the levels of type 1 cytokine IFN-γ and IL-2 in the lungs of resveratrol-treated tumor bearing mice were observed. The enhanced CD8+T cell activity and Th1 immune responses by resveratrol administration might be related to the down-regulated PD-1 expression on pulmonary CD8+T cells and CD4+T cells. Resveratrol may also convert macrophages to M1 phenotype in the lungs of tumor bearing mice. However, it seems likely resveratrol has no effect on pulmonary myeloid-derived suppressor cell activation. Our results provide an evidence that resveratrol might be a promising candidate agent for adjuvant therapy in the process of TNBC metastasis.
Collapse
|
249
|
Arrigoni R, Ballini A, Santacroce L, Cantore S, Inchingolo A, Inchingolo F, Di Domenico M, Quagliuolo L, Boccellino M. Another look at dietary polyphenols: challenges in cancer prevention and treatment. Curr Med Chem 2021; 29:1061-1082. [PMID: 34375181 DOI: 10.2174/0929867328666210810154732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a pathology that impacts in a profound manner people all over the world. The election strategy against cancer often uses chemotherapy and radiotherapy, which more often than not can present many side effects and not always reliable efficacy. By contrast, it is widely known that a diet rich in fruit and vegetables has a protective effect against cancer insurgence and development. Polyphenols are generally believed to be responsible for those beneficial actions, at least partially. In this review, we highlight the metabolic interaction between polyphenols and our metabolism and discuss their potential for anticancer prevention and therapy.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario "Ernesto Quagliariello", University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Stefania Cantore
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angelo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
250
|
Fan W, Chen S, Wu X, Zhu J, Li J. Resveratrol Relieves Gouty Arthritis by Promoting Mitophagy to Inhibit Activation of NLRP3 Inflammasomes. J Inflamm Res 2021; 14:3523-3536. [PMID: 34335041 PMCID: PMC8318089 DOI: 10.2147/jir.s320912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Gouty arthritis (GA) is a common inflammatory disease with pain caused by the deposition of monosodium urate (MSU) crystals into joints and surrounding tissues. Resveratrol (Res), derived from grapes and peanuts and the traditional Chinese medicine (TCM) Reynoutria japonica for GA, acts against oxidation and inflammation. The present study aimed to investigate the therapeutic effect and mechanism of Res on GA. Methods Arthritis rat models, MSU-induced peritonitis mouse models, and inflammatory models of mouse bone marrow-derived macrophage (BMDM) were used in this study. Enzyme-linked immunosorbent assay (ELISA), JC-1, histopathological, immunofluorescence, flow cytometry, Western blot methods were applied to observe the effects of resveratrol on NLRP3 inflammasomes and mitophagy. Results Res significantly improves the gait score and synovitis of rats with GA and inhibits the peritoneal inflammation induced by MSU. Res inhibits the MSU-induced activation of NLRP3 inflammasomes by reducing the levels of IL-1β, IL-18, and Caspase-1 and the pyroptosis of macrophages. In addition, Res raises the level of mitochondrial membrane potential, inhibits the expression of P62 and Pink1, enhances the expressions of LC3B-II, Parkin, and TOMM20, and promotes mitophagy, while mitophagy inhibitors reverse the inhibitory effect of Res on the activation of NLRP3 inflammasomes. Conclusion Res significantly improves GA, and the underlying mechanism might be inhibiting the activation of NLRP3 inflammasomes by triggering the Pink1/Parkin pathway to promote mitophagy.
Collapse
Affiliation(s)
- Weimin Fan
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|