201
|
Elia G, Santoro MG. Regulation of heat shock protein synthesis by quercetin in human erythroleukaemia cells. Biochem J 1994; 300 ( Pt 1):201-9. [PMID: 8198534 PMCID: PMC1138143 DOI: 10.1042/bj3000201] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthesis of heat-shock proteins (HSPs) is universally induced in eukaryotic and prokaryotic cells by exposure to elevated temperatures or to other types of environmental stress. In mammalian cells, HSPs belonging to the 70 kDa family (HSP70) have a regulatory role in several cellular processes, and have been shown to be involved in the control of cell proliferation and differentiation. Although many types of HSP70 inducers have been identified, only a few compounds, all belonging to the flavonoid group, have been shown to inhibit HSP70 induction. Because inhibitors of HSP70 synthesis could be an important tool with which to study the function of this protein, we have investigated the effect of quercetin, a flavonoid with antiproliferative activity which is widely distributed in nature, on HSP70 synthesis in human K562 erythroleukaemia cells after treatment with severe or mild heat shock and with other inducers. Quercetin was found to affect HSP70 synthesis at more than one level, depending on the conditions used. Indeed, after severe heat shock (45 degrees C for 20 min) treatment with quercetin, at non-toxic concentrations, was found to inhibit HSP70 synthesis for a period of 3-4 h. This block appeared to be exerted at the post-transcriptional level and to be cell-mediated, as the addition of quercetin during translation of HSP70 mRNA in vitro had no effect. After prolonged (90 min) exposure at 43 degrees C, however, quercetin was found to inhibit also HSP70 mRNA transcription. Pretreatment of K562 cells with quercetin had no effect on HSP70 expression, and quercetin needed to be present during induction to be effective. Under all conditions tested, the quercetin-induced block of HSP70 synthesis was found to be transient and, after an initial delay, synthesis of HSP70 reached the control rate and continued at the same level for several hours after the time at which HSP70 synthesis had been turned off in control cells. Finally, inhibition of HSP70 synthesis by quercetin appeared to be dependent on the temperature used and on the type of stressor.
Collapse
Affiliation(s)
- G Elia
- Institute of Experimental Medicine, CNR, Rome, Italy
| | | |
Collapse
|
202
|
Abstract
All organisms from bacteria to man respond to an exposure to higher than physiological temperatures by reprogramming their gene expression, leading to the increased synthesis of a unique set of proteins termed heat shock proteins (hsps). The hsps function as molecular chaperones in both normal and stressed cells. The rapid and efficient synthesis of hsps is achieved as a result of changes occurring at gene transcription, RNA processing and degradation, and mRNA translation. With regard to the translational regulation, the emerging picture is that the two key steps of polypeptide chain initiation, namely mRNA binding and Met-tRNA(i) binding to ribosomes, are regulated in heat-shocked mammalian cells. In Drosophila, mRNA binding is regulated by a structural feature of the leader of heat shock mRNAs and by the inactivation of eukaryotic initiation factor- (eIF-) 4F. No clear evidence for changes in Met-tRNA(i) binding has been obtained yet.
Collapse
Affiliation(s)
- J M Sierra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
203
|
Höning S, Kreimer G, Robenek H, Jockusch BM. Receptor-mediated endocytosis is sensitive to antibodies against the uncoating ATPase (hsc70). J Cell Sci 1994; 107 ( Pt 5):1185-96. [PMID: 7929628 DOI: 10.1242/jcs.107.5.1185] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the functional role of the coated vesicle-uncoating ATPase (UA), a cognate heat shock protein (hsc70), in receptor-mediated endocytosis. A monoclonal antibody against bovine brain UA/hsc70 was generated that recognizes a 26 kDa proteolytic fragment harbouring the putative clathrin-binding site. In vitro, this antibody blocked the UA/hsc70-mediated release of clathrin from isolated coated vesicles (CVs). Upon microinjection into tissue culture cells, it specifically inhibited the heat shock-induced nuclear migration of UA/hsc70. This antibody also interfered with endocytosis of ligand-receptor complexes in injected cells. Two different systems were studied: the uptake of aggregated human IgG by BHK cells transfected with a human Fc receptor (FcRII), and the internalization of LDL by human fibroblasts. Injection of the monoclonal antibody in concentrations yielding approximately equal molar ratios of antibody to enzyme resulted in a reduction of endocytosis to 20–30% of control values, as seen by conventional light and confocal laser scanning microscopy, and by electron microscopy. In the transfected BHK cells, the endocytosed ligand remained associated with the labeling for clathrin and was not delivered to the endosomal compartment within the period expected from control serum- or non-injected cells. Thin sections revealed an accumulation of coated structures in the antibody-injected cells as compared to controls. Thus, our data show that UA is essential for normal receptor-mediated endocytosis, and is presumably involved in the uncoating of CVs preceding their fusion with endosomes.
Collapse
Affiliation(s)
- S Höning
- Cell Biology Group, University of Bielefeld, FRG
| | | | | | | |
Collapse
|
204
|
Liu A, Bian H, Huang L, Lee Y. Transient cold shock induces the heat shock response upon recovery at 37 degrees C in human cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36691-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
205
|
Yamamoto N, Smith MW, Maki A, Berezesky IK, Trump BF. Role of cytosolic Ca2+ and protein kinases in the induction of the hsp70 gene. Kidney Int 1994; 45:1093-104. [PMID: 8007579 DOI: 10.1038/ki.1994.146] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The role of cytosolic Ca2+ ([Ca2+]i) and protein kinases in the hsp70 induction following heat shock was investigated in cultured rat proximal tubular epithelial (PTE) cells. Changes in [Ca2+]i were measured by digital imaging fluorescence microscopy using fura 2. Steady state levels of hsp70 mRNA were examined by either Northern or dot blot analyses. [Ca2+]i increased within 10 minutes and continued to increase following heat shock. The increases in [Ca2+]i were reduced in nominally Ca(2+)-free media with or without EGTA. [Ca2+]i also increased within 0.5 minutes following ionomycin, but then declined to normal levels by 1.0 to 1.5 minutes. Heat shock induced hsp70 mRNA within 15 minutes, which continued to increase up to three hours. Ionomycin also induced hsp70 mRNA, which peaked at 30 minutes, and gradually decreased thereafter. The hsp70 induction following heat shock was attenuated when extracellular Ca2+ was reduced. Chelation of [Ca2+]i by quin-2 also reduced the hsp70 induction. Inhibitors of protein kinases, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), calphostin C, genistein, and 2-aminopurine, also had inhibitory effects on the hsp70 induction. In contrast, a calmodulin inhibitor, chlorpromazine, had little effect. These results suggest that heat shock increases [Ca2+]i in rat PTE cells and that [Ca2+]i and protein kinases are involved in the hsp70 induction following heat shock.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Pathology, University of Maryland, School of Medicine, Baltimore
| | | | | | | | | |
Collapse
|
206
|
Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 1994. [PMID: 8114740 DOI: 10.1128/mcb.14.3.2087] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two members of the heat shock transcription factor (HSF) family, HSF1 and HSF2, both function as transcriptional activators of heat shock gene expression. However, the inducible DNA-binding activities of these two factors are regulated by distinct pathways. HSF1 is activated by heat shock and other forms of stress, whereas HSF2 is activated during hemin-induced differentiation of human K562 erythroleukemia cells, suggesting a role for HSF2 in regulating heat shock gene expression under nonstress conditions such as differentiation and development. To understand the distinct regulatory pathways controlling HSF2 and HSF1 activities, we have examined the biochemical and physical properties of the control and activated states of HSF2 and compared these with the properties of HSF1. Our results reveal that the inactive, non-DNA-binding forms of HSF2 and HSF1 exist primarily in the cytoplasm of untreated K562 cells as a dimer and monomer, respectively. This difference in the control oligomeric states suggests that the mechanisms used to control the DNA-binding activities of HSF2 and HSF1 are distinct. Upon activation, both factors acquire DNA-binding activity, oligomerize to a trimeric state, and translocate into the nucleus. Interestingly, we find that simultaneous activation of both HSF2 and HSF1 in K562 cells subjected to hemin treatment followed by heat shock results in the synergistic induction of hsp70 gene transcription, suggesting a novel level of complex regulation of heat shock gene expression.
Collapse
|
207
|
Sistonen L, Sarge KD, Morimoto RI. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 1994; 14:2087-99. [PMID: 8114740 PMCID: PMC358569 DOI: 10.1128/mcb.14.3.2087-2099.1994] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two members of the heat shock transcription factor (HSF) family, HSF1 and HSF2, both function as transcriptional activators of heat shock gene expression. However, the inducible DNA-binding activities of these two factors are regulated by distinct pathways. HSF1 is activated by heat shock and other forms of stress, whereas HSF2 is activated during hemin-induced differentiation of human K562 erythroleukemia cells, suggesting a role for HSF2 in regulating heat shock gene expression under nonstress conditions such as differentiation and development. To understand the distinct regulatory pathways controlling HSF2 and HSF1 activities, we have examined the biochemical and physical properties of the control and activated states of HSF2 and compared these with the properties of HSF1. Our results reveal that the inactive, non-DNA-binding forms of HSF2 and HSF1 exist primarily in the cytoplasm of untreated K562 cells as a dimer and monomer, respectively. This difference in the control oligomeric states suggests that the mechanisms used to control the DNA-binding activities of HSF2 and HSF1 are distinct. Upon activation, both factors acquire DNA-binding activity, oligomerize to a trimeric state, and translocate into the nucleus. Interestingly, we find that simultaneous activation of both HSF2 and HSF1 in K562 cells subjected to hemin treatment followed by heat shock results in the synergistic induction of hsp70 gene transcription, suggesting a novel level of complex regulation of heat shock gene expression.
Collapse
Affiliation(s)
- L Sistonen
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | | | |
Collapse
|
208
|
Mestril R, Chi SH, Sayen MR, O'Reilly K, Dillmann WH. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 1994; 93:759-67. [PMID: 8113409 PMCID: PMC293923 DOI: 10.1172/jci117030] [Citation(s) in RCA: 231] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Myocardial ischemia markedly increases the expression of several members of the stress/heat shock protein (HSP) family, especially the inducible HSP70 isoforms. Increased expression of HSP70 has been shown to exert a protective effect against a lethal heat shock. We have examined the possibility of using this resistance to a lethal heat shock as a protective effect against an ischemic-like stress in vitro using a rat embryonic heart-derived cell line H9c2 (2-1). Myogenic cells in which the heat shock proteins have been induced by a previous heat shock are found to become resistant to a subsequent simulated ischemic stress. In addition, to address the question of how much does the presence of the HSP70 contribute to this protective effect, we have generated stably transfected cell lines overexpressing the human-inducible HSP70. Embryonal rat heart-derived H9c2(2-1) cells were used for this purpose. This stably transfected cell line was found to be significantly more resistant to an ischemic-like stress than control myogenic cells only expressing the selectable marker (neomycin) or the parental cell line H9c2(2-1). This finding implicates the inducible HSP70 protein as playing a major role in protecting cardiac cells against ischemic injury.
Collapse
Affiliation(s)
- R Mestril
- Department of Medicine, University of California at San Diego 92103
| | | | | | | | | |
Collapse
|
209
|
Becker J, Craig EA. Heat-shock proteins as molecular chaperones. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:11-23. [PMID: 8306977 DOI: 10.1007/978-3-642-79502-2_2] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Functional proteins within cells are normally present in their native, completely folded form. However, vital processes of protein biogenesis such as protein synthesis and translocation of proteins into intracellular compartments require the protein to exist temporarily in an unfolded or partially folded conformation. As a consequence, regions buried when a polypeptide is in its native conformation become exposed and interact with other proteins causing protein aggregation which is deleterious to the cell. To prevent aggregation as proteins become unfolded, heat-shock proteins protect these interactive surfaces by binding to them and facilitating the folding of unfolded or nascent polypeptides. In other instances the binding of heat-shock proteins to interactive surfaces of completely folded proteins is a crucial part of their regulation. As heat shock and other stress conditions cause cellular proteins to become partially unfolded, the ability of heat-shock proteins to protect cells against the adverse effects of stress becomes a logical extension of their normal function as molecular chaperones.
Collapse
Affiliation(s)
- J Becker
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
210
|
|
211
|
Van Breusegem F, Dekeyser R, Garcia AB, Claes B, Gielen J, Van Montagu M, Caplan AB. Heat-inducible rice hsp82 and hsp70 are not always co-regulated. PLANTA 1994; 193:57-66. [PMID: 7764623 DOI: 10.1007/bf00191607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have characterized several heat-shock-induced genes in rice (Oryza sativa L.) and compared their expression under a variety of conditions. Three of these genes, which are analogs of the hsp82/90 family, lie within a cloned 18-kilobase (kb) region of the genome. The middle member of this cluster, designated hsp82B, has been fully sequenced. The gene uses a promoter containing six putative heat-shock elements as well as several unusual sequence motifs including a stretch of 11 thymidines alternating with 11 adenosines. The mRNA for this gene reaches its highest relative level of expression within 120 min after plants are shifted to 42 degrees C; no other conditions induce this gene. By contrast, we found that during heat stress the expression of hsp70 correlates well with increases in internal ion concentrations, and can also be induced by excess salt or ethanol at normal growth temperatures. These results appear to indicate that whereas hsp70 is induced by all stresses that lead to protein denaturation-including heat stress-HSP82 mRNA accumulates only upon heat stress.
Collapse
|
212
|
Cheng TJ, Lai YK. Transient increase in vimentin phosphorylation and vimentin-HSC70 association in 9L rat brain tumor cells experiencing heat-shock. J Cell Biochem 1994; 54:100-9. [PMID: 8126080 DOI: 10.1002/jcb.240540111] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Characteristic changes in vimentin were studied in 9L rat brain tumor cells treated at 45 degrees C. During heat-shock treatment, vimentin molecules were rapidly phosphorylated and reorganized from a filamentous form into a perinuclear higher-order structure that was less extractable by nonionic detergent. These effects were found to be highly transient, peaked at 30 min after the onset of heat-shock treatment, and subsided thereafter. Simultaneously, the solubility of the constitutively expressed heat-shock protein 70 (HSC70) was also temporarily decreased and the kinetics was identical to that of vimentin. The results indicated that HSC70 and vimentin were co-insolubilized during the heat-shock treatment. We propose that the reorganization of the intermediate filaments resulted from enhanced phosphorylation of vimentin leads to the concurrent association of HSC70 to the intermediate filaments. This process may play an essential role in regulating heat-shock genes.
Collapse
Affiliation(s)
- T J Cheng
- Institute of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | |
Collapse
|
213
|
Scharf KD, Materna T, Treuter E, Nover L. Heat stress promoters and transcription factors. Results Probl Cell Differ 1994; 20:125-62. [PMID: 8036313 DOI: 10.1007/978-3-540-48037-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K D Scharf
- Lehrstuhl Zellbiologie, Biozentrum, Goethe-Universität, Frankfurt, FRG
| | | | | | | |
Collapse
|
214
|
Satoh J, Tabira T, Yamamura T, Kim SU. HSP72 induction by heat stress is not universal in mammalian neural cell lines. J Neurosci Res 1994; 37:44-53. [PMID: 8145302 DOI: 10.1002/jnr.490370107] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heat-induced expression of 72-kDa heat shock protein (HSP72) was investigated in a panel of neuronal and non-neuronal cell lines by immunoblotting and immunocytochemistry using monoclonal antibodies directed to HSP72. By immunoblotting, HSP72 expression was observed in most cell lines of mouse (SN6.1b, CL8c4.7, NSC34.6, B2A, C2C12), rat (PC12, C-6, L3), and human (NB-1, GOTO, IMR-32, HeLa) origin under the heat-stressed condition. The mouse neuroblastoma cell line N18TG2, however, did not express HSP72 under the heat-stressed condition. By immunocytochemistry, HSP72 was undetectable in the heat-stressed N18TG2 cells, while it was identified in the heat-stressed SN6.1b cells, a clonal hybrid neuron between N18TG2 and mouse septal cholinergic neuron. By exposure to a priming sublethal heat shock, SN6.1b cells but not N18TG2 cells acquired a significant level of tolerance to a subsequent lethal heat shock. These results suggest that heat-induced expression of HSP72 may contribute to acquisition of the thermotolerant state in SN6.1b cells.
Collapse
Affiliation(s)
- J Satoh
- Department of Medicine, University Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
215
|
Hatayama T, Asai Y, Wakatsuki T, Kitamura T, Imahara H. Regulation of hsp70 induction in thermotolerant HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1179:109-16. [PMID: 8218352 DOI: 10.1016/0167-4889(93)90131-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Upon exposure to heat shock, non-thermotolerant (NT) HeLa cells transiently synthesize a large amount of 70-kDa heat-shock protein (hsp70), whereas thermotolerant (TT) cells synthesize a small amount of hsp70. When the hsp70 mRNA of HeLa cells was analyzed, it became apparent that hsp70 mRNA in TT cells did not increase following heat shock, whereas hsp70 mRNA in NT cells did increase dramatically. A further analysis of the activation of the heat-shock transcription factor (HSF) showed that significant activation of HSF was observed immediately after heat shock in both NT and TT cells. However, activated HSF was rapidly repressed in the TT cells, but not in the NT cells. Thus, the decreased induction of hsp70 synthesis observed in the TT HeLa cells may be due to the immediate repression of activated cellular HSF, which probably results in the reduced induction of hsp70 mRNA. The hsp70 content in the TT cells was usually higher than in the NT cells. However, after heat-shock treatment, the hsp70 content of the NT cells increased to nearly the level of the TT cells concomitant with the repression of hsp70 synthesis. The association of activated HSF with hsp70 was observed in both NT and TT cells, and the amount of HSF-hsp70 complex within the cell increased in proportion to the increase in hsp70 in the cells. These findings strongly suggest that the activity of HSF is negatively regulated by the intracellular content of hsp70 in these cells. Furthermore, in vitro experiments on the activation of HSF suggest that HSFs of NT and TT cells may have different properties, or an unknown factor may exist which regulates HSF activation in these cells.
Collapse
Affiliation(s)
- T Hatayama
- Department of Biochemistry, Kyoto Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
216
|
Manzerra P, Rush SJ, Brown IR. Temporal and spatial distribution of heat shock mRNA and protein (hsp70) in the rabbit cerebellum in response to hyperthermia. J Neurosci Res 1993; 36:480-90. [PMID: 8271318 DOI: 10.1002/jnr.490360414] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously investigated the expression of hsp70 genes in the hyperthermic rabbit brain at the mRNA level by Northern blot and in situ hybridization procedures. Our studies have now been extended to the protein level utilizing Western blot and immunocytochemistry. Using an antibody which is specific to inducible hsp70, a prominent induction of hsp70 protein in glial cells of hyperthermic animals was noted. In particular, Bergmann glial cells in the cerebellum are strongly immunoreactive while adjacent Purkinje neurons are immunonegative. Extension of our in situ hybridization studies to a time course analysis revealed that the initial glial induction events were followed by a delayed accumulation of inducible hsp70 mRNA in Purkinje neurons at 10 hr post-heat shock. In control animals, high levels of constitutively expressed hsc70 mRNA and protein were observed in Purkinje neurons. Similar hsc70 and hsp70 mRNA observations were also made in neurons of the deep cerebellar nuclei and in motor neurons of the spinal cord. Our results suggest that these neuronal cell types accumulate hsp70 mRNA in response to hyperthermic treatment; however, the response is delayed when compared to the rapid response seen in glial cells. The high constitutive levels of hsc70 in certain neuronal cell types may play a role in the initial dampening of the hsp70 induction response in these cells.
Collapse
Affiliation(s)
- P Manzerra
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
217
|
Johnson AD, Tytell M. Exogenous HSP70 becomes cell associated, but not internalized, by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol Anim 1993; 29A:807-12. [PMID: 8118616 DOI: 10.1007/bf02634348] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell death within atherosclerotic plaques leads to necrosis and rupture, resulting in vascular occlusion. We have previously demonstrated that addition of exogenous 70 kDa heat shock protein (HSP70) to arterial smooth muscle cells (aSMCs) in vitro can protect against toxins that may initiate necrosis. To determine whether exogenous HSP70 enters aSMCs or acts from outside cells to preserve viability, cultured rabbit aSMCs were stressed by serum deprivation and treated with fluorescently labeled (7-aminomethyl-4-coumarin-3-acetate) or 125I-radiolabeled HSP70. Cell-associated HSP70 was analyzed using Western blotting, fluorescence spectroscopy, and gamma counting/autoradiography. Surface binding of HSP70 to aSMCs was differentiated from uptake by using trypsin treatment to degrade non-internalized HSP70. Specificity of HSP70 binding was tested by inhibiting uptake of 125I-HSP70 with excess unlabeled HSP70 or bovine serum albumin (BSA). The effect of unlabeled exogenous HSP70 on endogenous HSP synthesis was also tested. Exogenous HSP70 increased total cell-associated HSP70 2.9- to 3.6-fold over levels present in unstressed aSMCs. However, < 5% of the exogenous HSP70 was trypsin-insensitive, indicating that bound HSP70 was not internalized. Binding of 125I-HSP70 was inhibited by both unlabeled HSP70 and BSA, implying a non-specific interaction with the plasmalemma. Exogenous HSP70 significantly lowered overall protein synthesis by serum-deprived aSMCs, but it did not specifically inhibit synthesis of endogenous HSPs after heat shock. The results indicate that exogenous HSP70 protects viability of stressed aSMCs through interactions with the cell surface rather than via internalization.
Collapse
Affiliation(s)
- A D Johnson
- Department of Neurobiology and Anatomy, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157
| | | |
Collapse
|
218
|
The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 1993. [PMID: 8355691 DOI: 10.1128/mcb.13.9.5427] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human heat shock transcription factor (HSF) is maintained in an inactive non-DNA-binding form under nonstress conditions and acquires the ability to bind specifically to the heat shock promoter element in response to elevated temperatures or other conditions that disrupt protein structure. Here we show that constitutive overexpression of the major inducible heat shock protein, hsp70, in transfected human cells reduces the extent of HSF activation after a heat stress. HSF activation was inhibited more strongly in clones that express higher levels of hsp70. These results demonstrate that HSF activity is negatively regulated in vivo by hsp70 and suggest that the cell might sense elevated temperature as a decreased availability of hsp70. HSF activation in response to treatment with sodium arsenite or the proline analog azetidine was also depressed in hsp70-expressing cells relative to that in the nontransfected control cells. As well, the level of activated HSF decreased more rapidly in the hsp70-expressing clones when the cells were heat shocked and returned to 37 degrees C. These results suggest that hsp70 could play an active role in the conversion of HSF back to a conformation that does not bind the heat shock promoter element during the attenuation of the heat shock response.
Collapse
|
219
|
Mosser DD, Duchaine J, Massie B. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 1993; 13:5427-38. [PMID: 8355691 PMCID: PMC360250 DOI: 10.1128/mcb.13.9.5427-5438.1993] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human heat shock transcription factor (HSF) is maintained in an inactive non-DNA-binding form under nonstress conditions and acquires the ability to bind specifically to the heat shock promoter element in response to elevated temperatures or other conditions that disrupt protein structure. Here we show that constitutive overexpression of the major inducible heat shock protein, hsp70, in transfected human cells reduces the extent of HSF activation after a heat stress. HSF activation was inhibited more strongly in clones that express higher levels of hsp70. These results demonstrate that HSF activity is negatively regulated in vivo by hsp70 and suggest that the cell might sense elevated temperature as a decreased availability of hsp70. HSF activation in response to treatment with sodium arsenite or the proline analog azetidine was also depressed in hsp70-expressing cells relative to that in the nontransfected control cells. As well, the level of activated HSF decreased more rapidly in the hsp70-expressing clones when the cells were heat shocked and returned to 37 degrees C. These results suggest that hsp70 could play an active role in the conversion of HSF back to a conformation that does not bind the heat shock promoter element during the attenuation of the heat shock response.
Collapse
Affiliation(s)
- D D Mosser
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | | | |
Collapse
|
220
|
Affiliation(s)
- J Lis
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14850
| | | |
Collapse
|
221
|
Clos J, Rabindran S, Wisniewski J, Wu C. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 1993; 364:252-5. [PMID: 8321322 DOI: 10.1038/364252a0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heat shock factor (HSF), the transcriptional activator of eukaryotic heat shock genes, is induced to bind DNA by a monomer to trimer transition involving leucine zipper interactions. Although this mode of regulation is shared among many eukaryotic species, there is variation in the temperature at which HSF binding activity is induced. We investigated the basis of this variation by analysing the response of a human HSF expressed in Drosophila cells and Drosophila HSF expressed in human cells. We report here that the temperature that induces DNA binding and trimerization of human HSF in Drosophila was decreased by approximately 10 degrees C to the induction temperature for the host cell, whereas Drosophila HSF expressed in human cells was constitutively active. The results indicate that the activity of HSF in vivo is not a simple function of the absolute environmental temperature.
Collapse
Affiliation(s)
- J Clos
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
222
|
Treuter E, Nover L, Ohme K, Scharf KD. Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:113-25. [PMID: 8341257 DOI: 10.1007/bf00276890] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transient expression assays in transformed tobacco (Nicotiana plumbaginifolia) mesophyll protoplasts were used to test the activity of three tomato heat stress transcription factors, HSF24, HSF8 and HSF30, in a trans-activation and a trans-repression assay. The results document differences between the three HSFs with respect to their response to the configuration of heat stress promoter elements (HSEs) in the reporter construct (promoter specificity) and to the stress regime used for activation. Analysis of C-terminal deletions identified acidic sequence elements with a central tryptophan residue, which are important for HSF activity control. Surprisingly, heterologous HSFs from Drosophila and human cells, but not from yeast, were also functional as heat stress-induced transcription factors in this tobacco protoplast system.
Collapse
Affiliation(s)
- E Treuter
- Institute of Plant Biochemistry, Halle, Germany
| | | | | | | |
Collapse
|
223
|
Williams RS, Thomas JA, Fina M, German Z, Benjamin IJ. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest 1993; 92:503-8. [PMID: 8326014 PMCID: PMC293638 DOI: 10.1172/jci116594] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of heat shock protein 70 (hsp70) is stimulated during ischemia, but its proposed cytoprotective function during metabolic stress has remained conjectural. We introduced a human hsp70 gene into mouse 10T1/2 cells and assessed the susceptibility of these cells to injury in response to conditions that mimic ischemia. Transiently transfected cells, in the absence of stress, expressed human hsp70 to levels equal to or greater than those induced by heat shock, as assessed by RNAse protection, immunoblot, and immunohistochemical analyses. By comparison to cells transfected with a control plasmid, cells expressing the human hsp70 transgene were resistant to injury induced by glucose deprivation and inhibition of mitochondrial respiration. These results provide direct evidence for a cytoprotective function of hsp70 during metabolic stress.
Collapse
Affiliation(s)
- R S Williams
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | |
Collapse
|
224
|
Lee WC, Lee YC, Perng MD, Chen CM, Lai YK. Induction of vimentin modification and vimentin-HSP72 association by withangulatin A in 9L rat brain tumor cells. J Cell Biochem 1993; 52:253-65. [PMID: 8366140 DOI: 10.1002/jcb.240520302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Withangulatin A induced cell rounding up and the morphological alteration resulted from the reorganization of all of the major cytoskeletal components, i.e., vimentin, tubulin, and actin, as revealed by immunofluorescence techniques. When the withangulatin A-treated cells changed to a round-up morphology, vimentin intermediate filaments were found to be collapsed and clustered around the nucleus. The alteration was accompanied by characteristic changes of vimentin molecules, including augmentation of phosphorylation, retardation of electrophoretic mobility, and decrease in detergent extractability. The levels of vimentin phosphorylation were augmented by 2.5- and 1.8-fold in cells incubated with 50 microM withangulatin A for 1 and 3 h, respectively. The electrophoretic mobility of vimentin was partially retarded in cells treated with withangulatin A for 1 h at 10 microM and a completely upshift mobility was observed after 5 h treatment at 50 microM. In addition, vimentin molecules became less extractable by nonident P-40 after the cells were treated with withangulatin A and this effect was dose dependent. The decrease in solubility of vimentin was accompanied by the redistribution of HSP72 into the detergent nonextractable fraction and these two events were well correlated. Our results suggest that withangulatin A induced the modification of vimentin, which resulted in the alteration of cell morphology and redistribution of intracellular HSP72, an event that may play an important role in the induction of heat-shock response.
Collapse
Affiliation(s)
- W C Lee
- Institute of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
225
|
Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 1993. [PMID: 8497263 DOI: 10.1128/mcb.13.6.3481] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of heat shock genes in eukaryotic cells is regulated by the transcription factor heat shock factor (HSF). Activation of HSF occurs at two independent levels, DNA binding and the acquisition of transcriptional competence. The binding of HSF to DNA is accomplished by a stress-induced oligomeric switch of HSF protein. We have defined the oligomeric state of the latent and induced forms of HSF by measuring the sedimentation coefficient and the Stokes radius of the protein in Drosophila cell extracts. Calculation of the native molecular mass indicates that the two forms of Drosophila HSF are best described as a monomer and trimer, respectively, of the 77-kDa HSF polypeptide. The monomeric and trimeric states of HSF were verified by chemical cross-linking experiments. The finding of a monomeric composition for the latent form of HSF is incompatible with speculative models which suggest that molecular chaperones such as hsp70 feed back to inhibit trimerization of HSF by forming a stable heteromeric complex. We also found that both HSF monomers and HSF trimers exhibit unusually high frictional ratios, indicating that they have asymmetric shapes. The degree of asymmetry is significantly greater for the HSF trimer, suggesting that the monomer undergoes a conformational change to a more extended structure upon trimerization. These findings are consistent with a model for the inert HSF protein that is based on a monomer constrained by intramolecular coiled-coil interactions between amino- and carboxy-terminal domains.
Collapse
|
226
|
Westwood JT, Wu C. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 1993; 13:3481-6. [PMID: 8497263 PMCID: PMC359817 DOI: 10.1128/mcb.13.6.3481-3486.1993] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The induction of heat shock genes in eukaryotic cells is regulated by the transcription factor heat shock factor (HSF). Activation of HSF occurs at two independent levels, DNA binding and the acquisition of transcriptional competence. The binding of HSF to DNA is accomplished by a stress-induced oligomeric switch of HSF protein. We have defined the oligomeric state of the latent and induced forms of HSF by measuring the sedimentation coefficient and the Stokes radius of the protein in Drosophila cell extracts. Calculation of the native molecular mass indicates that the two forms of Drosophila HSF are best described as a monomer and trimer, respectively, of the 77-kDa HSF polypeptide. The monomeric and trimeric states of HSF were verified by chemical cross-linking experiments. The finding of a monomeric composition for the latent form of HSF is incompatible with speculative models which suggest that molecular chaperones such as hsp70 feed back to inhibit trimerization of HSF by forming a stable heteromeric complex. We also found that both HSF monomers and HSF trimers exhibit unusually high frictional ratios, indicating that they have asymmetric shapes. The degree of asymmetry is significantly greater for the HSF trimer, suggesting that the monomer undergoes a conformational change to a more extended structure upon trimerization. These findings are consistent with a model for the inert HSF protein that is based on a monomer constrained by intramolecular coiled-coil interactions between amino- and carboxy-terminal domains.
Collapse
Affiliation(s)
- J T Westwood
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
227
|
Iwaki K, Chi SH, Dillmann WH, Mestril R. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 1993; 87:2023-32. [PMID: 8504517 DOI: 10.1161/01.cir.87.6.2023] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND A cultured neonatal rat cardiomyocyte model is used to investigate the expression of the inducible heat shock protein 70 (HSP70i) during hypoxia/reoxygenation and metabolic stress. METHODS AND RESULTS The major HSP70i is increased in its expression at the mRNA and protein level in myocytes exposed to hypoxia/reoxygenation and metabolic stress by the addition of 2-deoxyglucose and sodium cyanide, which are inhibitors known to block ATP production. Surprisingly, the appearance of HSP70 mRNA precedes the intracellular ATP depletion caused by hypoxia, which is contrary to what we observe when the cardiomyocytes are subjected to metabolic stress. CONCLUSIONS It has been postulated recently that the decrease in intracellular ATP content in cells under stress may be the trigger that leads to the induction of HSP70i by reducing the pool of free HSP70, thus activating the stress response. Our results indicate that although this may be the case during metabolic stress, another route of activation must be used during the early stages of hypoxia in cardiomyocytes. The induction of HSP70i also appears to precede the onset of cellular damage as measured by the release of cytoplasmic enzymes and preincorporated arachidonic acid. This indicates that cardiomyocytes are able to respond to hypoxia/reoxygenation and metabolic stress with increased HSP70i production and points to a potential protective role of heat shock proteins during ischemia/reperfusion injury.
Collapse
Affiliation(s)
- K Iwaki
- Department of Medicine, University of California, San Diego
| | | | | | | |
Collapse
|
228
|
Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993. [PMID: 8455624 DOI: 10.1128/mcb.13.4.2486] [Citation(s) in RCA: 304] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activity of heat shock (hsp) genes is controlled by a heat-activated, group-specific transcription factor(s) recognizing arrays of inverted repeats of the element NGAAN. To date genes for two human factors, HSF1 and HSF2, have been isolated. To define their properties as well as the changes they undergo during heat stress activation, we prepared polyclonal antibodies to these factors. Using these tools, we have shown that human HeLa cells constitutively synthesize HSF1, but we were unable to detect HSF2. In unstressed cells HSF1 is present mainly in complexes with an apparent molecular mass of about 200 kDa, unable to bind to DNA. Heat treatment induces a shift in the apparent molecular mass of HSF1 to about 700 kDa, concomitant with the acquisition of DNA-binding ability. Cross-linking experiments suggest that this change in complex size may reflect the trimerization of monomeric HSF1. Human HSF1 expressed in Xenopus oocytes does not bind DNA, but derepression of DNA-binding activity, as well as oligomerization of HSF1, occurs during heat treatment at the same temperature at which hsp gene expression is induced in this organism, suggesting that a conserved Xenopus protein(s) plays a role in this regulation. Inactive HSF1 resides in the cytoplasm of human cells; on activation it rapidly translocates to a soluble nuclear fraction, and shortly thereafter it becomes associated with the nuclear pellet. On heat shock, activatable HSF1, which might already have been posttranslationally modified in the unstressed cell, undergoes further modification. These different process provide multiple points of regulation of hsp gene expression.
Collapse
|
229
|
Liu RY, Kim D, Yang SH, Li GC. Dual control of heat shock response: involvement of a constitutive heat shock element-binding factor. Proc Natl Acad Sci U S A 1993; 90:3078-82. [PMID: 8464927 PMCID: PMC46240 DOI: 10.1073/pnas.90.7.3078] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Heat shock factor (HSF) has been implicated as the key regulatory protein in the heat shock response. Our studies on the response of rodent cells to heat shock or sodium arsenite indicate that a high level of HSF-DNA-binding activity, by itself, is not sufficient for the induction of hsp70 mRNA synthesis; furthermore, a high level of HSF binding is also not necessary for this induction. Analysis of the binding of protein factors to the heat shock element (HSE) in extracts of stressed rodent cells indicates that the regulation of heat shock response involves the heat-inducible HSF and a constitutive HSE-binding factor. Our results also suggest that overexpression of human hsp70 may decrease the level of heat-induced HSF-HSE-binding activity in rat cells.
Collapse
Affiliation(s)
- R Y Liu
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | |
Collapse
|
230
|
Baler R, Dahl G, Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993; 13:2486-96. [PMID: 8455624 PMCID: PMC359569 DOI: 10.1128/mcb.13.4.2486-2496.1993] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcriptional activity of heat shock (hsp) genes is controlled by a heat-activated, group-specific transcription factor(s) recognizing arrays of inverted repeats of the element NGAAN. To date genes for two human factors, HSF1 and HSF2, have been isolated. To define their properties as well as the changes they undergo during heat stress activation, we prepared polyclonal antibodies to these factors. Using these tools, we have shown that human HeLa cells constitutively synthesize HSF1, but we were unable to detect HSF2. In unstressed cells HSF1 is present mainly in complexes with an apparent molecular mass of about 200 kDa, unable to bind to DNA. Heat treatment induces a shift in the apparent molecular mass of HSF1 to about 700 kDa, concomitant with the acquisition of DNA-binding ability. Cross-linking experiments suggest that this change in complex size may reflect the trimerization of monomeric HSF1. Human HSF1 expressed in Xenopus oocytes does not bind DNA, but derepression of DNA-binding activity, as well as oligomerization of HSF1, occurs during heat treatment at the same temperature at which hsp gene expression is induced in this organism, suggesting that a conserved Xenopus protein(s) plays a role in this regulation. Inactive HSF1 resides in the cytoplasm of human cells; on activation it rapidly translocates to a soluble nuclear fraction, and shortly thereafter it becomes associated with the nuclear pellet. On heat shock, activatable HSF1, which might already have been posttranslationally modified in the unstressed cell, undergoes further modification. These different process provide multiple points of regulation of hsp gene expression.
Collapse
Affiliation(s)
- R Baler
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101
| | | | | |
Collapse
|
231
|
Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993. [PMID: 8441385 DOI: 10.1128/mcb.13.3.1392] [Citation(s) in RCA: 509] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor.
Collapse
|
232
|
Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993; 13:1392-407. [PMID: 8441385 PMCID: PMC359449 DOI: 10.1128/mcb.13.3.1392-1407.1993] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor.
Collapse
Affiliation(s)
- K D Sarge
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | | | |
Collapse
|
233
|
Hormonal regulation of thyroglobulin export from the endoplasmic reticulum of cultured thyrocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53477-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
234
|
Conditional silencing: the HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Mol Cell Biol 1993. [PMID: 8423797 DOI: 10.1128/mcb.13.2.727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HMRE silencer of Saccharomyces cerevisiae has been previously shown to transcriptionally repress class II and class III genes integrated within the HMR silent mating-type locus up to 2.6 kb away. Here we study the ability of this element to repress at an ectopic position, independent of sequences normally associated with it. When integrated 750 bp upstream of the HSP82 heat shock gene, the silencer represses basal-level transcription approximately 5-fold but has no effect on chemical- or heat-shock-induced expression. Such conditional silencing is also seen when the HMRE/HSP82 allele is carried on a centromeric episome or when the entire HMRa domain is transplaced 2.7 kb upstream of HSP82. Notably, the a1 promoter within the immigrant HMRa locus remains fully repressed at the same time HSP82 is derepressed. The position effect mediated by the E silencer is absolutely dependent on the presence of a functional SIR4 gene product, is lost within 1 min following stress induction, and is fully reestablished within 15 min following a return to nonstressful conditions. Similar kinetics of reestablishment are seen in HMRE/HSP82 and HMRa/HSP82 strains, indicating that complete repression can be mediated over thousands of base pairs within minutes. DNase I chromatin mapping reveals that the ABF1, RAP1, and autonomously replicating sequence factor binding sites within the silencer are constitutively occupied in chromatin, unaltered by heat shock or the presence of SIR4. Similarly, the heat shock factor binding site upstream of HSP82 remains occupied under such conditions, suggesting concurrent occupancy of silencer and activator binding sites. Our results are consistent with a model in which silencing at the HMRE/HSP82 allele is mediated by direct or indirect contacts between the silencer protein complex and heat shock factor.
Collapse
|
235
|
Laszlo A, Li GC. Effect of amino acid analogs on the development of thermotolerance and on thermotolerant cells. J Cell Physiol 1993; 154:419-32. [PMID: 8425921 DOI: 10.1002/jcp.1041540226] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exposure of HA-1 Chinese hamster fibroblasts to amino acid analogs has been shown to have a heat-sensitizing effect as well as inducing the heat shock response (Li and Laszlo, 1985a). In this study, we have examined the effect of amino acid analogs on the development of thermotolerance after a brief heat shock or exposure to sodium arsenite and the effect of amino acid analogs on cells that are already thermotolerant. Exposure of HA-1 cells to amino acid analogs inhibited the development of thermotolerance following a mild heat shock or treatment with sodium arsenite. However, cells that were already thermotolerant were resistant to the sensitizing action of amino acid analogs. The refractoriness of thermotolerant cells to amino acid analog treatment developed in parallel with thermotolerance. The uptake of the arginine analog, canavanine, and its incorporation into proteins was not altered in the thermotolerant cells. Furthermore, another biological consequence of exposure to amino acid analogs, sensitization to ionizing radiation, also was not altered in the thermotolerant cells. The inhibition of the development of thermotolerance by amino acid analogs and the refractoriness of thermotolerant cells to the heat-sensitizing action of amino acid analogs lend further support the role of heat-shock proteins in the phenomenon of thermotolerance.
Collapse
Affiliation(s)
- A Laszlo
- Section of Cancer Biology, Mallinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, Missouri 63108
| | | |
Collapse
|
236
|
Lee S, Gross DS. Conditional silencing: the HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Mol Cell Biol 1993; 13:727-38. [PMID: 8423797 PMCID: PMC358955 DOI: 10.1128/mcb.13.2.727-738.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The HMRE silencer of Saccharomyces cerevisiae has been previously shown to transcriptionally repress class II and class III genes integrated within the HMR silent mating-type locus up to 2.6 kb away. Here we study the ability of this element to repress at an ectopic position, independent of sequences normally associated with it. When integrated 750 bp upstream of the HSP82 heat shock gene, the silencer represses basal-level transcription approximately 5-fold but has no effect on chemical- or heat-shock-induced expression. Such conditional silencing is also seen when the HMRE/HSP82 allele is carried on a centromeric episome or when the entire HMRa domain is transplaced 2.7 kb upstream of HSP82. Notably, the a1 promoter within the immigrant HMRa locus remains fully repressed at the same time HSP82 is derepressed. The position effect mediated by the E silencer is absolutely dependent on the presence of a functional SIR4 gene product, is lost within 1 min following stress induction, and is fully reestablished within 15 min following a return to nonstressful conditions. Similar kinetics of reestablishment are seen in HMRE/HSP82 and HMRa/HSP82 strains, indicating that complete repression can be mediated over thousands of base pairs within minutes. DNase I chromatin mapping reveals that the ABF1, RAP1, and autonomously replicating sequence factor binding sites within the silencer are constitutively occupied in chromatin, unaltered by heat shock or the presence of SIR4. Similarly, the heat shock factor binding site upstream of HSP82 remains occupied under such conditions, suggesting concurrent occupancy of silencer and activator binding sites. Our results are consistent with a model in which silencing at the HMRE/HSP82 allele is mediated by direct or indirect contacts between the silencer protein complex and heat shock factor.
Collapse
Affiliation(s)
- S Lee
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|
237
|
Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 1993; 259:230-4. [PMID: 8421783 DOI: 10.1126/science.8421783] [Citation(s) in RCA: 369] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human and Drosophila heat shock transcription factors (HSFs) are multi-zipper proteins with high-affinity binding to DNA that is regulated by heat shock-induced trimerization. Formation of HSF trimers is dependent on hydrophobic heptad repeats located in the amino-terminal region of the protein. Two subregions at the carboxyl-terminal end of human HSF1 were identified that maintain the monomeric form of the protein under normal conditions. One of these contains a leucine zipper motif that is conserved between vertebrate and insect HSFs. These results suggest that the carboxyl-terminal zipper may suppress formation of trimers by the amino-terminal HSF zipper elements by means of intramolecular coiled-coil interactions that are sensitive to heat shock.
Collapse
Affiliation(s)
- S K Rabindran
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
238
|
Affiliation(s)
- R H Burdon
- Department of Bioscience and Biotechnology, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
239
|
|
240
|
Beckmann RP, Lovett M, Welch WJ. Examining the function and regulation of hsp 70 in cells subjected to metabolic stress. J Biophys Biochem Cytol 1992; 117:1137-50. [PMID: 1607378 PMCID: PMC2289495 DOI: 10.1083/jcb.117.6.1137] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Members of the heat-shock protein (hsp) 70 family, distributed within various cellular compartments, have been implicated in facilitating protein maturation events. In particular, related hsp 70 family members appear to bind nascent polypeptides which are in the course of synthesis and/or translocation into organelles. We previously reported that in normal, unstressed cells, cytosolic hsp 70 (hsp 72/73) interacted transiently with nascent polypeptides. We suspect that such interactions function to prevent or slow down the folding of the nascent polypeptide chain. Once synthesis is complete, and now with all of the information for folding present, the newly synthesized protein appears to commence along its folding pathway, accompanied by the ATP-dependent release of hsp 72/73. Herein, we examined how these events occur in cells subjected to different types of metabolic stress. In cells exposed to either an amino acid analog or sodium arsenite, two potent inducers of the stress response, newly synthesized proteins bind to but are not released from hsp 70. Under these conditions of metabolic stress, we suspect that the newly synthesized proteins are unable to commence proper folding and consequently remain bound to their hsp 70 chaperone. In cells subjected to heat shock, a large number of both newly synthesized as well as mature proteins are rendered insoluble. Within this insoluble material are appreciable amounts of hsp 72/73. Finally, we show that in cells depleted of ATP, the release of hsp 70 from maturing proteins is inhibited. Thus, in cells experiencing metabolic stress, newly synthesized proteins unable to properly fold, as will as mature proteins which begin to unfold become stably bound to hsp 72/73. As a consequence and over time, the free or available levels of pre-existing hsp 72/73 are reduced. We propose that this reduction in the available levels of hsp 72/73 is the trigger by which the stress response is initiated.
Collapse
Affiliation(s)
- R P Beckmann
- University of California, San Francisco, Department of Medicine 94143-0854
| | | | | |
Collapse
|